1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_mount.h" 13 #include "xfs_inode.h" 14 #include "xfs_trans.h" 15 #include "xfs_inode_item.h" 16 #include "xfs_bmap.h" 17 #include "xfs_bmap_util.h" 18 #include "xfs_dir2.h" 19 #include "xfs_dir2_priv.h" 20 #include "xfs_ioctl.h" 21 #include "xfs_trace.h" 22 #include "xfs_log.h" 23 #include "xfs_icache.h" 24 #include "xfs_pnfs.h" 25 #include "xfs_iomap.h" 26 #include "xfs_reflink.h" 27 #include "xfs_file.h" 28 29 #include <linux/dax.h> 30 #include <linux/falloc.h> 31 #include <linux/backing-dev.h> 32 #include <linux/mman.h> 33 #include <linux/fadvise.h> 34 #include <linux/mount.h> 35 36 static const struct vm_operations_struct xfs_file_vm_ops; 37 38 /* 39 * Decide if the given file range is aligned to the size of the fundamental 40 * allocation unit for the file. 41 */ 42 bool 43 xfs_is_falloc_aligned( 44 struct xfs_inode *ip, 45 loff_t pos, 46 long long int len) 47 { 48 unsigned int alloc_unit = xfs_inode_alloc_unitsize(ip); 49 50 if (!is_power_of_2(alloc_unit)) 51 return isaligned_64(pos, alloc_unit) && 52 isaligned_64(len, alloc_unit); 53 54 return !((pos | len) & (alloc_unit - 1)); 55 } 56 57 /* 58 * Fsync operations on directories are much simpler than on regular files, 59 * as there is no file data to flush, and thus also no need for explicit 60 * cache flush operations, and there are no non-transaction metadata updates 61 * on directories either. 62 */ 63 STATIC int 64 xfs_dir_fsync( 65 struct file *file, 66 loff_t start, 67 loff_t end, 68 int datasync) 69 { 70 struct xfs_inode *ip = XFS_I(file->f_mapping->host); 71 72 trace_xfs_dir_fsync(ip); 73 return xfs_log_force_inode(ip); 74 } 75 76 static xfs_csn_t 77 xfs_fsync_seq( 78 struct xfs_inode *ip, 79 bool datasync) 80 { 81 if (!xfs_ipincount(ip)) 82 return 0; 83 if (datasync && !(ip->i_itemp->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP)) 84 return 0; 85 return ip->i_itemp->ili_commit_seq; 86 } 87 88 /* 89 * All metadata updates are logged, which means that we just have to flush the 90 * log up to the latest LSN that touched the inode. 91 * 92 * If we have concurrent fsync/fdatasync() calls, we need them to all block on 93 * the log force before we clear the ili_fsync_fields field. This ensures that 94 * we don't get a racing sync operation that does not wait for the metadata to 95 * hit the journal before returning. If we race with clearing ili_fsync_fields, 96 * then all that will happen is the log force will do nothing as the lsn will 97 * already be on disk. We can't race with setting ili_fsync_fields because that 98 * is done under XFS_ILOCK_EXCL, and that can't happen because we hold the lock 99 * shared until after the ili_fsync_fields is cleared. 100 */ 101 static int 102 xfs_fsync_flush_log( 103 struct xfs_inode *ip, 104 bool datasync, 105 int *log_flushed) 106 { 107 int error = 0; 108 xfs_csn_t seq; 109 110 xfs_ilock(ip, XFS_ILOCK_SHARED); 111 seq = xfs_fsync_seq(ip, datasync); 112 if (seq) { 113 error = xfs_log_force_seq(ip->i_mount, seq, XFS_LOG_SYNC, 114 log_flushed); 115 116 spin_lock(&ip->i_itemp->ili_lock); 117 ip->i_itemp->ili_fsync_fields = 0; 118 spin_unlock(&ip->i_itemp->ili_lock); 119 } 120 xfs_iunlock(ip, XFS_ILOCK_SHARED); 121 return error; 122 } 123 124 STATIC int 125 xfs_file_fsync( 126 struct file *file, 127 loff_t start, 128 loff_t end, 129 int datasync) 130 { 131 struct xfs_inode *ip = XFS_I(file->f_mapping->host); 132 struct xfs_mount *mp = ip->i_mount; 133 int error, err2; 134 int log_flushed = 0; 135 136 trace_xfs_file_fsync(ip); 137 138 error = file_write_and_wait_range(file, start, end); 139 if (error) 140 return error; 141 142 if (xfs_is_shutdown(mp)) 143 return -EIO; 144 145 xfs_iflags_clear(ip, XFS_ITRUNCATED); 146 147 /* 148 * If we have an RT and/or log subvolume we need to make sure to flush 149 * the write cache the device used for file data first. This is to 150 * ensure newly written file data make it to disk before logging the new 151 * inode size in case of an extending write. 152 */ 153 if (XFS_IS_REALTIME_INODE(ip)) 154 error = blkdev_issue_flush(mp->m_rtdev_targp->bt_bdev); 155 else if (mp->m_logdev_targp != mp->m_ddev_targp) 156 error = blkdev_issue_flush(mp->m_ddev_targp->bt_bdev); 157 158 /* 159 * Any inode that has dirty modifications in the log is pinned. The 160 * racy check here for a pinned inode will not catch modifications 161 * that happen concurrently to the fsync call, but fsync semantics 162 * only require to sync previously completed I/O. 163 */ 164 if (xfs_ipincount(ip)) { 165 err2 = xfs_fsync_flush_log(ip, datasync, &log_flushed); 166 if (err2 && !error) 167 error = err2; 168 } 169 170 /* 171 * If we only have a single device, and the log force about was 172 * a no-op we might have to flush the data device cache here. 173 * This can only happen for fdatasync/O_DSYNC if we were overwriting 174 * an already allocated file and thus do not have any metadata to 175 * commit. 176 */ 177 if (!log_flushed && !XFS_IS_REALTIME_INODE(ip) && 178 mp->m_logdev_targp == mp->m_ddev_targp) { 179 err2 = blkdev_issue_flush(mp->m_ddev_targp->bt_bdev); 180 if (err2 && !error) 181 error = err2; 182 } 183 184 return error; 185 } 186 187 static int 188 xfs_ilock_iocb( 189 struct kiocb *iocb, 190 unsigned int lock_mode) 191 { 192 struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp)); 193 194 if (iocb->ki_flags & IOCB_NOWAIT) { 195 if (!xfs_ilock_nowait(ip, lock_mode)) 196 return -EAGAIN; 197 } else { 198 xfs_ilock(ip, lock_mode); 199 } 200 201 return 0; 202 } 203 204 static int 205 xfs_ilock_iocb_for_write( 206 struct kiocb *iocb, 207 unsigned int *lock_mode) 208 { 209 ssize_t ret; 210 struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp)); 211 212 ret = xfs_ilock_iocb(iocb, *lock_mode); 213 if (ret) 214 return ret; 215 216 if (*lock_mode == XFS_IOLOCK_EXCL) 217 return 0; 218 if (!xfs_iflags_test(ip, XFS_IREMAPPING)) 219 return 0; 220 221 xfs_iunlock(ip, *lock_mode); 222 *lock_mode = XFS_IOLOCK_EXCL; 223 return xfs_ilock_iocb(iocb, *lock_mode); 224 } 225 226 static unsigned int 227 xfs_ilock_for_write_fault( 228 struct xfs_inode *ip) 229 { 230 /* get a shared lock if no remapping in progress */ 231 xfs_ilock(ip, XFS_MMAPLOCK_SHARED); 232 if (!xfs_iflags_test(ip, XFS_IREMAPPING)) 233 return XFS_MMAPLOCK_SHARED; 234 235 /* wait for remapping to complete */ 236 xfs_iunlock(ip, XFS_MMAPLOCK_SHARED); 237 xfs_ilock(ip, XFS_MMAPLOCK_EXCL); 238 return XFS_MMAPLOCK_EXCL; 239 } 240 241 STATIC ssize_t 242 xfs_file_dio_read( 243 struct kiocb *iocb, 244 struct iov_iter *to) 245 { 246 struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp)); 247 ssize_t ret; 248 249 trace_xfs_file_direct_read(iocb, to); 250 251 if (!iov_iter_count(to)) 252 return 0; /* skip atime */ 253 254 file_accessed(iocb->ki_filp); 255 256 ret = xfs_ilock_iocb(iocb, XFS_IOLOCK_SHARED); 257 if (ret) 258 return ret; 259 ret = iomap_dio_rw(iocb, to, &xfs_read_iomap_ops, NULL, 0, NULL, 0); 260 xfs_iunlock(ip, XFS_IOLOCK_SHARED); 261 262 return ret; 263 } 264 265 static noinline ssize_t 266 xfs_file_dax_read( 267 struct kiocb *iocb, 268 struct iov_iter *to) 269 { 270 struct xfs_inode *ip = XFS_I(iocb->ki_filp->f_mapping->host); 271 ssize_t ret = 0; 272 273 trace_xfs_file_dax_read(iocb, to); 274 275 if (!iov_iter_count(to)) 276 return 0; /* skip atime */ 277 278 ret = xfs_ilock_iocb(iocb, XFS_IOLOCK_SHARED); 279 if (ret) 280 return ret; 281 ret = dax_iomap_rw(iocb, to, &xfs_read_iomap_ops); 282 xfs_iunlock(ip, XFS_IOLOCK_SHARED); 283 284 file_accessed(iocb->ki_filp); 285 return ret; 286 } 287 288 STATIC ssize_t 289 xfs_file_buffered_read( 290 struct kiocb *iocb, 291 struct iov_iter *to) 292 { 293 struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp)); 294 ssize_t ret; 295 296 trace_xfs_file_buffered_read(iocb, to); 297 298 ret = xfs_ilock_iocb(iocb, XFS_IOLOCK_SHARED); 299 if (ret) 300 return ret; 301 ret = generic_file_read_iter(iocb, to); 302 xfs_iunlock(ip, XFS_IOLOCK_SHARED); 303 304 return ret; 305 } 306 307 STATIC ssize_t 308 xfs_file_read_iter( 309 struct kiocb *iocb, 310 struct iov_iter *to) 311 { 312 struct inode *inode = file_inode(iocb->ki_filp); 313 struct xfs_mount *mp = XFS_I(inode)->i_mount; 314 ssize_t ret = 0; 315 316 XFS_STATS_INC(mp, xs_read_calls); 317 318 if (xfs_is_shutdown(mp)) 319 return -EIO; 320 321 if (IS_DAX(inode)) 322 ret = xfs_file_dax_read(iocb, to); 323 else if (iocb->ki_flags & IOCB_DIRECT) 324 ret = xfs_file_dio_read(iocb, to); 325 else 326 ret = xfs_file_buffered_read(iocb, to); 327 328 if (ret > 0) 329 XFS_STATS_ADD(mp, xs_read_bytes, ret); 330 return ret; 331 } 332 333 STATIC ssize_t 334 xfs_file_splice_read( 335 struct file *in, 336 loff_t *ppos, 337 struct pipe_inode_info *pipe, 338 size_t len, 339 unsigned int flags) 340 { 341 struct inode *inode = file_inode(in); 342 struct xfs_inode *ip = XFS_I(inode); 343 struct xfs_mount *mp = ip->i_mount; 344 ssize_t ret = 0; 345 346 XFS_STATS_INC(mp, xs_read_calls); 347 348 if (xfs_is_shutdown(mp)) 349 return -EIO; 350 351 trace_xfs_file_splice_read(ip, *ppos, len); 352 353 xfs_ilock(ip, XFS_IOLOCK_SHARED); 354 ret = filemap_splice_read(in, ppos, pipe, len, flags); 355 xfs_iunlock(ip, XFS_IOLOCK_SHARED); 356 if (ret > 0) 357 XFS_STATS_ADD(mp, xs_read_bytes, ret); 358 return ret; 359 } 360 361 /* 362 * Common pre-write limit and setup checks. 363 * 364 * Called with the iolocked held either shared and exclusive according to 365 * @iolock, and returns with it held. Might upgrade the iolock to exclusive 366 * if called for a direct write beyond i_size. 367 */ 368 STATIC ssize_t 369 xfs_file_write_checks( 370 struct kiocb *iocb, 371 struct iov_iter *from, 372 unsigned int *iolock) 373 { 374 struct file *file = iocb->ki_filp; 375 struct inode *inode = file->f_mapping->host; 376 struct xfs_inode *ip = XFS_I(inode); 377 ssize_t error = 0; 378 size_t count = iov_iter_count(from); 379 bool drained_dio = false; 380 loff_t isize; 381 382 restart: 383 error = generic_write_checks(iocb, from); 384 if (error <= 0) 385 return error; 386 387 if (iocb->ki_flags & IOCB_NOWAIT) { 388 error = break_layout(inode, false); 389 if (error == -EWOULDBLOCK) 390 error = -EAGAIN; 391 } else { 392 error = xfs_break_layouts(inode, iolock, BREAK_WRITE); 393 } 394 395 if (error) 396 return error; 397 398 /* 399 * For changing security info in file_remove_privs() we need i_rwsem 400 * exclusively. 401 */ 402 if (*iolock == XFS_IOLOCK_SHARED && !IS_NOSEC(inode)) { 403 xfs_iunlock(ip, *iolock); 404 *iolock = XFS_IOLOCK_EXCL; 405 error = xfs_ilock_iocb(iocb, *iolock); 406 if (error) { 407 *iolock = 0; 408 return error; 409 } 410 goto restart; 411 } 412 413 /* 414 * If the offset is beyond the size of the file, we need to zero any 415 * blocks that fall between the existing EOF and the start of this 416 * write. If zeroing is needed and we are currently holding the iolock 417 * shared, we need to update it to exclusive which implies having to 418 * redo all checks before. 419 * 420 * We need to serialise against EOF updates that occur in IO completions 421 * here. We want to make sure that nobody is changing the size while we 422 * do this check until we have placed an IO barrier (i.e. hold the 423 * XFS_IOLOCK_EXCL) that prevents new IO from being dispatched. The 424 * spinlock effectively forms a memory barrier once we have the 425 * XFS_IOLOCK_EXCL so we are guaranteed to see the latest EOF value and 426 * hence be able to correctly determine if we need to run zeroing. 427 * 428 * We can do an unlocked check here safely as IO completion can only 429 * extend EOF. Truncate is locked out at this point, so the EOF can 430 * not move backwards, only forwards. Hence we only need to take the 431 * slow path and spin locks when we are at or beyond the current EOF. 432 */ 433 if (iocb->ki_pos <= i_size_read(inode)) 434 goto out; 435 436 spin_lock(&ip->i_flags_lock); 437 isize = i_size_read(inode); 438 if (iocb->ki_pos > isize) { 439 spin_unlock(&ip->i_flags_lock); 440 441 if (iocb->ki_flags & IOCB_NOWAIT) 442 return -EAGAIN; 443 444 if (!drained_dio) { 445 if (*iolock == XFS_IOLOCK_SHARED) { 446 xfs_iunlock(ip, *iolock); 447 *iolock = XFS_IOLOCK_EXCL; 448 xfs_ilock(ip, *iolock); 449 iov_iter_reexpand(from, count); 450 } 451 /* 452 * We now have an IO submission barrier in place, but 453 * AIO can do EOF updates during IO completion and hence 454 * we now need to wait for all of them to drain. Non-AIO 455 * DIO will have drained before we are given the 456 * XFS_IOLOCK_EXCL, and so for most cases this wait is a 457 * no-op. 458 */ 459 inode_dio_wait(inode); 460 drained_dio = true; 461 goto restart; 462 } 463 464 trace_xfs_zero_eof(ip, isize, iocb->ki_pos - isize); 465 error = xfs_zero_range(ip, isize, iocb->ki_pos - isize, NULL); 466 if (error) 467 return error; 468 } else 469 spin_unlock(&ip->i_flags_lock); 470 471 out: 472 return kiocb_modified(iocb); 473 } 474 475 static int 476 xfs_dio_write_end_io( 477 struct kiocb *iocb, 478 ssize_t size, 479 int error, 480 unsigned flags) 481 { 482 struct inode *inode = file_inode(iocb->ki_filp); 483 struct xfs_inode *ip = XFS_I(inode); 484 loff_t offset = iocb->ki_pos; 485 unsigned int nofs_flag; 486 487 trace_xfs_end_io_direct_write(ip, offset, size); 488 489 if (xfs_is_shutdown(ip->i_mount)) 490 return -EIO; 491 492 if (error) 493 return error; 494 if (!size) 495 return 0; 496 497 /* 498 * Capture amount written on completion as we can't reliably account 499 * for it on submission. 500 */ 501 XFS_STATS_ADD(ip->i_mount, xs_write_bytes, size); 502 503 /* 504 * We can allocate memory here while doing writeback on behalf of 505 * memory reclaim. To avoid memory allocation deadlocks set the 506 * task-wide nofs context for the following operations. 507 */ 508 nofs_flag = memalloc_nofs_save(); 509 510 if (flags & IOMAP_DIO_COW) { 511 error = xfs_reflink_end_cow(ip, offset, size); 512 if (error) 513 goto out; 514 } 515 516 /* 517 * Unwritten conversion updates the in-core isize after extent 518 * conversion but before updating the on-disk size. Updating isize any 519 * earlier allows a racing dio read to find unwritten extents before 520 * they are converted. 521 */ 522 if (flags & IOMAP_DIO_UNWRITTEN) { 523 error = xfs_iomap_write_unwritten(ip, offset, size, true); 524 goto out; 525 } 526 527 /* 528 * We need to update the in-core inode size here so that we don't end up 529 * with the on-disk inode size being outside the in-core inode size. We 530 * have no other method of updating EOF for AIO, so always do it here 531 * if necessary. 532 * 533 * We need to lock the test/set EOF update as we can be racing with 534 * other IO completions here to update the EOF. Failing to serialise 535 * here can result in EOF moving backwards and Bad Things Happen when 536 * that occurs. 537 * 538 * As IO completion only ever extends EOF, we can do an unlocked check 539 * here to avoid taking the spinlock. If we land within the current EOF, 540 * then we do not need to do an extending update at all, and we don't 541 * need to take the lock to check this. If we race with an update moving 542 * EOF, then we'll either still be beyond EOF and need to take the lock, 543 * or we'll be within EOF and we don't need to take it at all. 544 */ 545 if (offset + size <= i_size_read(inode)) 546 goto out; 547 548 spin_lock(&ip->i_flags_lock); 549 if (offset + size > i_size_read(inode)) { 550 i_size_write(inode, offset + size); 551 spin_unlock(&ip->i_flags_lock); 552 error = xfs_setfilesize(ip, offset, size); 553 } else { 554 spin_unlock(&ip->i_flags_lock); 555 } 556 557 out: 558 memalloc_nofs_restore(nofs_flag); 559 return error; 560 } 561 562 static const struct iomap_dio_ops xfs_dio_write_ops = { 563 .end_io = xfs_dio_write_end_io, 564 }; 565 566 /* 567 * Handle block aligned direct I/O writes 568 */ 569 static noinline ssize_t 570 xfs_file_dio_write_aligned( 571 struct xfs_inode *ip, 572 struct kiocb *iocb, 573 struct iov_iter *from) 574 { 575 unsigned int iolock = XFS_IOLOCK_SHARED; 576 ssize_t ret; 577 578 ret = xfs_ilock_iocb_for_write(iocb, &iolock); 579 if (ret) 580 return ret; 581 ret = xfs_file_write_checks(iocb, from, &iolock); 582 if (ret) 583 goto out_unlock; 584 585 /* 586 * We don't need to hold the IOLOCK exclusively across the IO, so demote 587 * the iolock back to shared if we had to take the exclusive lock in 588 * xfs_file_write_checks() for other reasons. 589 */ 590 if (iolock == XFS_IOLOCK_EXCL) { 591 xfs_ilock_demote(ip, XFS_IOLOCK_EXCL); 592 iolock = XFS_IOLOCK_SHARED; 593 } 594 trace_xfs_file_direct_write(iocb, from); 595 ret = iomap_dio_rw(iocb, from, &xfs_direct_write_iomap_ops, 596 &xfs_dio_write_ops, 0, NULL, 0); 597 out_unlock: 598 if (iolock) 599 xfs_iunlock(ip, iolock); 600 return ret; 601 } 602 603 /* 604 * Handle block unaligned direct I/O writes 605 * 606 * In most cases direct I/O writes will be done holding IOLOCK_SHARED, allowing 607 * them to be done in parallel with reads and other direct I/O writes. However, 608 * if the I/O is not aligned to filesystem blocks, the direct I/O layer may need 609 * to do sub-block zeroing and that requires serialisation against other direct 610 * I/O to the same block. In this case we need to serialise the submission of 611 * the unaligned I/O so that we don't get racing block zeroing in the dio layer. 612 * In the case where sub-block zeroing is not required, we can do concurrent 613 * sub-block dios to the same block successfully. 614 * 615 * Optimistically submit the I/O using the shared lock first, but use the 616 * IOMAP_DIO_OVERWRITE_ONLY flag to tell the lower layers to return -EAGAIN 617 * if block allocation or partial block zeroing would be required. In that case 618 * we try again with the exclusive lock. 619 */ 620 static noinline ssize_t 621 xfs_file_dio_write_unaligned( 622 struct xfs_inode *ip, 623 struct kiocb *iocb, 624 struct iov_iter *from) 625 { 626 size_t isize = i_size_read(VFS_I(ip)); 627 size_t count = iov_iter_count(from); 628 unsigned int iolock = XFS_IOLOCK_SHARED; 629 unsigned int flags = IOMAP_DIO_OVERWRITE_ONLY; 630 ssize_t ret; 631 632 /* 633 * Extending writes need exclusivity because of the sub-block zeroing 634 * that the DIO code always does for partial tail blocks beyond EOF, so 635 * don't even bother trying the fast path in this case. 636 */ 637 if (iocb->ki_pos > isize || iocb->ki_pos + count >= isize) { 638 if (iocb->ki_flags & IOCB_NOWAIT) 639 return -EAGAIN; 640 retry_exclusive: 641 iolock = XFS_IOLOCK_EXCL; 642 flags = IOMAP_DIO_FORCE_WAIT; 643 } 644 645 ret = xfs_ilock_iocb_for_write(iocb, &iolock); 646 if (ret) 647 return ret; 648 649 /* 650 * We can't properly handle unaligned direct I/O to reflink files yet, 651 * as we can't unshare a partial block. 652 */ 653 if (xfs_is_cow_inode(ip)) { 654 trace_xfs_reflink_bounce_dio_write(iocb, from); 655 ret = -ENOTBLK; 656 goto out_unlock; 657 } 658 659 ret = xfs_file_write_checks(iocb, from, &iolock); 660 if (ret) 661 goto out_unlock; 662 663 /* 664 * If we are doing exclusive unaligned I/O, this must be the only I/O 665 * in-flight. Otherwise we risk data corruption due to unwritten extent 666 * conversions from the AIO end_io handler. Wait for all other I/O to 667 * drain first. 668 */ 669 if (flags & IOMAP_DIO_FORCE_WAIT) 670 inode_dio_wait(VFS_I(ip)); 671 672 trace_xfs_file_direct_write(iocb, from); 673 ret = iomap_dio_rw(iocb, from, &xfs_direct_write_iomap_ops, 674 &xfs_dio_write_ops, flags, NULL, 0); 675 676 /* 677 * Retry unaligned I/O with exclusive blocking semantics if the DIO 678 * layer rejected it for mapping or locking reasons. If we are doing 679 * nonblocking user I/O, propagate the error. 680 */ 681 if (ret == -EAGAIN && !(iocb->ki_flags & IOCB_NOWAIT)) { 682 ASSERT(flags & IOMAP_DIO_OVERWRITE_ONLY); 683 xfs_iunlock(ip, iolock); 684 goto retry_exclusive; 685 } 686 687 out_unlock: 688 if (iolock) 689 xfs_iunlock(ip, iolock); 690 return ret; 691 } 692 693 static ssize_t 694 xfs_file_dio_write( 695 struct kiocb *iocb, 696 struct iov_iter *from) 697 { 698 struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp)); 699 struct xfs_buftarg *target = xfs_inode_buftarg(ip); 700 size_t count = iov_iter_count(from); 701 702 /* direct I/O must be aligned to device logical sector size */ 703 if ((iocb->ki_pos | count) & target->bt_logical_sectormask) 704 return -EINVAL; 705 if ((iocb->ki_pos | count) & ip->i_mount->m_blockmask) 706 return xfs_file_dio_write_unaligned(ip, iocb, from); 707 return xfs_file_dio_write_aligned(ip, iocb, from); 708 } 709 710 static noinline ssize_t 711 xfs_file_dax_write( 712 struct kiocb *iocb, 713 struct iov_iter *from) 714 { 715 struct inode *inode = iocb->ki_filp->f_mapping->host; 716 struct xfs_inode *ip = XFS_I(inode); 717 unsigned int iolock = XFS_IOLOCK_EXCL; 718 ssize_t ret, error = 0; 719 loff_t pos; 720 721 ret = xfs_ilock_iocb(iocb, iolock); 722 if (ret) 723 return ret; 724 ret = xfs_file_write_checks(iocb, from, &iolock); 725 if (ret) 726 goto out; 727 728 pos = iocb->ki_pos; 729 730 trace_xfs_file_dax_write(iocb, from); 731 ret = dax_iomap_rw(iocb, from, &xfs_dax_write_iomap_ops); 732 if (ret > 0 && iocb->ki_pos > i_size_read(inode)) { 733 i_size_write(inode, iocb->ki_pos); 734 error = xfs_setfilesize(ip, pos, ret); 735 } 736 out: 737 if (iolock) 738 xfs_iunlock(ip, iolock); 739 if (error) 740 return error; 741 742 if (ret > 0) { 743 XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret); 744 745 /* Handle various SYNC-type writes */ 746 ret = generic_write_sync(iocb, ret); 747 } 748 return ret; 749 } 750 751 STATIC ssize_t 752 xfs_file_buffered_write( 753 struct kiocb *iocb, 754 struct iov_iter *from) 755 { 756 struct inode *inode = iocb->ki_filp->f_mapping->host; 757 struct xfs_inode *ip = XFS_I(inode); 758 ssize_t ret; 759 bool cleared_space = false; 760 unsigned int iolock; 761 762 write_retry: 763 iolock = XFS_IOLOCK_EXCL; 764 ret = xfs_ilock_iocb(iocb, iolock); 765 if (ret) 766 return ret; 767 768 ret = xfs_file_write_checks(iocb, from, &iolock); 769 if (ret) 770 goto out; 771 772 trace_xfs_file_buffered_write(iocb, from); 773 ret = iomap_file_buffered_write(iocb, from, 774 &xfs_buffered_write_iomap_ops); 775 776 /* 777 * If we hit a space limit, try to free up some lingering preallocated 778 * space before returning an error. In the case of ENOSPC, first try to 779 * write back all dirty inodes to free up some of the excess reserved 780 * metadata space. This reduces the chances that the eofblocks scan 781 * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this 782 * also behaves as a filter to prevent too many eofblocks scans from 783 * running at the same time. Use a synchronous scan to increase the 784 * effectiveness of the scan. 785 */ 786 if (ret == -EDQUOT && !cleared_space) { 787 xfs_iunlock(ip, iolock); 788 xfs_blockgc_free_quota(ip, XFS_ICWALK_FLAG_SYNC); 789 cleared_space = true; 790 goto write_retry; 791 } else if (ret == -ENOSPC && !cleared_space) { 792 struct xfs_icwalk icw = {0}; 793 794 cleared_space = true; 795 xfs_flush_inodes(ip->i_mount); 796 797 xfs_iunlock(ip, iolock); 798 icw.icw_flags = XFS_ICWALK_FLAG_SYNC; 799 xfs_blockgc_free_space(ip->i_mount, &icw); 800 goto write_retry; 801 } 802 803 out: 804 if (iolock) 805 xfs_iunlock(ip, iolock); 806 807 if (ret > 0) { 808 XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret); 809 /* Handle various SYNC-type writes */ 810 ret = generic_write_sync(iocb, ret); 811 } 812 return ret; 813 } 814 815 STATIC ssize_t 816 xfs_file_write_iter( 817 struct kiocb *iocb, 818 struct iov_iter *from) 819 { 820 struct inode *inode = iocb->ki_filp->f_mapping->host; 821 struct xfs_inode *ip = XFS_I(inode); 822 ssize_t ret; 823 size_t ocount = iov_iter_count(from); 824 825 XFS_STATS_INC(ip->i_mount, xs_write_calls); 826 827 if (ocount == 0) 828 return 0; 829 830 if (xfs_is_shutdown(ip->i_mount)) 831 return -EIO; 832 833 if (IS_DAX(inode)) 834 return xfs_file_dax_write(iocb, from); 835 836 if (iocb->ki_flags & IOCB_DIRECT) { 837 /* 838 * Allow a directio write to fall back to a buffered 839 * write *only* in the case that we're doing a reflink 840 * CoW. In all other directio scenarios we do not 841 * allow an operation to fall back to buffered mode. 842 */ 843 ret = xfs_file_dio_write(iocb, from); 844 if (ret != -ENOTBLK) 845 return ret; 846 } 847 848 return xfs_file_buffered_write(iocb, from); 849 } 850 851 /* Does this file, inode, or mount want synchronous writes? */ 852 static inline bool xfs_file_sync_writes(struct file *filp) 853 { 854 struct xfs_inode *ip = XFS_I(file_inode(filp)); 855 856 if (xfs_has_wsync(ip->i_mount)) 857 return true; 858 if (filp->f_flags & (__O_SYNC | O_DSYNC)) 859 return true; 860 if (IS_SYNC(file_inode(filp))) 861 return true; 862 863 return false; 864 } 865 866 #define XFS_FALLOC_FL_SUPPORTED \ 867 (FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | \ 868 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE | \ 869 FALLOC_FL_INSERT_RANGE | FALLOC_FL_UNSHARE_RANGE) 870 871 STATIC long 872 xfs_file_fallocate( 873 struct file *file, 874 int mode, 875 loff_t offset, 876 loff_t len) 877 { 878 struct inode *inode = file_inode(file); 879 struct xfs_inode *ip = XFS_I(inode); 880 long error; 881 uint iolock = XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL; 882 loff_t new_size = 0; 883 bool do_file_insert = false; 884 885 if (!S_ISREG(inode->i_mode)) 886 return -EINVAL; 887 if (mode & ~XFS_FALLOC_FL_SUPPORTED) 888 return -EOPNOTSUPP; 889 890 xfs_ilock(ip, iolock); 891 error = xfs_break_layouts(inode, &iolock, BREAK_UNMAP); 892 if (error) 893 goto out_unlock; 894 895 /* 896 * Must wait for all AIO to complete before we continue as AIO can 897 * change the file size on completion without holding any locks we 898 * currently hold. We must do this first because AIO can update both 899 * the on disk and in memory inode sizes, and the operations that follow 900 * require the in-memory size to be fully up-to-date. 901 */ 902 inode_dio_wait(inode); 903 904 /* 905 * Now AIO and DIO has drained we flush and (if necessary) invalidate 906 * the cached range over the first operation we are about to run. 907 * 908 * We care about zero and collapse here because they both run a hole 909 * punch over the range first. Because that can zero data, and the range 910 * of invalidation for the shift operations is much larger, we still do 911 * the required flush for collapse in xfs_prepare_shift(). 912 * 913 * Insert has the same range requirements as collapse, and we extend the 914 * file first which can zero data. Hence insert has the same 915 * flush/invalidate requirements as collapse and so they are both 916 * handled at the right time by xfs_prepare_shift(). 917 */ 918 if (mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_ZERO_RANGE | 919 FALLOC_FL_COLLAPSE_RANGE)) { 920 error = xfs_flush_unmap_range(ip, offset, len); 921 if (error) 922 goto out_unlock; 923 } 924 925 error = file_modified(file); 926 if (error) 927 goto out_unlock; 928 929 if (mode & FALLOC_FL_PUNCH_HOLE) { 930 error = xfs_free_file_space(ip, offset, len); 931 if (error) 932 goto out_unlock; 933 } else if (mode & FALLOC_FL_COLLAPSE_RANGE) { 934 if (!xfs_is_falloc_aligned(ip, offset, len)) { 935 error = -EINVAL; 936 goto out_unlock; 937 } 938 939 /* 940 * There is no need to overlap collapse range with EOF, 941 * in which case it is effectively a truncate operation 942 */ 943 if (offset + len >= i_size_read(inode)) { 944 error = -EINVAL; 945 goto out_unlock; 946 } 947 948 new_size = i_size_read(inode) - len; 949 950 error = xfs_collapse_file_space(ip, offset, len); 951 if (error) 952 goto out_unlock; 953 } else if (mode & FALLOC_FL_INSERT_RANGE) { 954 loff_t isize = i_size_read(inode); 955 956 if (!xfs_is_falloc_aligned(ip, offset, len)) { 957 error = -EINVAL; 958 goto out_unlock; 959 } 960 961 /* 962 * New inode size must not exceed ->s_maxbytes, accounting for 963 * possible signed overflow. 964 */ 965 if (inode->i_sb->s_maxbytes - isize < len) { 966 error = -EFBIG; 967 goto out_unlock; 968 } 969 new_size = isize + len; 970 971 /* Offset should be less than i_size */ 972 if (offset >= isize) { 973 error = -EINVAL; 974 goto out_unlock; 975 } 976 do_file_insert = true; 977 } else { 978 if (!(mode & FALLOC_FL_KEEP_SIZE) && 979 offset + len > i_size_read(inode)) { 980 new_size = offset + len; 981 error = inode_newsize_ok(inode, new_size); 982 if (error) 983 goto out_unlock; 984 } 985 986 if (mode & FALLOC_FL_ZERO_RANGE) { 987 /* 988 * Punch a hole and prealloc the range. We use a hole 989 * punch rather than unwritten extent conversion for two 990 * reasons: 991 * 992 * 1.) Hole punch handles partial block zeroing for us. 993 * 2.) If prealloc returns ENOSPC, the file range is 994 * still zero-valued by virtue of the hole punch. 995 */ 996 unsigned int blksize = i_blocksize(inode); 997 998 trace_xfs_zero_file_space(ip); 999 1000 error = xfs_free_file_space(ip, offset, len); 1001 if (error) 1002 goto out_unlock; 1003 1004 len = round_up(offset + len, blksize) - 1005 round_down(offset, blksize); 1006 offset = round_down(offset, blksize); 1007 } else if (mode & FALLOC_FL_UNSHARE_RANGE) { 1008 error = xfs_reflink_unshare(ip, offset, len); 1009 if (error) 1010 goto out_unlock; 1011 } else { 1012 /* 1013 * If always_cow mode we can't use preallocations and 1014 * thus should not create them. 1015 */ 1016 if (xfs_is_always_cow_inode(ip)) { 1017 error = -EOPNOTSUPP; 1018 goto out_unlock; 1019 } 1020 } 1021 1022 if (!xfs_is_always_cow_inode(ip)) { 1023 error = xfs_alloc_file_space(ip, offset, len); 1024 if (error) 1025 goto out_unlock; 1026 } 1027 } 1028 1029 /* Change file size if needed */ 1030 if (new_size) { 1031 struct iattr iattr; 1032 1033 iattr.ia_valid = ATTR_SIZE; 1034 iattr.ia_size = new_size; 1035 error = xfs_vn_setattr_size(file_mnt_idmap(file), 1036 file_dentry(file), &iattr); 1037 if (error) 1038 goto out_unlock; 1039 } 1040 1041 /* 1042 * Perform hole insertion now that the file size has been 1043 * updated so that if we crash during the operation we don't 1044 * leave shifted extents past EOF and hence losing access to 1045 * the data that is contained within them. 1046 */ 1047 if (do_file_insert) { 1048 error = xfs_insert_file_space(ip, offset, len); 1049 if (error) 1050 goto out_unlock; 1051 } 1052 1053 if (xfs_file_sync_writes(file)) 1054 error = xfs_log_force_inode(ip); 1055 1056 out_unlock: 1057 xfs_iunlock(ip, iolock); 1058 return error; 1059 } 1060 1061 STATIC int 1062 xfs_file_fadvise( 1063 struct file *file, 1064 loff_t start, 1065 loff_t end, 1066 int advice) 1067 { 1068 struct xfs_inode *ip = XFS_I(file_inode(file)); 1069 int ret; 1070 int lockflags = 0; 1071 1072 /* 1073 * Operations creating pages in page cache need protection from hole 1074 * punching and similar ops 1075 */ 1076 if (advice == POSIX_FADV_WILLNEED) { 1077 lockflags = XFS_IOLOCK_SHARED; 1078 xfs_ilock(ip, lockflags); 1079 } 1080 ret = generic_fadvise(file, start, end, advice); 1081 if (lockflags) 1082 xfs_iunlock(ip, lockflags); 1083 return ret; 1084 } 1085 1086 STATIC loff_t 1087 xfs_file_remap_range( 1088 struct file *file_in, 1089 loff_t pos_in, 1090 struct file *file_out, 1091 loff_t pos_out, 1092 loff_t len, 1093 unsigned int remap_flags) 1094 { 1095 struct inode *inode_in = file_inode(file_in); 1096 struct xfs_inode *src = XFS_I(inode_in); 1097 struct inode *inode_out = file_inode(file_out); 1098 struct xfs_inode *dest = XFS_I(inode_out); 1099 struct xfs_mount *mp = src->i_mount; 1100 loff_t remapped = 0; 1101 xfs_extlen_t cowextsize; 1102 int ret; 1103 1104 if (remap_flags & ~(REMAP_FILE_DEDUP | REMAP_FILE_ADVISORY)) 1105 return -EINVAL; 1106 1107 if (!xfs_has_reflink(mp)) 1108 return -EOPNOTSUPP; 1109 1110 if (xfs_is_shutdown(mp)) 1111 return -EIO; 1112 1113 /* Prepare and then clone file data. */ 1114 ret = xfs_reflink_remap_prep(file_in, pos_in, file_out, pos_out, 1115 &len, remap_flags); 1116 if (ret || len == 0) 1117 return ret; 1118 1119 trace_xfs_reflink_remap_range(src, pos_in, len, dest, pos_out); 1120 1121 ret = xfs_reflink_remap_blocks(src, pos_in, dest, pos_out, len, 1122 &remapped); 1123 if (ret) 1124 goto out_unlock; 1125 1126 /* 1127 * Carry the cowextsize hint from src to dest if we're sharing the 1128 * entire source file to the entire destination file, the source file 1129 * has a cowextsize hint, and the destination file does not. 1130 */ 1131 cowextsize = 0; 1132 if (pos_in == 0 && len == i_size_read(inode_in) && 1133 (src->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE) && 1134 pos_out == 0 && len >= i_size_read(inode_out) && 1135 !(dest->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE)) 1136 cowextsize = src->i_cowextsize; 1137 1138 ret = xfs_reflink_update_dest(dest, pos_out + len, cowextsize, 1139 remap_flags); 1140 if (ret) 1141 goto out_unlock; 1142 1143 if (xfs_file_sync_writes(file_in) || xfs_file_sync_writes(file_out)) 1144 xfs_log_force_inode(dest); 1145 out_unlock: 1146 xfs_iunlock2_remapping(src, dest); 1147 if (ret) 1148 trace_xfs_reflink_remap_range_error(dest, ret, _RET_IP_); 1149 return remapped > 0 ? remapped : ret; 1150 } 1151 1152 STATIC int 1153 xfs_file_open( 1154 struct inode *inode, 1155 struct file *file) 1156 { 1157 if (xfs_is_shutdown(XFS_M(inode->i_sb))) 1158 return -EIO; 1159 file->f_mode |= FMODE_NOWAIT | FMODE_CAN_ODIRECT; 1160 return generic_file_open(inode, file); 1161 } 1162 1163 STATIC int 1164 xfs_dir_open( 1165 struct inode *inode, 1166 struct file *file) 1167 { 1168 struct xfs_inode *ip = XFS_I(inode); 1169 unsigned int mode; 1170 int error; 1171 1172 if (xfs_is_shutdown(ip->i_mount)) 1173 return -EIO; 1174 error = generic_file_open(inode, file); 1175 if (error) 1176 return error; 1177 1178 /* 1179 * If there are any blocks, read-ahead block 0 as we're almost 1180 * certain to have the next operation be a read there. 1181 */ 1182 mode = xfs_ilock_data_map_shared(ip); 1183 if (ip->i_df.if_nextents > 0) 1184 error = xfs_dir3_data_readahead(ip, 0, 0); 1185 xfs_iunlock(ip, mode); 1186 return error; 1187 } 1188 1189 STATIC int 1190 xfs_file_release( 1191 struct inode *inode, 1192 struct file *filp) 1193 { 1194 return xfs_release(XFS_I(inode)); 1195 } 1196 1197 STATIC int 1198 xfs_file_readdir( 1199 struct file *file, 1200 struct dir_context *ctx) 1201 { 1202 struct inode *inode = file_inode(file); 1203 xfs_inode_t *ip = XFS_I(inode); 1204 size_t bufsize; 1205 1206 /* 1207 * The Linux API doesn't pass down the total size of the buffer 1208 * we read into down to the filesystem. With the filldir concept 1209 * it's not needed for correct information, but the XFS dir2 leaf 1210 * code wants an estimate of the buffer size to calculate it's 1211 * readahead window and size the buffers used for mapping to 1212 * physical blocks. 1213 * 1214 * Try to give it an estimate that's good enough, maybe at some 1215 * point we can change the ->readdir prototype to include the 1216 * buffer size. For now we use the current glibc buffer size. 1217 */ 1218 bufsize = (size_t)min_t(loff_t, XFS_READDIR_BUFSIZE, ip->i_disk_size); 1219 1220 return xfs_readdir(NULL, ip, ctx, bufsize); 1221 } 1222 1223 STATIC loff_t 1224 xfs_file_llseek( 1225 struct file *file, 1226 loff_t offset, 1227 int whence) 1228 { 1229 struct inode *inode = file->f_mapping->host; 1230 1231 if (xfs_is_shutdown(XFS_I(inode)->i_mount)) 1232 return -EIO; 1233 1234 switch (whence) { 1235 default: 1236 return generic_file_llseek(file, offset, whence); 1237 case SEEK_HOLE: 1238 offset = iomap_seek_hole(inode, offset, &xfs_seek_iomap_ops); 1239 break; 1240 case SEEK_DATA: 1241 offset = iomap_seek_data(inode, offset, &xfs_seek_iomap_ops); 1242 break; 1243 } 1244 1245 if (offset < 0) 1246 return offset; 1247 return vfs_setpos(file, offset, inode->i_sb->s_maxbytes); 1248 } 1249 1250 #ifdef CONFIG_FS_DAX 1251 static inline vm_fault_t 1252 xfs_dax_fault( 1253 struct vm_fault *vmf, 1254 unsigned int order, 1255 bool write_fault, 1256 pfn_t *pfn) 1257 { 1258 return dax_iomap_fault(vmf, order, pfn, NULL, 1259 (write_fault && !vmf->cow_page) ? 1260 &xfs_dax_write_iomap_ops : 1261 &xfs_read_iomap_ops); 1262 } 1263 #else 1264 static inline vm_fault_t 1265 xfs_dax_fault( 1266 struct vm_fault *vmf, 1267 unsigned int order, 1268 bool write_fault, 1269 pfn_t *pfn) 1270 { 1271 ASSERT(0); 1272 return VM_FAULT_SIGBUS; 1273 } 1274 #endif 1275 1276 /* 1277 * Locking for serialisation of IO during page faults. This results in a lock 1278 * ordering of: 1279 * 1280 * mmap_lock (MM) 1281 * sb_start_pagefault(vfs, freeze) 1282 * invalidate_lock (vfs/XFS_MMAPLOCK - truncate serialisation) 1283 * page_lock (MM) 1284 * i_lock (XFS - extent map serialisation) 1285 */ 1286 static vm_fault_t 1287 __xfs_filemap_fault( 1288 struct vm_fault *vmf, 1289 unsigned int order, 1290 bool write_fault) 1291 { 1292 struct inode *inode = file_inode(vmf->vma->vm_file); 1293 struct xfs_inode *ip = XFS_I(inode); 1294 vm_fault_t ret; 1295 unsigned int lock_mode = 0; 1296 1297 trace_xfs_filemap_fault(ip, order, write_fault); 1298 1299 if (write_fault) { 1300 sb_start_pagefault(inode->i_sb); 1301 file_update_time(vmf->vma->vm_file); 1302 } 1303 1304 if (IS_DAX(inode) || write_fault) 1305 lock_mode = xfs_ilock_for_write_fault(XFS_I(inode)); 1306 1307 if (IS_DAX(inode)) { 1308 pfn_t pfn; 1309 1310 ret = xfs_dax_fault(vmf, order, write_fault, &pfn); 1311 if (ret & VM_FAULT_NEEDDSYNC) 1312 ret = dax_finish_sync_fault(vmf, order, pfn); 1313 } else if (write_fault) { 1314 ret = iomap_page_mkwrite(vmf, &xfs_page_mkwrite_iomap_ops); 1315 } else { 1316 ret = filemap_fault(vmf); 1317 } 1318 1319 if (lock_mode) 1320 xfs_iunlock(XFS_I(inode), lock_mode); 1321 1322 if (write_fault) 1323 sb_end_pagefault(inode->i_sb); 1324 return ret; 1325 } 1326 1327 static inline bool 1328 xfs_is_write_fault( 1329 struct vm_fault *vmf) 1330 { 1331 return (vmf->flags & FAULT_FLAG_WRITE) && 1332 (vmf->vma->vm_flags & VM_SHARED); 1333 } 1334 1335 static vm_fault_t 1336 xfs_filemap_fault( 1337 struct vm_fault *vmf) 1338 { 1339 /* DAX can shortcut the normal fault path on write faults! */ 1340 return __xfs_filemap_fault(vmf, 0, 1341 IS_DAX(file_inode(vmf->vma->vm_file)) && 1342 xfs_is_write_fault(vmf)); 1343 } 1344 1345 static vm_fault_t 1346 xfs_filemap_huge_fault( 1347 struct vm_fault *vmf, 1348 unsigned int order) 1349 { 1350 if (!IS_DAX(file_inode(vmf->vma->vm_file))) 1351 return VM_FAULT_FALLBACK; 1352 1353 /* DAX can shortcut the normal fault path on write faults! */ 1354 return __xfs_filemap_fault(vmf, order, 1355 xfs_is_write_fault(vmf)); 1356 } 1357 1358 static vm_fault_t 1359 xfs_filemap_page_mkwrite( 1360 struct vm_fault *vmf) 1361 { 1362 return __xfs_filemap_fault(vmf, 0, true); 1363 } 1364 1365 /* 1366 * pfn_mkwrite was originally intended to ensure we capture time stamp updates 1367 * on write faults. In reality, it needs to serialise against truncate and 1368 * prepare memory for writing so handle is as standard write fault. 1369 */ 1370 static vm_fault_t 1371 xfs_filemap_pfn_mkwrite( 1372 struct vm_fault *vmf) 1373 { 1374 1375 return __xfs_filemap_fault(vmf, 0, true); 1376 } 1377 1378 static const struct vm_operations_struct xfs_file_vm_ops = { 1379 .fault = xfs_filemap_fault, 1380 .huge_fault = xfs_filemap_huge_fault, 1381 .map_pages = filemap_map_pages, 1382 .page_mkwrite = xfs_filemap_page_mkwrite, 1383 .pfn_mkwrite = xfs_filemap_pfn_mkwrite, 1384 }; 1385 1386 STATIC int 1387 xfs_file_mmap( 1388 struct file *file, 1389 struct vm_area_struct *vma) 1390 { 1391 struct inode *inode = file_inode(file); 1392 struct xfs_buftarg *target = xfs_inode_buftarg(XFS_I(inode)); 1393 1394 /* 1395 * We don't support synchronous mappings for non-DAX files and 1396 * for DAX files if underneath dax_device is not synchronous. 1397 */ 1398 if (!daxdev_mapping_supported(vma, target->bt_daxdev)) 1399 return -EOPNOTSUPP; 1400 1401 file_accessed(file); 1402 vma->vm_ops = &xfs_file_vm_ops; 1403 if (IS_DAX(inode)) 1404 vm_flags_set(vma, VM_HUGEPAGE); 1405 return 0; 1406 } 1407 1408 const struct file_operations xfs_file_operations = { 1409 .llseek = xfs_file_llseek, 1410 .read_iter = xfs_file_read_iter, 1411 .write_iter = xfs_file_write_iter, 1412 .splice_read = xfs_file_splice_read, 1413 .splice_write = iter_file_splice_write, 1414 .iopoll = iocb_bio_iopoll, 1415 .unlocked_ioctl = xfs_file_ioctl, 1416 #ifdef CONFIG_COMPAT 1417 .compat_ioctl = xfs_file_compat_ioctl, 1418 #endif 1419 .mmap = xfs_file_mmap, 1420 .open = xfs_file_open, 1421 .release = xfs_file_release, 1422 .fsync = xfs_file_fsync, 1423 .get_unmapped_area = thp_get_unmapped_area, 1424 .fallocate = xfs_file_fallocate, 1425 .fadvise = xfs_file_fadvise, 1426 .remap_file_range = xfs_file_remap_range, 1427 .fop_flags = FOP_MMAP_SYNC | FOP_BUFFER_RASYNC | 1428 FOP_BUFFER_WASYNC | FOP_DIO_PARALLEL_WRITE, 1429 }; 1430 1431 const struct file_operations xfs_dir_file_operations = { 1432 .open = xfs_dir_open, 1433 .read = generic_read_dir, 1434 .iterate_shared = xfs_file_readdir, 1435 .llseek = generic_file_llseek, 1436 .unlocked_ioctl = xfs_file_ioctl, 1437 #ifdef CONFIG_COMPAT 1438 .compat_ioctl = xfs_file_compat_ioctl, 1439 #endif 1440 .fsync = xfs_dir_fsync, 1441 }; 1442