1 /* 2 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_fs.h" 20 #include "xfs_shared.h" 21 #include "xfs_format.h" 22 #include "xfs_log_format.h" 23 #include "xfs_trans_resv.h" 24 #include "xfs_mount.h" 25 #include "xfs_da_format.h" 26 #include "xfs_da_btree.h" 27 #include "xfs_inode.h" 28 #include "xfs_trans.h" 29 #include "xfs_inode_item.h" 30 #include "xfs_bmap.h" 31 #include "xfs_bmap_util.h" 32 #include "xfs_error.h" 33 #include "xfs_dir2.h" 34 #include "xfs_dir2_priv.h" 35 #include "xfs_ioctl.h" 36 #include "xfs_trace.h" 37 #include "xfs_log.h" 38 #include "xfs_icache.h" 39 #include "xfs_pnfs.h" 40 41 #include <linux/dcache.h> 42 #include <linux/falloc.h> 43 #include <linux/pagevec.h> 44 #include <linux/backing-dev.h> 45 46 static const struct vm_operations_struct xfs_file_vm_ops; 47 48 /* 49 * Locking primitives for read and write IO paths to ensure we consistently use 50 * and order the inode->i_mutex, ip->i_lock and ip->i_iolock. 51 */ 52 static inline void 53 xfs_rw_ilock( 54 struct xfs_inode *ip, 55 int type) 56 { 57 if (type & XFS_IOLOCK_EXCL) 58 mutex_lock(&VFS_I(ip)->i_mutex); 59 xfs_ilock(ip, type); 60 } 61 62 static inline void 63 xfs_rw_iunlock( 64 struct xfs_inode *ip, 65 int type) 66 { 67 xfs_iunlock(ip, type); 68 if (type & XFS_IOLOCK_EXCL) 69 mutex_unlock(&VFS_I(ip)->i_mutex); 70 } 71 72 static inline void 73 xfs_rw_ilock_demote( 74 struct xfs_inode *ip, 75 int type) 76 { 77 xfs_ilock_demote(ip, type); 78 if (type & XFS_IOLOCK_EXCL) 79 mutex_unlock(&VFS_I(ip)->i_mutex); 80 } 81 82 /* 83 * xfs_iozero 84 * 85 * xfs_iozero clears the specified range of buffer supplied, 86 * and marks all the affected blocks as valid and modified. If 87 * an affected block is not allocated, it will be allocated. If 88 * an affected block is not completely overwritten, and is not 89 * valid before the operation, it will be read from disk before 90 * being partially zeroed. 91 */ 92 int 93 xfs_iozero( 94 struct xfs_inode *ip, /* inode */ 95 loff_t pos, /* offset in file */ 96 size_t count) /* size of data to zero */ 97 { 98 struct page *page; 99 struct address_space *mapping; 100 int status; 101 102 mapping = VFS_I(ip)->i_mapping; 103 do { 104 unsigned offset, bytes; 105 void *fsdata; 106 107 offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */ 108 bytes = PAGE_CACHE_SIZE - offset; 109 if (bytes > count) 110 bytes = count; 111 112 status = pagecache_write_begin(NULL, mapping, pos, bytes, 113 AOP_FLAG_UNINTERRUPTIBLE, 114 &page, &fsdata); 115 if (status) 116 break; 117 118 zero_user(page, offset, bytes); 119 120 status = pagecache_write_end(NULL, mapping, pos, bytes, bytes, 121 page, fsdata); 122 WARN_ON(status <= 0); /* can't return less than zero! */ 123 pos += bytes; 124 count -= bytes; 125 status = 0; 126 } while (count); 127 128 return status; 129 } 130 131 int 132 xfs_update_prealloc_flags( 133 struct xfs_inode *ip, 134 enum xfs_prealloc_flags flags) 135 { 136 struct xfs_trans *tp; 137 int error; 138 139 tp = xfs_trans_alloc(ip->i_mount, XFS_TRANS_WRITEID); 140 error = xfs_trans_reserve(tp, &M_RES(ip->i_mount)->tr_writeid, 0, 0); 141 if (error) { 142 xfs_trans_cancel(tp, 0); 143 return error; 144 } 145 146 xfs_ilock(ip, XFS_ILOCK_EXCL); 147 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 148 149 if (!(flags & XFS_PREALLOC_INVISIBLE)) { 150 ip->i_d.di_mode &= ~S_ISUID; 151 if (ip->i_d.di_mode & S_IXGRP) 152 ip->i_d.di_mode &= ~S_ISGID; 153 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 154 } 155 156 if (flags & XFS_PREALLOC_SET) 157 ip->i_d.di_flags |= XFS_DIFLAG_PREALLOC; 158 if (flags & XFS_PREALLOC_CLEAR) 159 ip->i_d.di_flags &= ~XFS_DIFLAG_PREALLOC; 160 161 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 162 if (flags & XFS_PREALLOC_SYNC) 163 xfs_trans_set_sync(tp); 164 return xfs_trans_commit(tp, 0); 165 } 166 167 /* 168 * Fsync operations on directories are much simpler than on regular files, 169 * as there is no file data to flush, and thus also no need for explicit 170 * cache flush operations, and there are no non-transaction metadata updates 171 * on directories either. 172 */ 173 STATIC int 174 xfs_dir_fsync( 175 struct file *file, 176 loff_t start, 177 loff_t end, 178 int datasync) 179 { 180 struct xfs_inode *ip = XFS_I(file->f_mapping->host); 181 struct xfs_mount *mp = ip->i_mount; 182 xfs_lsn_t lsn = 0; 183 184 trace_xfs_dir_fsync(ip); 185 186 xfs_ilock(ip, XFS_ILOCK_SHARED); 187 if (xfs_ipincount(ip)) 188 lsn = ip->i_itemp->ili_last_lsn; 189 xfs_iunlock(ip, XFS_ILOCK_SHARED); 190 191 if (!lsn) 192 return 0; 193 return _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, NULL); 194 } 195 196 STATIC int 197 xfs_file_fsync( 198 struct file *file, 199 loff_t start, 200 loff_t end, 201 int datasync) 202 { 203 struct inode *inode = file->f_mapping->host; 204 struct xfs_inode *ip = XFS_I(inode); 205 struct xfs_mount *mp = ip->i_mount; 206 int error = 0; 207 int log_flushed = 0; 208 xfs_lsn_t lsn = 0; 209 210 trace_xfs_file_fsync(ip); 211 212 error = filemap_write_and_wait_range(inode->i_mapping, start, end); 213 if (error) 214 return error; 215 216 if (XFS_FORCED_SHUTDOWN(mp)) 217 return -EIO; 218 219 xfs_iflags_clear(ip, XFS_ITRUNCATED); 220 221 if (mp->m_flags & XFS_MOUNT_BARRIER) { 222 /* 223 * If we have an RT and/or log subvolume we need to make sure 224 * to flush the write cache the device used for file data 225 * first. This is to ensure newly written file data make 226 * it to disk before logging the new inode size in case of 227 * an extending write. 228 */ 229 if (XFS_IS_REALTIME_INODE(ip)) 230 xfs_blkdev_issue_flush(mp->m_rtdev_targp); 231 else if (mp->m_logdev_targp != mp->m_ddev_targp) 232 xfs_blkdev_issue_flush(mp->m_ddev_targp); 233 } 234 235 /* 236 * All metadata updates are logged, which means that we just have 237 * to flush the log up to the latest LSN that touched the inode. 238 */ 239 xfs_ilock(ip, XFS_ILOCK_SHARED); 240 if (xfs_ipincount(ip)) { 241 if (!datasync || 242 (ip->i_itemp->ili_fields & ~XFS_ILOG_TIMESTAMP)) 243 lsn = ip->i_itemp->ili_last_lsn; 244 } 245 xfs_iunlock(ip, XFS_ILOCK_SHARED); 246 247 if (lsn) 248 error = _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed); 249 250 /* 251 * If we only have a single device, and the log force about was 252 * a no-op we might have to flush the data device cache here. 253 * This can only happen for fdatasync/O_DSYNC if we were overwriting 254 * an already allocated file and thus do not have any metadata to 255 * commit. 256 */ 257 if ((mp->m_flags & XFS_MOUNT_BARRIER) && 258 mp->m_logdev_targp == mp->m_ddev_targp && 259 !XFS_IS_REALTIME_INODE(ip) && 260 !log_flushed) 261 xfs_blkdev_issue_flush(mp->m_ddev_targp); 262 263 return error; 264 } 265 266 STATIC ssize_t 267 xfs_file_read_iter( 268 struct kiocb *iocb, 269 struct iov_iter *to) 270 { 271 struct file *file = iocb->ki_filp; 272 struct inode *inode = file->f_mapping->host; 273 struct xfs_inode *ip = XFS_I(inode); 274 struct xfs_mount *mp = ip->i_mount; 275 size_t size = iov_iter_count(to); 276 ssize_t ret = 0; 277 int ioflags = 0; 278 xfs_fsize_t n; 279 loff_t pos = iocb->ki_pos; 280 281 XFS_STATS_INC(xs_read_calls); 282 283 if (unlikely(iocb->ki_flags & IOCB_DIRECT)) 284 ioflags |= XFS_IO_ISDIRECT; 285 if (file->f_mode & FMODE_NOCMTIME) 286 ioflags |= XFS_IO_INVIS; 287 288 if (unlikely(ioflags & XFS_IO_ISDIRECT)) { 289 xfs_buftarg_t *target = 290 XFS_IS_REALTIME_INODE(ip) ? 291 mp->m_rtdev_targp : mp->m_ddev_targp; 292 /* DIO must be aligned to device logical sector size */ 293 if ((pos | size) & target->bt_logical_sectormask) { 294 if (pos == i_size_read(inode)) 295 return 0; 296 return -EINVAL; 297 } 298 } 299 300 n = mp->m_super->s_maxbytes - pos; 301 if (n <= 0 || size == 0) 302 return 0; 303 304 if (n < size) 305 size = n; 306 307 if (XFS_FORCED_SHUTDOWN(mp)) 308 return -EIO; 309 310 /* 311 * Locking is a bit tricky here. If we take an exclusive lock 312 * for direct IO, we effectively serialise all new concurrent 313 * read IO to this file and block it behind IO that is currently in 314 * progress because IO in progress holds the IO lock shared. We only 315 * need to hold the lock exclusive to blow away the page cache, so 316 * only take lock exclusively if the page cache needs invalidation. 317 * This allows the normal direct IO case of no page cache pages to 318 * proceeed concurrently without serialisation. 319 */ 320 xfs_rw_ilock(ip, XFS_IOLOCK_SHARED); 321 if ((ioflags & XFS_IO_ISDIRECT) && inode->i_mapping->nrpages) { 322 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED); 323 xfs_rw_ilock(ip, XFS_IOLOCK_EXCL); 324 325 if (inode->i_mapping->nrpages) { 326 ret = filemap_write_and_wait_range( 327 VFS_I(ip)->i_mapping, 328 pos, pos + size - 1); 329 if (ret) { 330 xfs_rw_iunlock(ip, XFS_IOLOCK_EXCL); 331 return ret; 332 } 333 334 /* 335 * Invalidate whole pages. This can return an error if 336 * we fail to invalidate a page, but this should never 337 * happen on XFS. Warn if it does fail. 338 */ 339 ret = invalidate_inode_pages2_range(VFS_I(ip)->i_mapping, 340 pos >> PAGE_CACHE_SHIFT, 341 (pos + size - 1) >> PAGE_CACHE_SHIFT); 342 WARN_ON_ONCE(ret); 343 ret = 0; 344 } 345 xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL); 346 } 347 348 trace_xfs_file_read(ip, size, pos, ioflags); 349 350 ret = generic_file_read_iter(iocb, to); 351 if (ret > 0) 352 XFS_STATS_ADD(xs_read_bytes, ret); 353 354 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED); 355 return ret; 356 } 357 358 STATIC ssize_t 359 xfs_file_splice_read( 360 struct file *infilp, 361 loff_t *ppos, 362 struct pipe_inode_info *pipe, 363 size_t count, 364 unsigned int flags) 365 { 366 struct xfs_inode *ip = XFS_I(infilp->f_mapping->host); 367 int ioflags = 0; 368 ssize_t ret; 369 370 XFS_STATS_INC(xs_read_calls); 371 372 if (infilp->f_mode & FMODE_NOCMTIME) 373 ioflags |= XFS_IO_INVIS; 374 375 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) 376 return -EIO; 377 378 xfs_rw_ilock(ip, XFS_IOLOCK_SHARED); 379 380 trace_xfs_file_splice_read(ip, count, *ppos, ioflags); 381 382 ret = generic_file_splice_read(infilp, ppos, pipe, count, flags); 383 if (ret > 0) 384 XFS_STATS_ADD(xs_read_bytes, ret); 385 386 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED); 387 return ret; 388 } 389 390 /* 391 * This routine is called to handle zeroing any space in the last block of the 392 * file that is beyond the EOF. We do this since the size is being increased 393 * without writing anything to that block and we don't want to read the 394 * garbage on the disk. 395 */ 396 STATIC int /* error (positive) */ 397 xfs_zero_last_block( 398 struct xfs_inode *ip, 399 xfs_fsize_t offset, 400 xfs_fsize_t isize, 401 bool *did_zeroing) 402 { 403 struct xfs_mount *mp = ip->i_mount; 404 xfs_fileoff_t last_fsb = XFS_B_TO_FSBT(mp, isize); 405 int zero_offset = XFS_B_FSB_OFFSET(mp, isize); 406 int zero_len; 407 int nimaps = 1; 408 int error = 0; 409 struct xfs_bmbt_irec imap; 410 411 xfs_ilock(ip, XFS_ILOCK_EXCL); 412 error = xfs_bmapi_read(ip, last_fsb, 1, &imap, &nimaps, 0); 413 xfs_iunlock(ip, XFS_ILOCK_EXCL); 414 if (error) 415 return error; 416 417 ASSERT(nimaps > 0); 418 419 /* 420 * If the block underlying isize is just a hole, then there 421 * is nothing to zero. 422 */ 423 if (imap.br_startblock == HOLESTARTBLOCK) 424 return 0; 425 426 zero_len = mp->m_sb.sb_blocksize - zero_offset; 427 if (isize + zero_len > offset) 428 zero_len = offset - isize; 429 *did_zeroing = true; 430 return xfs_iozero(ip, isize, zero_len); 431 } 432 433 /* 434 * Zero any on disk space between the current EOF and the new, larger EOF. 435 * 436 * This handles the normal case of zeroing the remainder of the last block in 437 * the file and the unusual case of zeroing blocks out beyond the size of the 438 * file. This second case only happens with fixed size extents and when the 439 * system crashes before the inode size was updated but after blocks were 440 * allocated. 441 * 442 * Expects the iolock to be held exclusive, and will take the ilock internally. 443 */ 444 int /* error (positive) */ 445 xfs_zero_eof( 446 struct xfs_inode *ip, 447 xfs_off_t offset, /* starting I/O offset */ 448 xfs_fsize_t isize, /* current inode size */ 449 bool *did_zeroing) 450 { 451 struct xfs_mount *mp = ip->i_mount; 452 xfs_fileoff_t start_zero_fsb; 453 xfs_fileoff_t end_zero_fsb; 454 xfs_fileoff_t zero_count_fsb; 455 xfs_fileoff_t last_fsb; 456 xfs_fileoff_t zero_off; 457 xfs_fsize_t zero_len; 458 int nimaps; 459 int error = 0; 460 struct xfs_bmbt_irec imap; 461 462 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL)); 463 ASSERT(offset > isize); 464 465 /* 466 * First handle zeroing the block on which isize resides. 467 * 468 * We only zero a part of that block so it is handled specially. 469 */ 470 if (XFS_B_FSB_OFFSET(mp, isize) != 0) { 471 error = xfs_zero_last_block(ip, offset, isize, did_zeroing); 472 if (error) 473 return error; 474 } 475 476 /* 477 * Calculate the range between the new size and the old where blocks 478 * needing to be zeroed may exist. 479 * 480 * To get the block where the last byte in the file currently resides, 481 * we need to subtract one from the size and truncate back to a block 482 * boundary. We subtract 1 in case the size is exactly on a block 483 * boundary. 484 */ 485 last_fsb = isize ? XFS_B_TO_FSBT(mp, isize - 1) : (xfs_fileoff_t)-1; 486 start_zero_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize); 487 end_zero_fsb = XFS_B_TO_FSBT(mp, offset - 1); 488 ASSERT((xfs_sfiloff_t)last_fsb < (xfs_sfiloff_t)start_zero_fsb); 489 if (last_fsb == end_zero_fsb) { 490 /* 491 * The size was only incremented on its last block. 492 * We took care of that above, so just return. 493 */ 494 return 0; 495 } 496 497 ASSERT(start_zero_fsb <= end_zero_fsb); 498 while (start_zero_fsb <= end_zero_fsb) { 499 nimaps = 1; 500 zero_count_fsb = end_zero_fsb - start_zero_fsb + 1; 501 502 xfs_ilock(ip, XFS_ILOCK_EXCL); 503 error = xfs_bmapi_read(ip, start_zero_fsb, zero_count_fsb, 504 &imap, &nimaps, 0); 505 xfs_iunlock(ip, XFS_ILOCK_EXCL); 506 if (error) 507 return error; 508 509 ASSERT(nimaps > 0); 510 511 if (imap.br_state == XFS_EXT_UNWRITTEN || 512 imap.br_startblock == HOLESTARTBLOCK) { 513 start_zero_fsb = imap.br_startoff + imap.br_blockcount; 514 ASSERT(start_zero_fsb <= (end_zero_fsb + 1)); 515 continue; 516 } 517 518 /* 519 * There are blocks we need to zero. 520 */ 521 zero_off = XFS_FSB_TO_B(mp, start_zero_fsb); 522 zero_len = XFS_FSB_TO_B(mp, imap.br_blockcount); 523 524 if ((zero_off + zero_len) > offset) 525 zero_len = offset - zero_off; 526 527 error = xfs_iozero(ip, zero_off, zero_len); 528 if (error) 529 return error; 530 531 *did_zeroing = true; 532 start_zero_fsb = imap.br_startoff + imap.br_blockcount; 533 ASSERT(start_zero_fsb <= (end_zero_fsb + 1)); 534 } 535 536 return 0; 537 } 538 539 /* 540 * Common pre-write limit and setup checks. 541 * 542 * Called with the iolocked held either shared and exclusive according to 543 * @iolock, and returns with it held. Might upgrade the iolock to exclusive 544 * if called for a direct write beyond i_size. 545 */ 546 STATIC ssize_t 547 xfs_file_aio_write_checks( 548 struct kiocb *iocb, 549 struct iov_iter *from, 550 int *iolock) 551 { 552 struct file *file = iocb->ki_filp; 553 struct inode *inode = file->f_mapping->host; 554 struct xfs_inode *ip = XFS_I(inode); 555 ssize_t error = 0; 556 size_t count = iov_iter_count(from); 557 558 restart: 559 error = generic_write_checks(iocb, from); 560 if (error <= 0) 561 return error; 562 563 error = xfs_break_layouts(inode, iolock, true); 564 if (error) 565 return error; 566 567 /* 568 * If the offset is beyond the size of the file, we need to zero any 569 * blocks that fall between the existing EOF and the start of this 570 * write. If zeroing is needed and we are currently holding the 571 * iolock shared, we need to update it to exclusive which implies 572 * having to redo all checks before. 573 * 574 * We need to serialise against EOF updates that occur in IO 575 * completions here. We want to make sure that nobody is changing the 576 * size while we do this check until we have placed an IO barrier (i.e. 577 * hold the XFS_IOLOCK_EXCL) that prevents new IO from being dispatched. 578 * The spinlock effectively forms a memory barrier once we have the 579 * XFS_IOLOCK_EXCL so we are guaranteed to see the latest EOF value 580 * and hence be able to correctly determine if we need to run zeroing. 581 */ 582 spin_lock(&ip->i_flags_lock); 583 if (iocb->ki_pos > i_size_read(inode)) { 584 bool zero = false; 585 586 spin_unlock(&ip->i_flags_lock); 587 if (*iolock == XFS_IOLOCK_SHARED) { 588 xfs_rw_iunlock(ip, *iolock); 589 *iolock = XFS_IOLOCK_EXCL; 590 xfs_rw_ilock(ip, *iolock); 591 iov_iter_reexpand(from, count); 592 593 /* 594 * We now have an IO submission barrier in place, but 595 * AIO can do EOF updates during IO completion and hence 596 * we now need to wait for all of them to drain. Non-AIO 597 * DIO will have drained before we are given the 598 * XFS_IOLOCK_EXCL, and so for most cases this wait is a 599 * no-op. 600 */ 601 inode_dio_wait(inode); 602 goto restart; 603 } 604 error = xfs_zero_eof(ip, iocb->ki_pos, i_size_read(inode), &zero); 605 if (error) 606 return error; 607 } else 608 spin_unlock(&ip->i_flags_lock); 609 610 /* 611 * Updating the timestamps will grab the ilock again from 612 * xfs_fs_dirty_inode, so we have to call it after dropping the 613 * lock above. Eventually we should look into a way to avoid 614 * the pointless lock roundtrip. 615 */ 616 if (likely(!(file->f_mode & FMODE_NOCMTIME))) { 617 error = file_update_time(file); 618 if (error) 619 return error; 620 } 621 622 /* 623 * If we're writing the file then make sure to clear the setuid and 624 * setgid bits if the process is not being run by root. This keeps 625 * people from modifying setuid and setgid binaries. 626 */ 627 return file_remove_suid(file); 628 } 629 630 /* 631 * xfs_file_dio_aio_write - handle direct IO writes 632 * 633 * Lock the inode appropriately to prepare for and issue a direct IO write. 634 * By separating it from the buffered write path we remove all the tricky to 635 * follow locking changes and looping. 636 * 637 * If there are cached pages or we're extending the file, we need IOLOCK_EXCL 638 * until we're sure the bytes at the new EOF have been zeroed and/or the cached 639 * pages are flushed out. 640 * 641 * In most cases the direct IO writes will be done holding IOLOCK_SHARED 642 * allowing them to be done in parallel with reads and other direct IO writes. 643 * However, if the IO is not aligned to filesystem blocks, the direct IO layer 644 * needs to do sub-block zeroing and that requires serialisation against other 645 * direct IOs to the same block. In this case we need to serialise the 646 * submission of the unaligned IOs so that we don't get racing block zeroing in 647 * the dio layer. To avoid the problem with aio, we also need to wait for 648 * outstanding IOs to complete so that unwritten extent conversion is completed 649 * before we try to map the overlapping block. This is currently implemented by 650 * hitting it with a big hammer (i.e. inode_dio_wait()). 651 * 652 * Returns with locks held indicated by @iolock and errors indicated by 653 * negative return values. 654 */ 655 STATIC ssize_t 656 xfs_file_dio_aio_write( 657 struct kiocb *iocb, 658 struct iov_iter *from) 659 { 660 struct file *file = iocb->ki_filp; 661 struct address_space *mapping = file->f_mapping; 662 struct inode *inode = mapping->host; 663 struct xfs_inode *ip = XFS_I(inode); 664 struct xfs_mount *mp = ip->i_mount; 665 ssize_t ret = 0; 666 int unaligned_io = 0; 667 int iolock; 668 size_t count = iov_iter_count(from); 669 loff_t pos = iocb->ki_pos; 670 loff_t end; 671 struct iov_iter data; 672 struct xfs_buftarg *target = XFS_IS_REALTIME_INODE(ip) ? 673 mp->m_rtdev_targp : mp->m_ddev_targp; 674 675 /* DIO must be aligned to device logical sector size */ 676 if ((pos | count) & target->bt_logical_sectormask) 677 return -EINVAL; 678 679 /* "unaligned" here means not aligned to a filesystem block */ 680 if ((pos & mp->m_blockmask) || ((pos + count) & mp->m_blockmask)) 681 unaligned_io = 1; 682 683 /* 684 * We don't need to take an exclusive lock unless there page cache needs 685 * to be invalidated or unaligned IO is being executed. We don't need to 686 * consider the EOF extension case here because 687 * xfs_file_aio_write_checks() will relock the inode as necessary for 688 * EOF zeroing cases and fill out the new inode size as appropriate. 689 */ 690 if (unaligned_io || mapping->nrpages) 691 iolock = XFS_IOLOCK_EXCL; 692 else 693 iolock = XFS_IOLOCK_SHARED; 694 xfs_rw_ilock(ip, iolock); 695 696 /* 697 * Recheck if there are cached pages that need invalidate after we got 698 * the iolock to protect against other threads adding new pages while 699 * we were waiting for the iolock. 700 */ 701 if (mapping->nrpages && iolock == XFS_IOLOCK_SHARED) { 702 xfs_rw_iunlock(ip, iolock); 703 iolock = XFS_IOLOCK_EXCL; 704 xfs_rw_ilock(ip, iolock); 705 } 706 707 ret = xfs_file_aio_write_checks(iocb, from, &iolock); 708 if (ret) 709 goto out; 710 count = iov_iter_count(from); 711 pos = iocb->ki_pos; 712 end = pos + count - 1; 713 714 if (mapping->nrpages) { 715 ret = filemap_write_and_wait_range(VFS_I(ip)->i_mapping, 716 pos, end); 717 if (ret) 718 goto out; 719 /* 720 * Invalidate whole pages. This can return an error if 721 * we fail to invalidate a page, but this should never 722 * happen on XFS. Warn if it does fail. 723 */ 724 ret = invalidate_inode_pages2_range(VFS_I(ip)->i_mapping, 725 pos >> PAGE_CACHE_SHIFT, 726 end >> PAGE_CACHE_SHIFT); 727 WARN_ON_ONCE(ret); 728 ret = 0; 729 } 730 731 /* 732 * If we are doing unaligned IO, wait for all other IO to drain, 733 * otherwise demote the lock if we had to flush cached pages 734 */ 735 if (unaligned_io) 736 inode_dio_wait(inode); 737 else if (iolock == XFS_IOLOCK_EXCL) { 738 xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL); 739 iolock = XFS_IOLOCK_SHARED; 740 } 741 742 trace_xfs_file_direct_write(ip, count, iocb->ki_pos, 0); 743 744 data = *from; 745 ret = mapping->a_ops->direct_IO(iocb, &data, pos); 746 747 /* see generic_file_direct_write() for why this is necessary */ 748 if (mapping->nrpages) { 749 invalidate_inode_pages2_range(mapping, 750 pos >> PAGE_CACHE_SHIFT, 751 end >> PAGE_CACHE_SHIFT); 752 } 753 754 if (ret > 0) { 755 pos += ret; 756 iov_iter_advance(from, ret); 757 iocb->ki_pos = pos; 758 } 759 out: 760 xfs_rw_iunlock(ip, iolock); 761 762 /* No fallback to buffered IO on errors for XFS. */ 763 ASSERT(ret < 0 || ret == count); 764 return ret; 765 } 766 767 STATIC ssize_t 768 xfs_file_buffered_aio_write( 769 struct kiocb *iocb, 770 struct iov_iter *from) 771 { 772 struct file *file = iocb->ki_filp; 773 struct address_space *mapping = file->f_mapping; 774 struct inode *inode = mapping->host; 775 struct xfs_inode *ip = XFS_I(inode); 776 ssize_t ret; 777 int enospc = 0; 778 int iolock = XFS_IOLOCK_EXCL; 779 780 xfs_rw_ilock(ip, iolock); 781 782 ret = xfs_file_aio_write_checks(iocb, from, &iolock); 783 if (ret) 784 goto out; 785 786 /* We can write back this queue in page reclaim */ 787 current->backing_dev_info = inode_to_bdi(inode); 788 789 write_retry: 790 trace_xfs_file_buffered_write(ip, iov_iter_count(from), 791 iocb->ki_pos, 0); 792 ret = generic_perform_write(file, from, iocb->ki_pos); 793 if (likely(ret >= 0)) 794 iocb->ki_pos += ret; 795 796 /* 797 * If we hit a space limit, try to free up some lingering preallocated 798 * space before returning an error. In the case of ENOSPC, first try to 799 * write back all dirty inodes to free up some of the excess reserved 800 * metadata space. This reduces the chances that the eofblocks scan 801 * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this 802 * also behaves as a filter to prevent too many eofblocks scans from 803 * running at the same time. 804 */ 805 if (ret == -EDQUOT && !enospc) { 806 enospc = xfs_inode_free_quota_eofblocks(ip); 807 if (enospc) 808 goto write_retry; 809 } else if (ret == -ENOSPC && !enospc) { 810 struct xfs_eofblocks eofb = {0}; 811 812 enospc = 1; 813 xfs_flush_inodes(ip->i_mount); 814 eofb.eof_scan_owner = ip->i_ino; /* for locking */ 815 eofb.eof_flags = XFS_EOF_FLAGS_SYNC; 816 xfs_icache_free_eofblocks(ip->i_mount, &eofb); 817 goto write_retry; 818 } 819 820 current->backing_dev_info = NULL; 821 out: 822 xfs_rw_iunlock(ip, iolock); 823 return ret; 824 } 825 826 STATIC ssize_t 827 xfs_file_write_iter( 828 struct kiocb *iocb, 829 struct iov_iter *from) 830 { 831 struct file *file = iocb->ki_filp; 832 struct address_space *mapping = file->f_mapping; 833 struct inode *inode = mapping->host; 834 struct xfs_inode *ip = XFS_I(inode); 835 ssize_t ret; 836 size_t ocount = iov_iter_count(from); 837 838 XFS_STATS_INC(xs_write_calls); 839 840 if (ocount == 0) 841 return 0; 842 843 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) 844 return -EIO; 845 846 if (unlikely(iocb->ki_flags & IOCB_DIRECT)) 847 ret = xfs_file_dio_aio_write(iocb, from); 848 else 849 ret = xfs_file_buffered_aio_write(iocb, from); 850 851 if (ret > 0) { 852 ssize_t err; 853 854 XFS_STATS_ADD(xs_write_bytes, ret); 855 856 /* Handle various SYNC-type writes */ 857 err = generic_write_sync(file, iocb->ki_pos - ret, ret); 858 if (err < 0) 859 ret = err; 860 } 861 return ret; 862 } 863 864 #define XFS_FALLOC_FL_SUPPORTED \ 865 (FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | \ 866 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE | \ 867 FALLOC_FL_INSERT_RANGE) 868 869 STATIC long 870 xfs_file_fallocate( 871 struct file *file, 872 int mode, 873 loff_t offset, 874 loff_t len) 875 { 876 struct inode *inode = file_inode(file); 877 struct xfs_inode *ip = XFS_I(inode); 878 long error; 879 enum xfs_prealloc_flags flags = 0; 880 uint iolock = XFS_IOLOCK_EXCL; 881 loff_t new_size = 0; 882 bool do_file_insert = 0; 883 884 if (!S_ISREG(inode->i_mode)) 885 return -EINVAL; 886 if (mode & ~XFS_FALLOC_FL_SUPPORTED) 887 return -EOPNOTSUPP; 888 889 xfs_ilock(ip, iolock); 890 error = xfs_break_layouts(inode, &iolock, false); 891 if (error) 892 goto out_unlock; 893 894 xfs_ilock(ip, XFS_MMAPLOCK_EXCL); 895 iolock |= XFS_MMAPLOCK_EXCL; 896 897 if (mode & FALLOC_FL_PUNCH_HOLE) { 898 error = xfs_free_file_space(ip, offset, len); 899 if (error) 900 goto out_unlock; 901 } else if (mode & FALLOC_FL_COLLAPSE_RANGE) { 902 unsigned blksize_mask = (1 << inode->i_blkbits) - 1; 903 904 if (offset & blksize_mask || len & blksize_mask) { 905 error = -EINVAL; 906 goto out_unlock; 907 } 908 909 /* 910 * There is no need to overlap collapse range with EOF, 911 * in which case it is effectively a truncate operation 912 */ 913 if (offset + len >= i_size_read(inode)) { 914 error = -EINVAL; 915 goto out_unlock; 916 } 917 918 new_size = i_size_read(inode) - len; 919 920 error = xfs_collapse_file_space(ip, offset, len); 921 if (error) 922 goto out_unlock; 923 } else if (mode & FALLOC_FL_INSERT_RANGE) { 924 unsigned blksize_mask = (1 << inode->i_blkbits) - 1; 925 926 new_size = i_size_read(inode) + len; 927 if (offset & blksize_mask || len & blksize_mask) { 928 error = -EINVAL; 929 goto out_unlock; 930 } 931 932 /* check the new inode size does not wrap through zero */ 933 if (new_size > inode->i_sb->s_maxbytes) { 934 error = -EFBIG; 935 goto out_unlock; 936 } 937 938 /* Offset should be less than i_size */ 939 if (offset >= i_size_read(inode)) { 940 error = -EINVAL; 941 goto out_unlock; 942 } 943 do_file_insert = 1; 944 } else { 945 flags |= XFS_PREALLOC_SET; 946 947 if (!(mode & FALLOC_FL_KEEP_SIZE) && 948 offset + len > i_size_read(inode)) { 949 new_size = offset + len; 950 error = inode_newsize_ok(inode, new_size); 951 if (error) 952 goto out_unlock; 953 } 954 955 if (mode & FALLOC_FL_ZERO_RANGE) 956 error = xfs_zero_file_space(ip, offset, len); 957 else 958 error = xfs_alloc_file_space(ip, offset, len, 959 XFS_BMAPI_PREALLOC); 960 if (error) 961 goto out_unlock; 962 } 963 964 if (file->f_flags & O_DSYNC) 965 flags |= XFS_PREALLOC_SYNC; 966 967 error = xfs_update_prealloc_flags(ip, flags); 968 if (error) 969 goto out_unlock; 970 971 /* Change file size if needed */ 972 if (new_size) { 973 struct iattr iattr; 974 975 iattr.ia_valid = ATTR_SIZE; 976 iattr.ia_size = new_size; 977 error = xfs_setattr_size(ip, &iattr); 978 if (error) 979 goto out_unlock; 980 } 981 982 /* 983 * Perform hole insertion now that the file size has been 984 * updated so that if we crash during the operation we don't 985 * leave shifted extents past EOF and hence losing access to 986 * the data that is contained within them. 987 */ 988 if (do_file_insert) 989 error = xfs_insert_file_space(ip, offset, len); 990 991 out_unlock: 992 xfs_iunlock(ip, iolock); 993 return error; 994 } 995 996 997 STATIC int 998 xfs_file_open( 999 struct inode *inode, 1000 struct file *file) 1001 { 1002 if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS) 1003 return -EFBIG; 1004 if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb))) 1005 return -EIO; 1006 return 0; 1007 } 1008 1009 STATIC int 1010 xfs_dir_open( 1011 struct inode *inode, 1012 struct file *file) 1013 { 1014 struct xfs_inode *ip = XFS_I(inode); 1015 int mode; 1016 int error; 1017 1018 error = xfs_file_open(inode, file); 1019 if (error) 1020 return error; 1021 1022 /* 1023 * If there are any blocks, read-ahead block 0 as we're almost 1024 * certain to have the next operation be a read there. 1025 */ 1026 mode = xfs_ilock_data_map_shared(ip); 1027 if (ip->i_d.di_nextents > 0) 1028 xfs_dir3_data_readahead(ip, 0, -1); 1029 xfs_iunlock(ip, mode); 1030 return 0; 1031 } 1032 1033 STATIC int 1034 xfs_file_release( 1035 struct inode *inode, 1036 struct file *filp) 1037 { 1038 return xfs_release(XFS_I(inode)); 1039 } 1040 1041 STATIC int 1042 xfs_file_readdir( 1043 struct file *file, 1044 struct dir_context *ctx) 1045 { 1046 struct inode *inode = file_inode(file); 1047 xfs_inode_t *ip = XFS_I(inode); 1048 size_t bufsize; 1049 1050 /* 1051 * The Linux API doesn't pass down the total size of the buffer 1052 * we read into down to the filesystem. With the filldir concept 1053 * it's not needed for correct information, but the XFS dir2 leaf 1054 * code wants an estimate of the buffer size to calculate it's 1055 * readahead window and size the buffers used for mapping to 1056 * physical blocks. 1057 * 1058 * Try to give it an estimate that's good enough, maybe at some 1059 * point we can change the ->readdir prototype to include the 1060 * buffer size. For now we use the current glibc buffer size. 1061 */ 1062 bufsize = (size_t)min_t(loff_t, 32768, ip->i_d.di_size); 1063 1064 return xfs_readdir(ip, ctx, bufsize); 1065 } 1066 1067 STATIC int 1068 xfs_file_mmap( 1069 struct file *filp, 1070 struct vm_area_struct *vma) 1071 { 1072 vma->vm_ops = &xfs_file_vm_ops; 1073 1074 file_accessed(filp); 1075 return 0; 1076 } 1077 1078 /* 1079 * This type is designed to indicate the type of offset we would like 1080 * to search from page cache for xfs_seek_hole_data(). 1081 */ 1082 enum { 1083 HOLE_OFF = 0, 1084 DATA_OFF, 1085 }; 1086 1087 /* 1088 * Lookup the desired type of offset from the given page. 1089 * 1090 * On success, return true and the offset argument will point to the 1091 * start of the region that was found. Otherwise this function will 1092 * return false and keep the offset argument unchanged. 1093 */ 1094 STATIC bool 1095 xfs_lookup_buffer_offset( 1096 struct page *page, 1097 loff_t *offset, 1098 unsigned int type) 1099 { 1100 loff_t lastoff = page_offset(page); 1101 bool found = false; 1102 struct buffer_head *bh, *head; 1103 1104 bh = head = page_buffers(page); 1105 do { 1106 /* 1107 * Unwritten extents that have data in the page 1108 * cache covering them can be identified by the 1109 * BH_Unwritten state flag. Pages with multiple 1110 * buffers might have a mix of holes, data and 1111 * unwritten extents - any buffer with valid 1112 * data in it should have BH_Uptodate flag set 1113 * on it. 1114 */ 1115 if (buffer_unwritten(bh) || 1116 buffer_uptodate(bh)) { 1117 if (type == DATA_OFF) 1118 found = true; 1119 } else { 1120 if (type == HOLE_OFF) 1121 found = true; 1122 } 1123 1124 if (found) { 1125 *offset = lastoff; 1126 break; 1127 } 1128 lastoff += bh->b_size; 1129 } while ((bh = bh->b_this_page) != head); 1130 1131 return found; 1132 } 1133 1134 /* 1135 * This routine is called to find out and return a data or hole offset 1136 * from the page cache for unwritten extents according to the desired 1137 * type for xfs_seek_hole_data(). 1138 * 1139 * The argument offset is used to tell where we start to search from the 1140 * page cache. Map is used to figure out the end points of the range to 1141 * lookup pages. 1142 * 1143 * Return true if the desired type of offset was found, and the argument 1144 * offset is filled with that address. Otherwise, return false and keep 1145 * offset unchanged. 1146 */ 1147 STATIC bool 1148 xfs_find_get_desired_pgoff( 1149 struct inode *inode, 1150 struct xfs_bmbt_irec *map, 1151 unsigned int type, 1152 loff_t *offset) 1153 { 1154 struct xfs_inode *ip = XFS_I(inode); 1155 struct xfs_mount *mp = ip->i_mount; 1156 struct pagevec pvec; 1157 pgoff_t index; 1158 pgoff_t end; 1159 loff_t endoff; 1160 loff_t startoff = *offset; 1161 loff_t lastoff = startoff; 1162 bool found = false; 1163 1164 pagevec_init(&pvec, 0); 1165 1166 index = startoff >> PAGE_CACHE_SHIFT; 1167 endoff = XFS_FSB_TO_B(mp, map->br_startoff + map->br_blockcount); 1168 end = endoff >> PAGE_CACHE_SHIFT; 1169 do { 1170 int want; 1171 unsigned nr_pages; 1172 unsigned int i; 1173 1174 want = min_t(pgoff_t, end - index, PAGEVEC_SIZE); 1175 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, index, 1176 want); 1177 /* 1178 * No page mapped into given range. If we are searching holes 1179 * and if this is the first time we got into the loop, it means 1180 * that the given offset is landed in a hole, return it. 1181 * 1182 * If we have already stepped through some block buffers to find 1183 * holes but they all contains data. In this case, the last 1184 * offset is already updated and pointed to the end of the last 1185 * mapped page, if it does not reach the endpoint to search, 1186 * that means there should be a hole between them. 1187 */ 1188 if (nr_pages == 0) { 1189 /* Data search found nothing */ 1190 if (type == DATA_OFF) 1191 break; 1192 1193 ASSERT(type == HOLE_OFF); 1194 if (lastoff == startoff || lastoff < endoff) { 1195 found = true; 1196 *offset = lastoff; 1197 } 1198 break; 1199 } 1200 1201 /* 1202 * At lease we found one page. If this is the first time we 1203 * step into the loop, and if the first page index offset is 1204 * greater than the given search offset, a hole was found. 1205 */ 1206 if (type == HOLE_OFF && lastoff == startoff && 1207 lastoff < page_offset(pvec.pages[0])) { 1208 found = true; 1209 break; 1210 } 1211 1212 for (i = 0; i < nr_pages; i++) { 1213 struct page *page = pvec.pages[i]; 1214 loff_t b_offset; 1215 1216 /* 1217 * At this point, the page may be truncated or 1218 * invalidated (changing page->mapping to NULL), 1219 * or even swizzled back from swapper_space to tmpfs 1220 * file mapping. However, page->index will not change 1221 * because we have a reference on the page. 1222 * 1223 * Searching done if the page index is out of range. 1224 * If the current offset is not reaches the end of 1225 * the specified search range, there should be a hole 1226 * between them. 1227 */ 1228 if (page->index > end) { 1229 if (type == HOLE_OFF && lastoff < endoff) { 1230 *offset = lastoff; 1231 found = true; 1232 } 1233 goto out; 1234 } 1235 1236 lock_page(page); 1237 /* 1238 * Page truncated or invalidated(page->mapping == NULL). 1239 * We can freely skip it and proceed to check the next 1240 * page. 1241 */ 1242 if (unlikely(page->mapping != inode->i_mapping)) { 1243 unlock_page(page); 1244 continue; 1245 } 1246 1247 if (!page_has_buffers(page)) { 1248 unlock_page(page); 1249 continue; 1250 } 1251 1252 found = xfs_lookup_buffer_offset(page, &b_offset, type); 1253 if (found) { 1254 /* 1255 * The found offset may be less than the start 1256 * point to search if this is the first time to 1257 * come here. 1258 */ 1259 *offset = max_t(loff_t, startoff, b_offset); 1260 unlock_page(page); 1261 goto out; 1262 } 1263 1264 /* 1265 * We either searching data but nothing was found, or 1266 * searching hole but found a data buffer. In either 1267 * case, probably the next page contains the desired 1268 * things, update the last offset to it so. 1269 */ 1270 lastoff = page_offset(page) + PAGE_SIZE; 1271 unlock_page(page); 1272 } 1273 1274 /* 1275 * The number of returned pages less than our desired, search 1276 * done. In this case, nothing was found for searching data, 1277 * but we found a hole behind the last offset. 1278 */ 1279 if (nr_pages < want) { 1280 if (type == HOLE_OFF) { 1281 *offset = lastoff; 1282 found = true; 1283 } 1284 break; 1285 } 1286 1287 index = pvec.pages[i - 1]->index + 1; 1288 pagevec_release(&pvec); 1289 } while (index <= end); 1290 1291 out: 1292 pagevec_release(&pvec); 1293 return found; 1294 } 1295 1296 STATIC loff_t 1297 xfs_seek_hole_data( 1298 struct file *file, 1299 loff_t start, 1300 int whence) 1301 { 1302 struct inode *inode = file->f_mapping->host; 1303 struct xfs_inode *ip = XFS_I(inode); 1304 struct xfs_mount *mp = ip->i_mount; 1305 loff_t uninitialized_var(offset); 1306 xfs_fsize_t isize; 1307 xfs_fileoff_t fsbno; 1308 xfs_filblks_t end; 1309 uint lock; 1310 int error; 1311 1312 if (XFS_FORCED_SHUTDOWN(mp)) 1313 return -EIO; 1314 1315 lock = xfs_ilock_data_map_shared(ip); 1316 1317 isize = i_size_read(inode); 1318 if (start >= isize) { 1319 error = -ENXIO; 1320 goto out_unlock; 1321 } 1322 1323 /* 1324 * Try to read extents from the first block indicated 1325 * by fsbno to the end block of the file. 1326 */ 1327 fsbno = XFS_B_TO_FSBT(mp, start); 1328 end = XFS_B_TO_FSB(mp, isize); 1329 1330 for (;;) { 1331 struct xfs_bmbt_irec map[2]; 1332 int nmap = 2; 1333 unsigned int i; 1334 1335 error = xfs_bmapi_read(ip, fsbno, end - fsbno, map, &nmap, 1336 XFS_BMAPI_ENTIRE); 1337 if (error) 1338 goto out_unlock; 1339 1340 /* No extents at given offset, must be beyond EOF */ 1341 if (nmap == 0) { 1342 error = -ENXIO; 1343 goto out_unlock; 1344 } 1345 1346 for (i = 0; i < nmap; i++) { 1347 offset = max_t(loff_t, start, 1348 XFS_FSB_TO_B(mp, map[i].br_startoff)); 1349 1350 /* Landed in the hole we wanted? */ 1351 if (whence == SEEK_HOLE && 1352 map[i].br_startblock == HOLESTARTBLOCK) 1353 goto out; 1354 1355 /* Landed in the data extent we wanted? */ 1356 if (whence == SEEK_DATA && 1357 (map[i].br_startblock == DELAYSTARTBLOCK || 1358 (map[i].br_state == XFS_EXT_NORM && 1359 !isnullstartblock(map[i].br_startblock)))) 1360 goto out; 1361 1362 /* 1363 * Landed in an unwritten extent, try to search 1364 * for hole or data from page cache. 1365 */ 1366 if (map[i].br_state == XFS_EXT_UNWRITTEN) { 1367 if (xfs_find_get_desired_pgoff(inode, &map[i], 1368 whence == SEEK_HOLE ? HOLE_OFF : DATA_OFF, 1369 &offset)) 1370 goto out; 1371 } 1372 } 1373 1374 /* 1375 * We only received one extent out of the two requested. This 1376 * means we've hit EOF and didn't find what we are looking for. 1377 */ 1378 if (nmap == 1) { 1379 /* 1380 * If we were looking for a hole, set offset to 1381 * the end of the file (i.e., there is an implicit 1382 * hole at the end of any file). 1383 */ 1384 if (whence == SEEK_HOLE) { 1385 offset = isize; 1386 break; 1387 } 1388 /* 1389 * If we were looking for data, it's nowhere to be found 1390 */ 1391 ASSERT(whence == SEEK_DATA); 1392 error = -ENXIO; 1393 goto out_unlock; 1394 } 1395 1396 ASSERT(i > 1); 1397 1398 /* 1399 * Nothing was found, proceed to the next round of search 1400 * if the next reading offset is not at or beyond EOF. 1401 */ 1402 fsbno = map[i - 1].br_startoff + map[i - 1].br_blockcount; 1403 start = XFS_FSB_TO_B(mp, fsbno); 1404 if (start >= isize) { 1405 if (whence == SEEK_HOLE) { 1406 offset = isize; 1407 break; 1408 } 1409 ASSERT(whence == SEEK_DATA); 1410 error = -ENXIO; 1411 goto out_unlock; 1412 } 1413 } 1414 1415 out: 1416 /* 1417 * If at this point we have found the hole we wanted, the returned 1418 * offset may be bigger than the file size as it may be aligned to 1419 * page boundary for unwritten extents. We need to deal with this 1420 * situation in particular. 1421 */ 1422 if (whence == SEEK_HOLE) 1423 offset = min_t(loff_t, offset, isize); 1424 offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes); 1425 1426 out_unlock: 1427 xfs_iunlock(ip, lock); 1428 1429 if (error) 1430 return error; 1431 return offset; 1432 } 1433 1434 STATIC loff_t 1435 xfs_file_llseek( 1436 struct file *file, 1437 loff_t offset, 1438 int whence) 1439 { 1440 switch (whence) { 1441 case SEEK_END: 1442 case SEEK_CUR: 1443 case SEEK_SET: 1444 return generic_file_llseek(file, offset, whence); 1445 case SEEK_HOLE: 1446 case SEEK_DATA: 1447 return xfs_seek_hole_data(file, offset, whence); 1448 default: 1449 return -EINVAL; 1450 } 1451 } 1452 1453 /* 1454 * Locking for serialisation of IO during page faults. This results in a lock 1455 * ordering of: 1456 * 1457 * mmap_sem (MM) 1458 * i_mmap_lock (XFS - truncate serialisation) 1459 * page_lock (MM) 1460 * i_lock (XFS - extent map serialisation) 1461 */ 1462 STATIC int 1463 xfs_filemap_fault( 1464 struct vm_area_struct *vma, 1465 struct vm_fault *vmf) 1466 { 1467 struct xfs_inode *ip = XFS_I(vma->vm_file->f_mapping->host); 1468 int error; 1469 1470 trace_xfs_filemap_fault(ip); 1471 1472 xfs_ilock(ip, XFS_MMAPLOCK_SHARED); 1473 error = filemap_fault(vma, vmf); 1474 xfs_iunlock(ip, XFS_MMAPLOCK_SHARED); 1475 1476 return error; 1477 } 1478 1479 /* 1480 * mmap()d file has taken write protection fault and is being made writable. We 1481 * can set the page state up correctly for a writable page, which means we can 1482 * do correct delalloc accounting (ENOSPC checking!) and unwritten extent 1483 * mapping. 1484 */ 1485 STATIC int 1486 xfs_filemap_page_mkwrite( 1487 struct vm_area_struct *vma, 1488 struct vm_fault *vmf) 1489 { 1490 struct xfs_inode *ip = XFS_I(vma->vm_file->f_mapping->host); 1491 int error; 1492 1493 trace_xfs_filemap_page_mkwrite(ip); 1494 1495 xfs_ilock(ip, XFS_MMAPLOCK_SHARED); 1496 error = block_page_mkwrite(vma, vmf, xfs_get_blocks); 1497 xfs_iunlock(ip, XFS_MMAPLOCK_SHARED); 1498 1499 return error; 1500 } 1501 1502 const struct file_operations xfs_file_operations = { 1503 .llseek = xfs_file_llseek, 1504 .read_iter = xfs_file_read_iter, 1505 .write_iter = xfs_file_write_iter, 1506 .splice_read = xfs_file_splice_read, 1507 .splice_write = iter_file_splice_write, 1508 .unlocked_ioctl = xfs_file_ioctl, 1509 #ifdef CONFIG_COMPAT 1510 .compat_ioctl = xfs_file_compat_ioctl, 1511 #endif 1512 .mmap = xfs_file_mmap, 1513 .open = xfs_file_open, 1514 .release = xfs_file_release, 1515 .fsync = xfs_file_fsync, 1516 .fallocate = xfs_file_fallocate, 1517 }; 1518 1519 const struct file_operations xfs_dir_file_operations = { 1520 .open = xfs_dir_open, 1521 .read = generic_read_dir, 1522 .iterate = xfs_file_readdir, 1523 .llseek = generic_file_llseek, 1524 .unlocked_ioctl = xfs_file_ioctl, 1525 #ifdef CONFIG_COMPAT 1526 .compat_ioctl = xfs_file_compat_ioctl, 1527 #endif 1528 .fsync = xfs_dir_fsync, 1529 }; 1530 1531 static const struct vm_operations_struct xfs_file_vm_ops = { 1532 .fault = xfs_filemap_fault, 1533 .map_pages = filemap_map_pages, 1534 .page_mkwrite = xfs_filemap_page_mkwrite, 1535 }; 1536