1 /* 2 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_fs.h" 20 #include "xfs_shared.h" 21 #include "xfs_format.h" 22 #include "xfs_log_format.h" 23 #include "xfs_trans_resv.h" 24 #include "xfs_mount.h" 25 #include "xfs_da_format.h" 26 #include "xfs_da_btree.h" 27 #include "xfs_inode.h" 28 #include "xfs_trans.h" 29 #include "xfs_inode_item.h" 30 #include "xfs_bmap.h" 31 #include "xfs_bmap_util.h" 32 #include "xfs_error.h" 33 #include "xfs_dir2.h" 34 #include "xfs_dir2_priv.h" 35 #include "xfs_ioctl.h" 36 #include "xfs_trace.h" 37 #include "xfs_log.h" 38 #include "xfs_icache.h" 39 #include "xfs_pnfs.h" 40 41 #include <linux/dcache.h> 42 #include <linux/falloc.h> 43 #include <linux/pagevec.h> 44 #include <linux/backing-dev.h> 45 46 static const struct vm_operations_struct xfs_file_vm_ops; 47 48 /* 49 * Locking primitives for read and write IO paths to ensure we consistently use 50 * and order the inode->i_mutex, ip->i_lock and ip->i_iolock. 51 */ 52 static inline void 53 xfs_rw_ilock( 54 struct xfs_inode *ip, 55 int type) 56 { 57 if (type & XFS_IOLOCK_EXCL) 58 mutex_lock(&VFS_I(ip)->i_mutex); 59 xfs_ilock(ip, type); 60 } 61 62 static inline void 63 xfs_rw_iunlock( 64 struct xfs_inode *ip, 65 int type) 66 { 67 xfs_iunlock(ip, type); 68 if (type & XFS_IOLOCK_EXCL) 69 mutex_unlock(&VFS_I(ip)->i_mutex); 70 } 71 72 static inline void 73 xfs_rw_ilock_demote( 74 struct xfs_inode *ip, 75 int type) 76 { 77 xfs_ilock_demote(ip, type); 78 if (type & XFS_IOLOCK_EXCL) 79 mutex_unlock(&VFS_I(ip)->i_mutex); 80 } 81 82 /* 83 * xfs_iozero clears the specified range supplied via the page cache (except in 84 * the DAX case). Writes through the page cache will allocate blocks over holes, 85 * though the callers usually map the holes first and avoid them. If a block is 86 * not completely zeroed, then it will be read from disk before being partially 87 * zeroed. 88 * 89 * In the DAX case, we can just directly write to the underlying pages. This 90 * will not allocate blocks, but will avoid holes and unwritten extents and so 91 * not do unnecessary work. 92 */ 93 int 94 xfs_iozero( 95 struct xfs_inode *ip, /* inode */ 96 loff_t pos, /* offset in file */ 97 size_t count) /* size of data to zero */ 98 { 99 struct page *page; 100 struct address_space *mapping; 101 int status = 0; 102 103 104 mapping = VFS_I(ip)->i_mapping; 105 do { 106 unsigned offset, bytes; 107 void *fsdata; 108 109 offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */ 110 bytes = PAGE_CACHE_SIZE - offset; 111 if (bytes > count) 112 bytes = count; 113 114 if (IS_DAX(VFS_I(ip))) { 115 status = dax_zero_page_range(VFS_I(ip), pos, bytes, 116 xfs_get_blocks_direct); 117 if (status) 118 break; 119 } else { 120 status = pagecache_write_begin(NULL, mapping, pos, bytes, 121 AOP_FLAG_UNINTERRUPTIBLE, 122 &page, &fsdata); 123 if (status) 124 break; 125 126 zero_user(page, offset, bytes); 127 128 status = pagecache_write_end(NULL, mapping, pos, bytes, 129 bytes, page, fsdata); 130 WARN_ON(status <= 0); /* can't return less than zero! */ 131 status = 0; 132 } 133 pos += bytes; 134 count -= bytes; 135 } while (count); 136 137 return status; 138 } 139 140 int 141 xfs_update_prealloc_flags( 142 struct xfs_inode *ip, 143 enum xfs_prealloc_flags flags) 144 { 145 struct xfs_trans *tp; 146 int error; 147 148 tp = xfs_trans_alloc(ip->i_mount, XFS_TRANS_WRITEID); 149 error = xfs_trans_reserve(tp, &M_RES(ip->i_mount)->tr_writeid, 0, 0); 150 if (error) { 151 xfs_trans_cancel(tp); 152 return error; 153 } 154 155 xfs_ilock(ip, XFS_ILOCK_EXCL); 156 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 157 158 if (!(flags & XFS_PREALLOC_INVISIBLE)) { 159 ip->i_d.di_mode &= ~S_ISUID; 160 if (ip->i_d.di_mode & S_IXGRP) 161 ip->i_d.di_mode &= ~S_ISGID; 162 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 163 } 164 165 if (flags & XFS_PREALLOC_SET) 166 ip->i_d.di_flags |= XFS_DIFLAG_PREALLOC; 167 if (flags & XFS_PREALLOC_CLEAR) 168 ip->i_d.di_flags &= ~XFS_DIFLAG_PREALLOC; 169 170 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 171 if (flags & XFS_PREALLOC_SYNC) 172 xfs_trans_set_sync(tp); 173 return xfs_trans_commit(tp); 174 } 175 176 /* 177 * Fsync operations on directories are much simpler than on regular files, 178 * as there is no file data to flush, and thus also no need for explicit 179 * cache flush operations, and there are no non-transaction metadata updates 180 * on directories either. 181 */ 182 STATIC int 183 xfs_dir_fsync( 184 struct file *file, 185 loff_t start, 186 loff_t end, 187 int datasync) 188 { 189 struct xfs_inode *ip = XFS_I(file->f_mapping->host); 190 struct xfs_mount *mp = ip->i_mount; 191 xfs_lsn_t lsn = 0; 192 193 trace_xfs_dir_fsync(ip); 194 195 xfs_ilock(ip, XFS_ILOCK_SHARED); 196 if (xfs_ipincount(ip)) 197 lsn = ip->i_itemp->ili_last_lsn; 198 xfs_iunlock(ip, XFS_ILOCK_SHARED); 199 200 if (!lsn) 201 return 0; 202 return _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, NULL); 203 } 204 205 STATIC int 206 xfs_file_fsync( 207 struct file *file, 208 loff_t start, 209 loff_t end, 210 int datasync) 211 { 212 struct inode *inode = file->f_mapping->host; 213 struct xfs_inode *ip = XFS_I(inode); 214 struct xfs_mount *mp = ip->i_mount; 215 int error = 0; 216 int log_flushed = 0; 217 xfs_lsn_t lsn = 0; 218 219 trace_xfs_file_fsync(ip); 220 221 error = filemap_write_and_wait_range(inode->i_mapping, start, end); 222 if (error) 223 return error; 224 225 if (XFS_FORCED_SHUTDOWN(mp)) 226 return -EIO; 227 228 xfs_iflags_clear(ip, XFS_ITRUNCATED); 229 230 if (mp->m_flags & XFS_MOUNT_BARRIER) { 231 /* 232 * If we have an RT and/or log subvolume we need to make sure 233 * to flush the write cache the device used for file data 234 * first. This is to ensure newly written file data make 235 * it to disk before logging the new inode size in case of 236 * an extending write. 237 */ 238 if (XFS_IS_REALTIME_INODE(ip)) 239 xfs_blkdev_issue_flush(mp->m_rtdev_targp); 240 else if (mp->m_logdev_targp != mp->m_ddev_targp) 241 xfs_blkdev_issue_flush(mp->m_ddev_targp); 242 } 243 244 /* 245 * All metadata updates are logged, which means that we just have 246 * to flush the log up to the latest LSN that touched the inode. 247 */ 248 xfs_ilock(ip, XFS_ILOCK_SHARED); 249 if (xfs_ipincount(ip)) { 250 if (!datasync || 251 (ip->i_itemp->ili_fields & ~XFS_ILOG_TIMESTAMP)) 252 lsn = ip->i_itemp->ili_last_lsn; 253 } 254 xfs_iunlock(ip, XFS_ILOCK_SHARED); 255 256 if (lsn) 257 error = _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed); 258 259 /* 260 * If we only have a single device, and the log force about was 261 * a no-op we might have to flush the data device cache here. 262 * This can only happen for fdatasync/O_DSYNC if we were overwriting 263 * an already allocated file and thus do not have any metadata to 264 * commit. 265 */ 266 if ((mp->m_flags & XFS_MOUNT_BARRIER) && 267 mp->m_logdev_targp == mp->m_ddev_targp && 268 !XFS_IS_REALTIME_INODE(ip) && 269 !log_flushed) 270 xfs_blkdev_issue_flush(mp->m_ddev_targp); 271 272 return error; 273 } 274 275 STATIC ssize_t 276 xfs_file_read_iter( 277 struct kiocb *iocb, 278 struct iov_iter *to) 279 { 280 struct file *file = iocb->ki_filp; 281 struct inode *inode = file->f_mapping->host; 282 struct xfs_inode *ip = XFS_I(inode); 283 struct xfs_mount *mp = ip->i_mount; 284 size_t size = iov_iter_count(to); 285 ssize_t ret = 0; 286 int ioflags = 0; 287 xfs_fsize_t n; 288 loff_t pos = iocb->ki_pos; 289 290 XFS_STATS_INC(xs_read_calls); 291 292 if (unlikely(iocb->ki_flags & IOCB_DIRECT)) 293 ioflags |= XFS_IO_ISDIRECT; 294 if (file->f_mode & FMODE_NOCMTIME) 295 ioflags |= XFS_IO_INVIS; 296 297 if ((ioflags & XFS_IO_ISDIRECT) && !IS_DAX(inode)) { 298 xfs_buftarg_t *target = 299 XFS_IS_REALTIME_INODE(ip) ? 300 mp->m_rtdev_targp : mp->m_ddev_targp; 301 /* DIO must be aligned to device logical sector size */ 302 if ((pos | size) & target->bt_logical_sectormask) { 303 if (pos == i_size_read(inode)) 304 return 0; 305 return -EINVAL; 306 } 307 } 308 309 n = mp->m_super->s_maxbytes - pos; 310 if (n <= 0 || size == 0) 311 return 0; 312 313 if (n < size) 314 size = n; 315 316 if (XFS_FORCED_SHUTDOWN(mp)) 317 return -EIO; 318 319 /* 320 * Locking is a bit tricky here. If we take an exclusive lock 321 * for direct IO, we effectively serialise all new concurrent 322 * read IO to this file and block it behind IO that is currently in 323 * progress because IO in progress holds the IO lock shared. We only 324 * need to hold the lock exclusive to blow away the page cache, so 325 * only take lock exclusively if the page cache needs invalidation. 326 * This allows the normal direct IO case of no page cache pages to 327 * proceeed concurrently without serialisation. 328 */ 329 xfs_rw_ilock(ip, XFS_IOLOCK_SHARED); 330 if ((ioflags & XFS_IO_ISDIRECT) && inode->i_mapping->nrpages) { 331 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED); 332 xfs_rw_ilock(ip, XFS_IOLOCK_EXCL); 333 334 if (inode->i_mapping->nrpages) { 335 ret = filemap_write_and_wait_range( 336 VFS_I(ip)->i_mapping, 337 pos, pos + size - 1); 338 if (ret) { 339 xfs_rw_iunlock(ip, XFS_IOLOCK_EXCL); 340 return ret; 341 } 342 343 /* 344 * Invalidate whole pages. This can return an error if 345 * we fail to invalidate a page, but this should never 346 * happen on XFS. Warn if it does fail. 347 */ 348 ret = invalidate_inode_pages2_range(VFS_I(ip)->i_mapping, 349 pos >> PAGE_CACHE_SHIFT, 350 (pos + size - 1) >> PAGE_CACHE_SHIFT); 351 WARN_ON_ONCE(ret); 352 ret = 0; 353 } 354 xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL); 355 } 356 357 trace_xfs_file_read(ip, size, pos, ioflags); 358 359 ret = generic_file_read_iter(iocb, to); 360 if (ret > 0) 361 XFS_STATS_ADD(xs_read_bytes, ret); 362 363 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED); 364 return ret; 365 } 366 367 STATIC ssize_t 368 xfs_file_splice_read( 369 struct file *infilp, 370 loff_t *ppos, 371 struct pipe_inode_info *pipe, 372 size_t count, 373 unsigned int flags) 374 { 375 struct xfs_inode *ip = XFS_I(infilp->f_mapping->host); 376 int ioflags = 0; 377 ssize_t ret; 378 379 XFS_STATS_INC(xs_read_calls); 380 381 if (infilp->f_mode & FMODE_NOCMTIME) 382 ioflags |= XFS_IO_INVIS; 383 384 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) 385 return -EIO; 386 387 xfs_rw_ilock(ip, XFS_IOLOCK_SHARED); 388 389 trace_xfs_file_splice_read(ip, count, *ppos, ioflags); 390 391 /* for dax, we need to avoid the page cache */ 392 if (IS_DAX(VFS_I(ip))) 393 ret = default_file_splice_read(infilp, ppos, pipe, count, flags); 394 else 395 ret = generic_file_splice_read(infilp, ppos, pipe, count, flags); 396 if (ret > 0) 397 XFS_STATS_ADD(xs_read_bytes, ret); 398 399 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED); 400 return ret; 401 } 402 403 /* 404 * This routine is called to handle zeroing any space in the last block of the 405 * file that is beyond the EOF. We do this since the size is being increased 406 * without writing anything to that block and we don't want to read the 407 * garbage on the disk. 408 */ 409 STATIC int /* error (positive) */ 410 xfs_zero_last_block( 411 struct xfs_inode *ip, 412 xfs_fsize_t offset, 413 xfs_fsize_t isize, 414 bool *did_zeroing) 415 { 416 struct xfs_mount *mp = ip->i_mount; 417 xfs_fileoff_t last_fsb = XFS_B_TO_FSBT(mp, isize); 418 int zero_offset = XFS_B_FSB_OFFSET(mp, isize); 419 int zero_len; 420 int nimaps = 1; 421 int error = 0; 422 struct xfs_bmbt_irec imap; 423 424 xfs_ilock(ip, XFS_ILOCK_EXCL); 425 error = xfs_bmapi_read(ip, last_fsb, 1, &imap, &nimaps, 0); 426 xfs_iunlock(ip, XFS_ILOCK_EXCL); 427 if (error) 428 return error; 429 430 ASSERT(nimaps > 0); 431 432 /* 433 * If the block underlying isize is just a hole, then there 434 * is nothing to zero. 435 */ 436 if (imap.br_startblock == HOLESTARTBLOCK) 437 return 0; 438 439 zero_len = mp->m_sb.sb_blocksize - zero_offset; 440 if (isize + zero_len > offset) 441 zero_len = offset - isize; 442 *did_zeroing = true; 443 return xfs_iozero(ip, isize, zero_len); 444 } 445 446 /* 447 * Zero any on disk space between the current EOF and the new, larger EOF. 448 * 449 * This handles the normal case of zeroing the remainder of the last block in 450 * the file and the unusual case of zeroing blocks out beyond the size of the 451 * file. This second case only happens with fixed size extents and when the 452 * system crashes before the inode size was updated but after blocks were 453 * allocated. 454 * 455 * Expects the iolock to be held exclusive, and will take the ilock internally. 456 */ 457 int /* error (positive) */ 458 xfs_zero_eof( 459 struct xfs_inode *ip, 460 xfs_off_t offset, /* starting I/O offset */ 461 xfs_fsize_t isize, /* current inode size */ 462 bool *did_zeroing) 463 { 464 struct xfs_mount *mp = ip->i_mount; 465 xfs_fileoff_t start_zero_fsb; 466 xfs_fileoff_t end_zero_fsb; 467 xfs_fileoff_t zero_count_fsb; 468 xfs_fileoff_t last_fsb; 469 xfs_fileoff_t zero_off; 470 xfs_fsize_t zero_len; 471 int nimaps; 472 int error = 0; 473 struct xfs_bmbt_irec imap; 474 475 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL)); 476 ASSERT(offset > isize); 477 478 /* 479 * First handle zeroing the block on which isize resides. 480 * 481 * We only zero a part of that block so it is handled specially. 482 */ 483 if (XFS_B_FSB_OFFSET(mp, isize) != 0) { 484 error = xfs_zero_last_block(ip, offset, isize, did_zeroing); 485 if (error) 486 return error; 487 } 488 489 /* 490 * Calculate the range between the new size and the old where blocks 491 * needing to be zeroed may exist. 492 * 493 * To get the block where the last byte in the file currently resides, 494 * we need to subtract one from the size and truncate back to a block 495 * boundary. We subtract 1 in case the size is exactly on a block 496 * boundary. 497 */ 498 last_fsb = isize ? XFS_B_TO_FSBT(mp, isize - 1) : (xfs_fileoff_t)-1; 499 start_zero_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize); 500 end_zero_fsb = XFS_B_TO_FSBT(mp, offset - 1); 501 ASSERT((xfs_sfiloff_t)last_fsb < (xfs_sfiloff_t)start_zero_fsb); 502 if (last_fsb == end_zero_fsb) { 503 /* 504 * The size was only incremented on its last block. 505 * We took care of that above, so just return. 506 */ 507 return 0; 508 } 509 510 ASSERT(start_zero_fsb <= end_zero_fsb); 511 while (start_zero_fsb <= end_zero_fsb) { 512 nimaps = 1; 513 zero_count_fsb = end_zero_fsb - start_zero_fsb + 1; 514 515 xfs_ilock(ip, XFS_ILOCK_EXCL); 516 error = xfs_bmapi_read(ip, start_zero_fsb, zero_count_fsb, 517 &imap, &nimaps, 0); 518 xfs_iunlock(ip, XFS_ILOCK_EXCL); 519 if (error) 520 return error; 521 522 ASSERT(nimaps > 0); 523 524 if (imap.br_state == XFS_EXT_UNWRITTEN || 525 imap.br_startblock == HOLESTARTBLOCK) { 526 start_zero_fsb = imap.br_startoff + imap.br_blockcount; 527 ASSERT(start_zero_fsb <= (end_zero_fsb + 1)); 528 continue; 529 } 530 531 /* 532 * There are blocks we need to zero. 533 */ 534 zero_off = XFS_FSB_TO_B(mp, start_zero_fsb); 535 zero_len = XFS_FSB_TO_B(mp, imap.br_blockcount); 536 537 if ((zero_off + zero_len) > offset) 538 zero_len = offset - zero_off; 539 540 error = xfs_iozero(ip, zero_off, zero_len); 541 if (error) 542 return error; 543 544 *did_zeroing = true; 545 start_zero_fsb = imap.br_startoff + imap.br_blockcount; 546 ASSERT(start_zero_fsb <= (end_zero_fsb + 1)); 547 } 548 549 return 0; 550 } 551 552 /* 553 * Common pre-write limit and setup checks. 554 * 555 * Called with the iolocked held either shared and exclusive according to 556 * @iolock, and returns with it held. Might upgrade the iolock to exclusive 557 * if called for a direct write beyond i_size. 558 */ 559 STATIC ssize_t 560 xfs_file_aio_write_checks( 561 struct kiocb *iocb, 562 struct iov_iter *from, 563 int *iolock) 564 { 565 struct file *file = iocb->ki_filp; 566 struct inode *inode = file->f_mapping->host; 567 struct xfs_inode *ip = XFS_I(inode); 568 ssize_t error = 0; 569 size_t count = iov_iter_count(from); 570 571 restart: 572 error = generic_write_checks(iocb, from); 573 if (error <= 0) 574 return error; 575 576 error = xfs_break_layouts(inode, iolock, true); 577 if (error) 578 return error; 579 580 /* For changing security info in file_remove_privs() we need i_mutex */ 581 if (*iolock == XFS_IOLOCK_SHARED && !IS_NOSEC(inode)) { 582 xfs_rw_iunlock(ip, *iolock); 583 *iolock = XFS_IOLOCK_EXCL; 584 xfs_rw_ilock(ip, *iolock); 585 goto restart; 586 } 587 /* 588 * If the offset is beyond the size of the file, we need to zero any 589 * blocks that fall between the existing EOF and the start of this 590 * write. If zeroing is needed and we are currently holding the 591 * iolock shared, we need to update it to exclusive which implies 592 * having to redo all checks before. 593 * 594 * We need to serialise against EOF updates that occur in IO 595 * completions here. We want to make sure that nobody is changing the 596 * size while we do this check until we have placed an IO barrier (i.e. 597 * hold the XFS_IOLOCK_EXCL) that prevents new IO from being dispatched. 598 * The spinlock effectively forms a memory barrier once we have the 599 * XFS_IOLOCK_EXCL so we are guaranteed to see the latest EOF value 600 * and hence be able to correctly determine if we need to run zeroing. 601 */ 602 spin_lock(&ip->i_flags_lock); 603 if (iocb->ki_pos > i_size_read(inode)) { 604 bool zero = false; 605 606 spin_unlock(&ip->i_flags_lock); 607 if (*iolock == XFS_IOLOCK_SHARED) { 608 xfs_rw_iunlock(ip, *iolock); 609 *iolock = XFS_IOLOCK_EXCL; 610 xfs_rw_ilock(ip, *iolock); 611 iov_iter_reexpand(from, count); 612 613 /* 614 * We now have an IO submission barrier in place, but 615 * AIO can do EOF updates during IO completion and hence 616 * we now need to wait for all of them to drain. Non-AIO 617 * DIO will have drained before we are given the 618 * XFS_IOLOCK_EXCL, and so for most cases this wait is a 619 * no-op. 620 */ 621 inode_dio_wait(inode); 622 goto restart; 623 } 624 error = xfs_zero_eof(ip, iocb->ki_pos, i_size_read(inode), &zero); 625 if (error) 626 return error; 627 } else 628 spin_unlock(&ip->i_flags_lock); 629 630 /* 631 * Updating the timestamps will grab the ilock again from 632 * xfs_fs_dirty_inode, so we have to call it after dropping the 633 * lock above. Eventually we should look into a way to avoid 634 * the pointless lock roundtrip. 635 */ 636 if (likely(!(file->f_mode & FMODE_NOCMTIME))) { 637 error = file_update_time(file); 638 if (error) 639 return error; 640 } 641 642 /* 643 * If we're writing the file then make sure to clear the setuid and 644 * setgid bits if the process is not being run by root. This keeps 645 * people from modifying setuid and setgid binaries. 646 */ 647 if (!IS_NOSEC(inode)) 648 return file_remove_privs(file); 649 return 0; 650 } 651 652 /* 653 * xfs_file_dio_aio_write - handle direct IO writes 654 * 655 * Lock the inode appropriately to prepare for and issue a direct IO write. 656 * By separating it from the buffered write path we remove all the tricky to 657 * follow locking changes and looping. 658 * 659 * If there are cached pages or we're extending the file, we need IOLOCK_EXCL 660 * until we're sure the bytes at the new EOF have been zeroed and/or the cached 661 * pages are flushed out. 662 * 663 * In most cases the direct IO writes will be done holding IOLOCK_SHARED 664 * allowing them to be done in parallel with reads and other direct IO writes. 665 * However, if the IO is not aligned to filesystem blocks, the direct IO layer 666 * needs to do sub-block zeroing and that requires serialisation against other 667 * direct IOs to the same block. In this case we need to serialise the 668 * submission of the unaligned IOs so that we don't get racing block zeroing in 669 * the dio layer. To avoid the problem with aio, we also need to wait for 670 * outstanding IOs to complete so that unwritten extent conversion is completed 671 * before we try to map the overlapping block. This is currently implemented by 672 * hitting it with a big hammer (i.e. inode_dio_wait()). 673 * 674 * Returns with locks held indicated by @iolock and errors indicated by 675 * negative return values. 676 */ 677 STATIC ssize_t 678 xfs_file_dio_aio_write( 679 struct kiocb *iocb, 680 struct iov_iter *from) 681 { 682 struct file *file = iocb->ki_filp; 683 struct address_space *mapping = file->f_mapping; 684 struct inode *inode = mapping->host; 685 struct xfs_inode *ip = XFS_I(inode); 686 struct xfs_mount *mp = ip->i_mount; 687 ssize_t ret = 0; 688 int unaligned_io = 0; 689 int iolock; 690 size_t count = iov_iter_count(from); 691 loff_t pos = iocb->ki_pos; 692 loff_t end; 693 struct iov_iter data; 694 struct xfs_buftarg *target = XFS_IS_REALTIME_INODE(ip) ? 695 mp->m_rtdev_targp : mp->m_ddev_targp; 696 697 /* DIO must be aligned to device logical sector size */ 698 if (!IS_DAX(inode) && ((pos | count) & target->bt_logical_sectormask)) 699 return -EINVAL; 700 701 /* "unaligned" here means not aligned to a filesystem block */ 702 if ((pos & mp->m_blockmask) || ((pos + count) & mp->m_blockmask)) 703 unaligned_io = 1; 704 705 /* 706 * We don't need to take an exclusive lock unless there page cache needs 707 * to be invalidated or unaligned IO is being executed. We don't need to 708 * consider the EOF extension case here because 709 * xfs_file_aio_write_checks() will relock the inode as necessary for 710 * EOF zeroing cases and fill out the new inode size as appropriate. 711 */ 712 if (unaligned_io || mapping->nrpages) 713 iolock = XFS_IOLOCK_EXCL; 714 else 715 iolock = XFS_IOLOCK_SHARED; 716 xfs_rw_ilock(ip, iolock); 717 718 /* 719 * Recheck if there are cached pages that need invalidate after we got 720 * the iolock to protect against other threads adding new pages while 721 * we were waiting for the iolock. 722 */ 723 if (mapping->nrpages && iolock == XFS_IOLOCK_SHARED) { 724 xfs_rw_iunlock(ip, iolock); 725 iolock = XFS_IOLOCK_EXCL; 726 xfs_rw_ilock(ip, iolock); 727 } 728 729 ret = xfs_file_aio_write_checks(iocb, from, &iolock); 730 if (ret) 731 goto out; 732 count = iov_iter_count(from); 733 pos = iocb->ki_pos; 734 end = pos + count - 1; 735 736 if (mapping->nrpages) { 737 ret = filemap_write_and_wait_range(VFS_I(ip)->i_mapping, 738 pos, end); 739 if (ret) 740 goto out; 741 /* 742 * Invalidate whole pages. This can return an error if 743 * we fail to invalidate a page, but this should never 744 * happen on XFS. Warn if it does fail. 745 */ 746 ret = invalidate_inode_pages2_range(VFS_I(ip)->i_mapping, 747 pos >> PAGE_CACHE_SHIFT, 748 end >> PAGE_CACHE_SHIFT); 749 WARN_ON_ONCE(ret); 750 ret = 0; 751 } 752 753 /* 754 * If we are doing unaligned IO, wait for all other IO to drain, 755 * otherwise demote the lock if we had to flush cached pages 756 */ 757 if (unaligned_io) 758 inode_dio_wait(inode); 759 else if (iolock == XFS_IOLOCK_EXCL) { 760 xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL); 761 iolock = XFS_IOLOCK_SHARED; 762 } 763 764 trace_xfs_file_direct_write(ip, count, iocb->ki_pos, 0); 765 766 data = *from; 767 ret = mapping->a_ops->direct_IO(iocb, &data, pos); 768 769 /* see generic_file_direct_write() for why this is necessary */ 770 if (mapping->nrpages) { 771 invalidate_inode_pages2_range(mapping, 772 pos >> PAGE_CACHE_SHIFT, 773 end >> PAGE_CACHE_SHIFT); 774 } 775 776 if (ret > 0) { 777 pos += ret; 778 iov_iter_advance(from, ret); 779 iocb->ki_pos = pos; 780 } 781 out: 782 xfs_rw_iunlock(ip, iolock); 783 784 /* 785 * No fallback to buffered IO on errors for XFS. DAX can result in 786 * partial writes, but direct IO will either complete fully or fail. 787 */ 788 ASSERT(ret < 0 || ret == count || IS_DAX(VFS_I(ip))); 789 return ret; 790 } 791 792 STATIC ssize_t 793 xfs_file_buffered_aio_write( 794 struct kiocb *iocb, 795 struct iov_iter *from) 796 { 797 struct file *file = iocb->ki_filp; 798 struct address_space *mapping = file->f_mapping; 799 struct inode *inode = mapping->host; 800 struct xfs_inode *ip = XFS_I(inode); 801 ssize_t ret; 802 int enospc = 0; 803 int iolock = XFS_IOLOCK_EXCL; 804 805 xfs_rw_ilock(ip, iolock); 806 807 ret = xfs_file_aio_write_checks(iocb, from, &iolock); 808 if (ret) 809 goto out; 810 811 /* We can write back this queue in page reclaim */ 812 current->backing_dev_info = inode_to_bdi(inode); 813 814 write_retry: 815 trace_xfs_file_buffered_write(ip, iov_iter_count(from), 816 iocb->ki_pos, 0); 817 ret = generic_perform_write(file, from, iocb->ki_pos); 818 if (likely(ret >= 0)) 819 iocb->ki_pos += ret; 820 821 /* 822 * If we hit a space limit, try to free up some lingering preallocated 823 * space before returning an error. In the case of ENOSPC, first try to 824 * write back all dirty inodes to free up some of the excess reserved 825 * metadata space. This reduces the chances that the eofblocks scan 826 * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this 827 * also behaves as a filter to prevent too many eofblocks scans from 828 * running at the same time. 829 */ 830 if (ret == -EDQUOT && !enospc) { 831 enospc = xfs_inode_free_quota_eofblocks(ip); 832 if (enospc) 833 goto write_retry; 834 } else if (ret == -ENOSPC && !enospc) { 835 struct xfs_eofblocks eofb = {0}; 836 837 enospc = 1; 838 xfs_flush_inodes(ip->i_mount); 839 eofb.eof_scan_owner = ip->i_ino; /* for locking */ 840 eofb.eof_flags = XFS_EOF_FLAGS_SYNC; 841 xfs_icache_free_eofblocks(ip->i_mount, &eofb); 842 goto write_retry; 843 } 844 845 current->backing_dev_info = NULL; 846 out: 847 xfs_rw_iunlock(ip, iolock); 848 return ret; 849 } 850 851 STATIC ssize_t 852 xfs_file_write_iter( 853 struct kiocb *iocb, 854 struct iov_iter *from) 855 { 856 struct file *file = iocb->ki_filp; 857 struct address_space *mapping = file->f_mapping; 858 struct inode *inode = mapping->host; 859 struct xfs_inode *ip = XFS_I(inode); 860 ssize_t ret; 861 size_t ocount = iov_iter_count(from); 862 863 XFS_STATS_INC(xs_write_calls); 864 865 if (ocount == 0) 866 return 0; 867 868 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) 869 return -EIO; 870 871 if ((iocb->ki_flags & IOCB_DIRECT) || IS_DAX(inode)) 872 ret = xfs_file_dio_aio_write(iocb, from); 873 else 874 ret = xfs_file_buffered_aio_write(iocb, from); 875 876 if (ret > 0) { 877 ssize_t err; 878 879 XFS_STATS_ADD(xs_write_bytes, ret); 880 881 /* Handle various SYNC-type writes */ 882 err = generic_write_sync(file, iocb->ki_pos - ret, ret); 883 if (err < 0) 884 ret = err; 885 } 886 return ret; 887 } 888 889 #define XFS_FALLOC_FL_SUPPORTED \ 890 (FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | \ 891 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE | \ 892 FALLOC_FL_INSERT_RANGE) 893 894 STATIC long 895 xfs_file_fallocate( 896 struct file *file, 897 int mode, 898 loff_t offset, 899 loff_t len) 900 { 901 struct inode *inode = file_inode(file); 902 struct xfs_inode *ip = XFS_I(inode); 903 long error; 904 enum xfs_prealloc_flags flags = 0; 905 uint iolock = XFS_IOLOCK_EXCL; 906 loff_t new_size = 0; 907 bool do_file_insert = 0; 908 909 if (!S_ISREG(inode->i_mode)) 910 return -EINVAL; 911 if (mode & ~XFS_FALLOC_FL_SUPPORTED) 912 return -EOPNOTSUPP; 913 914 xfs_ilock(ip, iolock); 915 error = xfs_break_layouts(inode, &iolock, false); 916 if (error) 917 goto out_unlock; 918 919 xfs_ilock(ip, XFS_MMAPLOCK_EXCL); 920 iolock |= XFS_MMAPLOCK_EXCL; 921 922 if (mode & FALLOC_FL_PUNCH_HOLE) { 923 error = xfs_free_file_space(ip, offset, len); 924 if (error) 925 goto out_unlock; 926 } else if (mode & FALLOC_FL_COLLAPSE_RANGE) { 927 unsigned blksize_mask = (1 << inode->i_blkbits) - 1; 928 929 if (offset & blksize_mask || len & blksize_mask) { 930 error = -EINVAL; 931 goto out_unlock; 932 } 933 934 /* 935 * There is no need to overlap collapse range with EOF, 936 * in which case it is effectively a truncate operation 937 */ 938 if (offset + len >= i_size_read(inode)) { 939 error = -EINVAL; 940 goto out_unlock; 941 } 942 943 new_size = i_size_read(inode) - len; 944 945 error = xfs_collapse_file_space(ip, offset, len); 946 if (error) 947 goto out_unlock; 948 } else if (mode & FALLOC_FL_INSERT_RANGE) { 949 unsigned blksize_mask = (1 << inode->i_blkbits) - 1; 950 951 new_size = i_size_read(inode) + len; 952 if (offset & blksize_mask || len & blksize_mask) { 953 error = -EINVAL; 954 goto out_unlock; 955 } 956 957 /* check the new inode size does not wrap through zero */ 958 if (new_size > inode->i_sb->s_maxbytes) { 959 error = -EFBIG; 960 goto out_unlock; 961 } 962 963 /* Offset should be less than i_size */ 964 if (offset >= i_size_read(inode)) { 965 error = -EINVAL; 966 goto out_unlock; 967 } 968 do_file_insert = 1; 969 } else { 970 flags |= XFS_PREALLOC_SET; 971 972 if (!(mode & FALLOC_FL_KEEP_SIZE) && 973 offset + len > i_size_read(inode)) { 974 new_size = offset + len; 975 error = inode_newsize_ok(inode, new_size); 976 if (error) 977 goto out_unlock; 978 } 979 980 if (mode & FALLOC_FL_ZERO_RANGE) 981 error = xfs_zero_file_space(ip, offset, len); 982 else 983 error = xfs_alloc_file_space(ip, offset, len, 984 XFS_BMAPI_PREALLOC); 985 if (error) 986 goto out_unlock; 987 } 988 989 if (file->f_flags & O_DSYNC) 990 flags |= XFS_PREALLOC_SYNC; 991 992 error = xfs_update_prealloc_flags(ip, flags); 993 if (error) 994 goto out_unlock; 995 996 /* Change file size if needed */ 997 if (new_size) { 998 struct iattr iattr; 999 1000 iattr.ia_valid = ATTR_SIZE; 1001 iattr.ia_size = new_size; 1002 error = xfs_setattr_size(ip, &iattr); 1003 if (error) 1004 goto out_unlock; 1005 } 1006 1007 /* 1008 * Perform hole insertion now that the file size has been 1009 * updated so that if we crash during the operation we don't 1010 * leave shifted extents past EOF and hence losing access to 1011 * the data that is contained within them. 1012 */ 1013 if (do_file_insert) 1014 error = xfs_insert_file_space(ip, offset, len); 1015 1016 out_unlock: 1017 xfs_iunlock(ip, iolock); 1018 return error; 1019 } 1020 1021 1022 STATIC int 1023 xfs_file_open( 1024 struct inode *inode, 1025 struct file *file) 1026 { 1027 if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS) 1028 return -EFBIG; 1029 if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb))) 1030 return -EIO; 1031 return 0; 1032 } 1033 1034 STATIC int 1035 xfs_dir_open( 1036 struct inode *inode, 1037 struct file *file) 1038 { 1039 struct xfs_inode *ip = XFS_I(inode); 1040 int mode; 1041 int error; 1042 1043 error = xfs_file_open(inode, file); 1044 if (error) 1045 return error; 1046 1047 /* 1048 * If there are any blocks, read-ahead block 0 as we're almost 1049 * certain to have the next operation be a read there. 1050 */ 1051 mode = xfs_ilock_data_map_shared(ip); 1052 if (ip->i_d.di_nextents > 0) 1053 xfs_dir3_data_readahead(ip, 0, -1); 1054 xfs_iunlock(ip, mode); 1055 return 0; 1056 } 1057 1058 STATIC int 1059 xfs_file_release( 1060 struct inode *inode, 1061 struct file *filp) 1062 { 1063 return xfs_release(XFS_I(inode)); 1064 } 1065 1066 STATIC int 1067 xfs_file_readdir( 1068 struct file *file, 1069 struct dir_context *ctx) 1070 { 1071 struct inode *inode = file_inode(file); 1072 xfs_inode_t *ip = XFS_I(inode); 1073 size_t bufsize; 1074 1075 /* 1076 * The Linux API doesn't pass down the total size of the buffer 1077 * we read into down to the filesystem. With the filldir concept 1078 * it's not needed for correct information, but the XFS dir2 leaf 1079 * code wants an estimate of the buffer size to calculate it's 1080 * readahead window and size the buffers used for mapping to 1081 * physical blocks. 1082 * 1083 * Try to give it an estimate that's good enough, maybe at some 1084 * point we can change the ->readdir prototype to include the 1085 * buffer size. For now we use the current glibc buffer size. 1086 */ 1087 bufsize = (size_t)min_t(loff_t, 32768, ip->i_d.di_size); 1088 1089 return xfs_readdir(ip, ctx, bufsize); 1090 } 1091 1092 /* 1093 * This type is designed to indicate the type of offset we would like 1094 * to search from page cache for xfs_seek_hole_data(). 1095 */ 1096 enum { 1097 HOLE_OFF = 0, 1098 DATA_OFF, 1099 }; 1100 1101 /* 1102 * Lookup the desired type of offset from the given page. 1103 * 1104 * On success, return true and the offset argument will point to the 1105 * start of the region that was found. Otherwise this function will 1106 * return false and keep the offset argument unchanged. 1107 */ 1108 STATIC bool 1109 xfs_lookup_buffer_offset( 1110 struct page *page, 1111 loff_t *offset, 1112 unsigned int type) 1113 { 1114 loff_t lastoff = page_offset(page); 1115 bool found = false; 1116 struct buffer_head *bh, *head; 1117 1118 bh = head = page_buffers(page); 1119 do { 1120 /* 1121 * Unwritten extents that have data in the page 1122 * cache covering them can be identified by the 1123 * BH_Unwritten state flag. Pages with multiple 1124 * buffers might have a mix of holes, data and 1125 * unwritten extents - any buffer with valid 1126 * data in it should have BH_Uptodate flag set 1127 * on it. 1128 */ 1129 if (buffer_unwritten(bh) || 1130 buffer_uptodate(bh)) { 1131 if (type == DATA_OFF) 1132 found = true; 1133 } else { 1134 if (type == HOLE_OFF) 1135 found = true; 1136 } 1137 1138 if (found) { 1139 *offset = lastoff; 1140 break; 1141 } 1142 lastoff += bh->b_size; 1143 } while ((bh = bh->b_this_page) != head); 1144 1145 return found; 1146 } 1147 1148 /* 1149 * This routine is called to find out and return a data or hole offset 1150 * from the page cache for unwritten extents according to the desired 1151 * type for xfs_seek_hole_data(). 1152 * 1153 * The argument offset is used to tell where we start to search from the 1154 * page cache. Map is used to figure out the end points of the range to 1155 * lookup pages. 1156 * 1157 * Return true if the desired type of offset was found, and the argument 1158 * offset is filled with that address. Otherwise, return false and keep 1159 * offset unchanged. 1160 */ 1161 STATIC bool 1162 xfs_find_get_desired_pgoff( 1163 struct inode *inode, 1164 struct xfs_bmbt_irec *map, 1165 unsigned int type, 1166 loff_t *offset) 1167 { 1168 struct xfs_inode *ip = XFS_I(inode); 1169 struct xfs_mount *mp = ip->i_mount; 1170 struct pagevec pvec; 1171 pgoff_t index; 1172 pgoff_t end; 1173 loff_t endoff; 1174 loff_t startoff = *offset; 1175 loff_t lastoff = startoff; 1176 bool found = false; 1177 1178 pagevec_init(&pvec, 0); 1179 1180 index = startoff >> PAGE_CACHE_SHIFT; 1181 endoff = XFS_FSB_TO_B(mp, map->br_startoff + map->br_blockcount); 1182 end = endoff >> PAGE_CACHE_SHIFT; 1183 do { 1184 int want; 1185 unsigned nr_pages; 1186 unsigned int i; 1187 1188 want = min_t(pgoff_t, end - index, PAGEVEC_SIZE); 1189 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, index, 1190 want); 1191 /* 1192 * No page mapped into given range. If we are searching holes 1193 * and if this is the first time we got into the loop, it means 1194 * that the given offset is landed in a hole, return it. 1195 * 1196 * If we have already stepped through some block buffers to find 1197 * holes but they all contains data. In this case, the last 1198 * offset is already updated and pointed to the end of the last 1199 * mapped page, if it does not reach the endpoint to search, 1200 * that means there should be a hole between them. 1201 */ 1202 if (nr_pages == 0) { 1203 /* Data search found nothing */ 1204 if (type == DATA_OFF) 1205 break; 1206 1207 ASSERT(type == HOLE_OFF); 1208 if (lastoff == startoff || lastoff < endoff) { 1209 found = true; 1210 *offset = lastoff; 1211 } 1212 break; 1213 } 1214 1215 /* 1216 * At lease we found one page. If this is the first time we 1217 * step into the loop, and if the first page index offset is 1218 * greater than the given search offset, a hole was found. 1219 */ 1220 if (type == HOLE_OFF && lastoff == startoff && 1221 lastoff < page_offset(pvec.pages[0])) { 1222 found = true; 1223 break; 1224 } 1225 1226 for (i = 0; i < nr_pages; i++) { 1227 struct page *page = pvec.pages[i]; 1228 loff_t b_offset; 1229 1230 /* 1231 * At this point, the page may be truncated or 1232 * invalidated (changing page->mapping to NULL), 1233 * or even swizzled back from swapper_space to tmpfs 1234 * file mapping. However, page->index will not change 1235 * because we have a reference on the page. 1236 * 1237 * Searching done if the page index is out of range. 1238 * If the current offset is not reaches the end of 1239 * the specified search range, there should be a hole 1240 * between them. 1241 */ 1242 if (page->index > end) { 1243 if (type == HOLE_OFF && lastoff < endoff) { 1244 *offset = lastoff; 1245 found = true; 1246 } 1247 goto out; 1248 } 1249 1250 lock_page(page); 1251 /* 1252 * Page truncated or invalidated(page->mapping == NULL). 1253 * We can freely skip it and proceed to check the next 1254 * page. 1255 */ 1256 if (unlikely(page->mapping != inode->i_mapping)) { 1257 unlock_page(page); 1258 continue; 1259 } 1260 1261 if (!page_has_buffers(page)) { 1262 unlock_page(page); 1263 continue; 1264 } 1265 1266 found = xfs_lookup_buffer_offset(page, &b_offset, type); 1267 if (found) { 1268 /* 1269 * The found offset may be less than the start 1270 * point to search if this is the first time to 1271 * come here. 1272 */ 1273 *offset = max_t(loff_t, startoff, b_offset); 1274 unlock_page(page); 1275 goto out; 1276 } 1277 1278 /* 1279 * We either searching data but nothing was found, or 1280 * searching hole but found a data buffer. In either 1281 * case, probably the next page contains the desired 1282 * things, update the last offset to it so. 1283 */ 1284 lastoff = page_offset(page) + PAGE_SIZE; 1285 unlock_page(page); 1286 } 1287 1288 /* 1289 * The number of returned pages less than our desired, search 1290 * done. In this case, nothing was found for searching data, 1291 * but we found a hole behind the last offset. 1292 */ 1293 if (nr_pages < want) { 1294 if (type == HOLE_OFF) { 1295 *offset = lastoff; 1296 found = true; 1297 } 1298 break; 1299 } 1300 1301 index = pvec.pages[i - 1]->index + 1; 1302 pagevec_release(&pvec); 1303 } while (index <= end); 1304 1305 out: 1306 pagevec_release(&pvec); 1307 return found; 1308 } 1309 1310 STATIC loff_t 1311 xfs_seek_hole_data( 1312 struct file *file, 1313 loff_t start, 1314 int whence) 1315 { 1316 struct inode *inode = file->f_mapping->host; 1317 struct xfs_inode *ip = XFS_I(inode); 1318 struct xfs_mount *mp = ip->i_mount; 1319 loff_t uninitialized_var(offset); 1320 xfs_fsize_t isize; 1321 xfs_fileoff_t fsbno; 1322 xfs_filblks_t end; 1323 uint lock; 1324 int error; 1325 1326 if (XFS_FORCED_SHUTDOWN(mp)) 1327 return -EIO; 1328 1329 lock = xfs_ilock_data_map_shared(ip); 1330 1331 isize = i_size_read(inode); 1332 if (start >= isize) { 1333 error = -ENXIO; 1334 goto out_unlock; 1335 } 1336 1337 /* 1338 * Try to read extents from the first block indicated 1339 * by fsbno to the end block of the file. 1340 */ 1341 fsbno = XFS_B_TO_FSBT(mp, start); 1342 end = XFS_B_TO_FSB(mp, isize); 1343 1344 for (;;) { 1345 struct xfs_bmbt_irec map[2]; 1346 int nmap = 2; 1347 unsigned int i; 1348 1349 error = xfs_bmapi_read(ip, fsbno, end - fsbno, map, &nmap, 1350 XFS_BMAPI_ENTIRE); 1351 if (error) 1352 goto out_unlock; 1353 1354 /* No extents at given offset, must be beyond EOF */ 1355 if (nmap == 0) { 1356 error = -ENXIO; 1357 goto out_unlock; 1358 } 1359 1360 for (i = 0; i < nmap; i++) { 1361 offset = max_t(loff_t, start, 1362 XFS_FSB_TO_B(mp, map[i].br_startoff)); 1363 1364 /* Landed in the hole we wanted? */ 1365 if (whence == SEEK_HOLE && 1366 map[i].br_startblock == HOLESTARTBLOCK) 1367 goto out; 1368 1369 /* Landed in the data extent we wanted? */ 1370 if (whence == SEEK_DATA && 1371 (map[i].br_startblock == DELAYSTARTBLOCK || 1372 (map[i].br_state == XFS_EXT_NORM && 1373 !isnullstartblock(map[i].br_startblock)))) 1374 goto out; 1375 1376 /* 1377 * Landed in an unwritten extent, try to search 1378 * for hole or data from page cache. 1379 */ 1380 if (map[i].br_state == XFS_EXT_UNWRITTEN) { 1381 if (xfs_find_get_desired_pgoff(inode, &map[i], 1382 whence == SEEK_HOLE ? HOLE_OFF : DATA_OFF, 1383 &offset)) 1384 goto out; 1385 } 1386 } 1387 1388 /* 1389 * We only received one extent out of the two requested. This 1390 * means we've hit EOF and didn't find what we are looking for. 1391 */ 1392 if (nmap == 1) { 1393 /* 1394 * If we were looking for a hole, set offset to 1395 * the end of the file (i.e., there is an implicit 1396 * hole at the end of any file). 1397 */ 1398 if (whence == SEEK_HOLE) { 1399 offset = isize; 1400 break; 1401 } 1402 /* 1403 * If we were looking for data, it's nowhere to be found 1404 */ 1405 ASSERT(whence == SEEK_DATA); 1406 error = -ENXIO; 1407 goto out_unlock; 1408 } 1409 1410 ASSERT(i > 1); 1411 1412 /* 1413 * Nothing was found, proceed to the next round of search 1414 * if the next reading offset is not at or beyond EOF. 1415 */ 1416 fsbno = map[i - 1].br_startoff + map[i - 1].br_blockcount; 1417 start = XFS_FSB_TO_B(mp, fsbno); 1418 if (start >= isize) { 1419 if (whence == SEEK_HOLE) { 1420 offset = isize; 1421 break; 1422 } 1423 ASSERT(whence == SEEK_DATA); 1424 error = -ENXIO; 1425 goto out_unlock; 1426 } 1427 } 1428 1429 out: 1430 /* 1431 * If at this point we have found the hole we wanted, the returned 1432 * offset may be bigger than the file size as it may be aligned to 1433 * page boundary for unwritten extents. We need to deal with this 1434 * situation in particular. 1435 */ 1436 if (whence == SEEK_HOLE) 1437 offset = min_t(loff_t, offset, isize); 1438 offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes); 1439 1440 out_unlock: 1441 xfs_iunlock(ip, lock); 1442 1443 if (error) 1444 return error; 1445 return offset; 1446 } 1447 1448 STATIC loff_t 1449 xfs_file_llseek( 1450 struct file *file, 1451 loff_t offset, 1452 int whence) 1453 { 1454 switch (whence) { 1455 case SEEK_END: 1456 case SEEK_CUR: 1457 case SEEK_SET: 1458 return generic_file_llseek(file, offset, whence); 1459 case SEEK_HOLE: 1460 case SEEK_DATA: 1461 return xfs_seek_hole_data(file, offset, whence); 1462 default: 1463 return -EINVAL; 1464 } 1465 } 1466 1467 /* 1468 * Locking for serialisation of IO during page faults. This results in a lock 1469 * ordering of: 1470 * 1471 * mmap_sem (MM) 1472 * sb_start_pagefault(vfs, freeze) 1473 * i_mmap_lock (XFS - truncate serialisation) 1474 * page_lock (MM) 1475 * i_lock (XFS - extent map serialisation) 1476 */ 1477 1478 /* 1479 * mmap()d file has taken write protection fault and is being made writable. We 1480 * can set the page state up correctly for a writable page, which means we can 1481 * do correct delalloc accounting (ENOSPC checking!) and unwritten extent 1482 * mapping. 1483 */ 1484 STATIC int 1485 xfs_filemap_page_mkwrite( 1486 struct vm_area_struct *vma, 1487 struct vm_fault *vmf) 1488 { 1489 struct inode *inode = file_inode(vma->vm_file); 1490 int ret; 1491 1492 trace_xfs_filemap_page_mkwrite(XFS_I(inode)); 1493 1494 sb_start_pagefault(inode->i_sb); 1495 file_update_time(vma->vm_file); 1496 xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED); 1497 1498 if (IS_DAX(inode)) { 1499 ret = __dax_mkwrite(vma, vmf, xfs_get_blocks_direct, 1500 xfs_end_io_dax_write); 1501 } else { 1502 ret = __block_page_mkwrite(vma, vmf, xfs_get_blocks); 1503 ret = block_page_mkwrite_return(ret); 1504 } 1505 1506 xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED); 1507 sb_end_pagefault(inode->i_sb); 1508 1509 return ret; 1510 } 1511 1512 STATIC int 1513 xfs_filemap_fault( 1514 struct vm_area_struct *vma, 1515 struct vm_fault *vmf) 1516 { 1517 struct inode *inode = file_inode(vma->vm_file); 1518 int ret; 1519 1520 trace_xfs_filemap_fault(XFS_I(inode)); 1521 1522 /* DAX can shortcut the normal fault path on write faults! */ 1523 if ((vmf->flags & FAULT_FLAG_WRITE) && IS_DAX(inode)) 1524 return xfs_filemap_page_mkwrite(vma, vmf); 1525 1526 xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED); 1527 if (IS_DAX(inode)) { 1528 /* 1529 * we do not want to trigger unwritten extent conversion on read 1530 * faults - that is unnecessary overhead and would also require 1531 * changes to xfs_get_blocks_direct() to map unwritten extent 1532 * ioend for conversion on read-only mappings. 1533 */ 1534 ret = __dax_fault(vma, vmf, xfs_get_blocks_direct, NULL); 1535 } else 1536 ret = filemap_fault(vma, vmf); 1537 xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED); 1538 1539 return ret; 1540 } 1541 1542 static const struct vm_operations_struct xfs_file_vm_ops = { 1543 .fault = xfs_filemap_fault, 1544 .map_pages = filemap_map_pages, 1545 .page_mkwrite = xfs_filemap_page_mkwrite, 1546 }; 1547 1548 STATIC int 1549 xfs_file_mmap( 1550 struct file *filp, 1551 struct vm_area_struct *vma) 1552 { 1553 file_accessed(filp); 1554 vma->vm_ops = &xfs_file_vm_ops; 1555 if (IS_DAX(file_inode(filp))) 1556 vma->vm_flags |= VM_MIXEDMAP; 1557 return 0; 1558 } 1559 1560 const struct file_operations xfs_file_operations = { 1561 .llseek = xfs_file_llseek, 1562 .read_iter = xfs_file_read_iter, 1563 .write_iter = xfs_file_write_iter, 1564 .splice_read = xfs_file_splice_read, 1565 .splice_write = iter_file_splice_write, 1566 .unlocked_ioctl = xfs_file_ioctl, 1567 #ifdef CONFIG_COMPAT 1568 .compat_ioctl = xfs_file_compat_ioctl, 1569 #endif 1570 .mmap = xfs_file_mmap, 1571 .open = xfs_file_open, 1572 .release = xfs_file_release, 1573 .fsync = xfs_file_fsync, 1574 .fallocate = xfs_file_fallocate, 1575 }; 1576 1577 const struct file_operations xfs_dir_file_operations = { 1578 .open = xfs_dir_open, 1579 .read = generic_read_dir, 1580 .iterate = xfs_file_readdir, 1581 .llseek = generic_file_llseek, 1582 .unlocked_ioctl = xfs_file_ioctl, 1583 #ifdef CONFIG_COMPAT 1584 .compat_ioctl = xfs_file_compat_ioctl, 1585 #endif 1586 .fsync = xfs_dir_fsync, 1587 }; 1588