1 /* 2 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_fs.h" 20 #include "xfs_log.h" 21 #include "xfs_sb.h" 22 #include "xfs_ag.h" 23 #include "xfs_trans.h" 24 #include "xfs_mount.h" 25 #include "xfs_bmap_btree.h" 26 #include "xfs_alloc.h" 27 #include "xfs_dinode.h" 28 #include "xfs_inode.h" 29 #include "xfs_inode_item.h" 30 #include "xfs_bmap.h" 31 #include "xfs_error.h" 32 #include "xfs_vnodeops.h" 33 #include "xfs_da_btree.h" 34 #include "xfs_ioctl.h" 35 #include "xfs_trace.h" 36 37 #include <linux/dcache.h> 38 #include <linux/falloc.h> 39 40 static const struct vm_operations_struct xfs_file_vm_ops; 41 42 /* 43 * Locking primitives for read and write IO paths to ensure we consistently use 44 * and order the inode->i_mutex, ip->i_lock and ip->i_iolock. 45 */ 46 static inline void 47 xfs_rw_ilock( 48 struct xfs_inode *ip, 49 int type) 50 { 51 if (type & XFS_IOLOCK_EXCL) 52 mutex_lock(&VFS_I(ip)->i_mutex); 53 xfs_ilock(ip, type); 54 } 55 56 static inline void 57 xfs_rw_iunlock( 58 struct xfs_inode *ip, 59 int type) 60 { 61 xfs_iunlock(ip, type); 62 if (type & XFS_IOLOCK_EXCL) 63 mutex_unlock(&VFS_I(ip)->i_mutex); 64 } 65 66 static inline void 67 xfs_rw_ilock_demote( 68 struct xfs_inode *ip, 69 int type) 70 { 71 xfs_ilock_demote(ip, type); 72 if (type & XFS_IOLOCK_EXCL) 73 mutex_unlock(&VFS_I(ip)->i_mutex); 74 } 75 76 /* 77 * xfs_iozero 78 * 79 * xfs_iozero clears the specified range of buffer supplied, 80 * and marks all the affected blocks as valid and modified. If 81 * an affected block is not allocated, it will be allocated. If 82 * an affected block is not completely overwritten, and is not 83 * valid before the operation, it will be read from disk before 84 * being partially zeroed. 85 */ 86 STATIC int 87 xfs_iozero( 88 struct xfs_inode *ip, /* inode */ 89 loff_t pos, /* offset in file */ 90 size_t count) /* size of data to zero */ 91 { 92 struct page *page; 93 struct address_space *mapping; 94 int status; 95 96 mapping = VFS_I(ip)->i_mapping; 97 do { 98 unsigned offset, bytes; 99 void *fsdata; 100 101 offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */ 102 bytes = PAGE_CACHE_SIZE - offset; 103 if (bytes > count) 104 bytes = count; 105 106 status = pagecache_write_begin(NULL, mapping, pos, bytes, 107 AOP_FLAG_UNINTERRUPTIBLE, 108 &page, &fsdata); 109 if (status) 110 break; 111 112 zero_user(page, offset, bytes); 113 114 status = pagecache_write_end(NULL, mapping, pos, bytes, bytes, 115 page, fsdata); 116 WARN_ON(status <= 0); /* can't return less than zero! */ 117 pos += bytes; 118 count -= bytes; 119 status = 0; 120 } while (count); 121 122 return (-status); 123 } 124 125 /* 126 * Fsync operations on directories are much simpler than on regular files, 127 * as there is no file data to flush, and thus also no need for explicit 128 * cache flush operations, and there are no non-transaction metadata updates 129 * on directories either. 130 */ 131 STATIC int 132 xfs_dir_fsync( 133 struct file *file, 134 loff_t start, 135 loff_t end, 136 int datasync) 137 { 138 struct xfs_inode *ip = XFS_I(file->f_mapping->host); 139 struct xfs_mount *mp = ip->i_mount; 140 xfs_lsn_t lsn = 0; 141 142 trace_xfs_dir_fsync(ip); 143 144 xfs_ilock(ip, XFS_ILOCK_SHARED); 145 if (xfs_ipincount(ip)) 146 lsn = ip->i_itemp->ili_last_lsn; 147 xfs_iunlock(ip, XFS_ILOCK_SHARED); 148 149 if (!lsn) 150 return 0; 151 return _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, NULL); 152 } 153 154 STATIC int 155 xfs_file_fsync( 156 struct file *file, 157 loff_t start, 158 loff_t end, 159 int datasync) 160 { 161 struct inode *inode = file->f_mapping->host; 162 struct xfs_inode *ip = XFS_I(inode); 163 struct xfs_mount *mp = ip->i_mount; 164 int error = 0; 165 int log_flushed = 0; 166 xfs_lsn_t lsn = 0; 167 168 trace_xfs_file_fsync(ip); 169 170 error = filemap_write_and_wait_range(inode->i_mapping, start, end); 171 if (error) 172 return error; 173 174 if (XFS_FORCED_SHUTDOWN(mp)) 175 return -XFS_ERROR(EIO); 176 177 xfs_iflags_clear(ip, XFS_ITRUNCATED); 178 179 if (mp->m_flags & XFS_MOUNT_BARRIER) { 180 /* 181 * If we have an RT and/or log subvolume we need to make sure 182 * to flush the write cache the device used for file data 183 * first. This is to ensure newly written file data make 184 * it to disk before logging the new inode size in case of 185 * an extending write. 186 */ 187 if (XFS_IS_REALTIME_INODE(ip)) 188 xfs_blkdev_issue_flush(mp->m_rtdev_targp); 189 else if (mp->m_logdev_targp != mp->m_ddev_targp) 190 xfs_blkdev_issue_flush(mp->m_ddev_targp); 191 } 192 193 /* 194 * All metadata updates are logged, which means that we just have 195 * to flush the log up to the latest LSN that touched the inode. 196 */ 197 xfs_ilock(ip, XFS_ILOCK_SHARED); 198 if (xfs_ipincount(ip)) { 199 if (!datasync || 200 (ip->i_itemp->ili_fields & ~XFS_ILOG_TIMESTAMP)) 201 lsn = ip->i_itemp->ili_last_lsn; 202 } 203 xfs_iunlock(ip, XFS_ILOCK_SHARED); 204 205 if (lsn) 206 error = _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed); 207 208 /* 209 * If we only have a single device, and the log force about was 210 * a no-op we might have to flush the data device cache here. 211 * This can only happen for fdatasync/O_DSYNC if we were overwriting 212 * an already allocated file and thus do not have any metadata to 213 * commit. 214 */ 215 if ((mp->m_flags & XFS_MOUNT_BARRIER) && 216 mp->m_logdev_targp == mp->m_ddev_targp && 217 !XFS_IS_REALTIME_INODE(ip) && 218 !log_flushed) 219 xfs_blkdev_issue_flush(mp->m_ddev_targp); 220 221 return -error; 222 } 223 224 STATIC ssize_t 225 xfs_file_aio_read( 226 struct kiocb *iocb, 227 const struct iovec *iovp, 228 unsigned long nr_segs, 229 loff_t pos) 230 { 231 struct file *file = iocb->ki_filp; 232 struct inode *inode = file->f_mapping->host; 233 struct xfs_inode *ip = XFS_I(inode); 234 struct xfs_mount *mp = ip->i_mount; 235 size_t size = 0; 236 ssize_t ret = 0; 237 int ioflags = 0; 238 xfs_fsize_t n; 239 240 XFS_STATS_INC(xs_read_calls); 241 242 BUG_ON(iocb->ki_pos != pos); 243 244 if (unlikely(file->f_flags & O_DIRECT)) 245 ioflags |= IO_ISDIRECT; 246 if (file->f_mode & FMODE_NOCMTIME) 247 ioflags |= IO_INVIS; 248 249 ret = generic_segment_checks(iovp, &nr_segs, &size, VERIFY_WRITE); 250 if (ret < 0) 251 return ret; 252 253 if (unlikely(ioflags & IO_ISDIRECT)) { 254 xfs_buftarg_t *target = 255 XFS_IS_REALTIME_INODE(ip) ? 256 mp->m_rtdev_targp : mp->m_ddev_targp; 257 if ((iocb->ki_pos & target->bt_smask) || 258 (size & target->bt_smask)) { 259 if (iocb->ki_pos == i_size_read(inode)) 260 return 0; 261 return -XFS_ERROR(EINVAL); 262 } 263 } 264 265 n = mp->m_super->s_maxbytes - iocb->ki_pos; 266 if (n <= 0 || size == 0) 267 return 0; 268 269 if (n < size) 270 size = n; 271 272 if (XFS_FORCED_SHUTDOWN(mp)) 273 return -EIO; 274 275 /* 276 * Locking is a bit tricky here. If we take an exclusive lock 277 * for direct IO, we effectively serialise all new concurrent 278 * read IO to this file and block it behind IO that is currently in 279 * progress because IO in progress holds the IO lock shared. We only 280 * need to hold the lock exclusive to blow away the page cache, so 281 * only take lock exclusively if the page cache needs invalidation. 282 * This allows the normal direct IO case of no page cache pages to 283 * proceeed concurrently without serialisation. 284 */ 285 xfs_rw_ilock(ip, XFS_IOLOCK_SHARED); 286 if ((ioflags & IO_ISDIRECT) && inode->i_mapping->nrpages) { 287 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED); 288 xfs_rw_ilock(ip, XFS_IOLOCK_EXCL); 289 290 if (inode->i_mapping->nrpages) { 291 ret = -xfs_flushinval_pages(ip, 292 (iocb->ki_pos & PAGE_CACHE_MASK), 293 -1, FI_REMAPF_LOCKED); 294 if (ret) { 295 xfs_rw_iunlock(ip, XFS_IOLOCK_EXCL); 296 return ret; 297 } 298 } 299 xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL); 300 } 301 302 trace_xfs_file_read(ip, size, iocb->ki_pos, ioflags); 303 304 ret = generic_file_aio_read(iocb, iovp, nr_segs, iocb->ki_pos); 305 if (ret > 0) 306 XFS_STATS_ADD(xs_read_bytes, ret); 307 308 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED); 309 return ret; 310 } 311 312 STATIC ssize_t 313 xfs_file_splice_read( 314 struct file *infilp, 315 loff_t *ppos, 316 struct pipe_inode_info *pipe, 317 size_t count, 318 unsigned int flags) 319 { 320 struct xfs_inode *ip = XFS_I(infilp->f_mapping->host); 321 int ioflags = 0; 322 ssize_t ret; 323 324 XFS_STATS_INC(xs_read_calls); 325 326 if (infilp->f_mode & FMODE_NOCMTIME) 327 ioflags |= IO_INVIS; 328 329 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) 330 return -EIO; 331 332 xfs_rw_ilock(ip, XFS_IOLOCK_SHARED); 333 334 trace_xfs_file_splice_read(ip, count, *ppos, ioflags); 335 336 ret = generic_file_splice_read(infilp, ppos, pipe, count, flags); 337 if (ret > 0) 338 XFS_STATS_ADD(xs_read_bytes, ret); 339 340 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED); 341 return ret; 342 } 343 344 /* 345 * xfs_file_splice_write() does not use xfs_rw_ilock() because 346 * generic_file_splice_write() takes the i_mutex itself. This, in theory, 347 * couuld cause lock inversions between the aio_write path and the splice path 348 * if someone is doing concurrent splice(2) based writes and write(2) based 349 * writes to the same inode. The only real way to fix this is to re-implement 350 * the generic code here with correct locking orders. 351 */ 352 STATIC ssize_t 353 xfs_file_splice_write( 354 struct pipe_inode_info *pipe, 355 struct file *outfilp, 356 loff_t *ppos, 357 size_t count, 358 unsigned int flags) 359 { 360 struct inode *inode = outfilp->f_mapping->host; 361 struct xfs_inode *ip = XFS_I(inode); 362 int ioflags = 0; 363 ssize_t ret; 364 365 XFS_STATS_INC(xs_write_calls); 366 367 if (outfilp->f_mode & FMODE_NOCMTIME) 368 ioflags |= IO_INVIS; 369 370 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) 371 return -EIO; 372 373 xfs_ilock(ip, XFS_IOLOCK_EXCL); 374 375 trace_xfs_file_splice_write(ip, count, *ppos, ioflags); 376 377 ret = generic_file_splice_write(pipe, outfilp, ppos, count, flags); 378 if (ret > 0) 379 XFS_STATS_ADD(xs_write_bytes, ret); 380 381 xfs_iunlock(ip, XFS_IOLOCK_EXCL); 382 return ret; 383 } 384 385 /* 386 * This routine is called to handle zeroing any space in the last block of the 387 * file that is beyond the EOF. We do this since the size is being increased 388 * without writing anything to that block and we don't want to read the 389 * garbage on the disk. 390 */ 391 STATIC int /* error (positive) */ 392 xfs_zero_last_block( 393 struct xfs_inode *ip, 394 xfs_fsize_t offset, 395 xfs_fsize_t isize) 396 { 397 struct xfs_mount *mp = ip->i_mount; 398 xfs_fileoff_t last_fsb = XFS_B_TO_FSBT(mp, isize); 399 int zero_offset = XFS_B_FSB_OFFSET(mp, isize); 400 int zero_len; 401 int nimaps = 1; 402 int error = 0; 403 struct xfs_bmbt_irec imap; 404 405 xfs_ilock(ip, XFS_ILOCK_EXCL); 406 error = xfs_bmapi_read(ip, last_fsb, 1, &imap, &nimaps, 0); 407 xfs_iunlock(ip, XFS_ILOCK_EXCL); 408 if (error) 409 return error; 410 411 ASSERT(nimaps > 0); 412 413 /* 414 * If the block underlying isize is just a hole, then there 415 * is nothing to zero. 416 */ 417 if (imap.br_startblock == HOLESTARTBLOCK) 418 return 0; 419 420 zero_len = mp->m_sb.sb_blocksize - zero_offset; 421 if (isize + zero_len > offset) 422 zero_len = offset - isize; 423 return xfs_iozero(ip, isize, zero_len); 424 } 425 426 /* 427 * Zero any on disk space between the current EOF and the new, larger EOF. 428 * 429 * This handles the normal case of zeroing the remainder of the last block in 430 * the file and the unusual case of zeroing blocks out beyond the size of the 431 * file. This second case only happens with fixed size extents and when the 432 * system crashes before the inode size was updated but after blocks were 433 * allocated. 434 * 435 * Expects the iolock to be held exclusive, and will take the ilock internally. 436 */ 437 int /* error (positive) */ 438 xfs_zero_eof( 439 struct xfs_inode *ip, 440 xfs_off_t offset, /* starting I/O offset */ 441 xfs_fsize_t isize) /* current inode size */ 442 { 443 struct xfs_mount *mp = ip->i_mount; 444 xfs_fileoff_t start_zero_fsb; 445 xfs_fileoff_t end_zero_fsb; 446 xfs_fileoff_t zero_count_fsb; 447 xfs_fileoff_t last_fsb; 448 xfs_fileoff_t zero_off; 449 xfs_fsize_t zero_len; 450 int nimaps; 451 int error = 0; 452 struct xfs_bmbt_irec imap; 453 454 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL)); 455 ASSERT(offset > isize); 456 457 /* 458 * First handle zeroing the block on which isize resides. 459 * 460 * We only zero a part of that block so it is handled specially. 461 */ 462 if (XFS_B_FSB_OFFSET(mp, isize) != 0) { 463 error = xfs_zero_last_block(ip, offset, isize); 464 if (error) 465 return error; 466 } 467 468 /* 469 * Calculate the range between the new size and the old where blocks 470 * needing to be zeroed may exist. 471 * 472 * To get the block where the last byte in the file currently resides, 473 * we need to subtract one from the size and truncate back to a block 474 * boundary. We subtract 1 in case the size is exactly on a block 475 * boundary. 476 */ 477 last_fsb = isize ? XFS_B_TO_FSBT(mp, isize - 1) : (xfs_fileoff_t)-1; 478 start_zero_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize); 479 end_zero_fsb = XFS_B_TO_FSBT(mp, offset - 1); 480 ASSERT((xfs_sfiloff_t)last_fsb < (xfs_sfiloff_t)start_zero_fsb); 481 if (last_fsb == end_zero_fsb) { 482 /* 483 * The size was only incremented on its last block. 484 * We took care of that above, so just return. 485 */ 486 return 0; 487 } 488 489 ASSERT(start_zero_fsb <= end_zero_fsb); 490 while (start_zero_fsb <= end_zero_fsb) { 491 nimaps = 1; 492 zero_count_fsb = end_zero_fsb - start_zero_fsb + 1; 493 494 xfs_ilock(ip, XFS_ILOCK_EXCL); 495 error = xfs_bmapi_read(ip, start_zero_fsb, zero_count_fsb, 496 &imap, &nimaps, 0); 497 xfs_iunlock(ip, XFS_ILOCK_EXCL); 498 if (error) 499 return error; 500 501 ASSERT(nimaps > 0); 502 503 if (imap.br_state == XFS_EXT_UNWRITTEN || 504 imap.br_startblock == HOLESTARTBLOCK) { 505 start_zero_fsb = imap.br_startoff + imap.br_blockcount; 506 ASSERT(start_zero_fsb <= (end_zero_fsb + 1)); 507 continue; 508 } 509 510 /* 511 * There are blocks we need to zero. 512 */ 513 zero_off = XFS_FSB_TO_B(mp, start_zero_fsb); 514 zero_len = XFS_FSB_TO_B(mp, imap.br_blockcount); 515 516 if ((zero_off + zero_len) > offset) 517 zero_len = offset - zero_off; 518 519 error = xfs_iozero(ip, zero_off, zero_len); 520 if (error) 521 return error; 522 523 start_zero_fsb = imap.br_startoff + imap.br_blockcount; 524 ASSERT(start_zero_fsb <= (end_zero_fsb + 1)); 525 } 526 527 return 0; 528 } 529 530 /* 531 * Common pre-write limit and setup checks. 532 * 533 * Called with the iolocked held either shared and exclusive according to 534 * @iolock, and returns with it held. Might upgrade the iolock to exclusive 535 * if called for a direct write beyond i_size. 536 */ 537 STATIC ssize_t 538 xfs_file_aio_write_checks( 539 struct file *file, 540 loff_t *pos, 541 size_t *count, 542 int *iolock) 543 { 544 struct inode *inode = file->f_mapping->host; 545 struct xfs_inode *ip = XFS_I(inode); 546 int error = 0; 547 548 restart: 549 error = generic_write_checks(file, pos, count, S_ISBLK(inode->i_mode)); 550 if (error) 551 return error; 552 553 /* 554 * If the offset is beyond the size of the file, we need to zero any 555 * blocks that fall between the existing EOF and the start of this 556 * write. If zeroing is needed and we are currently holding the 557 * iolock shared, we need to update it to exclusive which implies 558 * having to redo all checks before. 559 */ 560 if (*pos > i_size_read(inode)) { 561 if (*iolock == XFS_IOLOCK_SHARED) { 562 xfs_rw_iunlock(ip, *iolock); 563 *iolock = XFS_IOLOCK_EXCL; 564 xfs_rw_ilock(ip, *iolock); 565 goto restart; 566 } 567 error = -xfs_zero_eof(ip, *pos, i_size_read(inode)); 568 if (error) 569 return error; 570 } 571 572 /* 573 * Updating the timestamps will grab the ilock again from 574 * xfs_fs_dirty_inode, so we have to call it after dropping the 575 * lock above. Eventually we should look into a way to avoid 576 * the pointless lock roundtrip. 577 */ 578 if (likely(!(file->f_mode & FMODE_NOCMTIME))) { 579 error = file_update_time(file); 580 if (error) 581 return error; 582 } 583 584 /* 585 * If we're writing the file then make sure to clear the setuid and 586 * setgid bits if the process is not being run by root. This keeps 587 * people from modifying setuid and setgid binaries. 588 */ 589 return file_remove_suid(file); 590 } 591 592 /* 593 * xfs_file_dio_aio_write - handle direct IO writes 594 * 595 * Lock the inode appropriately to prepare for and issue a direct IO write. 596 * By separating it from the buffered write path we remove all the tricky to 597 * follow locking changes and looping. 598 * 599 * If there are cached pages or we're extending the file, we need IOLOCK_EXCL 600 * until we're sure the bytes at the new EOF have been zeroed and/or the cached 601 * pages are flushed out. 602 * 603 * In most cases the direct IO writes will be done holding IOLOCK_SHARED 604 * allowing them to be done in parallel with reads and other direct IO writes. 605 * However, if the IO is not aligned to filesystem blocks, the direct IO layer 606 * needs to do sub-block zeroing and that requires serialisation against other 607 * direct IOs to the same block. In this case we need to serialise the 608 * submission of the unaligned IOs so that we don't get racing block zeroing in 609 * the dio layer. To avoid the problem with aio, we also need to wait for 610 * outstanding IOs to complete so that unwritten extent conversion is completed 611 * before we try to map the overlapping block. This is currently implemented by 612 * hitting it with a big hammer (i.e. inode_dio_wait()). 613 * 614 * Returns with locks held indicated by @iolock and errors indicated by 615 * negative return values. 616 */ 617 STATIC ssize_t 618 xfs_file_dio_aio_write( 619 struct kiocb *iocb, 620 const struct iovec *iovp, 621 unsigned long nr_segs, 622 loff_t pos, 623 size_t ocount) 624 { 625 struct file *file = iocb->ki_filp; 626 struct address_space *mapping = file->f_mapping; 627 struct inode *inode = mapping->host; 628 struct xfs_inode *ip = XFS_I(inode); 629 struct xfs_mount *mp = ip->i_mount; 630 ssize_t ret = 0; 631 size_t count = ocount; 632 int unaligned_io = 0; 633 int iolock; 634 struct xfs_buftarg *target = XFS_IS_REALTIME_INODE(ip) ? 635 mp->m_rtdev_targp : mp->m_ddev_targp; 636 637 if ((pos & target->bt_smask) || (count & target->bt_smask)) 638 return -XFS_ERROR(EINVAL); 639 640 if ((pos & mp->m_blockmask) || ((pos + count) & mp->m_blockmask)) 641 unaligned_io = 1; 642 643 /* 644 * We don't need to take an exclusive lock unless there page cache needs 645 * to be invalidated or unaligned IO is being executed. We don't need to 646 * consider the EOF extension case here because 647 * xfs_file_aio_write_checks() will relock the inode as necessary for 648 * EOF zeroing cases and fill out the new inode size as appropriate. 649 */ 650 if (unaligned_io || mapping->nrpages) 651 iolock = XFS_IOLOCK_EXCL; 652 else 653 iolock = XFS_IOLOCK_SHARED; 654 xfs_rw_ilock(ip, iolock); 655 656 /* 657 * Recheck if there are cached pages that need invalidate after we got 658 * the iolock to protect against other threads adding new pages while 659 * we were waiting for the iolock. 660 */ 661 if (mapping->nrpages && iolock == XFS_IOLOCK_SHARED) { 662 xfs_rw_iunlock(ip, iolock); 663 iolock = XFS_IOLOCK_EXCL; 664 xfs_rw_ilock(ip, iolock); 665 } 666 667 ret = xfs_file_aio_write_checks(file, &pos, &count, &iolock); 668 if (ret) 669 goto out; 670 671 if (mapping->nrpages) { 672 ret = -xfs_flushinval_pages(ip, (pos & PAGE_CACHE_MASK), -1, 673 FI_REMAPF_LOCKED); 674 if (ret) 675 goto out; 676 } 677 678 /* 679 * If we are doing unaligned IO, wait for all other IO to drain, 680 * otherwise demote the lock if we had to flush cached pages 681 */ 682 if (unaligned_io) 683 inode_dio_wait(inode); 684 else if (iolock == XFS_IOLOCK_EXCL) { 685 xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL); 686 iolock = XFS_IOLOCK_SHARED; 687 } 688 689 trace_xfs_file_direct_write(ip, count, iocb->ki_pos, 0); 690 ret = generic_file_direct_write(iocb, iovp, 691 &nr_segs, pos, &iocb->ki_pos, count, ocount); 692 693 out: 694 xfs_rw_iunlock(ip, iolock); 695 696 /* No fallback to buffered IO on errors for XFS. */ 697 ASSERT(ret < 0 || ret == count); 698 return ret; 699 } 700 701 STATIC ssize_t 702 xfs_file_buffered_aio_write( 703 struct kiocb *iocb, 704 const struct iovec *iovp, 705 unsigned long nr_segs, 706 loff_t pos, 707 size_t ocount) 708 { 709 struct file *file = iocb->ki_filp; 710 struct address_space *mapping = file->f_mapping; 711 struct inode *inode = mapping->host; 712 struct xfs_inode *ip = XFS_I(inode); 713 ssize_t ret; 714 int enospc = 0; 715 int iolock = XFS_IOLOCK_EXCL; 716 size_t count = ocount; 717 718 xfs_rw_ilock(ip, iolock); 719 720 ret = xfs_file_aio_write_checks(file, &pos, &count, &iolock); 721 if (ret) 722 goto out; 723 724 /* We can write back this queue in page reclaim */ 725 current->backing_dev_info = mapping->backing_dev_info; 726 727 write_retry: 728 trace_xfs_file_buffered_write(ip, count, iocb->ki_pos, 0); 729 ret = generic_file_buffered_write(iocb, iovp, nr_segs, 730 pos, &iocb->ki_pos, count, ret); 731 /* 732 * if we just got an ENOSPC, flush the inode now we aren't holding any 733 * page locks and retry *once* 734 */ 735 if (ret == -ENOSPC && !enospc) { 736 enospc = 1; 737 ret = -xfs_flush_pages(ip, 0, -1, 0, FI_NONE); 738 if (!ret) 739 goto write_retry; 740 } 741 742 current->backing_dev_info = NULL; 743 out: 744 xfs_rw_iunlock(ip, iolock); 745 return ret; 746 } 747 748 STATIC ssize_t 749 xfs_file_aio_write( 750 struct kiocb *iocb, 751 const struct iovec *iovp, 752 unsigned long nr_segs, 753 loff_t pos) 754 { 755 struct file *file = iocb->ki_filp; 756 struct address_space *mapping = file->f_mapping; 757 struct inode *inode = mapping->host; 758 struct xfs_inode *ip = XFS_I(inode); 759 ssize_t ret; 760 size_t ocount = 0; 761 762 XFS_STATS_INC(xs_write_calls); 763 764 BUG_ON(iocb->ki_pos != pos); 765 766 ret = generic_segment_checks(iovp, &nr_segs, &ocount, VERIFY_READ); 767 if (ret) 768 return ret; 769 770 if (ocount == 0) 771 return 0; 772 773 sb_start_write(inode->i_sb); 774 775 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) { 776 ret = -EIO; 777 goto out; 778 } 779 780 if (unlikely(file->f_flags & O_DIRECT)) 781 ret = xfs_file_dio_aio_write(iocb, iovp, nr_segs, pos, ocount); 782 else 783 ret = xfs_file_buffered_aio_write(iocb, iovp, nr_segs, pos, 784 ocount); 785 786 if (ret > 0) { 787 ssize_t err; 788 789 XFS_STATS_ADD(xs_write_bytes, ret); 790 791 /* Handle various SYNC-type writes */ 792 err = generic_write_sync(file, pos, ret); 793 if (err < 0) 794 ret = err; 795 } 796 797 out: 798 sb_end_write(inode->i_sb); 799 return ret; 800 } 801 802 STATIC long 803 xfs_file_fallocate( 804 struct file *file, 805 int mode, 806 loff_t offset, 807 loff_t len) 808 { 809 struct inode *inode = file->f_path.dentry->d_inode; 810 long error; 811 loff_t new_size = 0; 812 xfs_flock64_t bf; 813 xfs_inode_t *ip = XFS_I(inode); 814 int cmd = XFS_IOC_RESVSP; 815 int attr_flags = XFS_ATTR_NOLOCK; 816 817 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 818 return -EOPNOTSUPP; 819 820 bf.l_whence = 0; 821 bf.l_start = offset; 822 bf.l_len = len; 823 824 xfs_ilock(ip, XFS_IOLOCK_EXCL); 825 826 if (mode & FALLOC_FL_PUNCH_HOLE) 827 cmd = XFS_IOC_UNRESVSP; 828 829 /* check the new inode size is valid before allocating */ 830 if (!(mode & FALLOC_FL_KEEP_SIZE) && 831 offset + len > i_size_read(inode)) { 832 new_size = offset + len; 833 error = inode_newsize_ok(inode, new_size); 834 if (error) 835 goto out_unlock; 836 } 837 838 if (file->f_flags & O_DSYNC) 839 attr_flags |= XFS_ATTR_SYNC; 840 841 error = -xfs_change_file_space(ip, cmd, &bf, 0, attr_flags); 842 if (error) 843 goto out_unlock; 844 845 /* Change file size if needed */ 846 if (new_size) { 847 struct iattr iattr; 848 849 iattr.ia_valid = ATTR_SIZE; 850 iattr.ia_size = new_size; 851 error = -xfs_setattr_size(ip, &iattr, XFS_ATTR_NOLOCK); 852 } 853 854 out_unlock: 855 xfs_iunlock(ip, XFS_IOLOCK_EXCL); 856 return error; 857 } 858 859 860 STATIC int 861 xfs_file_open( 862 struct inode *inode, 863 struct file *file) 864 { 865 if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS) 866 return -EFBIG; 867 if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb))) 868 return -EIO; 869 return 0; 870 } 871 872 STATIC int 873 xfs_dir_open( 874 struct inode *inode, 875 struct file *file) 876 { 877 struct xfs_inode *ip = XFS_I(inode); 878 int mode; 879 int error; 880 881 error = xfs_file_open(inode, file); 882 if (error) 883 return error; 884 885 /* 886 * If there are any blocks, read-ahead block 0 as we're almost 887 * certain to have the next operation be a read there. 888 */ 889 mode = xfs_ilock_map_shared(ip); 890 if (ip->i_d.di_nextents > 0) 891 xfs_da_reada_buf(NULL, ip, 0, XFS_DATA_FORK); 892 xfs_iunlock(ip, mode); 893 return 0; 894 } 895 896 STATIC int 897 xfs_file_release( 898 struct inode *inode, 899 struct file *filp) 900 { 901 return -xfs_release(XFS_I(inode)); 902 } 903 904 STATIC int 905 xfs_file_readdir( 906 struct file *filp, 907 void *dirent, 908 filldir_t filldir) 909 { 910 struct inode *inode = filp->f_path.dentry->d_inode; 911 xfs_inode_t *ip = XFS_I(inode); 912 int error; 913 size_t bufsize; 914 915 /* 916 * The Linux API doesn't pass down the total size of the buffer 917 * we read into down to the filesystem. With the filldir concept 918 * it's not needed for correct information, but the XFS dir2 leaf 919 * code wants an estimate of the buffer size to calculate it's 920 * readahead window and size the buffers used for mapping to 921 * physical blocks. 922 * 923 * Try to give it an estimate that's good enough, maybe at some 924 * point we can change the ->readdir prototype to include the 925 * buffer size. For now we use the current glibc buffer size. 926 */ 927 bufsize = (size_t)min_t(loff_t, 32768, ip->i_d.di_size); 928 929 error = xfs_readdir(ip, dirent, bufsize, 930 (xfs_off_t *)&filp->f_pos, filldir); 931 if (error) 932 return -error; 933 return 0; 934 } 935 936 STATIC int 937 xfs_file_mmap( 938 struct file *filp, 939 struct vm_area_struct *vma) 940 { 941 vma->vm_ops = &xfs_file_vm_ops; 942 vma->vm_flags |= VM_CAN_NONLINEAR; 943 944 file_accessed(filp); 945 return 0; 946 } 947 948 /* 949 * mmap()d file has taken write protection fault and is being made 950 * writable. We can set the page state up correctly for a writable 951 * page, which means we can do correct delalloc accounting (ENOSPC 952 * checking!) and unwritten extent mapping. 953 */ 954 STATIC int 955 xfs_vm_page_mkwrite( 956 struct vm_area_struct *vma, 957 struct vm_fault *vmf) 958 { 959 return block_page_mkwrite(vma, vmf, xfs_get_blocks); 960 } 961 962 STATIC loff_t 963 xfs_seek_data( 964 struct file *file, 965 loff_t start, 966 u32 type) 967 { 968 struct inode *inode = file->f_mapping->host; 969 struct xfs_inode *ip = XFS_I(inode); 970 struct xfs_mount *mp = ip->i_mount; 971 struct xfs_bmbt_irec map[2]; 972 int nmap = 2; 973 loff_t uninitialized_var(offset); 974 xfs_fsize_t isize; 975 xfs_fileoff_t fsbno; 976 xfs_filblks_t end; 977 uint lock; 978 int error; 979 980 lock = xfs_ilock_map_shared(ip); 981 982 isize = i_size_read(inode); 983 if (start >= isize) { 984 error = ENXIO; 985 goto out_unlock; 986 } 987 988 fsbno = XFS_B_TO_FSBT(mp, start); 989 990 /* 991 * Try to read extents from the first block indicated 992 * by fsbno to the end block of the file. 993 */ 994 end = XFS_B_TO_FSB(mp, isize); 995 996 error = xfs_bmapi_read(ip, fsbno, end - fsbno, map, &nmap, 997 XFS_BMAPI_ENTIRE); 998 if (error) 999 goto out_unlock; 1000 1001 /* 1002 * Treat unwritten extent as data extent since it might 1003 * contains dirty data in page cache. 1004 */ 1005 if (map[0].br_startblock != HOLESTARTBLOCK) { 1006 offset = max_t(loff_t, start, 1007 XFS_FSB_TO_B(mp, map[0].br_startoff)); 1008 } else { 1009 if (nmap == 1) { 1010 error = ENXIO; 1011 goto out_unlock; 1012 } 1013 1014 offset = max_t(loff_t, start, 1015 XFS_FSB_TO_B(mp, map[1].br_startoff)); 1016 } 1017 1018 if (offset != file->f_pos) 1019 file->f_pos = offset; 1020 1021 out_unlock: 1022 xfs_iunlock_map_shared(ip, lock); 1023 1024 if (error) 1025 return -error; 1026 return offset; 1027 } 1028 1029 STATIC loff_t 1030 xfs_seek_hole( 1031 struct file *file, 1032 loff_t start, 1033 u32 type) 1034 { 1035 struct inode *inode = file->f_mapping->host; 1036 struct xfs_inode *ip = XFS_I(inode); 1037 struct xfs_mount *mp = ip->i_mount; 1038 loff_t uninitialized_var(offset); 1039 loff_t holeoff; 1040 xfs_fsize_t isize; 1041 xfs_fileoff_t fsbno; 1042 uint lock; 1043 int error; 1044 1045 if (XFS_FORCED_SHUTDOWN(mp)) 1046 return -XFS_ERROR(EIO); 1047 1048 lock = xfs_ilock_map_shared(ip); 1049 1050 isize = i_size_read(inode); 1051 if (start >= isize) { 1052 error = ENXIO; 1053 goto out_unlock; 1054 } 1055 1056 fsbno = XFS_B_TO_FSBT(mp, start); 1057 error = xfs_bmap_first_unused(NULL, ip, 1, &fsbno, XFS_DATA_FORK); 1058 if (error) 1059 goto out_unlock; 1060 1061 holeoff = XFS_FSB_TO_B(mp, fsbno); 1062 if (holeoff <= start) 1063 offset = start; 1064 else { 1065 /* 1066 * xfs_bmap_first_unused() could return a value bigger than 1067 * isize if there are no more holes past the supplied offset. 1068 */ 1069 offset = min_t(loff_t, holeoff, isize); 1070 } 1071 1072 if (offset != file->f_pos) 1073 file->f_pos = offset; 1074 1075 out_unlock: 1076 xfs_iunlock_map_shared(ip, lock); 1077 1078 if (error) 1079 return -error; 1080 return offset; 1081 } 1082 1083 STATIC loff_t 1084 xfs_file_llseek( 1085 struct file *file, 1086 loff_t offset, 1087 int origin) 1088 { 1089 switch (origin) { 1090 case SEEK_END: 1091 case SEEK_CUR: 1092 case SEEK_SET: 1093 return generic_file_llseek(file, offset, origin); 1094 case SEEK_DATA: 1095 return xfs_seek_data(file, offset, origin); 1096 case SEEK_HOLE: 1097 return xfs_seek_hole(file, offset, origin); 1098 default: 1099 return -EINVAL; 1100 } 1101 } 1102 1103 const struct file_operations xfs_file_operations = { 1104 .llseek = xfs_file_llseek, 1105 .read = do_sync_read, 1106 .write = do_sync_write, 1107 .aio_read = xfs_file_aio_read, 1108 .aio_write = xfs_file_aio_write, 1109 .splice_read = xfs_file_splice_read, 1110 .splice_write = xfs_file_splice_write, 1111 .unlocked_ioctl = xfs_file_ioctl, 1112 #ifdef CONFIG_COMPAT 1113 .compat_ioctl = xfs_file_compat_ioctl, 1114 #endif 1115 .mmap = xfs_file_mmap, 1116 .open = xfs_file_open, 1117 .release = xfs_file_release, 1118 .fsync = xfs_file_fsync, 1119 .fallocate = xfs_file_fallocate, 1120 }; 1121 1122 const struct file_operations xfs_dir_file_operations = { 1123 .open = xfs_dir_open, 1124 .read = generic_read_dir, 1125 .readdir = xfs_file_readdir, 1126 .llseek = generic_file_llseek, 1127 .unlocked_ioctl = xfs_file_ioctl, 1128 #ifdef CONFIG_COMPAT 1129 .compat_ioctl = xfs_file_compat_ioctl, 1130 #endif 1131 .fsync = xfs_dir_fsync, 1132 }; 1133 1134 static const struct vm_operations_struct xfs_file_vm_ops = { 1135 .fault = filemap_fault, 1136 .page_mkwrite = xfs_vm_page_mkwrite, 1137 }; 1138