1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_mount.h" 13 #include "xfs_inode.h" 14 #include "xfs_trans.h" 15 #include "xfs_inode_item.h" 16 #include "xfs_bmap.h" 17 #include "xfs_bmap_util.h" 18 #include "xfs_dir2.h" 19 #include "xfs_dir2_priv.h" 20 #include "xfs_ioctl.h" 21 #include "xfs_trace.h" 22 #include "xfs_log.h" 23 #include "xfs_icache.h" 24 #include "xfs_pnfs.h" 25 #include "xfs_iomap.h" 26 #include "xfs_reflink.h" 27 #include "xfs_file.h" 28 29 #include <linux/dax.h> 30 #include <linux/falloc.h> 31 #include <linux/backing-dev.h> 32 #include <linux/mman.h> 33 #include <linux/fadvise.h> 34 #include <linux/mount.h> 35 36 static const struct vm_operations_struct xfs_file_vm_ops; 37 38 /* 39 * Decide if the given file range is aligned to the size of the fundamental 40 * allocation unit for the file. 41 */ 42 bool 43 xfs_is_falloc_aligned( 44 struct xfs_inode *ip, 45 loff_t pos, 46 long long int len) 47 { 48 unsigned int alloc_unit = xfs_inode_alloc_unitsize(ip); 49 50 if (!is_power_of_2(alloc_unit)) 51 return isaligned_64(pos, alloc_unit) && 52 isaligned_64(len, alloc_unit); 53 54 return !((pos | len) & (alloc_unit - 1)); 55 } 56 57 /* 58 * Fsync operations on directories are much simpler than on regular files, 59 * as there is no file data to flush, and thus also no need for explicit 60 * cache flush operations, and there are no non-transaction metadata updates 61 * on directories either. 62 */ 63 STATIC int 64 xfs_dir_fsync( 65 struct file *file, 66 loff_t start, 67 loff_t end, 68 int datasync) 69 { 70 struct xfs_inode *ip = XFS_I(file->f_mapping->host); 71 72 trace_xfs_dir_fsync(ip); 73 return xfs_log_force_inode(ip); 74 } 75 76 static xfs_csn_t 77 xfs_fsync_seq( 78 struct xfs_inode *ip, 79 bool datasync) 80 { 81 if (!xfs_ipincount(ip)) 82 return 0; 83 if (datasync && !(ip->i_itemp->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP)) 84 return 0; 85 return ip->i_itemp->ili_commit_seq; 86 } 87 88 /* 89 * All metadata updates are logged, which means that we just have to flush the 90 * log up to the latest LSN that touched the inode. 91 * 92 * If we have concurrent fsync/fdatasync() calls, we need them to all block on 93 * the log force before we clear the ili_fsync_fields field. This ensures that 94 * we don't get a racing sync operation that does not wait for the metadata to 95 * hit the journal before returning. If we race with clearing ili_fsync_fields, 96 * then all that will happen is the log force will do nothing as the lsn will 97 * already be on disk. We can't race with setting ili_fsync_fields because that 98 * is done under XFS_ILOCK_EXCL, and that can't happen because we hold the lock 99 * shared until after the ili_fsync_fields is cleared. 100 */ 101 static int 102 xfs_fsync_flush_log( 103 struct xfs_inode *ip, 104 bool datasync, 105 int *log_flushed) 106 { 107 int error = 0; 108 xfs_csn_t seq; 109 110 xfs_ilock(ip, XFS_ILOCK_SHARED); 111 seq = xfs_fsync_seq(ip, datasync); 112 if (seq) { 113 error = xfs_log_force_seq(ip->i_mount, seq, XFS_LOG_SYNC, 114 log_flushed); 115 116 spin_lock(&ip->i_itemp->ili_lock); 117 ip->i_itemp->ili_fsync_fields = 0; 118 spin_unlock(&ip->i_itemp->ili_lock); 119 } 120 xfs_iunlock(ip, XFS_ILOCK_SHARED); 121 return error; 122 } 123 124 STATIC int 125 xfs_file_fsync( 126 struct file *file, 127 loff_t start, 128 loff_t end, 129 int datasync) 130 { 131 struct xfs_inode *ip = XFS_I(file->f_mapping->host); 132 struct xfs_mount *mp = ip->i_mount; 133 int error, err2; 134 int log_flushed = 0; 135 136 trace_xfs_file_fsync(ip); 137 138 error = file_write_and_wait_range(file, start, end); 139 if (error) 140 return error; 141 142 if (xfs_is_shutdown(mp)) 143 return -EIO; 144 145 xfs_iflags_clear(ip, XFS_ITRUNCATED); 146 147 /* 148 * If we have an RT and/or log subvolume we need to make sure to flush 149 * the write cache the device used for file data first. This is to 150 * ensure newly written file data make it to disk before logging the new 151 * inode size in case of an extending write. 152 */ 153 if (XFS_IS_REALTIME_INODE(ip)) 154 error = blkdev_issue_flush(mp->m_rtdev_targp->bt_bdev); 155 else if (mp->m_logdev_targp != mp->m_ddev_targp) 156 error = blkdev_issue_flush(mp->m_ddev_targp->bt_bdev); 157 158 /* 159 * Any inode that has dirty modifications in the log is pinned. The 160 * racy check here for a pinned inode will not catch modifications 161 * that happen concurrently to the fsync call, but fsync semantics 162 * only require to sync previously completed I/O. 163 */ 164 if (xfs_ipincount(ip)) { 165 err2 = xfs_fsync_flush_log(ip, datasync, &log_flushed); 166 if (err2 && !error) 167 error = err2; 168 } 169 170 /* 171 * If we only have a single device, and the log force about was 172 * a no-op we might have to flush the data device cache here. 173 * This can only happen for fdatasync/O_DSYNC if we were overwriting 174 * an already allocated file and thus do not have any metadata to 175 * commit. 176 */ 177 if (!log_flushed && !XFS_IS_REALTIME_INODE(ip) && 178 mp->m_logdev_targp == mp->m_ddev_targp) { 179 err2 = blkdev_issue_flush(mp->m_ddev_targp->bt_bdev); 180 if (err2 && !error) 181 error = err2; 182 } 183 184 return error; 185 } 186 187 static int 188 xfs_ilock_iocb( 189 struct kiocb *iocb, 190 unsigned int lock_mode) 191 { 192 struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp)); 193 194 if (iocb->ki_flags & IOCB_NOWAIT) { 195 if (!xfs_ilock_nowait(ip, lock_mode)) 196 return -EAGAIN; 197 } else { 198 xfs_ilock(ip, lock_mode); 199 } 200 201 return 0; 202 } 203 204 static int 205 xfs_ilock_iocb_for_write( 206 struct kiocb *iocb, 207 unsigned int *lock_mode) 208 { 209 ssize_t ret; 210 struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp)); 211 212 ret = xfs_ilock_iocb(iocb, *lock_mode); 213 if (ret) 214 return ret; 215 216 /* 217 * If a reflink remap is in progress we always need to take the iolock 218 * exclusively to wait for it to finish. 219 */ 220 if (*lock_mode == XFS_IOLOCK_SHARED && 221 xfs_iflags_test(ip, XFS_IREMAPPING)) { 222 xfs_iunlock(ip, *lock_mode); 223 *lock_mode = XFS_IOLOCK_EXCL; 224 return xfs_ilock_iocb(iocb, *lock_mode); 225 } 226 227 return 0; 228 } 229 230 STATIC ssize_t 231 xfs_file_dio_read( 232 struct kiocb *iocb, 233 struct iov_iter *to) 234 { 235 struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp)); 236 ssize_t ret; 237 238 trace_xfs_file_direct_read(iocb, to); 239 240 if (!iov_iter_count(to)) 241 return 0; /* skip atime */ 242 243 file_accessed(iocb->ki_filp); 244 245 ret = xfs_ilock_iocb(iocb, XFS_IOLOCK_SHARED); 246 if (ret) 247 return ret; 248 ret = iomap_dio_rw(iocb, to, &xfs_read_iomap_ops, NULL, 0, NULL, 0); 249 xfs_iunlock(ip, XFS_IOLOCK_SHARED); 250 251 return ret; 252 } 253 254 static noinline ssize_t 255 xfs_file_dax_read( 256 struct kiocb *iocb, 257 struct iov_iter *to) 258 { 259 struct xfs_inode *ip = XFS_I(iocb->ki_filp->f_mapping->host); 260 ssize_t ret = 0; 261 262 trace_xfs_file_dax_read(iocb, to); 263 264 if (!iov_iter_count(to)) 265 return 0; /* skip atime */ 266 267 ret = xfs_ilock_iocb(iocb, XFS_IOLOCK_SHARED); 268 if (ret) 269 return ret; 270 ret = dax_iomap_rw(iocb, to, &xfs_read_iomap_ops); 271 xfs_iunlock(ip, XFS_IOLOCK_SHARED); 272 273 file_accessed(iocb->ki_filp); 274 return ret; 275 } 276 277 STATIC ssize_t 278 xfs_file_buffered_read( 279 struct kiocb *iocb, 280 struct iov_iter *to) 281 { 282 struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp)); 283 ssize_t ret; 284 285 trace_xfs_file_buffered_read(iocb, to); 286 287 ret = xfs_ilock_iocb(iocb, XFS_IOLOCK_SHARED); 288 if (ret) 289 return ret; 290 ret = generic_file_read_iter(iocb, to); 291 xfs_iunlock(ip, XFS_IOLOCK_SHARED); 292 293 return ret; 294 } 295 296 STATIC ssize_t 297 xfs_file_read_iter( 298 struct kiocb *iocb, 299 struct iov_iter *to) 300 { 301 struct inode *inode = file_inode(iocb->ki_filp); 302 struct xfs_mount *mp = XFS_I(inode)->i_mount; 303 ssize_t ret = 0; 304 305 XFS_STATS_INC(mp, xs_read_calls); 306 307 if (xfs_is_shutdown(mp)) 308 return -EIO; 309 310 if (IS_DAX(inode)) 311 ret = xfs_file_dax_read(iocb, to); 312 else if (iocb->ki_flags & IOCB_DIRECT) 313 ret = xfs_file_dio_read(iocb, to); 314 else 315 ret = xfs_file_buffered_read(iocb, to); 316 317 if (ret > 0) 318 XFS_STATS_ADD(mp, xs_read_bytes, ret); 319 return ret; 320 } 321 322 STATIC ssize_t 323 xfs_file_splice_read( 324 struct file *in, 325 loff_t *ppos, 326 struct pipe_inode_info *pipe, 327 size_t len, 328 unsigned int flags) 329 { 330 struct inode *inode = file_inode(in); 331 struct xfs_inode *ip = XFS_I(inode); 332 struct xfs_mount *mp = ip->i_mount; 333 ssize_t ret = 0; 334 335 XFS_STATS_INC(mp, xs_read_calls); 336 337 if (xfs_is_shutdown(mp)) 338 return -EIO; 339 340 trace_xfs_file_splice_read(ip, *ppos, len); 341 342 xfs_ilock(ip, XFS_IOLOCK_SHARED); 343 ret = filemap_splice_read(in, ppos, pipe, len, flags); 344 xfs_iunlock(ip, XFS_IOLOCK_SHARED); 345 if (ret > 0) 346 XFS_STATS_ADD(mp, xs_read_bytes, ret); 347 return ret; 348 } 349 350 /* 351 * Common pre-write limit and setup checks. 352 * 353 * Called with the iolocked held either shared and exclusive according to 354 * @iolock, and returns with it held. Might upgrade the iolock to exclusive 355 * if called for a direct write beyond i_size. 356 */ 357 STATIC ssize_t 358 xfs_file_write_checks( 359 struct kiocb *iocb, 360 struct iov_iter *from, 361 unsigned int *iolock) 362 { 363 struct file *file = iocb->ki_filp; 364 struct inode *inode = file->f_mapping->host; 365 struct xfs_inode *ip = XFS_I(inode); 366 ssize_t error = 0; 367 size_t count = iov_iter_count(from); 368 bool drained_dio = false; 369 loff_t isize; 370 371 restart: 372 error = generic_write_checks(iocb, from); 373 if (error <= 0) 374 return error; 375 376 if (iocb->ki_flags & IOCB_NOWAIT) { 377 error = break_layout(inode, false); 378 if (error == -EWOULDBLOCK) 379 error = -EAGAIN; 380 } else { 381 error = xfs_break_layouts(inode, iolock, BREAK_WRITE); 382 } 383 384 if (error) 385 return error; 386 387 /* 388 * For changing security info in file_remove_privs() we need i_rwsem 389 * exclusively. 390 */ 391 if (*iolock == XFS_IOLOCK_SHARED && !IS_NOSEC(inode)) { 392 xfs_iunlock(ip, *iolock); 393 *iolock = XFS_IOLOCK_EXCL; 394 error = xfs_ilock_iocb(iocb, *iolock); 395 if (error) { 396 *iolock = 0; 397 return error; 398 } 399 goto restart; 400 } 401 402 /* 403 * If the offset is beyond the size of the file, we need to zero any 404 * blocks that fall between the existing EOF and the start of this 405 * write. If zeroing is needed and we are currently holding the iolock 406 * shared, we need to update it to exclusive which implies having to 407 * redo all checks before. 408 * 409 * We need to serialise against EOF updates that occur in IO completions 410 * here. We want to make sure that nobody is changing the size while we 411 * do this check until we have placed an IO barrier (i.e. hold the 412 * XFS_IOLOCK_EXCL) that prevents new IO from being dispatched. The 413 * spinlock effectively forms a memory barrier once we have the 414 * XFS_IOLOCK_EXCL so we are guaranteed to see the latest EOF value and 415 * hence be able to correctly determine if we need to run zeroing. 416 * 417 * We can do an unlocked check here safely as IO completion can only 418 * extend EOF. Truncate is locked out at this point, so the EOF can 419 * not move backwards, only forwards. Hence we only need to take the 420 * slow path and spin locks when we are at or beyond the current EOF. 421 */ 422 if (iocb->ki_pos <= i_size_read(inode)) 423 goto out; 424 425 spin_lock(&ip->i_flags_lock); 426 isize = i_size_read(inode); 427 if (iocb->ki_pos > isize) { 428 spin_unlock(&ip->i_flags_lock); 429 430 if (iocb->ki_flags & IOCB_NOWAIT) 431 return -EAGAIN; 432 433 if (!drained_dio) { 434 if (*iolock == XFS_IOLOCK_SHARED) { 435 xfs_iunlock(ip, *iolock); 436 *iolock = XFS_IOLOCK_EXCL; 437 xfs_ilock(ip, *iolock); 438 iov_iter_reexpand(from, count); 439 } 440 /* 441 * We now have an IO submission barrier in place, but 442 * AIO can do EOF updates during IO completion and hence 443 * we now need to wait for all of them to drain. Non-AIO 444 * DIO will have drained before we are given the 445 * XFS_IOLOCK_EXCL, and so for most cases this wait is a 446 * no-op. 447 */ 448 inode_dio_wait(inode); 449 drained_dio = true; 450 goto restart; 451 } 452 453 trace_xfs_zero_eof(ip, isize, iocb->ki_pos - isize); 454 error = xfs_zero_range(ip, isize, iocb->ki_pos - isize, NULL); 455 if (error) 456 return error; 457 } else 458 spin_unlock(&ip->i_flags_lock); 459 460 out: 461 return kiocb_modified(iocb); 462 } 463 464 static int 465 xfs_dio_write_end_io( 466 struct kiocb *iocb, 467 ssize_t size, 468 int error, 469 unsigned flags) 470 { 471 struct inode *inode = file_inode(iocb->ki_filp); 472 struct xfs_inode *ip = XFS_I(inode); 473 loff_t offset = iocb->ki_pos; 474 unsigned int nofs_flag; 475 476 trace_xfs_end_io_direct_write(ip, offset, size); 477 478 if (xfs_is_shutdown(ip->i_mount)) 479 return -EIO; 480 481 if (error) 482 return error; 483 if (!size) 484 return 0; 485 486 /* 487 * Capture amount written on completion as we can't reliably account 488 * for it on submission. 489 */ 490 XFS_STATS_ADD(ip->i_mount, xs_write_bytes, size); 491 492 /* 493 * We can allocate memory here while doing writeback on behalf of 494 * memory reclaim. To avoid memory allocation deadlocks set the 495 * task-wide nofs context for the following operations. 496 */ 497 nofs_flag = memalloc_nofs_save(); 498 499 if (flags & IOMAP_DIO_COW) { 500 error = xfs_reflink_end_cow(ip, offset, size); 501 if (error) 502 goto out; 503 } 504 505 /* 506 * Unwritten conversion updates the in-core isize after extent 507 * conversion but before updating the on-disk size. Updating isize any 508 * earlier allows a racing dio read to find unwritten extents before 509 * they are converted. 510 */ 511 if (flags & IOMAP_DIO_UNWRITTEN) { 512 error = xfs_iomap_write_unwritten(ip, offset, size, true); 513 goto out; 514 } 515 516 /* 517 * We need to update the in-core inode size here so that we don't end up 518 * with the on-disk inode size being outside the in-core inode size. We 519 * have no other method of updating EOF for AIO, so always do it here 520 * if necessary. 521 * 522 * We need to lock the test/set EOF update as we can be racing with 523 * other IO completions here to update the EOF. Failing to serialise 524 * here can result in EOF moving backwards and Bad Things Happen when 525 * that occurs. 526 * 527 * As IO completion only ever extends EOF, we can do an unlocked check 528 * here to avoid taking the spinlock. If we land within the current EOF, 529 * then we do not need to do an extending update at all, and we don't 530 * need to take the lock to check this. If we race with an update moving 531 * EOF, then we'll either still be beyond EOF and need to take the lock, 532 * or we'll be within EOF and we don't need to take it at all. 533 */ 534 if (offset + size <= i_size_read(inode)) 535 goto out; 536 537 spin_lock(&ip->i_flags_lock); 538 if (offset + size > i_size_read(inode)) { 539 i_size_write(inode, offset + size); 540 spin_unlock(&ip->i_flags_lock); 541 error = xfs_setfilesize(ip, offset, size); 542 } else { 543 spin_unlock(&ip->i_flags_lock); 544 } 545 546 out: 547 memalloc_nofs_restore(nofs_flag); 548 return error; 549 } 550 551 static const struct iomap_dio_ops xfs_dio_write_ops = { 552 .end_io = xfs_dio_write_end_io, 553 }; 554 555 /* 556 * Handle block aligned direct I/O writes 557 */ 558 static noinline ssize_t 559 xfs_file_dio_write_aligned( 560 struct xfs_inode *ip, 561 struct kiocb *iocb, 562 struct iov_iter *from) 563 { 564 unsigned int iolock = XFS_IOLOCK_SHARED; 565 ssize_t ret; 566 567 ret = xfs_ilock_iocb_for_write(iocb, &iolock); 568 if (ret) 569 return ret; 570 ret = xfs_file_write_checks(iocb, from, &iolock); 571 if (ret) 572 goto out_unlock; 573 574 /* 575 * We don't need to hold the IOLOCK exclusively across the IO, so demote 576 * the iolock back to shared if we had to take the exclusive lock in 577 * xfs_file_write_checks() for other reasons. 578 */ 579 if (iolock == XFS_IOLOCK_EXCL) { 580 xfs_ilock_demote(ip, XFS_IOLOCK_EXCL); 581 iolock = XFS_IOLOCK_SHARED; 582 } 583 trace_xfs_file_direct_write(iocb, from); 584 ret = iomap_dio_rw(iocb, from, &xfs_direct_write_iomap_ops, 585 &xfs_dio_write_ops, 0, NULL, 0); 586 out_unlock: 587 if (iolock) 588 xfs_iunlock(ip, iolock); 589 return ret; 590 } 591 592 /* 593 * Handle block unaligned direct I/O writes 594 * 595 * In most cases direct I/O writes will be done holding IOLOCK_SHARED, allowing 596 * them to be done in parallel with reads and other direct I/O writes. However, 597 * if the I/O is not aligned to filesystem blocks, the direct I/O layer may need 598 * to do sub-block zeroing and that requires serialisation against other direct 599 * I/O to the same block. In this case we need to serialise the submission of 600 * the unaligned I/O so that we don't get racing block zeroing in the dio layer. 601 * In the case where sub-block zeroing is not required, we can do concurrent 602 * sub-block dios to the same block successfully. 603 * 604 * Optimistically submit the I/O using the shared lock first, but use the 605 * IOMAP_DIO_OVERWRITE_ONLY flag to tell the lower layers to return -EAGAIN 606 * if block allocation or partial block zeroing would be required. In that case 607 * we try again with the exclusive lock. 608 */ 609 static noinline ssize_t 610 xfs_file_dio_write_unaligned( 611 struct xfs_inode *ip, 612 struct kiocb *iocb, 613 struct iov_iter *from) 614 { 615 size_t isize = i_size_read(VFS_I(ip)); 616 size_t count = iov_iter_count(from); 617 unsigned int iolock = XFS_IOLOCK_SHARED; 618 unsigned int flags = IOMAP_DIO_OVERWRITE_ONLY; 619 ssize_t ret; 620 621 /* 622 * Extending writes need exclusivity because of the sub-block zeroing 623 * that the DIO code always does for partial tail blocks beyond EOF, so 624 * don't even bother trying the fast path in this case. 625 */ 626 if (iocb->ki_pos > isize || iocb->ki_pos + count >= isize) { 627 if (iocb->ki_flags & IOCB_NOWAIT) 628 return -EAGAIN; 629 retry_exclusive: 630 iolock = XFS_IOLOCK_EXCL; 631 flags = IOMAP_DIO_FORCE_WAIT; 632 } 633 634 ret = xfs_ilock_iocb_for_write(iocb, &iolock); 635 if (ret) 636 return ret; 637 638 /* 639 * We can't properly handle unaligned direct I/O to reflink files yet, 640 * as we can't unshare a partial block. 641 */ 642 if (xfs_is_cow_inode(ip)) { 643 trace_xfs_reflink_bounce_dio_write(iocb, from); 644 ret = -ENOTBLK; 645 goto out_unlock; 646 } 647 648 ret = xfs_file_write_checks(iocb, from, &iolock); 649 if (ret) 650 goto out_unlock; 651 652 /* 653 * If we are doing exclusive unaligned I/O, this must be the only I/O 654 * in-flight. Otherwise we risk data corruption due to unwritten extent 655 * conversions from the AIO end_io handler. Wait for all other I/O to 656 * drain first. 657 */ 658 if (flags & IOMAP_DIO_FORCE_WAIT) 659 inode_dio_wait(VFS_I(ip)); 660 661 trace_xfs_file_direct_write(iocb, from); 662 ret = iomap_dio_rw(iocb, from, &xfs_direct_write_iomap_ops, 663 &xfs_dio_write_ops, flags, NULL, 0); 664 665 /* 666 * Retry unaligned I/O with exclusive blocking semantics if the DIO 667 * layer rejected it for mapping or locking reasons. If we are doing 668 * nonblocking user I/O, propagate the error. 669 */ 670 if (ret == -EAGAIN && !(iocb->ki_flags & IOCB_NOWAIT)) { 671 ASSERT(flags & IOMAP_DIO_OVERWRITE_ONLY); 672 xfs_iunlock(ip, iolock); 673 goto retry_exclusive; 674 } 675 676 out_unlock: 677 if (iolock) 678 xfs_iunlock(ip, iolock); 679 return ret; 680 } 681 682 static ssize_t 683 xfs_file_dio_write( 684 struct kiocb *iocb, 685 struct iov_iter *from) 686 { 687 struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp)); 688 struct xfs_buftarg *target = xfs_inode_buftarg(ip); 689 size_t count = iov_iter_count(from); 690 691 /* direct I/O must be aligned to device logical sector size */ 692 if ((iocb->ki_pos | count) & target->bt_logical_sectormask) 693 return -EINVAL; 694 if ((iocb->ki_pos | count) & ip->i_mount->m_blockmask) 695 return xfs_file_dio_write_unaligned(ip, iocb, from); 696 return xfs_file_dio_write_aligned(ip, iocb, from); 697 } 698 699 static noinline ssize_t 700 xfs_file_dax_write( 701 struct kiocb *iocb, 702 struct iov_iter *from) 703 { 704 struct inode *inode = iocb->ki_filp->f_mapping->host; 705 struct xfs_inode *ip = XFS_I(inode); 706 unsigned int iolock = XFS_IOLOCK_EXCL; 707 ssize_t ret, error = 0; 708 loff_t pos; 709 710 ret = xfs_ilock_iocb(iocb, iolock); 711 if (ret) 712 return ret; 713 ret = xfs_file_write_checks(iocb, from, &iolock); 714 if (ret) 715 goto out; 716 717 pos = iocb->ki_pos; 718 719 trace_xfs_file_dax_write(iocb, from); 720 ret = dax_iomap_rw(iocb, from, &xfs_dax_write_iomap_ops); 721 if (ret > 0 && iocb->ki_pos > i_size_read(inode)) { 722 i_size_write(inode, iocb->ki_pos); 723 error = xfs_setfilesize(ip, pos, ret); 724 } 725 out: 726 if (iolock) 727 xfs_iunlock(ip, iolock); 728 if (error) 729 return error; 730 731 if (ret > 0) { 732 XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret); 733 734 /* Handle various SYNC-type writes */ 735 ret = generic_write_sync(iocb, ret); 736 } 737 return ret; 738 } 739 740 STATIC ssize_t 741 xfs_file_buffered_write( 742 struct kiocb *iocb, 743 struct iov_iter *from) 744 { 745 struct inode *inode = iocb->ki_filp->f_mapping->host; 746 struct xfs_inode *ip = XFS_I(inode); 747 ssize_t ret; 748 bool cleared_space = false; 749 unsigned int iolock; 750 751 write_retry: 752 iolock = XFS_IOLOCK_EXCL; 753 ret = xfs_ilock_iocb(iocb, iolock); 754 if (ret) 755 return ret; 756 757 ret = xfs_file_write_checks(iocb, from, &iolock); 758 if (ret) 759 goto out; 760 761 trace_xfs_file_buffered_write(iocb, from); 762 ret = iomap_file_buffered_write(iocb, from, 763 &xfs_buffered_write_iomap_ops, NULL); 764 765 /* 766 * If we hit a space limit, try to free up some lingering preallocated 767 * space before returning an error. In the case of ENOSPC, first try to 768 * write back all dirty inodes to free up some of the excess reserved 769 * metadata space. This reduces the chances that the eofblocks scan 770 * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this 771 * also behaves as a filter to prevent too many eofblocks scans from 772 * running at the same time. Use a synchronous scan to increase the 773 * effectiveness of the scan. 774 */ 775 if (ret == -EDQUOT && !cleared_space) { 776 xfs_iunlock(ip, iolock); 777 xfs_blockgc_free_quota(ip, XFS_ICWALK_FLAG_SYNC); 778 cleared_space = true; 779 goto write_retry; 780 } else if (ret == -ENOSPC && !cleared_space) { 781 struct xfs_icwalk icw = {0}; 782 783 cleared_space = true; 784 xfs_flush_inodes(ip->i_mount); 785 786 xfs_iunlock(ip, iolock); 787 icw.icw_flags = XFS_ICWALK_FLAG_SYNC; 788 xfs_blockgc_free_space(ip->i_mount, &icw); 789 goto write_retry; 790 } 791 792 out: 793 if (iolock) 794 xfs_iunlock(ip, iolock); 795 796 if (ret > 0) { 797 XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret); 798 /* Handle various SYNC-type writes */ 799 ret = generic_write_sync(iocb, ret); 800 } 801 return ret; 802 } 803 804 STATIC ssize_t 805 xfs_file_write_iter( 806 struct kiocb *iocb, 807 struct iov_iter *from) 808 { 809 struct inode *inode = iocb->ki_filp->f_mapping->host; 810 struct xfs_inode *ip = XFS_I(inode); 811 ssize_t ret; 812 size_t ocount = iov_iter_count(from); 813 814 XFS_STATS_INC(ip->i_mount, xs_write_calls); 815 816 if (ocount == 0) 817 return 0; 818 819 if (xfs_is_shutdown(ip->i_mount)) 820 return -EIO; 821 822 if (IS_DAX(inode)) 823 return xfs_file_dax_write(iocb, from); 824 825 if (iocb->ki_flags & IOCB_DIRECT) { 826 /* 827 * Allow a directio write to fall back to a buffered 828 * write *only* in the case that we're doing a reflink 829 * CoW. In all other directio scenarios we do not 830 * allow an operation to fall back to buffered mode. 831 */ 832 ret = xfs_file_dio_write(iocb, from); 833 if (ret != -ENOTBLK) 834 return ret; 835 } 836 837 return xfs_file_buffered_write(iocb, from); 838 } 839 840 /* Does this file, inode, or mount want synchronous writes? */ 841 static inline bool xfs_file_sync_writes(struct file *filp) 842 { 843 struct xfs_inode *ip = XFS_I(file_inode(filp)); 844 845 if (xfs_has_wsync(ip->i_mount)) 846 return true; 847 if (filp->f_flags & (__O_SYNC | O_DSYNC)) 848 return true; 849 if (IS_SYNC(file_inode(filp))) 850 return true; 851 852 return false; 853 } 854 855 static int 856 xfs_falloc_newsize( 857 struct file *file, 858 int mode, 859 loff_t offset, 860 loff_t len, 861 loff_t *new_size) 862 { 863 struct inode *inode = file_inode(file); 864 865 if ((mode & FALLOC_FL_KEEP_SIZE) || offset + len <= i_size_read(inode)) 866 return 0; 867 *new_size = offset + len; 868 return inode_newsize_ok(inode, *new_size); 869 } 870 871 static int 872 xfs_falloc_setsize( 873 struct file *file, 874 loff_t new_size) 875 { 876 struct iattr iattr = { 877 .ia_valid = ATTR_SIZE, 878 .ia_size = new_size, 879 }; 880 881 if (!new_size) 882 return 0; 883 return xfs_vn_setattr_size(file_mnt_idmap(file), file_dentry(file), 884 &iattr); 885 } 886 887 static int 888 xfs_falloc_collapse_range( 889 struct file *file, 890 loff_t offset, 891 loff_t len) 892 { 893 struct inode *inode = file_inode(file); 894 loff_t new_size = i_size_read(inode) - len; 895 int error; 896 897 if (!xfs_is_falloc_aligned(XFS_I(inode), offset, len)) 898 return -EINVAL; 899 900 /* 901 * There is no need to overlap collapse range with EOF, in which case it 902 * is effectively a truncate operation 903 */ 904 if (offset + len >= i_size_read(inode)) 905 return -EINVAL; 906 907 error = xfs_collapse_file_space(XFS_I(inode), offset, len); 908 if (error) 909 return error; 910 return xfs_falloc_setsize(file, new_size); 911 } 912 913 static int 914 xfs_falloc_insert_range( 915 struct file *file, 916 loff_t offset, 917 loff_t len) 918 { 919 struct inode *inode = file_inode(file); 920 loff_t isize = i_size_read(inode); 921 int error; 922 923 if (!xfs_is_falloc_aligned(XFS_I(inode), offset, len)) 924 return -EINVAL; 925 926 /* 927 * New inode size must not exceed ->s_maxbytes, accounting for 928 * possible signed overflow. 929 */ 930 if (inode->i_sb->s_maxbytes - isize < len) 931 return -EFBIG; 932 933 /* Offset should be less than i_size */ 934 if (offset >= isize) 935 return -EINVAL; 936 937 error = xfs_falloc_setsize(file, isize + len); 938 if (error) 939 return error; 940 941 /* 942 * Perform hole insertion now that the file size has been updated so 943 * that if we crash during the operation we don't leave shifted extents 944 * past EOF and hence losing access to the data that is contained within 945 * them. 946 */ 947 return xfs_insert_file_space(XFS_I(inode), offset, len); 948 } 949 950 /* 951 * Punch a hole and prealloc the range. We use a hole punch rather than 952 * unwritten extent conversion for two reasons: 953 * 954 * 1.) Hole punch handles partial block zeroing for us. 955 * 2.) If prealloc returns ENOSPC, the file range is still zero-valued by 956 * virtue of the hole punch. 957 */ 958 static int 959 xfs_falloc_zero_range( 960 struct file *file, 961 int mode, 962 loff_t offset, 963 loff_t len) 964 { 965 struct inode *inode = file_inode(file); 966 unsigned int blksize = i_blocksize(inode); 967 loff_t new_size = 0; 968 int error; 969 970 trace_xfs_zero_file_space(XFS_I(inode)); 971 972 error = xfs_falloc_newsize(file, mode, offset, len, &new_size); 973 if (error) 974 return error; 975 976 error = xfs_free_file_space(XFS_I(inode), offset, len); 977 if (error) 978 return error; 979 980 len = round_up(offset + len, blksize) - round_down(offset, blksize); 981 offset = round_down(offset, blksize); 982 error = xfs_alloc_file_space(XFS_I(inode), offset, len); 983 if (error) 984 return error; 985 return xfs_falloc_setsize(file, new_size); 986 } 987 988 static int 989 xfs_falloc_unshare_range( 990 struct file *file, 991 int mode, 992 loff_t offset, 993 loff_t len) 994 { 995 struct inode *inode = file_inode(file); 996 loff_t new_size = 0; 997 int error; 998 999 error = xfs_falloc_newsize(file, mode, offset, len, &new_size); 1000 if (error) 1001 return error; 1002 1003 error = xfs_reflink_unshare(XFS_I(inode), offset, len); 1004 if (error) 1005 return error; 1006 1007 error = xfs_alloc_file_space(XFS_I(inode), offset, len); 1008 if (error) 1009 return error; 1010 return xfs_falloc_setsize(file, new_size); 1011 } 1012 1013 static int 1014 xfs_falloc_allocate_range( 1015 struct file *file, 1016 int mode, 1017 loff_t offset, 1018 loff_t len) 1019 { 1020 struct inode *inode = file_inode(file); 1021 loff_t new_size = 0; 1022 int error; 1023 1024 /* 1025 * If always_cow mode we can't use preallocations and thus should not 1026 * create them. 1027 */ 1028 if (xfs_is_always_cow_inode(XFS_I(inode))) 1029 return -EOPNOTSUPP; 1030 1031 error = xfs_falloc_newsize(file, mode, offset, len, &new_size); 1032 if (error) 1033 return error; 1034 1035 error = xfs_alloc_file_space(XFS_I(inode), offset, len); 1036 if (error) 1037 return error; 1038 return xfs_falloc_setsize(file, new_size); 1039 } 1040 1041 #define XFS_FALLOC_FL_SUPPORTED \ 1042 (FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | \ 1043 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE | \ 1044 FALLOC_FL_INSERT_RANGE | FALLOC_FL_UNSHARE_RANGE) 1045 1046 STATIC long 1047 xfs_file_fallocate( 1048 struct file *file, 1049 int mode, 1050 loff_t offset, 1051 loff_t len) 1052 { 1053 struct inode *inode = file_inode(file); 1054 struct xfs_inode *ip = XFS_I(inode); 1055 long error; 1056 uint iolock = XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL; 1057 1058 if (!S_ISREG(inode->i_mode)) 1059 return -EINVAL; 1060 if (mode & ~XFS_FALLOC_FL_SUPPORTED) 1061 return -EOPNOTSUPP; 1062 1063 xfs_ilock(ip, iolock); 1064 error = xfs_break_layouts(inode, &iolock, BREAK_UNMAP); 1065 if (error) 1066 goto out_unlock; 1067 1068 /* 1069 * Must wait for all AIO to complete before we continue as AIO can 1070 * change the file size on completion without holding any locks we 1071 * currently hold. We must do this first because AIO can update both 1072 * the on disk and in memory inode sizes, and the operations that follow 1073 * require the in-memory size to be fully up-to-date. 1074 */ 1075 inode_dio_wait(inode); 1076 1077 error = file_modified(file); 1078 if (error) 1079 goto out_unlock; 1080 1081 switch (mode & FALLOC_FL_MODE_MASK) { 1082 case FALLOC_FL_PUNCH_HOLE: 1083 error = xfs_free_file_space(ip, offset, len); 1084 break; 1085 case FALLOC_FL_COLLAPSE_RANGE: 1086 error = xfs_falloc_collapse_range(file, offset, len); 1087 break; 1088 case FALLOC_FL_INSERT_RANGE: 1089 error = xfs_falloc_insert_range(file, offset, len); 1090 break; 1091 case FALLOC_FL_ZERO_RANGE: 1092 error = xfs_falloc_zero_range(file, mode, offset, len); 1093 break; 1094 case FALLOC_FL_UNSHARE_RANGE: 1095 error = xfs_falloc_unshare_range(file, mode, offset, len); 1096 break; 1097 case FALLOC_FL_ALLOCATE_RANGE: 1098 error = xfs_falloc_allocate_range(file, mode, offset, len); 1099 break; 1100 default: 1101 error = -EOPNOTSUPP; 1102 break; 1103 } 1104 1105 if (!error && xfs_file_sync_writes(file)) 1106 error = xfs_log_force_inode(ip); 1107 1108 out_unlock: 1109 xfs_iunlock(ip, iolock); 1110 return error; 1111 } 1112 1113 STATIC int 1114 xfs_file_fadvise( 1115 struct file *file, 1116 loff_t start, 1117 loff_t end, 1118 int advice) 1119 { 1120 struct xfs_inode *ip = XFS_I(file_inode(file)); 1121 int ret; 1122 int lockflags = 0; 1123 1124 /* 1125 * Operations creating pages in page cache need protection from hole 1126 * punching and similar ops 1127 */ 1128 if (advice == POSIX_FADV_WILLNEED) { 1129 lockflags = XFS_IOLOCK_SHARED; 1130 xfs_ilock(ip, lockflags); 1131 } 1132 ret = generic_fadvise(file, start, end, advice); 1133 if (lockflags) 1134 xfs_iunlock(ip, lockflags); 1135 return ret; 1136 } 1137 1138 STATIC loff_t 1139 xfs_file_remap_range( 1140 struct file *file_in, 1141 loff_t pos_in, 1142 struct file *file_out, 1143 loff_t pos_out, 1144 loff_t len, 1145 unsigned int remap_flags) 1146 { 1147 struct inode *inode_in = file_inode(file_in); 1148 struct xfs_inode *src = XFS_I(inode_in); 1149 struct inode *inode_out = file_inode(file_out); 1150 struct xfs_inode *dest = XFS_I(inode_out); 1151 struct xfs_mount *mp = src->i_mount; 1152 loff_t remapped = 0; 1153 xfs_extlen_t cowextsize; 1154 int ret; 1155 1156 if (remap_flags & ~(REMAP_FILE_DEDUP | REMAP_FILE_ADVISORY)) 1157 return -EINVAL; 1158 1159 if (!xfs_has_reflink(mp)) 1160 return -EOPNOTSUPP; 1161 1162 if (xfs_is_shutdown(mp)) 1163 return -EIO; 1164 1165 /* Prepare and then clone file data. */ 1166 ret = xfs_reflink_remap_prep(file_in, pos_in, file_out, pos_out, 1167 &len, remap_flags); 1168 if (ret || len == 0) 1169 return ret; 1170 1171 trace_xfs_reflink_remap_range(src, pos_in, len, dest, pos_out); 1172 1173 ret = xfs_reflink_remap_blocks(src, pos_in, dest, pos_out, len, 1174 &remapped); 1175 if (ret) 1176 goto out_unlock; 1177 1178 /* 1179 * Carry the cowextsize hint from src to dest if we're sharing the 1180 * entire source file to the entire destination file, the source file 1181 * has a cowextsize hint, and the destination file does not. 1182 */ 1183 cowextsize = 0; 1184 if (pos_in == 0 && len == i_size_read(inode_in) && 1185 (src->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE) && 1186 pos_out == 0 && len >= i_size_read(inode_out) && 1187 !(dest->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE)) 1188 cowextsize = src->i_cowextsize; 1189 1190 ret = xfs_reflink_update_dest(dest, pos_out + len, cowextsize, 1191 remap_flags); 1192 if (ret) 1193 goto out_unlock; 1194 1195 if (xfs_file_sync_writes(file_in) || xfs_file_sync_writes(file_out)) 1196 xfs_log_force_inode(dest); 1197 out_unlock: 1198 xfs_iunlock2_remapping(src, dest); 1199 if (ret) 1200 trace_xfs_reflink_remap_range_error(dest, ret, _RET_IP_); 1201 return remapped > 0 ? remapped : ret; 1202 } 1203 1204 STATIC int 1205 xfs_file_open( 1206 struct inode *inode, 1207 struct file *file) 1208 { 1209 if (xfs_is_shutdown(XFS_M(inode->i_sb))) 1210 return -EIO; 1211 file->f_mode |= FMODE_NOWAIT | FMODE_CAN_ODIRECT; 1212 return generic_file_open(inode, file); 1213 } 1214 1215 STATIC int 1216 xfs_dir_open( 1217 struct inode *inode, 1218 struct file *file) 1219 { 1220 struct xfs_inode *ip = XFS_I(inode); 1221 unsigned int mode; 1222 int error; 1223 1224 if (xfs_is_shutdown(ip->i_mount)) 1225 return -EIO; 1226 error = generic_file_open(inode, file); 1227 if (error) 1228 return error; 1229 1230 /* 1231 * If there are any blocks, read-ahead block 0 as we're almost 1232 * certain to have the next operation be a read there. 1233 */ 1234 mode = xfs_ilock_data_map_shared(ip); 1235 if (ip->i_df.if_nextents > 0) 1236 error = xfs_dir3_data_readahead(ip, 0, 0); 1237 xfs_iunlock(ip, mode); 1238 return error; 1239 } 1240 1241 /* 1242 * Don't bother propagating errors. We're just doing cleanup, and the caller 1243 * ignores the return value anyway. 1244 */ 1245 STATIC int 1246 xfs_file_release( 1247 struct inode *inode, 1248 struct file *file) 1249 { 1250 struct xfs_inode *ip = XFS_I(inode); 1251 struct xfs_mount *mp = ip->i_mount; 1252 1253 /* 1254 * If this is a read-only mount or the file system has been shut down, 1255 * don't generate I/O. 1256 */ 1257 if (xfs_is_readonly(mp) || xfs_is_shutdown(mp)) 1258 return 0; 1259 1260 /* 1261 * If we previously truncated this file and removed old data in the 1262 * process, we want to initiate "early" writeout on the last close. 1263 * This is an attempt to combat the notorious NULL files problem which 1264 * is particularly noticeable from a truncate down, buffered (re-)write 1265 * (delalloc), followed by a crash. What we are effectively doing here 1266 * is significantly reducing the time window where we'd otherwise be 1267 * exposed to that problem. 1268 */ 1269 if (xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED)) { 1270 xfs_iflags_clear(ip, XFS_EOFBLOCKS_RELEASED); 1271 if (ip->i_delayed_blks > 0) 1272 filemap_flush(inode->i_mapping); 1273 } 1274 1275 /* 1276 * XFS aggressively preallocates post-EOF space to generate contiguous 1277 * allocations for writers that append to the end of the file. 1278 * 1279 * To support workloads that close and reopen the file frequently, these 1280 * preallocations usually persist after a close unless it is the first 1281 * close for the inode. This is a tradeoff to generate tightly packed 1282 * data layouts for unpacking tarballs or similar archives that write 1283 * one file after another without going back to it while keeping the 1284 * preallocation for files that have recurring open/write/close cycles. 1285 * 1286 * This heuristic is skipped for inodes with the append-only flag as 1287 * that flag is rather pointless for inodes written only once. 1288 * 1289 * There is no point in freeing blocks here for open but unlinked files 1290 * as they will be taken care of by the inactivation path soon. 1291 * 1292 * When releasing a read-only context, don't flush data or trim post-EOF 1293 * blocks. This avoids open/read/close workloads from removing EOF 1294 * blocks that other writers depend upon to reduce fragmentation. 1295 * 1296 * If we can't get the iolock just skip truncating the blocks past EOF 1297 * because we could deadlock with the mmap_lock otherwise. We'll get 1298 * another chance to drop them once the last reference to the inode is 1299 * dropped, so we'll never leak blocks permanently. 1300 */ 1301 if (inode->i_nlink && 1302 (file->f_mode & FMODE_WRITE) && 1303 !(ip->i_diflags & XFS_DIFLAG_APPEND) && 1304 !xfs_iflags_test(ip, XFS_EOFBLOCKS_RELEASED) && 1305 xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) { 1306 if (xfs_can_free_eofblocks(ip) && 1307 !xfs_iflags_test_and_set(ip, XFS_EOFBLOCKS_RELEASED)) 1308 xfs_free_eofblocks(ip); 1309 xfs_iunlock(ip, XFS_IOLOCK_EXCL); 1310 } 1311 1312 return 0; 1313 } 1314 1315 STATIC int 1316 xfs_file_readdir( 1317 struct file *file, 1318 struct dir_context *ctx) 1319 { 1320 struct inode *inode = file_inode(file); 1321 xfs_inode_t *ip = XFS_I(inode); 1322 size_t bufsize; 1323 1324 /* 1325 * The Linux API doesn't pass down the total size of the buffer 1326 * we read into down to the filesystem. With the filldir concept 1327 * it's not needed for correct information, but the XFS dir2 leaf 1328 * code wants an estimate of the buffer size to calculate it's 1329 * readahead window and size the buffers used for mapping to 1330 * physical blocks. 1331 * 1332 * Try to give it an estimate that's good enough, maybe at some 1333 * point we can change the ->readdir prototype to include the 1334 * buffer size. For now we use the current glibc buffer size. 1335 */ 1336 bufsize = (size_t)min_t(loff_t, XFS_READDIR_BUFSIZE, ip->i_disk_size); 1337 1338 return xfs_readdir(NULL, ip, ctx, bufsize); 1339 } 1340 1341 STATIC loff_t 1342 xfs_file_llseek( 1343 struct file *file, 1344 loff_t offset, 1345 int whence) 1346 { 1347 struct inode *inode = file->f_mapping->host; 1348 1349 if (xfs_is_shutdown(XFS_I(inode)->i_mount)) 1350 return -EIO; 1351 1352 switch (whence) { 1353 default: 1354 return generic_file_llseek(file, offset, whence); 1355 case SEEK_HOLE: 1356 offset = iomap_seek_hole(inode, offset, &xfs_seek_iomap_ops); 1357 break; 1358 case SEEK_DATA: 1359 offset = iomap_seek_data(inode, offset, &xfs_seek_iomap_ops); 1360 break; 1361 } 1362 1363 if (offset < 0) 1364 return offset; 1365 return vfs_setpos(file, offset, inode->i_sb->s_maxbytes); 1366 } 1367 1368 static inline vm_fault_t 1369 xfs_dax_fault_locked( 1370 struct vm_fault *vmf, 1371 unsigned int order, 1372 bool write_fault) 1373 { 1374 vm_fault_t ret; 1375 pfn_t pfn; 1376 1377 if (!IS_ENABLED(CONFIG_FS_DAX)) { 1378 ASSERT(0); 1379 return VM_FAULT_SIGBUS; 1380 } 1381 ret = dax_iomap_fault(vmf, order, &pfn, NULL, 1382 (write_fault && !vmf->cow_page) ? 1383 &xfs_dax_write_iomap_ops : 1384 &xfs_read_iomap_ops); 1385 if (ret & VM_FAULT_NEEDDSYNC) 1386 ret = dax_finish_sync_fault(vmf, order, pfn); 1387 return ret; 1388 } 1389 1390 static vm_fault_t 1391 xfs_dax_read_fault( 1392 struct vm_fault *vmf, 1393 unsigned int order) 1394 { 1395 struct xfs_inode *ip = XFS_I(file_inode(vmf->vma->vm_file)); 1396 vm_fault_t ret; 1397 1398 xfs_ilock(ip, XFS_MMAPLOCK_SHARED); 1399 ret = xfs_dax_fault_locked(vmf, order, false); 1400 xfs_iunlock(ip, XFS_MMAPLOCK_SHARED); 1401 1402 return ret; 1403 } 1404 1405 static vm_fault_t 1406 xfs_write_fault( 1407 struct vm_fault *vmf, 1408 unsigned int order) 1409 { 1410 struct inode *inode = file_inode(vmf->vma->vm_file); 1411 struct xfs_inode *ip = XFS_I(inode); 1412 unsigned int lock_mode = XFS_MMAPLOCK_SHARED; 1413 vm_fault_t ret; 1414 1415 sb_start_pagefault(inode->i_sb); 1416 file_update_time(vmf->vma->vm_file); 1417 1418 /* 1419 * Normally we only need the shared mmaplock, but if a reflink remap is 1420 * in progress we take the exclusive lock to wait for the remap to 1421 * finish before taking a write fault. 1422 */ 1423 xfs_ilock(ip, XFS_MMAPLOCK_SHARED); 1424 if (xfs_iflags_test(ip, XFS_IREMAPPING)) { 1425 xfs_iunlock(ip, XFS_MMAPLOCK_SHARED); 1426 xfs_ilock(ip, XFS_MMAPLOCK_EXCL); 1427 lock_mode = XFS_MMAPLOCK_EXCL; 1428 } 1429 1430 if (IS_DAX(inode)) 1431 ret = xfs_dax_fault_locked(vmf, order, true); 1432 else 1433 ret = iomap_page_mkwrite(vmf, &xfs_page_mkwrite_iomap_ops); 1434 xfs_iunlock(ip, lock_mode); 1435 1436 sb_end_pagefault(inode->i_sb); 1437 return ret; 1438 } 1439 1440 /* 1441 * Locking for serialisation of IO during page faults. This results in a lock 1442 * ordering of: 1443 * 1444 * mmap_lock (MM) 1445 * sb_start_pagefault(vfs, freeze) 1446 * invalidate_lock (vfs/XFS_MMAPLOCK - truncate serialisation) 1447 * page_lock (MM) 1448 * i_lock (XFS - extent map serialisation) 1449 */ 1450 static vm_fault_t 1451 __xfs_filemap_fault( 1452 struct vm_fault *vmf, 1453 unsigned int order, 1454 bool write_fault) 1455 { 1456 struct inode *inode = file_inode(vmf->vma->vm_file); 1457 1458 trace_xfs_filemap_fault(XFS_I(inode), order, write_fault); 1459 1460 if (write_fault) 1461 return xfs_write_fault(vmf, order); 1462 if (IS_DAX(inode)) 1463 return xfs_dax_read_fault(vmf, order); 1464 return filemap_fault(vmf); 1465 } 1466 1467 static inline bool 1468 xfs_is_write_fault( 1469 struct vm_fault *vmf) 1470 { 1471 return (vmf->flags & FAULT_FLAG_WRITE) && 1472 (vmf->vma->vm_flags & VM_SHARED); 1473 } 1474 1475 static vm_fault_t 1476 xfs_filemap_fault( 1477 struct vm_fault *vmf) 1478 { 1479 /* DAX can shortcut the normal fault path on write faults! */ 1480 return __xfs_filemap_fault(vmf, 0, 1481 IS_DAX(file_inode(vmf->vma->vm_file)) && 1482 xfs_is_write_fault(vmf)); 1483 } 1484 1485 static vm_fault_t 1486 xfs_filemap_huge_fault( 1487 struct vm_fault *vmf, 1488 unsigned int order) 1489 { 1490 if (!IS_DAX(file_inode(vmf->vma->vm_file))) 1491 return VM_FAULT_FALLBACK; 1492 1493 /* DAX can shortcut the normal fault path on write faults! */ 1494 return __xfs_filemap_fault(vmf, order, 1495 xfs_is_write_fault(vmf)); 1496 } 1497 1498 static vm_fault_t 1499 xfs_filemap_page_mkwrite( 1500 struct vm_fault *vmf) 1501 { 1502 return __xfs_filemap_fault(vmf, 0, true); 1503 } 1504 1505 /* 1506 * pfn_mkwrite was originally intended to ensure we capture time stamp updates 1507 * on write faults. In reality, it needs to serialise against truncate and 1508 * prepare memory for writing so handle is as standard write fault. 1509 */ 1510 static vm_fault_t 1511 xfs_filemap_pfn_mkwrite( 1512 struct vm_fault *vmf) 1513 { 1514 1515 return __xfs_filemap_fault(vmf, 0, true); 1516 } 1517 1518 static const struct vm_operations_struct xfs_file_vm_ops = { 1519 .fault = xfs_filemap_fault, 1520 .huge_fault = xfs_filemap_huge_fault, 1521 .map_pages = filemap_map_pages, 1522 .page_mkwrite = xfs_filemap_page_mkwrite, 1523 .pfn_mkwrite = xfs_filemap_pfn_mkwrite, 1524 }; 1525 1526 STATIC int 1527 xfs_file_mmap( 1528 struct file *file, 1529 struct vm_area_struct *vma) 1530 { 1531 struct inode *inode = file_inode(file); 1532 struct xfs_buftarg *target = xfs_inode_buftarg(XFS_I(inode)); 1533 1534 /* 1535 * We don't support synchronous mappings for non-DAX files and 1536 * for DAX files if underneath dax_device is not synchronous. 1537 */ 1538 if (!daxdev_mapping_supported(vma, target->bt_daxdev)) 1539 return -EOPNOTSUPP; 1540 1541 file_accessed(file); 1542 vma->vm_ops = &xfs_file_vm_ops; 1543 if (IS_DAX(inode)) 1544 vm_flags_set(vma, VM_HUGEPAGE); 1545 return 0; 1546 } 1547 1548 const struct file_operations xfs_file_operations = { 1549 .llseek = xfs_file_llseek, 1550 .read_iter = xfs_file_read_iter, 1551 .write_iter = xfs_file_write_iter, 1552 .splice_read = xfs_file_splice_read, 1553 .splice_write = iter_file_splice_write, 1554 .iopoll = iocb_bio_iopoll, 1555 .unlocked_ioctl = xfs_file_ioctl, 1556 #ifdef CONFIG_COMPAT 1557 .compat_ioctl = xfs_file_compat_ioctl, 1558 #endif 1559 .mmap = xfs_file_mmap, 1560 .open = xfs_file_open, 1561 .release = xfs_file_release, 1562 .fsync = xfs_file_fsync, 1563 .get_unmapped_area = thp_get_unmapped_area, 1564 .fallocate = xfs_file_fallocate, 1565 .fadvise = xfs_file_fadvise, 1566 .remap_file_range = xfs_file_remap_range, 1567 .fop_flags = FOP_MMAP_SYNC | FOP_BUFFER_RASYNC | 1568 FOP_BUFFER_WASYNC | FOP_DIO_PARALLEL_WRITE, 1569 }; 1570 1571 const struct file_operations xfs_dir_file_operations = { 1572 .open = xfs_dir_open, 1573 .read = generic_read_dir, 1574 .iterate_shared = xfs_file_readdir, 1575 .llseek = generic_file_llseek, 1576 .unlocked_ioctl = xfs_file_ioctl, 1577 #ifdef CONFIG_COMPAT 1578 .compat_ioctl = xfs_file_compat_ioctl, 1579 #endif 1580 .fsync = xfs_dir_fsync, 1581 }; 1582