xref: /linux/fs/xfs/xfs_file.c (revision 4413e16d9d21673bb5048a2e542f1aaa00015c2e)
1 /*
2  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_log.h"
21 #include "xfs_sb.h"
22 #include "xfs_ag.h"
23 #include "xfs_trans.h"
24 #include "xfs_mount.h"
25 #include "xfs_bmap_btree.h"
26 #include "xfs_alloc.h"
27 #include "xfs_dinode.h"
28 #include "xfs_inode.h"
29 #include "xfs_inode_item.h"
30 #include "xfs_bmap.h"
31 #include "xfs_error.h"
32 #include "xfs_vnodeops.h"
33 #include "xfs_da_btree.h"
34 #include "xfs_ioctl.h"
35 #include "xfs_trace.h"
36 
37 #include <linux/dcache.h>
38 #include <linux/falloc.h>
39 
40 static const struct vm_operations_struct xfs_file_vm_ops;
41 
42 /*
43  * Locking primitives for read and write IO paths to ensure we consistently use
44  * and order the inode->i_mutex, ip->i_lock and ip->i_iolock.
45  */
46 static inline void
47 xfs_rw_ilock(
48 	struct xfs_inode	*ip,
49 	int			type)
50 {
51 	if (type & XFS_IOLOCK_EXCL)
52 		mutex_lock(&VFS_I(ip)->i_mutex);
53 	xfs_ilock(ip, type);
54 }
55 
56 static inline void
57 xfs_rw_iunlock(
58 	struct xfs_inode	*ip,
59 	int			type)
60 {
61 	xfs_iunlock(ip, type);
62 	if (type & XFS_IOLOCK_EXCL)
63 		mutex_unlock(&VFS_I(ip)->i_mutex);
64 }
65 
66 static inline void
67 xfs_rw_ilock_demote(
68 	struct xfs_inode	*ip,
69 	int			type)
70 {
71 	xfs_ilock_demote(ip, type);
72 	if (type & XFS_IOLOCK_EXCL)
73 		mutex_unlock(&VFS_I(ip)->i_mutex);
74 }
75 
76 /*
77  *	xfs_iozero
78  *
79  *	xfs_iozero clears the specified range of buffer supplied,
80  *	and marks all the affected blocks as valid and modified.  If
81  *	an affected block is not allocated, it will be allocated.  If
82  *	an affected block is not completely overwritten, and is not
83  *	valid before the operation, it will be read from disk before
84  *	being partially zeroed.
85  */
86 STATIC int
87 xfs_iozero(
88 	struct xfs_inode	*ip,	/* inode			*/
89 	loff_t			pos,	/* offset in file		*/
90 	size_t			count)	/* size of data to zero		*/
91 {
92 	struct page		*page;
93 	struct address_space	*mapping;
94 	int			status;
95 
96 	mapping = VFS_I(ip)->i_mapping;
97 	do {
98 		unsigned offset, bytes;
99 		void *fsdata;
100 
101 		offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */
102 		bytes = PAGE_CACHE_SIZE - offset;
103 		if (bytes > count)
104 			bytes = count;
105 
106 		status = pagecache_write_begin(NULL, mapping, pos, bytes,
107 					AOP_FLAG_UNINTERRUPTIBLE,
108 					&page, &fsdata);
109 		if (status)
110 			break;
111 
112 		zero_user(page, offset, bytes);
113 
114 		status = pagecache_write_end(NULL, mapping, pos, bytes, bytes,
115 					page, fsdata);
116 		WARN_ON(status <= 0); /* can't return less than zero! */
117 		pos += bytes;
118 		count -= bytes;
119 		status = 0;
120 	} while (count);
121 
122 	return (-status);
123 }
124 
125 /*
126  * Fsync operations on directories are much simpler than on regular files,
127  * as there is no file data to flush, and thus also no need for explicit
128  * cache flush operations, and there are no non-transaction metadata updates
129  * on directories either.
130  */
131 STATIC int
132 xfs_dir_fsync(
133 	struct file		*file,
134 	loff_t			start,
135 	loff_t			end,
136 	int			datasync)
137 {
138 	struct xfs_inode	*ip = XFS_I(file->f_mapping->host);
139 	struct xfs_mount	*mp = ip->i_mount;
140 	xfs_lsn_t		lsn = 0;
141 
142 	trace_xfs_dir_fsync(ip);
143 
144 	xfs_ilock(ip, XFS_ILOCK_SHARED);
145 	if (xfs_ipincount(ip))
146 		lsn = ip->i_itemp->ili_last_lsn;
147 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
148 
149 	if (!lsn)
150 		return 0;
151 	return _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, NULL);
152 }
153 
154 STATIC int
155 xfs_file_fsync(
156 	struct file		*file,
157 	loff_t			start,
158 	loff_t			end,
159 	int			datasync)
160 {
161 	struct inode		*inode = file->f_mapping->host;
162 	struct xfs_inode	*ip = XFS_I(inode);
163 	struct xfs_mount	*mp = ip->i_mount;
164 	int			error = 0;
165 	int			log_flushed = 0;
166 	xfs_lsn_t		lsn = 0;
167 
168 	trace_xfs_file_fsync(ip);
169 
170 	error = filemap_write_and_wait_range(inode->i_mapping, start, end);
171 	if (error)
172 		return error;
173 
174 	if (XFS_FORCED_SHUTDOWN(mp))
175 		return -XFS_ERROR(EIO);
176 
177 	xfs_iflags_clear(ip, XFS_ITRUNCATED);
178 
179 	if (mp->m_flags & XFS_MOUNT_BARRIER) {
180 		/*
181 		 * If we have an RT and/or log subvolume we need to make sure
182 		 * to flush the write cache the device used for file data
183 		 * first.  This is to ensure newly written file data make
184 		 * it to disk before logging the new inode size in case of
185 		 * an extending write.
186 		 */
187 		if (XFS_IS_REALTIME_INODE(ip))
188 			xfs_blkdev_issue_flush(mp->m_rtdev_targp);
189 		else if (mp->m_logdev_targp != mp->m_ddev_targp)
190 			xfs_blkdev_issue_flush(mp->m_ddev_targp);
191 	}
192 
193 	/*
194 	 * All metadata updates are logged, which means that we just have
195 	 * to flush the log up to the latest LSN that touched the inode.
196 	 */
197 	xfs_ilock(ip, XFS_ILOCK_SHARED);
198 	if (xfs_ipincount(ip)) {
199 		if (!datasync ||
200 		    (ip->i_itemp->ili_fields & ~XFS_ILOG_TIMESTAMP))
201 			lsn = ip->i_itemp->ili_last_lsn;
202 	}
203 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
204 
205 	if (lsn)
206 		error = _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed);
207 
208 	/*
209 	 * If we only have a single device, and the log force about was
210 	 * a no-op we might have to flush the data device cache here.
211 	 * This can only happen for fdatasync/O_DSYNC if we were overwriting
212 	 * an already allocated file and thus do not have any metadata to
213 	 * commit.
214 	 */
215 	if ((mp->m_flags & XFS_MOUNT_BARRIER) &&
216 	    mp->m_logdev_targp == mp->m_ddev_targp &&
217 	    !XFS_IS_REALTIME_INODE(ip) &&
218 	    !log_flushed)
219 		xfs_blkdev_issue_flush(mp->m_ddev_targp);
220 
221 	return -error;
222 }
223 
224 STATIC ssize_t
225 xfs_file_aio_read(
226 	struct kiocb		*iocb,
227 	const struct iovec	*iovp,
228 	unsigned long		nr_segs,
229 	loff_t			pos)
230 {
231 	struct file		*file = iocb->ki_filp;
232 	struct inode		*inode = file->f_mapping->host;
233 	struct xfs_inode	*ip = XFS_I(inode);
234 	struct xfs_mount	*mp = ip->i_mount;
235 	size_t			size = 0;
236 	ssize_t			ret = 0;
237 	int			ioflags = 0;
238 	xfs_fsize_t		n;
239 
240 	XFS_STATS_INC(xs_read_calls);
241 
242 	BUG_ON(iocb->ki_pos != pos);
243 
244 	if (unlikely(file->f_flags & O_DIRECT))
245 		ioflags |= IO_ISDIRECT;
246 	if (file->f_mode & FMODE_NOCMTIME)
247 		ioflags |= IO_INVIS;
248 
249 	ret = generic_segment_checks(iovp, &nr_segs, &size, VERIFY_WRITE);
250 	if (ret < 0)
251 		return ret;
252 
253 	if (unlikely(ioflags & IO_ISDIRECT)) {
254 		xfs_buftarg_t	*target =
255 			XFS_IS_REALTIME_INODE(ip) ?
256 				mp->m_rtdev_targp : mp->m_ddev_targp;
257 		if ((iocb->ki_pos & target->bt_smask) ||
258 		    (size & target->bt_smask)) {
259 			if (iocb->ki_pos == i_size_read(inode))
260 				return 0;
261 			return -XFS_ERROR(EINVAL);
262 		}
263 	}
264 
265 	n = mp->m_super->s_maxbytes - iocb->ki_pos;
266 	if (n <= 0 || size == 0)
267 		return 0;
268 
269 	if (n < size)
270 		size = n;
271 
272 	if (XFS_FORCED_SHUTDOWN(mp))
273 		return -EIO;
274 
275 	/*
276 	 * Locking is a bit tricky here. If we take an exclusive lock
277 	 * for direct IO, we effectively serialise all new concurrent
278 	 * read IO to this file and block it behind IO that is currently in
279 	 * progress because IO in progress holds the IO lock shared. We only
280 	 * need to hold the lock exclusive to blow away the page cache, so
281 	 * only take lock exclusively if the page cache needs invalidation.
282 	 * This allows the normal direct IO case of no page cache pages to
283 	 * proceeed concurrently without serialisation.
284 	 */
285 	xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
286 	if ((ioflags & IO_ISDIRECT) && inode->i_mapping->nrpages) {
287 		xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
288 		xfs_rw_ilock(ip, XFS_IOLOCK_EXCL);
289 
290 		if (inode->i_mapping->nrpages) {
291 			ret = -xfs_flushinval_pages(ip,
292 					(iocb->ki_pos & PAGE_CACHE_MASK),
293 					-1, FI_REMAPF_LOCKED);
294 			if (ret) {
295 				xfs_rw_iunlock(ip, XFS_IOLOCK_EXCL);
296 				return ret;
297 			}
298 		}
299 		xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
300 	}
301 
302 	trace_xfs_file_read(ip, size, iocb->ki_pos, ioflags);
303 
304 	ret = generic_file_aio_read(iocb, iovp, nr_segs, iocb->ki_pos);
305 	if (ret > 0)
306 		XFS_STATS_ADD(xs_read_bytes, ret);
307 
308 	xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
309 	return ret;
310 }
311 
312 STATIC ssize_t
313 xfs_file_splice_read(
314 	struct file		*infilp,
315 	loff_t			*ppos,
316 	struct pipe_inode_info	*pipe,
317 	size_t			count,
318 	unsigned int		flags)
319 {
320 	struct xfs_inode	*ip = XFS_I(infilp->f_mapping->host);
321 	int			ioflags = 0;
322 	ssize_t			ret;
323 
324 	XFS_STATS_INC(xs_read_calls);
325 
326 	if (infilp->f_mode & FMODE_NOCMTIME)
327 		ioflags |= IO_INVIS;
328 
329 	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
330 		return -EIO;
331 
332 	xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
333 
334 	trace_xfs_file_splice_read(ip, count, *ppos, ioflags);
335 
336 	ret = generic_file_splice_read(infilp, ppos, pipe, count, flags);
337 	if (ret > 0)
338 		XFS_STATS_ADD(xs_read_bytes, ret);
339 
340 	xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
341 	return ret;
342 }
343 
344 /*
345  * xfs_file_splice_write() does not use xfs_rw_ilock() because
346  * generic_file_splice_write() takes the i_mutex itself. This, in theory,
347  * couuld cause lock inversions between the aio_write path and the splice path
348  * if someone is doing concurrent splice(2) based writes and write(2) based
349  * writes to the same inode. The only real way to fix this is to re-implement
350  * the generic code here with correct locking orders.
351  */
352 STATIC ssize_t
353 xfs_file_splice_write(
354 	struct pipe_inode_info	*pipe,
355 	struct file		*outfilp,
356 	loff_t			*ppos,
357 	size_t			count,
358 	unsigned int		flags)
359 {
360 	struct inode		*inode = outfilp->f_mapping->host;
361 	struct xfs_inode	*ip = XFS_I(inode);
362 	int			ioflags = 0;
363 	ssize_t			ret;
364 
365 	XFS_STATS_INC(xs_write_calls);
366 
367 	if (outfilp->f_mode & FMODE_NOCMTIME)
368 		ioflags |= IO_INVIS;
369 
370 	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
371 		return -EIO;
372 
373 	xfs_ilock(ip, XFS_IOLOCK_EXCL);
374 
375 	trace_xfs_file_splice_write(ip, count, *ppos, ioflags);
376 
377 	ret = generic_file_splice_write(pipe, outfilp, ppos, count, flags);
378 	if (ret > 0)
379 		XFS_STATS_ADD(xs_write_bytes, ret);
380 
381 	xfs_iunlock(ip, XFS_IOLOCK_EXCL);
382 	return ret;
383 }
384 
385 /*
386  * This routine is called to handle zeroing any space in the last block of the
387  * file that is beyond the EOF.  We do this since the size is being increased
388  * without writing anything to that block and we don't want to read the
389  * garbage on the disk.
390  */
391 STATIC int				/* error (positive) */
392 xfs_zero_last_block(
393 	struct xfs_inode	*ip,
394 	xfs_fsize_t		offset,
395 	xfs_fsize_t		isize)
396 {
397 	struct xfs_mount	*mp = ip->i_mount;
398 	xfs_fileoff_t		last_fsb = XFS_B_TO_FSBT(mp, isize);
399 	int			zero_offset = XFS_B_FSB_OFFSET(mp, isize);
400 	int			zero_len;
401 	int			nimaps = 1;
402 	int			error = 0;
403 	struct xfs_bmbt_irec	imap;
404 
405 	xfs_ilock(ip, XFS_ILOCK_EXCL);
406 	error = xfs_bmapi_read(ip, last_fsb, 1, &imap, &nimaps, 0);
407 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
408 	if (error)
409 		return error;
410 
411 	ASSERT(nimaps > 0);
412 
413 	/*
414 	 * If the block underlying isize is just a hole, then there
415 	 * is nothing to zero.
416 	 */
417 	if (imap.br_startblock == HOLESTARTBLOCK)
418 		return 0;
419 
420 	zero_len = mp->m_sb.sb_blocksize - zero_offset;
421 	if (isize + zero_len > offset)
422 		zero_len = offset - isize;
423 	return xfs_iozero(ip, isize, zero_len);
424 }
425 
426 /*
427  * Zero any on disk space between the current EOF and the new, larger EOF.
428  *
429  * This handles the normal case of zeroing the remainder of the last block in
430  * the file and the unusual case of zeroing blocks out beyond the size of the
431  * file.  This second case only happens with fixed size extents and when the
432  * system crashes before the inode size was updated but after blocks were
433  * allocated.
434  *
435  * Expects the iolock to be held exclusive, and will take the ilock internally.
436  */
437 int					/* error (positive) */
438 xfs_zero_eof(
439 	struct xfs_inode	*ip,
440 	xfs_off_t		offset,		/* starting I/O offset */
441 	xfs_fsize_t		isize)		/* current inode size */
442 {
443 	struct xfs_mount	*mp = ip->i_mount;
444 	xfs_fileoff_t		start_zero_fsb;
445 	xfs_fileoff_t		end_zero_fsb;
446 	xfs_fileoff_t		zero_count_fsb;
447 	xfs_fileoff_t		last_fsb;
448 	xfs_fileoff_t		zero_off;
449 	xfs_fsize_t		zero_len;
450 	int			nimaps;
451 	int			error = 0;
452 	struct xfs_bmbt_irec	imap;
453 
454 	ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
455 	ASSERT(offset > isize);
456 
457 	/*
458 	 * First handle zeroing the block on which isize resides.
459 	 *
460 	 * We only zero a part of that block so it is handled specially.
461 	 */
462 	if (XFS_B_FSB_OFFSET(mp, isize) != 0) {
463 		error = xfs_zero_last_block(ip, offset, isize);
464 		if (error)
465 			return error;
466 	}
467 
468 	/*
469 	 * Calculate the range between the new size and the old where blocks
470 	 * needing to be zeroed may exist.
471 	 *
472 	 * To get the block where the last byte in the file currently resides,
473 	 * we need to subtract one from the size and truncate back to a block
474 	 * boundary.  We subtract 1 in case the size is exactly on a block
475 	 * boundary.
476 	 */
477 	last_fsb = isize ? XFS_B_TO_FSBT(mp, isize - 1) : (xfs_fileoff_t)-1;
478 	start_zero_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
479 	end_zero_fsb = XFS_B_TO_FSBT(mp, offset - 1);
480 	ASSERT((xfs_sfiloff_t)last_fsb < (xfs_sfiloff_t)start_zero_fsb);
481 	if (last_fsb == end_zero_fsb) {
482 		/*
483 		 * The size was only incremented on its last block.
484 		 * We took care of that above, so just return.
485 		 */
486 		return 0;
487 	}
488 
489 	ASSERT(start_zero_fsb <= end_zero_fsb);
490 	while (start_zero_fsb <= end_zero_fsb) {
491 		nimaps = 1;
492 		zero_count_fsb = end_zero_fsb - start_zero_fsb + 1;
493 
494 		xfs_ilock(ip, XFS_ILOCK_EXCL);
495 		error = xfs_bmapi_read(ip, start_zero_fsb, zero_count_fsb,
496 					  &imap, &nimaps, 0);
497 		xfs_iunlock(ip, XFS_ILOCK_EXCL);
498 		if (error)
499 			return error;
500 
501 		ASSERT(nimaps > 0);
502 
503 		if (imap.br_state == XFS_EXT_UNWRITTEN ||
504 		    imap.br_startblock == HOLESTARTBLOCK) {
505 			start_zero_fsb = imap.br_startoff + imap.br_blockcount;
506 			ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
507 			continue;
508 		}
509 
510 		/*
511 		 * There are blocks we need to zero.
512 		 */
513 		zero_off = XFS_FSB_TO_B(mp, start_zero_fsb);
514 		zero_len = XFS_FSB_TO_B(mp, imap.br_blockcount);
515 
516 		if ((zero_off + zero_len) > offset)
517 			zero_len = offset - zero_off;
518 
519 		error = xfs_iozero(ip, zero_off, zero_len);
520 		if (error)
521 			return error;
522 
523 		start_zero_fsb = imap.br_startoff + imap.br_blockcount;
524 		ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
525 	}
526 
527 	return 0;
528 }
529 
530 /*
531  * Common pre-write limit and setup checks.
532  *
533  * Called with the iolocked held either shared and exclusive according to
534  * @iolock, and returns with it held.  Might upgrade the iolock to exclusive
535  * if called for a direct write beyond i_size.
536  */
537 STATIC ssize_t
538 xfs_file_aio_write_checks(
539 	struct file		*file,
540 	loff_t			*pos,
541 	size_t			*count,
542 	int			*iolock)
543 {
544 	struct inode		*inode = file->f_mapping->host;
545 	struct xfs_inode	*ip = XFS_I(inode);
546 	int			error = 0;
547 
548 restart:
549 	error = generic_write_checks(file, pos, count, S_ISBLK(inode->i_mode));
550 	if (error)
551 		return error;
552 
553 	/*
554 	 * If the offset is beyond the size of the file, we need to zero any
555 	 * blocks that fall between the existing EOF and the start of this
556 	 * write.  If zeroing is needed and we are currently holding the
557 	 * iolock shared, we need to update it to exclusive which implies
558 	 * having to redo all checks before.
559 	 */
560 	if (*pos > i_size_read(inode)) {
561 		if (*iolock == XFS_IOLOCK_SHARED) {
562 			xfs_rw_iunlock(ip, *iolock);
563 			*iolock = XFS_IOLOCK_EXCL;
564 			xfs_rw_ilock(ip, *iolock);
565 			goto restart;
566 		}
567 		error = -xfs_zero_eof(ip, *pos, i_size_read(inode));
568 		if (error)
569 			return error;
570 	}
571 
572 	/*
573 	 * Updating the timestamps will grab the ilock again from
574 	 * xfs_fs_dirty_inode, so we have to call it after dropping the
575 	 * lock above.  Eventually we should look into a way to avoid
576 	 * the pointless lock roundtrip.
577 	 */
578 	if (likely(!(file->f_mode & FMODE_NOCMTIME))) {
579 		error = file_update_time(file);
580 		if (error)
581 			return error;
582 	}
583 
584 	/*
585 	 * If we're writing the file then make sure to clear the setuid and
586 	 * setgid bits if the process is not being run by root.  This keeps
587 	 * people from modifying setuid and setgid binaries.
588 	 */
589 	return file_remove_suid(file);
590 }
591 
592 /*
593  * xfs_file_dio_aio_write - handle direct IO writes
594  *
595  * Lock the inode appropriately to prepare for and issue a direct IO write.
596  * By separating it from the buffered write path we remove all the tricky to
597  * follow locking changes and looping.
598  *
599  * If there are cached pages or we're extending the file, we need IOLOCK_EXCL
600  * until we're sure the bytes at the new EOF have been zeroed and/or the cached
601  * pages are flushed out.
602  *
603  * In most cases the direct IO writes will be done holding IOLOCK_SHARED
604  * allowing them to be done in parallel with reads and other direct IO writes.
605  * However, if the IO is not aligned to filesystem blocks, the direct IO layer
606  * needs to do sub-block zeroing and that requires serialisation against other
607  * direct IOs to the same block. In this case we need to serialise the
608  * submission of the unaligned IOs so that we don't get racing block zeroing in
609  * the dio layer.  To avoid the problem with aio, we also need to wait for
610  * outstanding IOs to complete so that unwritten extent conversion is completed
611  * before we try to map the overlapping block. This is currently implemented by
612  * hitting it with a big hammer (i.e. inode_dio_wait()).
613  *
614  * Returns with locks held indicated by @iolock and errors indicated by
615  * negative return values.
616  */
617 STATIC ssize_t
618 xfs_file_dio_aio_write(
619 	struct kiocb		*iocb,
620 	const struct iovec	*iovp,
621 	unsigned long		nr_segs,
622 	loff_t			pos,
623 	size_t			ocount)
624 {
625 	struct file		*file = iocb->ki_filp;
626 	struct address_space	*mapping = file->f_mapping;
627 	struct inode		*inode = mapping->host;
628 	struct xfs_inode	*ip = XFS_I(inode);
629 	struct xfs_mount	*mp = ip->i_mount;
630 	ssize_t			ret = 0;
631 	size_t			count = ocount;
632 	int			unaligned_io = 0;
633 	int			iolock;
634 	struct xfs_buftarg	*target = XFS_IS_REALTIME_INODE(ip) ?
635 					mp->m_rtdev_targp : mp->m_ddev_targp;
636 
637 	if ((pos & target->bt_smask) || (count & target->bt_smask))
638 		return -XFS_ERROR(EINVAL);
639 
640 	if ((pos & mp->m_blockmask) || ((pos + count) & mp->m_blockmask))
641 		unaligned_io = 1;
642 
643 	/*
644 	 * We don't need to take an exclusive lock unless there page cache needs
645 	 * to be invalidated or unaligned IO is being executed. We don't need to
646 	 * consider the EOF extension case here because
647 	 * xfs_file_aio_write_checks() will relock the inode as necessary for
648 	 * EOF zeroing cases and fill out the new inode size as appropriate.
649 	 */
650 	if (unaligned_io || mapping->nrpages)
651 		iolock = XFS_IOLOCK_EXCL;
652 	else
653 		iolock = XFS_IOLOCK_SHARED;
654 	xfs_rw_ilock(ip, iolock);
655 
656 	/*
657 	 * Recheck if there are cached pages that need invalidate after we got
658 	 * the iolock to protect against other threads adding new pages while
659 	 * we were waiting for the iolock.
660 	 */
661 	if (mapping->nrpages && iolock == XFS_IOLOCK_SHARED) {
662 		xfs_rw_iunlock(ip, iolock);
663 		iolock = XFS_IOLOCK_EXCL;
664 		xfs_rw_ilock(ip, iolock);
665 	}
666 
667 	ret = xfs_file_aio_write_checks(file, &pos, &count, &iolock);
668 	if (ret)
669 		goto out;
670 
671 	if (mapping->nrpages) {
672 		ret = -xfs_flushinval_pages(ip, (pos & PAGE_CACHE_MASK), -1,
673 							FI_REMAPF_LOCKED);
674 		if (ret)
675 			goto out;
676 	}
677 
678 	/*
679 	 * If we are doing unaligned IO, wait for all other IO to drain,
680 	 * otherwise demote the lock if we had to flush cached pages
681 	 */
682 	if (unaligned_io)
683 		inode_dio_wait(inode);
684 	else if (iolock == XFS_IOLOCK_EXCL) {
685 		xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
686 		iolock = XFS_IOLOCK_SHARED;
687 	}
688 
689 	trace_xfs_file_direct_write(ip, count, iocb->ki_pos, 0);
690 	ret = generic_file_direct_write(iocb, iovp,
691 			&nr_segs, pos, &iocb->ki_pos, count, ocount);
692 
693 out:
694 	xfs_rw_iunlock(ip, iolock);
695 
696 	/* No fallback to buffered IO on errors for XFS. */
697 	ASSERT(ret < 0 || ret == count);
698 	return ret;
699 }
700 
701 STATIC ssize_t
702 xfs_file_buffered_aio_write(
703 	struct kiocb		*iocb,
704 	const struct iovec	*iovp,
705 	unsigned long		nr_segs,
706 	loff_t			pos,
707 	size_t			ocount)
708 {
709 	struct file		*file = iocb->ki_filp;
710 	struct address_space	*mapping = file->f_mapping;
711 	struct inode		*inode = mapping->host;
712 	struct xfs_inode	*ip = XFS_I(inode);
713 	ssize_t			ret;
714 	int			enospc = 0;
715 	int			iolock = XFS_IOLOCK_EXCL;
716 	size_t			count = ocount;
717 
718 	xfs_rw_ilock(ip, iolock);
719 
720 	ret = xfs_file_aio_write_checks(file, &pos, &count, &iolock);
721 	if (ret)
722 		goto out;
723 
724 	/* We can write back this queue in page reclaim */
725 	current->backing_dev_info = mapping->backing_dev_info;
726 
727 write_retry:
728 	trace_xfs_file_buffered_write(ip, count, iocb->ki_pos, 0);
729 	ret = generic_file_buffered_write(iocb, iovp, nr_segs,
730 			pos, &iocb->ki_pos, count, ret);
731 	/*
732 	 * if we just got an ENOSPC, flush the inode now we aren't holding any
733 	 * page locks and retry *once*
734 	 */
735 	if (ret == -ENOSPC && !enospc) {
736 		enospc = 1;
737 		ret = -xfs_flush_pages(ip, 0, -1, 0, FI_NONE);
738 		if (!ret)
739 			goto write_retry;
740 	}
741 
742 	current->backing_dev_info = NULL;
743 out:
744 	xfs_rw_iunlock(ip, iolock);
745 	return ret;
746 }
747 
748 STATIC ssize_t
749 xfs_file_aio_write(
750 	struct kiocb		*iocb,
751 	const struct iovec	*iovp,
752 	unsigned long		nr_segs,
753 	loff_t			pos)
754 {
755 	struct file		*file = iocb->ki_filp;
756 	struct address_space	*mapping = file->f_mapping;
757 	struct inode		*inode = mapping->host;
758 	struct xfs_inode	*ip = XFS_I(inode);
759 	ssize_t			ret;
760 	size_t			ocount = 0;
761 
762 	XFS_STATS_INC(xs_write_calls);
763 
764 	BUG_ON(iocb->ki_pos != pos);
765 
766 	ret = generic_segment_checks(iovp, &nr_segs, &ocount, VERIFY_READ);
767 	if (ret)
768 		return ret;
769 
770 	if (ocount == 0)
771 		return 0;
772 
773 	sb_start_write(inode->i_sb);
774 
775 	if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
776 		ret = -EIO;
777 		goto out;
778 	}
779 
780 	if (unlikely(file->f_flags & O_DIRECT))
781 		ret = xfs_file_dio_aio_write(iocb, iovp, nr_segs, pos, ocount);
782 	else
783 		ret = xfs_file_buffered_aio_write(iocb, iovp, nr_segs, pos,
784 						  ocount);
785 
786 	if (ret > 0) {
787 		ssize_t err;
788 
789 		XFS_STATS_ADD(xs_write_bytes, ret);
790 
791 		/* Handle various SYNC-type writes */
792 		err = generic_write_sync(file, pos, ret);
793 		if (err < 0)
794 			ret = err;
795 	}
796 
797 out:
798 	sb_end_write(inode->i_sb);
799 	return ret;
800 }
801 
802 STATIC long
803 xfs_file_fallocate(
804 	struct file	*file,
805 	int		mode,
806 	loff_t		offset,
807 	loff_t		len)
808 {
809 	struct inode	*inode = file->f_path.dentry->d_inode;
810 	long		error;
811 	loff_t		new_size = 0;
812 	xfs_flock64_t	bf;
813 	xfs_inode_t	*ip = XFS_I(inode);
814 	int		cmd = XFS_IOC_RESVSP;
815 	int		attr_flags = XFS_ATTR_NOLOCK;
816 
817 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
818 		return -EOPNOTSUPP;
819 
820 	bf.l_whence = 0;
821 	bf.l_start = offset;
822 	bf.l_len = len;
823 
824 	xfs_ilock(ip, XFS_IOLOCK_EXCL);
825 
826 	if (mode & FALLOC_FL_PUNCH_HOLE)
827 		cmd = XFS_IOC_UNRESVSP;
828 
829 	/* check the new inode size is valid before allocating */
830 	if (!(mode & FALLOC_FL_KEEP_SIZE) &&
831 	    offset + len > i_size_read(inode)) {
832 		new_size = offset + len;
833 		error = inode_newsize_ok(inode, new_size);
834 		if (error)
835 			goto out_unlock;
836 	}
837 
838 	if (file->f_flags & O_DSYNC)
839 		attr_flags |= XFS_ATTR_SYNC;
840 
841 	error = -xfs_change_file_space(ip, cmd, &bf, 0, attr_flags);
842 	if (error)
843 		goto out_unlock;
844 
845 	/* Change file size if needed */
846 	if (new_size) {
847 		struct iattr iattr;
848 
849 		iattr.ia_valid = ATTR_SIZE;
850 		iattr.ia_size = new_size;
851 		error = -xfs_setattr_size(ip, &iattr, XFS_ATTR_NOLOCK);
852 	}
853 
854 out_unlock:
855 	xfs_iunlock(ip, XFS_IOLOCK_EXCL);
856 	return error;
857 }
858 
859 
860 STATIC int
861 xfs_file_open(
862 	struct inode	*inode,
863 	struct file	*file)
864 {
865 	if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS)
866 		return -EFBIG;
867 	if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb)))
868 		return -EIO;
869 	return 0;
870 }
871 
872 STATIC int
873 xfs_dir_open(
874 	struct inode	*inode,
875 	struct file	*file)
876 {
877 	struct xfs_inode *ip = XFS_I(inode);
878 	int		mode;
879 	int		error;
880 
881 	error = xfs_file_open(inode, file);
882 	if (error)
883 		return error;
884 
885 	/*
886 	 * If there are any blocks, read-ahead block 0 as we're almost
887 	 * certain to have the next operation be a read there.
888 	 */
889 	mode = xfs_ilock_map_shared(ip);
890 	if (ip->i_d.di_nextents > 0)
891 		xfs_da_reada_buf(NULL, ip, 0, XFS_DATA_FORK);
892 	xfs_iunlock(ip, mode);
893 	return 0;
894 }
895 
896 STATIC int
897 xfs_file_release(
898 	struct inode	*inode,
899 	struct file	*filp)
900 {
901 	return -xfs_release(XFS_I(inode));
902 }
903 
904 STATIC int
905 xfs_file_readdir(
906 	struct file	*filp,
907 	void		*dirent,
908 	filldir_t	filldir)
909 {
910 	struct inode	*inode = filp->f_path.dentry->d_inode;
911 	xfs_inode_t	*ip = XFS_I(inode);
912 	int		error;
913 	size_t		bufsize;
914 
915 	/*
916 	 * The Linux API doesn't pass down the total size of the buffer
917 	 * we read into down to the filesystem.  With the filldir concept
918 	 * it's not needed for correct information, but the XFS dir2 leaf
919 	 * code wants an estimate of the buffer size to calculate it's
920 	 * readahead window and size the buffers used for mapping to
921 	 * physical blocks.
922 	 *
923 	 * Try to give it an estimate that's good enough, maybe at some
924 	 * point we can change the ->readdir prototype to include the
925 	 * buffer size.  For now we use the current glibc buffer size.
926 	 */
927 	bufsize = (size_t)min_t(loff_t, 32768, ip->i_d.di_size);
928 
929 	error = xfs_readdir(ip, dirent, bufsize,
930 				(xfs_off_t *)&filp->f_pos, filldir);
931 	if (error)
932 		return -error;
933 	return 0;
934 }
935 
936 STATIC int
937 xfs_file_mmap(
938 	struct file	*filp,
939 	struct vm_area_struct *vma)
940 {
941 	vma->vm_ops = &xfs_file_vm_ops;
942 	vma->vm_flags |= VM_CAN_NONLINEAR;
943 
944 	file_accessed(filp);
945 	return 0;
946 }
947 
948 /*
949  * mmap()d file has taken write protection fault and is being made
950  * writable. We can set the page state up correctly for a writable
951  * page, which means we can do correct delalloc accounting (ENOSPC
952  * checking!) and unwritten extent mapping.
953  */
954 STATIC int
955 xfs_vm_page_mkwrite(
956 	struct vm_area_struct	*vma,
957 	struct vm_fault		*vmf)
958 {
959 	return block_page_mkwrite(vma, vmf, xfs_get_blocks);
960 }
961 
962 STATIC loff_t
963 xfs_seek_data(
964 	struct file		*file,
965 	loff_t			start,
966 	u32			type)
967 {
968 	struct inode		*inode = file->f_mapping->host;
969 	struct xfs_inode	*ip = XFS_I(inode);
970 	struct xfs_mount	*mp = ip->i_mount;
971 	struct xfs_bmbt_irec	map[2];
972 	int			nmap = 2;
973 	loff_t			uninitialized_var(offset);
974 	xfs_fsize_t		isize;
975 	xfs_fileoff_t		fsbno;
976 	xfs_filblks_t		end;
977 	uint			lock;
978 	int			error;
979 
980 	lock = xfs_ilock_map_shared(ip);
981 
982 	isize = i_size_read(inode);
983 	if (start >= isize) {
984 		error = ENXIO;
985 		goto out_unlock;
986 	}
987 
988 	fsbno = XFS_B_TO_FSBT(mp, start);
989 
990 	/*
991 	 * Try to read extents from the first block indicated
992 	 * by fsbno to the end block of the file.
993 	 */
994 	end = XFS_B_TO_FSB(mp, isize);
995 
996 	error = xfs_bmapi_read(ip, fsbno, end - fsbno, map, &nmap,
997 			       XFS_BMAPI_ENTIRE);
998 	if (error)
999 		goto out_unlock;
1000 
1001 	/*
1002 	 * Treat unwritten extent as data extent since it might
1003 	 * contains dirty data in page cache.
1004 	 */
1005 	if (map[0].br_startblock != HOLESTARTBLOCK) {
1006 		offset = max_t(loff_t, start,
1007 			       XFS_FSB_TO_B(mp, map[0].br_startoff));
1008 	} else {
1009 		if (nmap == 1) {
1010 			error = ENXIO;
1011 			goto out_unlock;
1012 		}
1013 
1014 		offset = max_t(loff_t, start,
1015 			       XFS_FSB_TO_B(mp, map[1].br_startoff));
1016 	}
1017 
1018 	if (offset != file->f_pos)
1019 		file->f_pos = offset;
1020 
1021 out_unlock:
1022 	xfs_iunlock_map_shared(ip, lock);
1023 
1024 	if (error)
1025 		return -error;
1026 	return offset;
1027 }
1028 
1029 STATIC loff_t
1030 xfs_seek_hole(
1031 	struct file		*file,
1032 	loff_t			start,
1033 	u32			type)
1034 {
1035 	struct inode		*inode = file->f_mapping->host;
1036 	struct xfs_inode	*ip = XFS_I(inode);
1037 	struct xfs_mount	*mp = ip->i_mount;
1038 	loff_t			uninitialized_var(offset);
1039 	loff_t			holeoff;
1040 	xfs_fsize_t		isize;
1041 	xfs_fileoff_t		fsbno;
1042 	uint			lock;
1043 	int			error;
1044 
1045 	if (XFS_FORCED_SHUTDOWN(mp))
1046 		return -XFS_ERROR(EIO);
1047 
1048 	lock = xfs_ilock_map_shared(ip);
1049 
1050 	isize = i_size_read(inode);
1051 	if (start >= isize) {
1052 		error = ENXIO;
1053 		goto out_unlock;
1054 	}
1055 
1056 	fsbno = XFS_B_TO_FSBT(mp, start);
1057 	error = xfs_bmap_first_unused(NULL, ip, 1, &fsbno, XFS_DATA_FORK);
1058 	if (error)
1059 		goto out_unlock;
1060 
1061 	holeoff = XFS_FSB_TO_B(mp, fsbno);
1062 	if (holeoff <= start)
1063 		offset = start;
1064 	else {
1065 		/*
1066 		 * xfs_bmap_first_unused() could return a value bigger than
1067 		 * isize if there are no more holes past the supplied offset.
1068 		 */
1069 		offset = min_t(loff_t, holeoff, isize);
1070 	}
1071 
1072 	if (offset != file->f_pos)
1073 		file->f_pos = offset;
1074 
1075 out_unlock:
1076 	xfs_iunlock_map_shared(ip, lock);
1077 
1078 	if (error)
1079 		return -error;
1080 	return offset;
1081 }
1082 
1083 STATIC loff_t
1084 xfs_file_llseek(
1085 	struct file	*file,
1086 	loff_t		offset,
1087 	int		origin)
1088 {
1089 	switch (origin) {
1090 	case SEEK_END:
1091 	case SEEK_CUR:
1092 	case SEEK_SET:
1093 		return generic_file_llseek(file, offset, origin);
1094 	case SEEK_DATA:
1095 		return xfs_seek_data(file, offset, origin);
1096 	case SEEK_HOLE:
1097 		return xfs_seek_hole(file, offset, origin);
1098 	default:
1099 		return -EINVAL;
1100 	}
1101 }
1102 
1103 const struct file_operations xfs_file_operations = {
1104 	.llseek		= xfs_file_llseek,
1105 	.read		= do_sync_read,
1106 	.write		= do_sync_write,
1107 	.aio_read	= xfs_file_aio_read,
1108 	.aio_write	= xfs_file_aio_write,
1109 	.splice_read	= xfs_file_splice_read,
1110 	.splice_write	= xfs_file_splice_write,
1111 	.unlocked_ioctl	= xfs_file_ioctl,
1112 #ifdef CONFIG_COMPAT
1113 	.compat_ioctl	= xfs_file_compat_ioctl,
1114 #endif
1115 	.mmap		= xfs_file_mmap,
1116 	.open		= xfs_file_open,
1117 	.release	= xfs_file_release,
1118 	.fsync		= xfs_file_fsync,
1119 	.fallocate	= xfs_file_fallocate,
1120 };
1121 
1122 const struct file_operations xfs_dir_file_operations = {
1123 	.open		= xfs_dir_open,
1124 	.read		= generic_read_dir,
1125 	.readdir	= xfs_file_readdir,
1126 	.llseek		= generic_file_llseek,
1127 	.unlocked_ioctl	= xfs_file_ioctl,
1128 #ifdef CONFIG_COMPAT
1129 	.compat_ioctl	= xfs_file_compat_ioctl,
1130 #endif
1131 	.fsync		= xfs_dir_fsync,
1132 };
1133 
1134 static const struct vm_operations_struct xfs_file_vm_ops = {
1135 	.fault		= filemap_fault,
1136 	.page_mkwrite	= xfs_vm_page_mkwrite,
1137 };
1138