xref: /linux/fs/xfs/xfs_file.c (revision 3e44c471a2dab210f7e9b1e5f7d4d54d52df59eb)
1 /*
2  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_mount.h"
25 #include "xfs_da_format.h"
26 #include "xfs_da_btree.h"
27 #include "xfs_inode.h"
28 #include "xfs_trans.h"
29 #include "xfs_inode_item.h"
30 #include "xfs_bmap.h"
31 #include "xfs_bmap_util.h"
32 #include "xfs_error.h"
33 #include "xfs_dir2.h"
34 #include "xfs_dir2_priv.h"
35 #include "xfs_ioctl.h"
36 #include "xfs_trace.h"
37 #include "xfs_log.h"
38 #include "xfs_icache.h"
39 #include "xfs_pnfs.h"
40 
41 #include <linux/dcache.h>
42 #include <linux/falloc.h>
43 #include <linux/pagevec.h>
44 #include <linux/backing-dev.h>
45 
46 static const struct vm_operations_struct xfs_file_vm_ops;
47 
48 /*
49  * Locking primitives for read and write IO paths to ensure we consistently use
50  * and order the inode->i_mutex, ip->i_lock and ip->i_iolock.
51  */
52 static inline void
53 xfs_rw_ilock(
54 	struct xfs_inode	*ip,
55 	int			type)
56 {
57 	if (type & XFS_IOLOCK_EXCL)
58 		mutex_lock(&VFS_I(ip)->i_mutex);
59 	xfs_ilock(ip, type);
60 }
61 
62 static inline void
63 xfs_rw_iunlock(
64 	struct xfs_inode	*ip,
65 	int			type)
66 {
67 	xfs_iunlock(ip, type);
68 	if (type & XFS_IOLOCK_EXCL)
69 		mutex_unlock(&VFS_I(ip)->i_mutex);
70 }
71 
72 static inline void
73 xfs_rw_ilock_demote(
74 	struct xfs_inode	*ip,
75 	int			type)
76 {
77 	xfs_ilock_demote(ip, type);
78 	if (type & XFS_IOLOCK_EXCL)
79 		mutex_unlock(&VFS_I(ip)->i_mutex);
80 }
81 
82 /*
83  *	xfs_iozero
84  *
85  *	xfs_iozero clears the specified range of buffer supplied,
86  *	and marks all the affected blocks as valid and modified.  If
87  *	an affected block is not allocated, it will be allocated.  If
88  *	an affected block is not completely overwritten, and is not
89  *	valid before the operation, it will be read from disk before
90  *	being partially zeroed.
91  */
92 int
93 xfs_iozero(
94 	struct xfs_inode	*ip,	/* inode			*/
95 	loff_t			pos,	/* offset in file		*/
96 	size_t			count)	/* size of data to zero		*/
97 {
98 	struct page		*page;
99 	struct address_space	*mapping;
100 	int			status;
101 
102 	mapping = VFS_I(ip)->i_mapping;
103 	do {
104 		unsigned offset, bytes;
105 		void *fsdata;
106 
107 		offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */
108 		bytes = PAGE_CACHE_SIZE - offset;
109 		if (bytes > count)
110 			bytes = count;
111 
112 		status = pagecache_write_begin(NULL, mapping, pos, bytes,
113 					AOP_FLAG_UNINTERRUPTIBLE,
114 					&page, &fsdata);
115 		if (status)
116 			break;
117 
118 		zero_user(page, offset, bytes);
119 
120 		status = pagecache_write_end(NULL, mapping, pos, bytes, bytes,
121 					page, fsdata);
122 		WARN_ON(status <= 0); /* can't return less than zero! */
123 		pos += bytes;
124 		count -= bytes;
125 		status = 0;
126 	} while (count);
127 
128 	return status;
129 }
130 
131 int
132 xfs_update_prealloc_flags(
133 	struct xfs_inode	*ip,
134 	enum xfs_prealloc_flags	flags)
135 {
136 	struct xfs_trans	*tp;
137 	int			error;
138 
139 	tp = xfs_trans_alloc(ip->i_mount, XFS_TRANS_WRITEID);
140 	error = xfs_trans_reserve(tp, &M_RES(ip->i_mount)->tr_writeid, 0, 0);
141 	if (error) {
142 		xfs_trans_cancel(tp, 0);
143 		return error;
144 	}
145 
146 	xfs_ilock(ip, XFS_ILOCK_EXCL);
147 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
148 
149 	if (!(flags & XFS_PREALLOC_INVISIBLE)) {
150 		ip->i_d.di_mode &= ~S_ISUID;
151 		if (ip->i_d.di_mode & S_IXGRP)
152 			ip->i_d.di_mode &= ~S_ISGID;
153 		xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
154 	}
155 
156 	if (flags & XFS_PREALLOC_SET)
157 		ip->i_d.di_flags |= XFS_DIFLAG_PREALLOC;
158 	if (flags & XFS_PREALLOC_CLEAR)
159 		ip->i_d.di_flags &= ~XFS_DIFLAG_PREALLOC;
160 
161 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
162 	if (flags & XFS_PREALLOC_SYNC)
163 		xfs_trans_set_sync(tp);
164 	return xfs_trans_commit(tp, 0);
165 }
166 
167 /*
168  * Fsync operations on directories are much simpler than on regular files,
169  * as there is no file data to flush, and thus also no need for explicit
170  * cache flush operations, and there are no non-transaction metadata updates
171  * on directories either.
172  */
173 STATIC int
174 xfs_dir_fsync(
175 	struct file		*file,
176 	loff_t			start,
177 	loff_t			end,
178 	int			datasync)
179 {
180 	struct xfs_inode	*ip = XFS_I(file->f_mapping->host);
181 	struct xfs_mount	*mp = ip->i_mount;
182 	xfs_lsn_t		lsn = 0;
183 
184 	trace_xfs_dir_fsync(ip);
185 
186 	xfs_ilock(ip, XFS_ILOCK_SHARED);
187 	if (xfs_ipincount(ip))
188 		lsn = ip->i_itemp->ili_last_lsn;
189 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
190 
191 	if (!lsn)
192 		return 0;
193 	return _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, NULL);
194 }
195 
196 STATIC int
197 xfs_file_fsync(
198 	struct file		*file,
199 	loff_t			start,
200 	loff_t			end,
201 	int			datasync)
202 {
203 	struct inode		*inode = file->f_mapping->host;
204 	struct xfs_inode	*ip = XFS_I(inode);
205 	struct xfs_mount	*mp = ip->i_mount;
206 	int			error = 0;
207 	int			log_flushed = 0;
208 	xfs_lsn_t		lsn = 0;
209 
210 	trace_xfs_file_fsync(ip);
211 
212 	error = filemap_write_and_wait_range(inode->i_mapping, start, end);
213 	if (error)
214 		return error;
215 
216 	if (XFS_FORCED_SHUTDOWN(mp))
217 		return -EIO;
218 
219 	xfs_iflags_clear(ip, XFS_ITRUNCATED);
220 
221 	if (mp->m_flags & XFS_MOUNT_BARRIER) {
222 		/*
223 		 * If we have an RT and/or log subvolume we need to make sure
224 		 * to flush the write cache the device used for file data
225 		 * first.  This is to ensure newly written file data make
226 		 * it to disk before logging the new inode size in case of
227 		 * an extending write.
228 		 */
229 		if (XFS_IS_REALTIME_INODE(ip))
230 			xfs_blkdev_issue_flush(mp->m_rtdev_targp);
231 		else if (mp->m_logdev_targp != mp->m_ddev_targp)
232 			xfs_blkdev_issue_flush(mp->m_ddev_targp);
233 	}
234 
235 	/*
236 	 * All metadata updates are logged, which means that we just have
237 	 * to flush the log up to the latest LSN that touched the inode.
238 	 */
239 	xfs_ilock(ip, XFS_ILOCK_SHARED);
240 	if (xfs_ipincount(ip)) {
241 		if (!datasync ||
242 		    (ip->i_itemp->ili_fields & ~XFS_ILOG_TIMESTAMP))
243 			lsn = ip->i_itemp->ili_last_lsn;
244 	}
245 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
246 
247 	if (lsn)
248 		error = _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed);
249 
250 	/*
251 	 * If we only have a single device, and the log force about was
252 	 * a no-op we might have to flush the data device cache here.
253 	 * This can only happen for fdatasync/O_DSYNC if we were overwriting
254 	 * an already allocated file and thus do not have any metadata to
255 	 * commit.
256 	 */
257 	if ((mp->m_flags & XFS_MOUNT_BARRIER) &&
258 	    mp->m_logdev_targp == mp->m_ddev_targp &&
259 	    !XFS_IS_REALTIME_INODE(ip) &&
260 	    !log_flushed)
261 		xfs_blkdev_issue_flush(mp->m_ddev_targp);
262 
263 	return error;
264 }
265 
266 STATIC ssize_t
267 xfs_file_read_iter(
268 	struct kiocb		*iocb,
269 	struct iov_iter		*to)
270 {
271 	struct file		*file = iocb->ki_filp;
272 	struct inode		*inode = file->f_mapping->host;
273 	struct xfs_inode	*ip = XFS_I(inode);
274 	struct xfs_mount	*mp = ip->i_mount;
275 	size_t			size = iov_iter_count(to);
276 	ssize_t			ret = 0;
277 	int			ioflags = 0;
278 	xfs_fsize_t		n;
279 	loff_t			pos = iocb->ki_pos;
280 
281 	XFS_STATS_INC(xs_read_calls);
282 
283 	if (unlikely(iocb->ki_flags & IOCB_DIRECT))
284 		ioflags |= XFS_IO_ISDIRECT;
285 	if (file->f_mode & FMODE_NOCMTIME)
286 		ioflags |= XFS_IO_INVIS;
287 
288 	if (unlikely(ioflags & XFS_IO_ISDIRECT)) {
289 		xfs_buftarg_t	*target =
290 			XFS_IS_REALTIME_INODE(ip) ?
291 				mp->m_rtdev_targp : mp->m_ddev_targp;
292 		/* DIO must be aligned to device logical sector size */
293 		if ((pos | size) & target->bt_logical_sectormask) {
294 			if (pos == i_size_read(inode))
295 				return 0;
296 			return -EINVAL;
297 		}
298 	}
299 
300 	n = mp->m_super->s_maxbytes - pos;
301 	if (n <= 0 || size == 0)
302 		return 0;
303 
304 	if (n < size)
305 		size = n;
306 
307 	if (XFS_FORCED_SHUTDOWN(mp))
308 		return -EIO;
309 
310 	/*
311 	 * Locking is a bit tricky here. If we take an exclusive lock
312 	 * for direct IO, we effectively serialise all new concurrent
313 	 * read IO to this file and block it behind IO that is currently in
314 	 * progress because IO in progress holds the IO lock shared. We only
315 	 * need to hold the lock exclusive to blow away the page cache, so
316 	 * only take lock exclusively if the page cache needs invalidation.
317 	 * This allows the normal direct IO case of no page cache pages to
318 	 * proceeed concurrently without serialisation.
319 	 */
320 	xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
321 	if ((ioflags & XFS_IO_ISDIRECT) && inode->i_mapping->nrpages) {
322 		xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
323 		xfs_rw_ilock(ip, XFS_IOLOCK_EXCL);
324 
325 		if (inode->i_mapping->nrpages) {
326 			ret = filemap_write_and_wait_range(
327 							VFS_I(ip)->i_mapping,
328 							pos, pos + size - 1);
329 			if (ret) {
330 				xfs_rw_iunlock(ip, XFS_IOLOCK_EXCL);
331 				return ret;
332 			}
333 
334 			/*
335 			 * Invalidate whole pages. This can return an error if
336 			 * we fail to invalidate a page, but this should never
337 			 * happen on XFS. Warn if it does fail.
338 			 */
339 			ret = invalidate_inode_pages2_range(VFS_I(ip)->i_mapping,
340 					pos >> PAGE_CACHE_SHIFT,
341 					(pos + size - 1) >> PAGE_CACHE_SHIFT);
342 			WARN_ON_ONCE(ret);
343 			ret = 0;
344 		}
345 		xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
346 	}
347 
348 	trace_xfs_file_read(ip, size, pos, ioflags);
349 
350 	ret = generic_file_read_iter(iocb, to);
351 	if (ret > 0)
352 		XFS_STATS_ADD(xs_read_bytes, ret);
353 
354 	xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
355 	return ret;
356 }
357 
358 STATIC ssize_t
359 xfs_file_splice_read(
360 	struct file		*infilp,
361 	loff_t			*ppos,
362 	struct pipe_inode_info	*pipe,
363 	size_t			count,
364 	unsigned int		flags)
365 {
366 	struct xfs_inode	*ip = XFS_I(infilp->f_mapping->host);
367 	int			ioflags = 0;
368 	ssize_t			ret;
369 
370 	XFS_STATS_INC(xs_read_calls);
371 
372 	if (infilp->f_mode & FMODE_NOCMTIME)
373 		ioflags |= XFS_IO_INVIS;
374 
375 	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
376 		return -EIO;
377 
378 	xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
379 
380 	trace_xfs_file_splice_read(ip, count, *ppos, ioflags);
381 
382 	ret = generic_file_splice_read(infilp, ppos, pipe, count, flags);
383 	if (ret > 0)
384 		XFS_STATS_ADD(xs_read_bytes, ret);
385 
386 	xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
387 	return ret;
388 }
389 
390 /*
391  * This routine is called to handle zeroing any space in the last block of the
392  * file that is beyond the EOF.  We do this since the size is being increased
393  * without writing anything to that block and we don't want to read the
394  * garbage on the disk.
395  */
396 STATIC int				/* error (positive) */
397 xfs_zero_last_block(
398 	struct xfs_inode	*ip,
399 	xfs_fsize_t		offset,
400 	xfs_fsize_t		isize,
401 	bool			*did_zeroing)
402 {
403 	struct xfs_mount	*mp = ip->i_mount;
404 	xfs_fileoff_t		last_fsb = XFS_B_TO_FSBT(mp, isize);
405 	int			zero_offset = XFS_B_FSB_OFFSET(mp, isize);
406 	int			zero_len;
407 	int			nimaps = 1;
408 	int			error = 0;
409 	struct xfs_bmbt_irec	imap;
410 
411 	xfs_ilock(ip, XFS_ILOCK_EXCL);
412 	error = xfs_bmapi_read(ip, last_fsb, 1, &imap, &nimaps, 0);
413 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
414 	if (error)
415 		return error;
416 
417 	ASSERT(nimaps > 0);
418 
419 	/*
420 	 * If the block underlying isize is just a hole, then there
421 	 * is nothing to zero.
422 	 */
423 	if (imap.br_startblock == HOLESTARTBLOCK)
424 		return 0;
425 
426 	zero_len = mp->m_sb.sb_blocksize - zero_offset;
427 	if (isize + zero_len > offset)
428 		zero_len = offset - isize;
429 	*did_zeroing = true;
430 	return xfs_iozero(ip, isize, zero_len);
431 }
432 
433 /*
434  * Zero any on disk space between the current EOF and the new, larger EOF.
435  *
436  * This handles the normal case of zeroing the remainder of the last block in
437  * the file and the unusual case of zeroing blocks out beyond the size of the
438  * file.  This second case only happens with fixed size extents and when the
439  * system crashes before the inode size was updated but after blocks were
440  * allocated.
441  *
442  * Expects the iolock to be held exclusive, and will take the ilock internally.
443  */
444 int					/* error (positive) */
445 xfs_zero_eof(
446 	struct xfs_inode	*ip,
447 	xfs_off_t		offset,		/* starting I/O offset */
448 	xfs_fsize_t		isize,		/* current inode size */
449 	bool			*did_zeroing)
450 {
451 	struct xfs_mount	*mp = ip->i_mount;
452 	xfs_fileoff_t		start_zero_fsb;
453 	xfs_fileoff_t		end_zero_fsb;
454 	xfs_fileoff_t		zero_count_fsb;
455 	xfs_fileoff_t		last_fsb;
456 	xfs_fileoff_t		zero_off;
457 	xfs_fsize_t		zero_len;
458 	int			nimaps;
459 	int			error = 0;
460 	struct xfs_bmbt_irec	imap;
461 
462 	ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
463 	ASSERT(offset > isize);
464 
465 	/*
466 	 * First handle zeroing the block on which isize resides.
467 	 *
468 	 * We only zero a part of that block so it is handled specially.
469 	 */
470 	if (XFS_B_FSB_OFFSET(mp, isize) != 0) {
471 		error = xfs_zero_last_block(ip, offset, isize, did_zeroing);
472 		if (error)
473 			return error;
474 	}
475 
476 	/*
477 	 * Calculate the range between the new size and the old where blocks
478 	 * needing to be zeroed may exist.
479 	 *
480 	 * To get the block where the last byte in the file currently resides,
481 	 * we need to subtract one from the size and truncate back to a block
482 	 * boundary.  We subtract 1 in case the size is exactly on a block
483 	 * boundary.
484 	 */
485 	last_fsb = isize ? XFS_B_TO_FSBT(mp, isize - 1) : (xfs_fileoff_t)-1;
486 	start_zero_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
487 	end_zero_fsb = XFS_B_TO_FSBT(mp, offset - 1);
488 	ASSERT((xfs_sfiloff_t)last_fsb < (xfs_sfiloff_t)start_zero_fsb);
489 	if (last_fsb == end_zero_fsb) {
490 		/*
491 		 * The size was only incremented on its last block.
492 		 * We took care of that above, so just return.
493 		 */
494 		return 0;
495 	}
496 
497 	ASSERT(start_zero_fsb <= end_zero_fsb);
498 	while (start_zero_fsb <= end_zero_fsb) {
499 		nimaps = 1;
500 		zero_count_fsb = end_zero_fsb - start_zero_fsb + 1;
501 
502 		xfs_ilock(ip, XFS_ILOCK_EXCL);
503 		error = xfs_bmapi_read(ip, start_zero_fsb, zero_count_fsb,
504 					  &imap, &nimaps, 0);
505 		xfs_iunlock(ip, XFS_ILOCK_EXCL);
506 		if (error)
507 			return error;
508 
509 		ASSERT(nimaps > 0);
510 
511 		if (imap.br_state == XFS_EXT_UNWRITTEN ||
512 		    imap.br_startblock == HOLESTARTBLOCK) {
513 			start_zero_fsb = imap.br_startoff + imap.br_blockcount;
514 			ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
515 			continue;
516 		}
517 
518 		/*
519 		 * There are blocks we need to zero.
520 		 */
521 		zero_off = XFS_FSB_TO_B(mp, start_zero_fsb);
522 		zero_len = XFS_FSB_TO_B(mp, imap.br_blockcount);
523 
524 		if ((zero_off + zero_len) > offset)
525 			zero_len = offset - zero_off;
526 
527 		error = xfs_iozero(ip, zero_off, zero_len);
528 		if (error)
529 			return error;
530 
531 		*did_zeroing = true;
532 		start_zero_fsb = imap.br_startoff + imap.br_blockcount;
533 		ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
534 	}
535 
536 	return 0;
537 }
538 
539 /*
540  * Common pre-write limit and setup checks.
541  *
542  * Called with the iolocked held either shared and exclusive according to
543  * @iolock, and returns with it held.  Might upgrade the iolock to exclusive
544  * if called for a direct write beyond i_size.
545  */
546 STATIC ssize_t
547 xfs_file_aio_write_checks(
548 	struct kiocb		*iocb,
549 	struct iov_iter		*from,
550 	int			*iolock)
551 {
552 	struct file		*file = iocb->ki_filp;
553 	struct inode		*inode = file->f_mapping->host;
554 	struct xfs_inode	*ip = XFS_I(inode);
555 	ssize_t			error = 0;
556 	size_t			count = iov_iter_count(from);
557 
558 restart:
559 	error = generic_write_checks(iocb, from);
560 	if (error <= 0)
561 		return error;
562 
563 	error = xfs_break_layouts(inode, iolock, true);
564 	if (error)
565 		return error;
566 
567 	/*
568 	 * If the offset is beyond the size of the file, we need to zero any
569 	 * blocks that fall between the existing EOF and the start of this
570 	 * write.  If zeroing is needed and we are currently holding the
571 	 * iolock shared, we need to update it to exclusive which implies
572 	 * having to redo all checks before.
573 	 *
574 	 * We need to serialise against EOF updates that occur in IO
575 	 * completions here. We want to make sure that nobody is changing the
576 	 * size while we do this check until we have placed an IO barrier (i.e.
577 	 * hold the XFS_IOLOCK_EXCL) that prevents new IO from being dispatched.
578 	 * The spinlock effectively forms a memory barrier once we have the
579 	 * XFS_IOLOCK_EXCL so we are guaranteed to see the latest EOF value
580 	 * and hence be able to correctly determine if we need to run zeroing.
581 	 */
582 	spin_lock(&ip->i_flags_lock);
583 	if (iocb->ki_pos > i_size_read(inode)) {
584 		bool	zero = false;
585 
586 		spin_unlock(&ip->i_flags_lock);
587 		if (*iolock == XFS_IOLOCK_SHARED) {
588 			xfs_rw_iunlock(ip, *iolock);
589 			*iolock = XFS_IOLOCK_EXCL;
590 			xfs_rw_ilock(ip, *iolock);
591 			iov_iter_reexpand(from, count);
592 
593 			/*
594 			 * We now have an IO submission barrier in place, but
595 			 * AIO can do EOF updates during IO completion and hence
596 			 * we now need to wait for all of them to drain. Non-AIO
597 			 * DIO will have drained before we are given the
598 			 * XFS_IOLOCK_EXCL, and so for most cases this wait is a
599 			 * no-op.
600 			 */
601 			inode_dio_wait(inode);
602 			goto restart;
603 		}
604 		error = xfs_zero_eof(ip, iocb->ki_pos, i_size_read(inode), &zero);
605 		if (error)
606 			return error;
607 	} else
608 		spin_unlock(&ip->i_flags_lock);
609 
610 	/*
611 	 * Updating the timestamps will grab the ilock again from
612 	 * xfs_fs_dirty_inode, so we have to call it after dropping the
613 	 * lock above.  Eventually we should look into a way to avoid
614 	 * the pointless lock roundtrip.
615 	 */
616 	if (likely(!(file->f_mode & FMODE_NOCMTIME))) {
617 		error = file_update_time(file);
618 		if (error)
619 			return error;
620 	}
621 
622 	/*
623 	 * If we're writing the file then make sure to clear the setuid and
624 	 * setgid bits if the process is not being run by root.  This keeps
625 	 * people from modifying setuid and setgid binaries.
626 	 */
627 	return file_remove_suid(file);
628 }
629 
630 /*
631  * xfs_file_dio_aio_write - handle direct IO writes
632  *
633  * Lock the inode appropriately to prepare for and issue a direct IO write.
634  * By separating it from the buffered write path we remove all the tricky to
635  * follow locking changes and looping.
636  *
637  * If there are cached pages or we're extending the file, we need IOLOCK_EXCL
638  * until we're sure the bytes at the new EOF have been zeroed and/or the cached
639  * pages are flushed out.
640  *
641  * In most cases the direct IO writes will be done holding IOLOCK_SHARED
642  * allowing them to be done in parallel with reads and other direct IO writes.
643  * However, if the IO is not aligned to filesystem blocks, the direct IO layer
644  * needs to do sub-block zeroing and that requires serialisation against other
645  * direct IOs to the same block. In this case we need to serialise the
646  * submission of the unaligned IOs so that we don't get racing block zeroing in
647  * the dio layer.  To avoid the problem with aio, we also need to wait for
648  * outstanding IOs to complete so that unwritten extent conversion is completed
649  * before we try to map the overlapping block. This is currently implemented by
650  * hitting it with a big hammer (i.e. inode_dio_wait()).
651  *
652  * Returns with locks held indicated by @iolock and errors indicated by
653  * negative return values.
654  */
655 STATIC ssize_t
656 xfs_file_dio_aio_write(
657 	struct kiocb		*iocb,
658 	struct iov_iter		*from)
659 {
660 	struct file		*file = iocb->ki_filp;
661 	struct address_space	*mapping = file->f_mapping;
662 	struct inode		*inode = mapping->host;
663 	struct xfs_inode	*ip = XFS_I(inode);
664 	struct xfs_mount	*mp = ip->i_mount;
665 	ssize_t			ret = 0;
666 	int			unaligned_io = 0;
667 	int			iolock;
668 	size_t			count = iov_iter_count(from);
669 	loff_t			pos = iocb->ki_pos;
670 	loff_t			end;
671 	struct iov_iter		data;
672 	struct xfs_buftarg	*target = XFS_IS_REALTIME_INODE(ip) ?
673 					mp->m_rtdev_targp : mp->m_ddev_targp;
674 
675 	/* DIO must be aligned to device logical sector size */
676 	if ((pos | count) & target->bt_logical_sectormask)
677 		return -EINVAL;
678 
679 	/* "unaligned" here means not aligned to a filesystem block */
680 	if ((pos & mp->m_blockmask) || ((pos + count) & mp->m_blockmask))
681 		unaligned_io = 1;
682 
683 	/*
684 	 * We don't need to take an exclusive lock unless there page cache needs
685 	 * to be invalidated or unaligned IO is being executed. We don't need to
686 	 * consider the EOF extension case here because
687 	 * xfs_file_aio_write_checks() will relock the inode as necessary for
688 	 * EOF zeroing cases and fill out the new inode size as appropriate.
689 	 */
690 	if (unaligned_io || mapping->nrpages)
691 		iolock = XFS_IOLOCK_EXCL;
692 	else
693 		iolock = XFS_IOLOCK_SHARED;
694 	xfs_rw_ilock(ip, iolock);
695 
696 	/*
697 	 * Recheck if there are cached pages that need invalidate after we got
698 	 * the iolock to protect against other threads adding new pages while
699 	 * we were waiting for the iolock.
700 	 */
701 	if (mapping->nrpages && iolock == XFS_IOLOCK_SHARED) {
702 		xfs_rw_iunlock(ip, iolock);
703 		iolock = XFS_IOLOCK_EXCL;
704 		xfs_rw_ilock(ip, iolock);
705 	}
706 
707 	ret = xfs_file_aio_write_checks(iocb, from, &iolock);
708 	if (ret)
709 		goto out;
710 	count = iov_iter_count(from);
711 	pos = iocb->ki_pos;
712 	end = pos + count - 1;
713 
714 	if (mapping->nrpages) {
715 		ret = filemap_write_and_wait_range(VFS_I(ip)->i_mapping,
716 						   pos, end);
717 		if (ret)
718 			goto out;
719 		/*
720 		 * Invalidate whole pages. This can return an error if
721 		 * we fail to invalidate a page, but this should never
722 		 * happen on XFS. Warn if it does fail.
723 		 */
724 		ret = invalidate_inode_pages2_range(VFS_I(ip)->i_mapping,
725 					pos >> PAGE_CACHE_SHIFT,
726 					end >> PAGE_CACHE_SHIFT);
727 		WARN_ON_ONCE(ret);
728 		ret = 0;
729 	}
730 
731 	/*
732 	 * If we are doing unaligned IO, wait for all other IO to drain,
733 	 * otherwise demote the lock if we had to flush cached pages
734 	 */
735 	if (unaligned_io)
736 		inode_dio_wait(inode);
737 	else if (iolock == XFS_IOLOCK_EXCL) {
738 		xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
739 		iolock = XFS_IOLOCK_SHARED;
740 	}
741 
742 	trace_xfs_file_direct_write(ip, count, iocb->ki_pos, 0);
743 
744 	data = *from;
745 	ret = mapping->a_ops->direct_IO(iocb, &data, pos);
746 
747 	/* see generic_file_direct_write() for why this is necessary */
748 	if (mapping->nrpages) {
749 		invalidate_inode_pages2_range(mapping,
750 					      pos >> PAGE_CACHE_SHIFT,
751 					      end >> PAGE_CACHE_SHIFT);
752 	}
753 
754 	if (ret > 0) {
755 		pos += ret;
756 		iov_iter_advance(from, ret);
757 		iocb->ki_pos = pos;
758 	}
759 out:
760 	xfs_rw_iunlock(ip, iolock);
761 
762 	/* No fallback to buffered IO on errors for XFS. */
763 	ASSERT(ret < 0 || ret == count);
764 	return ret;
765 }
766 
767 STATIC ssize_t
768 xfs_file_buffered_aio_write(
769 	struct kiocb		*iocb,
770 	struct iov_iter		*from)
771 {
772 	struct file		*file = iocb->ki_filp;
773 	struct address_space	*mapping = file->f_mapping;
774 	struct inode		*inode = mapping->host;
775 	struct xfs_inode	*ip = XFS_I(inode);
776 	ssize_t			ret;
777 	int			enospc = 0;
778 	int			iolock = XFS_IOLOCK_EXCL;
779 
780 	xfs_rw_ilock(ip, iolock);
781 
782 	ret = xfs_file_aio_write_checks(iocb, from, &iolock);
783 	if (ret)
784 		goto out;
785 
786 	/* We can write back this queue in page reclaim */
787 	current->backing_dev_info = inode_to_bdi(inode);
788 
789 write_retry:
790 	trace_xfs_file_buffered_write(ip, iov_iter_count(from),
791 				      iocb->ki_pos, 0);
792 	ret = generic_perform_write(file, from, iocb->ki_pos);
793 	if (likely(ret >= 0))
794 		iocb->ki_pos += ret;
795 
796 	/*
797 	 * If we hit a space limit, try to free up some lingering preallocated
798 	 * space before returning an error. In the case of ENOSPC, first try to
799 	 * write back all dirty inodes to free up some of the excess reserved
800 	 * metadata space. This reduces the chances that the eofblocks scan
801 	 * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this
802 	 * also behaves as a filter to prevent too many eofblocks scans from
803 	 * running at the same time.
804 	 */
805 	if (ret == -EDQUOT && !enospc) {
806 		enospc = xfs_inode_free_quota_eofblocks(ip);
807 		if (enospc)
808 			goto write_retry;
809 	} else if (ret == -ENOSPC && !enospc) {
810 		struct xfs_eofblocks eofb = {0};
811 
812 		enospc = 1;
813 		xfs_flush_inodes(ip->i_mount);
814 		eofb.eof_scan_owner = ip->i_ino; /* for locking */
815 		eofb.eof_flags = XFS_EOF_FLAGS_SYNC;
816 		xfs_icache_free_eofblocks(ip->i_mount, &eofb);
817 		goto write_retry;
818 	}
819 
820 	current->backing_dev_info = NULL;
821 out:
822 	xfs_rw_iunlock(ip, iolock);
823 	return ret;
824 }
825 
826 STATIC ssize_t
827 xfs_file_write_iter(
828 	struct kiocb		*iocb,
829 	struct iov_iter		*from)
830 {
831 	struct file		*file = iocb->ki_filp;
832 	struct address_space	*mapping = file->f_mapping;
833 	struct inode		*inode = mapping->host;
834 	struct xfs_inode	*ip = XFS_I(inode);
835 	ssize_t			ret;
836 	size_t			ocount = iov_iter_count(from);
837 
838 	XFS_STATS_INC(xs_write_calls);
839 
840 	if (ocount == 0)
841 		return 0;
842 
843 	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
844 		return -EIO;
845 
846 	if (unlikely(iocb->ki_flags & IOCB_DIRECT))
847 		ret = xfs_file_dio_aio_write(iocb, from);
848 	else
849 		ret = xfs_file_buffered_aio_write(iocb, from);
850 
851 	if (ret > 0) {
852 		ssize_t err;
853 
854 		XFS_STATS_ADD(xs_write_bytes, ret);
855 
856 		/* Handle various SYNC-type writes */
857 		err = generic_write_sync(file, iocb->ki_pos - ret, ret);
858 		if (err < 0)
859 			ret = err;
860 	}
861 	return ret;
862 }
863 
864 #define	XFS_FALLOC_FL_SUPPORTED						\
865 		(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |		\
866 		 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |	\
867 		 FALLOC_FL_INSERT_RANGE)
868 
869 STATIC long
870 xfs_file_fallocate(
871 	struct file		*file,
872 	int			mode,
873 	loff_t			offset,
874 	loff_t			len)
875 {
876 	struct inode		*inode = file_inode(file);
877 	struct xfs_inode	*ip = XFS_I(inode);
878 	long			error;
879 	enum xfs_prealloc_flags	flags = 0;
880 	uint			iolock = XFS_IOLOCK_EXCL;
881 	loff_t			new_size = 0;
882 	bool			do_file_insert = 0;
883 
884 	if (!S_ISREG(inode->i_mode))
885 		return -EINVAL;
886 	if (mode & ~XFS_FALLOC_FL_SUPPORTED)
887 		return -EOPNOTSUPP;
888 
889 	xfs_ilock(ip, iolock);
890 	error = xfs_break_layouts(inode, &iolock, false);
891 	if (error)
892 		goto out_unlock;
893 
894 	xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
895 	iolock |= XFS_MMAPLOCK_EXCL;
896 
897 	if (mode & FALLOC_FL_PUNCH_HOLE) {
898 		error = xfs_free_file_space(ip, offset, len);
899 		if (error)
900 			goto out_unlock;
901 	} else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
902 		unsigned blksize_mask = (1 << inode->i_blkbits) - 1;
903 
904 		if (offset & blksize_mask || len & blksize_mask) {
905 			error = -EINVAL;
906 			goto out_unlock;
907 		}
908 
909 		/*
910 		 * There is no need to overlap collapse range with EOF,
911 		 * in which case it is effectively a truncate operation
912 		 */
913 		if (offset + len >= i_size_read(inode)) {
914 			error = -EINVAL;
915 			goto out_unlock;
916 		}
917 
918 		new_size = i_size_read(inode) - len;
919 
920 		error = xfs_collapse_file_space(ip, offset, len);
921 		if (error)
922 			goto out_unlock;
923 	} else if (mode & FALLOC_FL_INSERT_RANGE) {
924 		unsigned blksize_mask = (1 << inode->i_blkbits) - 1;
925 
926 		new_size = i_size_read(inode) + len;
927 		if (offset & blksize_mask || len & blksize_mask) {
928 			error = -EINVAL;
929 			goto out_unlock;
930 		}
931 
932 		/* check the new inode size does not wrap through zero */
933 		if (new_size > inode->i_sb->s_maxbytes) {
934 			error = -EFBIG;
935 			goto out_unlock;
936 		}
937 
938 		/* Offset should be less than i_size */
939 		if (offset >= i_size_read(inode)) {
940 			error = -EINVAL;
941 			goto out_unlock;
942 		}
943 		do_file_insert = 1;
944 	} else {
945 		flags |= XFS_PREALLOC_SET;
946 
947 		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
948 		    offset + len > i_size_read(inode)) {
949 			new_size = offset + len;
950 			error = inode_newsize_ok(inode, new_size);
951 			if (error)
952 				goto out_unlock;
953 		}
954 
955 		if (mode & FALLOC_FL_ZERO_RANGE)
956 			error = xfs_zero_file_space(ip, offset, len);
957 		else
958 			error = xfs_alloc_file_space(ip, offset, len,
959 						     XFS_BMAPI_PREALLOC);
960 		if (error)
961 			goto out_unlock;
962 	}
963 
964 	if (file->f_flags & O_DSYNC)
965 		flags |= XFS_PREALLOC_SYNC;
966 
967 	error = xfs_update_prealloc_flags(ip, flags);
968 	if (error)
969 		goto out_unlock;
970 
971 	/* Change file size if needed */
972 	if (new_size) {
973 		struct iattr iattr;
974 
975 		iattr.ia_valid = ATTR_SIZE;
976 		iattr.ia_size = new_size;
977 		error = xfs_setattr_size(ip, &iattr);
978 		if (error)
979 			goto out_unlock;
980 	}
981 
982 	/*
983 	 * Perform hole insertion now that the file size has been
984 	 * updated so that if we crash during the operation we don't
985 	 * leave shifted extents past EOF and hence losing access to
986 	 * the data that is contained within them.
987 	 */
988 	if (do_file_insert)
989 		error = xfs_insert_file_space(ip, offset, len);
990 
991 out_unlock:
992 	xfs_iunlock(ip, iolock);
993 	return error;
994 }
995 
996 
997 STATIC int
998 xfs_file_open(
999 	struct inode	*inode,
1000 	struct file	*file)
1001 {
1002 	if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS)
1003 		return -EFBIG;
1004 	if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb)))
1005 		return -EIO;
1006 	return 0;
1007 }
1008 
1009 STATIC int
1010 xfs_dir_open(
1011 	struct inode	*inode,
1012 	struct file	*file)
1013 {
1014 	struct xfs_inode *ip = XFS_I(inode);
1015 	int		mode;
1016 	int		error;
1017 
1018 	error = xfs_file_open(inode, file);
1019 	if (error)
1020 		return error;
1021 
1022 	/*
1023 	 * If there are any blocks, read-ahead block 0 as we're almost
1024 	 * certain to have the next operation be a read there.
1025 	 */
1026 	mode = xfs_ilock_data_map_shared(ip);
1027 	if (ip->i_d.di_nextents > 0)
1028 		xfs_dir3_data_readahead(ip, 0, -1);
1029 	xfs_iunlock(ip, mode);
1030 	return 0;
1031 }
1032 
1033 STATIC int
1034 xfs_file_release(
1035 	struct inode	*inode,
1036 	struct file	*filp)
1037 {
1038 	return xfs_release(XFS_I(inode));
1039 }
1040 
1041 STATIC int
1042 xfs_file_readdir(
1043 	struct file	*file,
1044 	struct dir_context *ctx)
1045 {
1046 	struct inode	*inode = file_inode(file);
1047 	xfs_inode_t	*ip = XFS_I(inode);
1048 	size_t		bufsize;
1049 
1050 	/*
1051 	 * The Linux API doesn't pass down the total size of the buffer
1052 	 * we read into down to the filesystem.  With the filldir concept
1053 	 * it's not needed for correct information, but the XFS dir2 leaf
1054 	 * code wants an estimate of the buffer size to calculate it's
1055 	 * readahead window and size the buffers used for mapping to
1056 	 * physical blocks.
1057 	 *
1058 	 * Try to give it an estimate that's good enough, maybe at some
1059 	 * point we can change the ->readdir prototype to include the
1060 	 * buffer size.  For now we use the current glibc buffer size.
1061 	 */
1062 	bufsize = (size_t)min_t(loff_t, 32768, ip->i_d.di_size);
1063 
1064 	return xfs_readdir(ip, ctx, bufsize);
1065 }
1066 
1067 STATIC int
1068 xfs_file_mmap(
1069 	struct file	*filp,
1070 	struct vm_area_struct *vma)
1071 {
1072 	vma->vm_ops = &xfs_file_vm_ops;
1073 
1074 	file_accessed(filp);
1075 	return 0;
1076 }
1077 
1078 /*
1079  * This type is designed to indicate the type of offset we would like
1080  * to search from page cache for xfs_seek_hole_data().
1081  */
1082 enum {
1083 	HOLE_OFF = 0,
1084 	DATA_OFF,
1085 };
1086 
1087 /*
1088  * Lookup the desired type of offset from the given page.
1089  *
1090  * On success, return true and the offset argument will point to the
1091  * start of the region that was found.  Otherwise this function will
1092  * return false and keep the offset argument unchanged.
1093  */
1094 STATIC bool
1095 xfs_lookup_buffer_offset(
1096 	struct page		*page,
1097 	loff_t			*offset,
1098 	unsigned int		type)
1099 {
1100 	loff_t			lastoff = page_offset(page);
1101 	bool			found = false;
1102 	struct buffer_head	*bh, *head;
1103 
1104 	bh = head = page_buffers(page);
1105 	do {
1106 		/*
1107 		 * Unwritten extents that have data in the page
1108 		 * cache covering them can be identified by the
1109 		 * BH_Unwritten state flag.  Pages with multiple
1110 		 * buffers might have a mix of holes, data and
1111 		 * unwritten extents - any buffer with valid
1112 		 * data in it should have BH_Uptodate flag set
1113 		 * on it.
1114 		 */
1115 		if (buffer_unwritten(bh) ||
1116 		    buffer_uptodate(bh)) {
1117 			if (type == DATA_OFF)
1118 				found = true;
1119 		} else {
1120 			if (type == HOLE_OFF)
1121 				found = true;
1122 		}
1123 
1124 		if (found) {
1125 			*offset = lastoff;
1126 			break;
1127 		}
1128 		lastoff += bh->b_size;
1129 	} while ((bh = bh->b_this_page) != head);
1130 
1131 	return found;
1132 }
1133 
1134 /*
1135  * This routine is called to find out and return a data or hole offset
1136  * from the page cache for unwritten extents according to the desired
1137  * type for xfs_seek_hole_data().
1138  *
1139  * The argument offset is used to tell where we start to search from the
1140  * page cache.  Map is used to figure out the end points of the range to
1141  * lookup pages.
1142  *
1143  * Return true if the desired type of offset was found, and the argument
1144  * offset is filled with that address.  Otherwise, return false and keep
1145  * offset unchanged.
1146  */
1147 STATIC bool
1148 xfs_find_get_desired_pgoff(
1149 	struct inode		*inode,
1150 	struct xfs_bmbt_irec	*map,
1151 	unsigned int		type,
1152 	loff_t			*offset)
1153 {
1154 	struct xfs_inode	*ip = XFS_I(inode);
1155 	struct xfs_mount	*mp = ip->i_mount;
1156 	struct pagevec		pvec;
1157 	pgoff_t			index;
1158 	pgoff_t			end;
1159 	loff_t			endoff;
1160 	loff_t			startoff = *offset;
1161 	loff_t			lastoff = startoff;
1162 	bool			found = false;
1163 
1164 	pagevec_init(&pvec, 0);
1165 
1166 	index = startoff >> PAGE_CACHE_SHIFT;
1167 	endoff = XFS_FSB_TO_B(mp, map->br_startoff + map->br_blockcount);
1168 	end = endoff >> PAGE_CACHE_SHIFT;
1169 	do {
1170 		int		want;
1171 		unsigned	nr_pages;
1172 		unsigned int	i;
1173 
1174 		want = min_t(pgoff_t, end - index, PAGEVEC_SIZE);
1175 		nr_pages = pagevec_lookup(&pvec, inode->i_mapping, index,
1176 					  want);
1177 		/*
1178 		 * No page mapped into given range.  If we are searching holes
1179 		 * and if this is the first time we got into the loop, it means
1180 		 * that the given offset is landed in a hole, return it.
1181 		 *
1182 		 * If we have already stepped through some block buffers to find
1183 		 * holes but they all contains data.  In this case, the last
1184 		 * offset is already updated and pointed to the end of the last
1185 		 * mapped page, if it does not reach the endpoint to search,
1186 		 * that means there should be a hole between them.
1187 		 */
1188 		if (nr_pages == 0) {
1189 			/* Data search found nothing */
1190 			if (type == DATA_OFF)
1191 				break;
1192 
1193 			ASSERT(type == HOLE_OFF);
1194 			if (lastoff == startoff || lastoff < endoff) {
1195 				found = true;
1196 				*offset = lastoff;
1197 			}
1198 			break;
1199 		}
1200 
1201 		/*
1202 		 * At lease we found one page.  If this is the first time we
1203 		 * step into the loop, and if the first page index offset is
1204 		 * greater than the given search offset, a hole was found.
1205 		 */
1206 		if (type == HOLE_OFF && lastoff == startoff &&
1207 		    lastoff < page_offset(pvec.pages[0])) {
1208 			found = true;
1209 			break;
1210 		}
1211 
1212 		for (i = 0; i < nr_pages; i++) {
1213 			struct page	*page = pvec.pages[i];
1214 			loff_t		b_offset;
1215 
1216 			/*
1217 			 * At this point, the page may be truncated or
1218 			 * invalidated (changing page->mapping to NULL),
1219 			 * or even swizzled back from swapper_space to tmpfs
1220 			 * file mapping. However, page->index will not change
1221 			 * because we have a reference on the page.
1222 			 *
1223 			 * Searching done if the page index is out of range.
1224 			 * If the current offset is not reaches the end of
1225 			 * the specified search range, there should be a hole
1226 			 * between them.
1227 			 */
1228 			if (page->index > end) {
1229 				if (type == HOLE_OFF && lastoff < endoff) {
1230 					*offset = lastoff;
1231 					found = true;
1232 				}
1233 				goto out;
1234 			}
1235 
1236 			lock_page(page);
1237 			/*
1238 			 * Page truncated or invalidated(page->mapping == NULL).
1239 			 * We can freely skip it and proceed to check the next
1240 			 * page.
1241 			 */
1242 			if (unlikely(page->mapping != inode->i_mapping)) {
1243 				unlock_page(page);
1244 				continue;
1245 			}
1246 
1247 			if (!page_has_buffers(page)) {
1248 				unlock_page(page);
1249 				continue;
1250 			}
1251 
1252 			found = xfs_lookup_buffer_offset(page, &b_offset, type);
1253 			if (found) {
1254 				/*
1255 				 * The found offset may be less than the start
1256 				 * point to search if this is the first time to
1257 				 * come here.
1258 				 */
1259 				*offset = max_t(loff_t, startoff, b_offset);
1260 				unlock_page(page);
1261 				goto out;
1262 			}
1263 
1264 			/*
1265 			 * We either searching data but nothing was found, or
1266 			 * searching hole but found a data buffer.  In either
1267 			 * case, probably the next page contains the desired
1268 			 * things, update the last offset to it so.
1269 			 */
1270 			lastoff = page_offset(page) + PAGE_SIZE;
1271 			unlock_page(page);
1272 		}
1273 
1274 		/*
1275 		 * The number of returned pages less than our desired, search
1276 		 * done.  In this case, nothing was found for searching data,
1277 		 * but we found a hole behind the last offset.
1278 		 */
1279 		if (nr_pages < want) {
1280 			if (type == HOLE_OFF) {
1281 				*offset = lastoff;
1282 				found = true;
1283 			}
1284 			break;
1285 		}
1286 
1287 		index = pvec.pages[i - 1]->index + 1;
1288 		pagevec_release(&pvec);
1289 	} while (index <= end);
1290 
1291 out:
1292 	pagevec_release(&pvec);
1293 	return found;
1294 }
1295 
1296 STATIC loff_t
1297 xfs_seek_hole_data(
1298 	struct file		*file,
1299 	loff_t			start,
1300 	int			whence)
1301 {
1302 	struct inode		*inode = file->f_mapping->host;
1303 	struct xfs_inode	*ip = XFS_I(inode);
1304 	struct xfs_mount	*mp = ip->i_mount;
1305 	loff_t			uninitialized_var(offset);
1306 	xfs_fsize_t		isize;
1307 	xfs_fileoff_t		fsbno;
1308 	xfs_filblks_t		end;
1309 	uint			lock;
1310 	int			error;
1311 
1312 	if (XFS_FORCED_SHUTDOWN(mp))
1313 		return -EIO;
1314 
1315 	lock = xfs_ilock_data_map_shared(ip);
1316 
1317 	isize = i_size_read(inode);
1318 	if (start >= isize) {
1319 		error = -ENXIO;
1320 		goto out_unlock;
1321 	}
1322 
1323 	/*
1324 	 * Try to read extents from the first block indicated
1325 	 * by fsbno to the end block of the file.
1326 	 */
1327 	fsbno = XFS_B_TO_FSBT(mp, start);
1328 	end = XFS_B_TO_FSB(mp, isize);
1329 
1330 	for (;;) {
1331 		struct xfs_bmbt_irec	map[2];
1332 		int			nmap = 2;
1333 		unsigned int		i;
1334 
1335 		error = xfs_bmapi_read(ip, fsbno, end - fsbno, map, &nmap,
1336 				       XFS_BMAPI_ENTIRE);
1337 		if (error)
1338 			goto out_unlock;
1339 
1340 		/* No extents at given offset, must be beyond EOF */
1341 		if (nmap == 0) {
1342 			error = -ENXIO;
1343 			goto out_unlock;
1344 		}
1345 
1346 		for (i = 0; i < nmap; i++) {
1347 			offset = max_t(loff_t, start,
1348 				       XFS_FSB_TO_B(mp, map[i].br_startoff));
1349 
1350 			/* Landed in the hole we wanted? */
1351 			if (whence == SEEK_HOLE &&
1352 			    map[i].br_startblock == HOLESTARTBLOCK)
1353 				goto out;
1354 
1355 			/* Landed in the data extent we wanted? */
1356 			if (whence == SEEK_DATA &&
1357 			    (map[i].br_startblock == DELAYSTARTBLOCK ||
1358 			     (map[i].br_state == XFS_EXT_NORM &&
1359 			      !isnullstartblock(map[i].br_startblock))))
1360 				goto out;
1361 
1362 			/*
1363 			 * Landed in an unwritten extent, try to search
1364 			 * for hole or data from page cache.
1365 			 */
1366 			if (map[i].br_state == XFS_EXT_UNWRITTEN) {
1367 				if (xfs_find_get_desired_pgoff(inode, &map[i],
1368 				      whence == SEEK_HOLE ? HOLE_OFF : DATA_OFF,
1369 							&offset))
1370 					goto out;
1371 			}
1372 		}
1373 
1374 		/*
1375 		 * We only received one extent out of the two requested. This
1376 		 * means we've hit EOF and didn't find what we are looking for.
1377 		 */
1378 		if (nmap == 1) {
1379 			/*
1380 			 * If we were looking for a hole, set offset to
1381 			 * the end of the file (i.e., there is an implicit
1382 			 * hole at the end of any file).
1383 		 	 */
1384 			if (whence == SEEK_HOLE) {
1385 				offset = isize;
1386 				break;
1387 			}
1388 			/*
1389 			 * If we were looking for data, it's nowhere to be found
1390 			 */
1391 			ASSERT(whence == SEEK_DATA);
1392 			error = -ENXIO;
1393 			goto out_unlock;
1394 		}
1395 
1396 		ASSERT(i > 1);
1397 
1398 		/*
1399 		 * Nothing was found, proceed to the next round of search
1400 		 * if the next reading offset is not at or beyond EOF.
1401 		 */
1402 		fsbno = map[i - 1].br_startoff + map[i - 1].br_blockcount;
1403 		start = XFS_FSB_TO_B(mp, fsbno);
1404 		if (start >= isize) {
1405 			if (whence == SEEK_HOLE) {
1406 				offset = isize;
1407 				break;
1408 			}
1409 			ASSERT(whence == SEEK_DATA);
1410 			error = -ENXIO;
1411 			goto out_unlock;
1412 		}
1413 	}
1414 
1415 out:
1416 	/*
1417 	 * If at this point we have found the hole we wanted, the returned
1418 	 * offset may be bigger than the file size as it may be aligned to
1419 	 * page boundary for unwritten extents.  We need to deal with this
1420 	 * situation in particular.
1421 	 */
1422 	if (whence == SEEK_HOLE)
1423 		offset = min_t(loff_t, offset, isize);
1424 	offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
1425 
1426 out_unlock:
1427 	xfs_iunlock(ip, lock);
1428 
1429 	if (error)
1430 		return error;
1431 	return offset;
1432 }
1433 
1434 STATIC loff_t
1435 xfs_file_llseek(
1436 	struct file	*file,
1437 	loff_t		offset,
1438 	int		whence)
1439 {
1440 	switch (whence) {
1441 	case SEEK_END:
1442 	case SEEK_CUR:
1443 	case SEEK_SET:
1444 		return generic_file_llseek(file, offset, whence);
1445 	case SEEK_HOLE:
1446 	case SEEK_DATA:
1447 		return xfs_seek_hole_data(file, offset, whence);
1448 	default:
1449 		return -EINVAL;
1450 	}
1451 }
1452 
1453 /*
1454  * Locking for serialisation of IO during page faults. This results in a lock
1455  * ordering of:
1456  *
1457  * mmap_sem (MM)
1458  *   i_mmap_lock (XFS - truncate serialisation)
1459  *     page_lock (MM)
1460  *       i_lock (XFS - extent map serialisation)
1461  */
1462 STATIC int
1463 xfs_filemap_fault(
1464 	struct vm_area_struct	*vma,
1465 	struct vm_fault		*vmf)
1466 {
1467 	struct xfs_inode	*ip = XFS_I(vma->vm_file->f_mapping->host);
1468 	int			error;
1469 
1470 	trace_xfs_filemap_fault(ip);
1471 
1472 	xfs_ilock(ip, XFS_MMAPLOCK_SHARED);
1473 	error = filemap_fault(vma, vmf);
1474 	xfs_iunlock(ip, XFS_MMAPLOCK_SHARED);
1475 
1476 	return error;
1477 }
1478 
1479 /*
1480  * mmap()d file has taken write protection fault and is being made writable. We
1481  * can set the page state up correctly for a writable page, which means we can
1482  * do correct delalloc accounting (ENOSPC checking!) and unwritten extent
1483  * mapping.
1484  */
1485 STATIC int
1486 xfs_filemap_page_mkwrite(
1487 	struct vm_area_struct	*vma,
1488 	struct vm_fault		*vmf)
1489 {
1490 	struct xfs_inode	*ip = XFS_I(vma->vm_file->f_mapping->host);
1491 	int			error;
1492 
1493 	trace_xfs_filemap_page_mkwrite(ip);
1494 
1495 	xfs_ilock(ip, XFS_MMAPLOCK_SHARED);
1496 	error = block_page_mkwrite(vma, vmf, xfs_get_blocks);
1497 	xfs_iunlock(ip, XFS_MMAPLOCK_SHARED);
1498 
1499 	return error;
1500 }
1501 
1502 const struct file_operations xfs_file_operations = {
1503 	.llseek		= xfs_file_llseek,
1504 	.read_iter	= xfs_file_read_iter,
1505 	.write_iter	= xfs_file_write_iter,
1506 	.splice_read	= xfs_file_splice_read,
1507 	.splice_write	= iter_file_splice_write,
1508 	.unlocked_ioctl	= xfs_file_ioctl,
1509 #ifdef CONFIG_COMPAT
1510 	.compat_ioctl	= xfs_file_compat_ioctl,
1511 #endif
1512 	.mmap		= xfs_file_mmap,
1513 	.open		= xfs_file_open,
1514 	.release	= xfs_file_release,
1515 	.fsync		= xfs_file_fsync,
1516 	.fallocate	= xfs_file_fallocate,
1517 };
1518 
1519 const struct file_operations xfs_dir_file_operations = {
1520 	.open		= xfs_dir_open,
1521 	.read		= generic_read_dir,
1522 	.iterate	= xfs_file_readdir,
1523 	.llseek		= generic_file_llseek,
1524 	.unlocked_ioctl	= xfs_file_ioctl,
1525 #ifdef CONFIG_COMPAT
1526 	.compat_ioctl	= xfs_file_compat_ioctl,
1527 #endif
1528 	.fsync		= xfs_dir_fsync,
1529 };
1530 
1531 static const struct vm_operations_struct xfs_file_vm_ops = {
1532 	.fault		= xfs_filemap_fault,
1533 	.map_pages	= filemap_map_pages,
1534 	.page_mkwrite	= xfs_filemap_page_mkwrite,
1535 };
1536