1 /* 2 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_fs.h" 20 #include "xfs_shared.h" 21 #include "xfs_format.h" 22 #include "xfs_log_format.h" 23 #include "xfs_trans_resv.h" 24 #include "xfs_mount.h" 25 #include "xfs_da_format.h" 26 #include "xfs_da_btree.h" 27 #include "xfs_inode.h" 28 #include "xfs_trans.h" 29 #include "xfs_inode_item.h" 30 #include "xfs_bmap.h" 31 #include "xfs_bmap_util.h" 32 #include "xfs_error.h" 33 #include "xfs_dir2.h" 34 #include "xfs_dir2_priv.h" 35 #include "xfs_ioctl.h" 36 #include "xfs_trace.h" 37 #include "xfs_log.h" 38 #include "xfs_icache.h" 39 #include "xfs_pnfs.h" 40 #include "xfs_iomap.h" 41 #include "xfs_reflink.h" 42 43 #include <linux/dcache.h> 44 #include <linux/falloc.h> 45 #include <linux/pagevec.h> 46 #include <linux/backing-dev.h> 47 48 static const struct vm_operations_struct xfs_file_vm_ops; 49 50 /* 51 * Clear the specified ranges to zero through either the pagecache or DAX. 52 * Holes and unwritten extents will be left as-is as they already are zeroed. 53 */ 54 int 55 xfs_zero_range( 56 struct xfs_inode *ip, 57 xfs_off_t pos, 58 xfs_off_t count, 59 bool *did_zero) 60 { 61 return iomap_zero_range(VFS_I(ip), pos, count, NULL, &xfs_iomap_ops); 62 } 63 64 int 65 xfs_update_prealloc_flags( 66 struct xfs_inode *ip, 67 enum xfs_prealloc_flags flags) 68 { 69 struct xfs_trans *tp; 70 int error; 71 72 error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_writeid, 73 0, 0, 0, &tp); 74 if (error) 75 return error; 76 77 xfs_ilock(ip, XFS_ILOCK_EXCL); 78 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 79 80 if (!(flags & XFS_PREALLOC_INVISIBLE)) { 81 VFS_I(ip)->i_mode &= ~S_ISUID; 82 if (VFS_I(ip)->i_mode & S_IXGRP) 83 VFS_I(ip)->i_mode &= ~S_ISGID; 84 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 85 } 86 87 if (flags & XFS_PREALLOC_SET) 88 ip->i_d.di_flags |= XFS_DIFLAG_PREALLOC; 89 if (flags & XFS_PREALLOC_CLEAR) 90 ip->i_d.di_flags &= ~XFS_DIFLAG_PREALLOC; 91 92 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 93 if (flags & XFS_PREALLOC_SYNC) 94 xfs_trans_set_sync(tp); 95 return xfs_trans_commit(tp); 96 } 97 98 /* 99 * Fsync operations on directories are much simpler than on regular files, 100 * as there is no file data to flush, and thus also no need for explicit 101 * cache flush operations, and there are no non-transaction metadata updates 102 * on directories either. 103 */ 104 STATIC int 105 xfs_dir_fsync( 106 struct file *file, 107 loff_t start, 108 loff_t end, 109 int datasync) 110 { 111 struct xfs_inode *ip = XFS_I(file->f_mapping->host); 112 struct xfs_mount *mp = ip->i_mount; 113 xfs_lsn_t lsn = 0; 114 115 trace_xfs_dir_fsync(ip); 116 117 xfs_ilock(ip, XFS_ILOCK_SHARED); 118 if (xfs_ipincount(ip)) 119 lsn = ip->i_itemp->ili_last_lsn; 120 xfs_iunlock(ip, XFS_ILOCK_SHARED); 121 122 if (!lsn) 123 return 0; 124 return _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, NULL); 125 } 126 127 STATIC int 128 xfs_file_fsync( 129 struct file *file, 130 loff_t start, 131 loff_t end, 132 int datasync) 133 { 134 struct inode *inode = file->f_mapping->host; 135 struct xfs_inode *ip = XFS_I(inode); 136 struct xfs_mount *mp = ip->i_mount; 137 int error = 0; 138 int log_flushed = 0; 139 xfs_lsn_t lsn = 0; 140 141 trace_xfs_file_fsync(ip); 142 143 error = filemap_write_and_wait_range(inode->i_mapping, start, end); 144 if (error) 145 return error; 146 147 if (XFS_FORCED_SHUTDOWN(mp)) 148 return -EIO; 149 150 xfs_iflags_clear(ip, XFS_ITRUNCATED); 151 152 /* 153 * If we have an RT and/or log subvolume we need to make sure to flush 154 * the write cache the device used for file data first. This is to 155 * ensure newly written file data make it to disk before logging the new 156 * inode size in case of an extending write. 157 */ 158 if (XFS_IS_REALTIME_INODE(ip)) 159 xfs_blkdev_issue_flush(mp->m_rtdev_targp); 160 else if (mp->m_logdev_targp != mp->m_ddev_targp) 161 xfs_blkdev_issue_flush(mp->m_ddev_targp); 162 163 /* 164 * All metadata updates are logged, which means that we just have to 165 * flush the log up to the latest LSN that touched the inode. If we have 166 * concurrent fsync/fdatasync() calls, we need them to all block on the 167 * log force before we clear the ili_fsync_fields field. This ensures 168 * that we don't get a racing sync operation that does not wait for the 169 * metadata to hit the journal before returning. If we race with 170 * clearing the ili_fsync_fields, then all that will happen is the log 171 * force will do nothing as the lsn will already be on disk. We can't 172 * race with setting ili_fsync_fields because that is done under 173 * XFS_ILOCK_EXCL, and that can't happen because we hold the lock shared 174 * until after the ili_fsync_fields is cleared. 175 */ 176 xfs_ilock(ip, XFS_ILOCK_SHARED); 177 if (xfs_ipincount(ip)) { 178 if (!datasync || 179 (ip->i_itemp->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP)) 180 lsn = ip->i_itemp->ili_last_lsn; 181 } 182 183 if (lsn) { 184 error = _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed); 185 ip->i_itemp->ili_fsync_fields = 0; 186 } 187 xfs_iunlock(ip, XFS_ILOCK_SHARED); 188 189 /* 190 * If we only have a single device, and the log force about was 191 * a no-op we might have to flush the data device cache here. 192 * This can only happen for fdatasync/O_DSYNC if we were overwriting 193 * an already allocated file and thus do not have any metadata to 194 * commit. 195 */ 196 if (!log_flushed && !XFS_IS_REALTIME_INODE(ip) && 197 mp->m_logdev_targp == mp->m_ddev_targp) 198 xfs_blkdev_issue_flush(mp->m_ddev_targp); 199 200 return error; 201 } 202 203 STATIC ssize_t 204 xfs_file_dio_aio_read( 205 struct kiocb *iocb, 206 struct iov_iter *to) 207 { 208 struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp)); 209 size_t count = iov_iter_count(to); 210 ssize_t ret; 211 212 trace_xfs_file_direct_read(ip, count, iocb->ki_pos); 213 214 if (!count) 215 return 0; /* skip atime */ 216 217 file_accessed(iocb->ki_filp); 218 219 xfs_ilock(ip, XFS_IOLOCK_SHARED); 220 ret = iomap_dio_rw(iocb, to, &xfs_iomap_ops, NULL); 221 xfs_iunlock(ip, XFS_IOLOCK_SHARED); 222 223 return ret; 224 } 225 226 static noinline ssize_t 227 xfs_file_dax_read( 228 struct kiocb *iocb, 229 struct iov_iter *to) 230 { 231 struct xfs_inode *ip = XFS_I(iocb->ki_filp->f_mapping->host); 232 size_t count = iov_iter_count(to); 233 ssize_t ret = 0; 234 235 trace_xfs_file_dax_read(ip, count, iocb->ki_pos); 236 237 if (!count) 238 return 0; /* skip atime */ 239 240 xfs_ilock(ip, XFS_IOLOCK_SHARED); 241 ret = dax_iomap_rw(iocb, to, &xfs_iomap_ops); 242 xfs_iunlock(ip, XFS_IOLOCK_SHARED); 243 244 file_accessed(iocb->ki_filp); 245 return ret; 246 } 247 248 STATIC ssize_t 249 xfs_file_buffered_aio_read( 250 struct kiocb *iocb, 251 struct iov_iter *to) 252 { 253 struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp)); 254 ssize_t ret; 255 256 trace_xfs_file_buffered_read(ip, iov_iter_count(to), iocb->ki_pos); 257 258 xfs_ilock(ip, XFS_IOLOCK_SHARED); 259 ret = generic_file_read_iter(iocb, to); 260 xfs_iunlock(ip, XFS_IOLOCK_SHARED); 261 262 return ret; 263 } 264 265 STATIC ssize_t 266 xfs_file_read_iter( 267 struct kiocb *iocb, 268 struct iov_iter *to) 269 { 270 struct inode *inode = file_inode(iocb->ki_filp); 271 struct xfs_mount *mp = XFS_I(inode)->i_mount; 272 ssize_t ret = 0; 273 274 XFS_STATS_INC(mp, xs_read_calls); 275 276 if (XFS_FORCED_SHUTDOWN(mp)) 277 return -EIO; 278 279 if (IS_DAX(inode)) 280 ret = xfs_file_dax_read(iocb, to); 281 else if (iocb->ki_flags & IOCB_DIRECT) 282 ret = xfs_file_dio_aio_read(iocb, to); 283 else 284 ret = xfs_file_buffered_aio_read(iocb, to); 285 286 if (ret > 0) 287 XFS_STATS_ADD(mp, xs_read_bytes, ret); 288 return ret; 289 } 290 291 /* 292 * Zero any on disk space between the current EOF and the new, larger EOF. 293 * 294 * This handles the normal case of zeroing the remainder of the last block in 295 * the file and the unusual case of zeroing blocks out beyond the size of the 296 * file. This second case only happens with fixed size extents and when the 297 * system crashes before the inode size was updated but after blocks were 298 * allocated. 299 * 300 * Expects the iolock to be held exclusive, and will take the ilock internally. 301 */ 302 int /* error (positive) */ 303 xfs_zero_eof( 304 struct xfs_inode *ip, 305 xfs_off_t offset, /* starting I/O offset */ 306 xfs_fsize_t isize, /* current inode size */ 307 bool *did_zeroing) 308 { 309 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL)); 310 ASSERT(offset > isize); 311 312 trace_xfs_zero_eof(ip, isize, offset - isize); 313 return xfs_zero_range(ip, isize, offset - isize, did_zeroing); 314 } 315 316 /* 317 * Common pre-write limit and setup checks. 318 * 319 * Called with the iolocked held either shared and exclusive according to 320 * @iolock, and returns with it held. Might upgrade the iolock to exclusive 321 * if called for a direct write beyond i_size. 322 */ 323 STATIC ssize_t 324 xfs_file_aio_write_checks( 325 struct kiocb *iocb, 326 struct iov_iter *from, 327 int *iolock) 328 { 329 struct file *file = iocb->ki_filp; 330 struct inode *inode = file->f_mapping->host; 331 struct xfs_inode *ip = XFS_I(inode); 332 ssize_t error = 0; 333 size_t count = iov_iter_count(from); 334 bool drained_dio = false; 335 336 restart: 337 error = generic_write_checks(iocb, from); 338 if (error <= 0) 339 return error; 340 341 error = xfs_break_layouts(inode, iolock); 342 if (error) 343 return error; 344 345 /* 346 * For changing security info in file_remove_privs() we need i_rwsem 347 * exclusively. 348 */ 349 if (*iolock == XFS_IOLOCK_SHARED && !IS_NOSEC(inode)) { 350 xfs_iunlock(ip, *iolock); 351 *iolock = XFS_IOLOCK_EXCL; 352 xfs_ilock(ip, *iolock); 353 goto restart; 354 } 355 /* 356 * If the offset is beyond the size of the file, we need to zero any 357 * blocks that fall between the existing EOF and the start of this 358 * write. If zeroing is needed and we are currently holding the 359 * iolock shared, we need to update it to exclusive which implies 360 * having to redo all checks before. 361 * 362 * We need to serialise against EOF updates that occur in IO 363 * completions here. We want to make sure that nobody is changing the 364 * size while we do this check until we have placed an IO barrier (i.e. 365 * hold the XFS_IOLOCK_EXCL) that prevents new IO from being dispatched. 366 * The spinlock effectively forms a memory barrier once we have the 367 * XFS_IOLOCK_EXCL so we are guaranteed to see the latest EOF value 368 * and hence be able to correctly determine if we need to run zeroing. 369 */ 370 spin_lock(&ip->i_flags_lock); 371 if (iocb->ki_pos > i_size_read(inode)) { 372 bool zero = false; 373 374 spin_unlock(&ip->i_flags_lock); 375 if (!drained_dio) { 376 if (*iolock == XFS_IOLOCK_SHARED) { 377 xfs_iunlock(ip, *iolock); 378 *iolock = XFS_IOLOCK_EXCL; 379 xfs_ilock(ip, *iolock); 380 iov_iter_reexpand(from, count); 381 } 382 /* 383 * We now have an IO submission barrier in place, but 384 * AIO can do EOF updates during IO completion and hence 385 * we now need to wait for all of them to drain. Non-AIO 386 * DIO will have drained before we are given the 387 * XFS_IOLOCK_EXCL, and so for most cases this wait is a 388 * no-op. 389 */ 390 inode_dio_wait(inode); 391 drained_dio = true; 392 goto restart; 393 } 394 error = xfs_zero_eof(ip, iocb->ki_pos, i_size_read(inode), &zero); 395 if (error) 396 return error; 397 } else 398 spin_unlock(&ip->i_flags_lock); 399 400 /* 401 * Updating the timestamps will grab the ilock again from 402 * xfs_fs_dirty_inode, so we have to call it after dropping the 403 * lock above. Eventually we should look into a way to avoid 404 * the pointless lock roundtrip. 405 */ 406 if (likely(!(file->f_mode & FMODE_NOCMTIME))) { 407 error = file_update_time(file); 408 if (error) 409 return error; 410 } 411 412 /* 413 * If we're writing the file then make sure to clear the setuid and 414 * setgid bits if the process is not being run by root. This keeps 415 * people from modifying setuid and setgid binaries. 416 */ 417 if (!IS_NOSEC(inode)) 418 return file_remove_privs(file); 419 return 0; 420 } 421 422 static int 423 xfs_dio_write_end_io( 424 struct kiocb *iocb, 425 ssize_t size, 426 unsigned flags) 427 { 428 struct inode *inode = file_inode(iocb->ki_filp); 429 struct xfs_inode *ip = XFS_I(inode); 430 loff_t offset = iocb->ki_pos; 431 bool update_size = false; 432 int error = 0; 433 434 trace_xfs_end_io_direct_write(ip, offset, size); 435 436 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) 437 return -EIO; 438 439 if (size <= 0) 440 return size; 441 442 /* 443 * We need to update the in-core inode size here so that we don't end up 444 * with the on-disk inode size being outside the in-core inode size. We 445 * have no other method of updating EOF for AIO, so always do it here 446 * if necessary. 447 * 448 * We need to lock the test/set EOF update as we can be racing with 449 * other IO completions here to update the EOF. Failing to serialise 450 * here can result in EOF moving backwards and Bad Things Happen when 451 * that occurs. 452 */ 453 spin_lock(&ip->i_flags_lock); 454 if (offset + size > i_size_read(inode)) { 455 i_size_write(inode, offset + size); 456 update_size = true; 457 } 458 spin_unlock(&ip->i_flags_lock); 459 460 if (flags & IOMAP_DIO_COW) { 461 error = xfs_reflink_end_cow(ip, offset, size); 462 if (error) 463 return error; 464 } 465 466 if (flags & IOMAP_DIO_UNWRITTEN) 467 error = xfs_iomap_write_unwritten(ip, offset, size); 468 else if (update_size) 469 error = xfs_setfilesize(ip, offset, size); 470 471 return error; 472 } 473 474 /* 475 * xfs_file_dio_aio_write - handle direct IO writes 476 * 477 * Lock the inode appropriately to prepare for and issue a direct IO write. 478 * By separating it from the buffered write path we remove all the tricky to 479 * follow locking changes and looping. 480 * 481 * If there are cached pages or we're extending the file, we need IOLOCK_EXCL 482 * until we're sure the bytes at the new EOF have been zeroed and/or the cached 483 * pages are flushed out. 484 * 485 * In most cases the direct IO writes will be done holding IOLOCK_SHARED 486 * allowing them to be done in parallel with reads and other direct IO writes. 487 * However, if the IO is not aligned to filesystem blocks, the direct IO layer 488 * needs to do sub-block zeroing and that requires serialisation against other 489 * direct IOs to the same block. In this case we need to serialise the 490 * submission of the unaligned IOs so that we don't get racing block zeroing in 491 * the dio layer. To avoid the problem with aio, we also need to wait for 492 * outstanding IOs to complete so that unwritten extent conversion is completed 493 * before we try to map the overlapping block. This is currently implemented by 494 * hitting it with a big hammer (i.e. inode_dio_wait()). 495 * 496 * Returns with locks held indicated by @iolock and errors indicated by 497 * negative return values. 498 */ 499 STATIC ssize_t 500 xfs_file_dio_aio_write( 501 struct kiocb *iocb, 502 struct iov_iter *from) 503 { 504 struct file *file = iocb->ki_filp; 505 struct address_space *mapping = file->f_mapping; 506 struct inode *inode = mapping->host; 507 struct xfs_inode *ip = XFS_I(inode); 508 struct xfs_mount *mp = ip->i_mount; 509 ssize_t ret = 0; 510 int unaligned_io = 0; 511 int iolock; 512 size_t count = iov_iter_count(from); 513 struct xfs_buftarg *target = XFS_IS_REALTIME_INODE(ip) ? 514 mp->m_rtdev_targp : mp->m_ddev_targp; 515 516 /* DIO must be aligned to device logical sector size */ 517 if ((iocb->ki_pos | count) & target->bt_logical_sectormask) 518 return -EINVAL; 519 520 /* 521 * Don't take the exclusive iolock here unless the I/O is unaligned to 522 * the file system block size. We don't need to consider the EOF 523 * extension case here because xfs_file_aio_write_checks() will relock 524 * the inode as necessary for EOF zeroing cases and fill out the new 525 * inode size as appropriate. 526 */ 527 if ((iocb->ki_pos & mp->m_blockmask) || 528 ((iocb->ki_pos + count) & mp->m_blockmask)) { 529 unaligned_io = 1; 530 iolock = XFS_IOLOCK_EXCL; 531 } else { 532 iolock = XFS_IOLOCK_SHARED; 533 } 534 535 xfs_ilock(ip, iolock); 536 537 ret = xfs_file_aio_write_checks(iocb, from, &iolock); 538 if (ret) 539 goto out; 540 count = iov_iter_count(from); 541 542 /* 543 * If we are doing unaligned IO, wait for all other IO to drain, 544 * otherwise demote the lock if we had to take the exclusive lock 545 * for other reasons in xfs_file_aio_write_checks. 546 */ 547 if (unaligned_io) 548 inode_dio_wait(inode); 549 else if (iolock == XFS_IOLOCK_EXCL) { 550 xfs_ilock_demote(ip, XFS_IOLOCK_EXCL); 551 iolock = XFS_IOLOCK_SHARED; 552 } 553 554 trace_xfs_file_direct_write(ip, count, iocb->ki_pos); 555 556 /* If this is a block-aligned directio CoW, remap immediately. */ 557 if (xfs_is_reflink_inode(ip) && !unaligned_io) { 558 ret = xfs_reflink_allocate_cow_range(ip, iocb->ki_pos, count); 559 if (ret) 560 goto out; 561 } 562 563 ret = iomap_dio_rw(iocb, from, &xfs_iomap_ops, xfs_dio_write_end_io); 564 out: 565 xfs_iunlock(ip, iolock); 566 567 /* 568 * No fallback to buffered IO on errors for XFS, direct IO will either 569 * complete fully or fail. 570 */ 571 ASSERT(ret < 0 || ret == count); 572 return ret; 573 } 574 575 static noinline ssize_t 576 xfs_file_dax_write( 577 struct kiocb *iocb, 578 struct iov_iter *from) 579 { 580 struct inode *inode = iocb->ki_filp->f_mapping->host; 581 struct xfs_inode *ip = XFS_I(inode); 582 int iolock = XFS_IOLOCK_EXCL; 583 ssize_t ret, error = 0; 584 size_t count; 585 loff_t pos; 586 587 xfs_ilock(ip, iolock); 588 ret = xfs_file_aio_write_checks(iocb, from, &iolock); 589 if (ret) 590 goto out; 591 592 pos = iocb->ki_pos; 593 count = iov_iter_count(from); 594 595 trace_xfs_file_dax_write(ip, count, pos); 596 ret = dax_iomap_rw(iocb, from, &xfs_iomap_ops); 597 if (ret > 0 && iocb->ki_pos > i_size_read(inode)) { 598 i_size_write(inode, iocb->ki_pos); 599 error = xfs_setfilesize(ip, pos, ret); 600 } 601 out: 602 xfs_iunlock(ip, iolock); 603 return error ? error : ret; 604 } 605 606 STATIC ssize_t 607 xfs_file_buffered_aio_write( 608 struct kiocb *iocb, 609 struct iov_iter *from) 610 { 611 struct file *file = iocb->ki_filp; 612 struct address_space *mapping = file->f_mapping; 613 struct inode *inode = mapping->host; 614 struct xfs_inode *ip = XFS_I(inode); 615 ssize_t ret; 616 int enospc = 0; 617 int iolock = XFS_IOLOCK_EXCL; 618 619 xfs_ilock(ip, iolock); 620 621 ret = xfs_file_aio_write_checks(iocb, from, &iolock); 622 if (ret) 623 goto out; 624 625 /* We can write back this queue in page reclaim */ 626 current->backing_dev_info = inode_to_bdi(inode); 627 628 write_retry: 629 trace_xfs_file_buffered_write(ip, iov_iter_count(from), iocb->ki_pos); 630 ret = iomap_file_buffered_write(iocb, from, &xfs_iomap_ops); 631 if (likely(ret >= 0)) 632 iocb->ki_pos += ret; 633 634 /* 635 * If we hit a space limit, try to free up some lingering preallocated 636 * space before returning an error. In the case of ENOSPC, first try to 637 * write back all dirty inodes to free up some of the excess reserved 638 * metadata space. This reduces the chances that the eofblocks scan 639 * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this 640 * also behaves as a filter to prevent too many eofblocks scans from 641 * running at the same time. 642 */ 643 if (ret == -EDQUOT && !enospc) { 644 enospc = xfs_inode_free_quota_eofblocks(ip); 645 if (enospc) 646 goto write_retry; 647 enospc = xfs_inode_free_quota_cowblocks(ip); 648 if (enospc) 649 goto write_retry; 650 } else if (ret == -ENOSPC && !enospc) { 651 struct xfs_eofblocks eofb = {0}; 652 653 enospc = 1; 654 xfs_flush_inodes(ip->i_mount); 655 eofb.eof_scan_owner = ip->i_ino; /* for locking */ 656 eofb.eof_flags = XFS_EOF_FLAGS_SYNC; 657 xfs_icache_free_eofblocks(ip->i_mount, &eofb); 658 goto write_retry; 659 } 660 661 current->backing_dev_info = NULL; 662 out: 663 xfs_iunlock(ip, iolock); 664 return ret; 665 } 666 667 STATIC ssize_t 668 xfs_file_write_iter( 669 struct kiocb *iocb, 670 struct iov_iter *from) 671 { 672 struct file *file = iocb->ki_filp; 673 struct address_space *mapping = file->f_mapping; 674 struct inode *inode = mapping->host; 675 struct xfs_inode *ip = XFS_I(inode); 676 ssize_t ret; 677 size_t ocount = iov_iter_count(from); 678 679 XFS_STATS_INC(ip->i_mount, xs_write_calls); 680 681 if (ocount == 0) 682 return 0; 683 684 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) 685 return -EIO; 686 687 if (IS_DAX(inode)) 688 ret = xfs_file_dax_write(iocb, from); 689 else if (iocb->ki_flags & IOCB_DIRECT) { 690 /* 691 * Allow a directio write to fall back to a buffered 692 * write *only* in the case that we're doing a reflink 693 * CoW. In all other directio scenarios we do not 694 * allow an operation to fall back to buffered mode. 695 */ 696 ret = xfs_file_dio_aio_write(iocb, from); 697 if (ret == -EREMCHG) 698 goto buffered; 699 } else { 700 buffered: 701 ret = xfs_file_buffered_aio_write(iocb, from); 702 } 703 704 if (ret > 0) { 705 XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret); 706 707 /* Handle various SYNC-type writes */ 708 ret = generic_write_sync(iocb, ret); 709 } 710 return ret; 711 } 712 713 #define XFS_FALLOC_FL_SUPPORTED \ 714 (FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | \ 715 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE | \ 716 FALLOC_FL_INSERT_RANGE | FALLOC_FL_UNSHARE_RANGE) 717 718 STATIC long 719 xfs_file_fallocate( 720 struct file *file, 721 int mode, 722 loff_t offset, 723 loff_t len) 724 { 725 struct inode *inode = file_inode(file); 726 struct xfs_inode *ip = XFS_I(inode); 727 long error; 728 enum xfs_prealloc_flags flags = 0; 729 uint iolock = XFS_IOLOCK_EXCL; 730 loff_t new_size = 0; 731 bool do_file_insert = 0; 732 733 if (!S_ISREG(inode->i_mode)) 734 return -EINVAL; 735 if (mode & ~XFS_FALLOC_FL_SUPPORTED) 736 return -EOPNOTSUPP; 737 738 xfs_ilock(ip, iolock); 739 error = xfs_break_layouts(inode, &iolock); 740 if (error) 741 goto out_unlock; 742 743 xfs_ilock(ip, XFS_MMAPLOCK_EXCL); 744 iolock |= XFS_MMAPLOCK_EXCL; 745 746 if (mode & FALLOC_FL_PUNCH_HOLE) { 747 error = xfs_free_file_space(ip, offset, len); 748 if (error) 749 goto out_unlock; 750 } else if (mode & FALLOC_FL_COLLAPSE_RANGE) { 751 unsigned blksize_mask = (1 << inode->i_blkbits) - 1; 752 753 if (offset & blksize_mask || len & blksize_mask) { 754 error = -EINVAL; 755 goto out_unlock; 756 } 757 758 /* 759 * There is no need to overlap collapse range with EOF, 760 * in which case it is effectively a truncate operation 761 */ 762 if (offset + len >= i_size_read(inode)) { 763 error = -EINVAL; 764 goto out_unlock; 765 } 766 767 new_size = i_size_read(inode) - len; 768 769 error = xfs_collapse_file_space(ip, offset, len); 770 if (error) 771 goto out_unlock; 772 } else if (mode & FALLOC_FL_INSERT_RANGE) { 773 unsigned blksize_mask = (1 << inode->i_blkbits) - 1; 774 775 new_size = i_size_read(inode) + len; 776 if (offset & blksize_mask || len & blksize_mask) { 777 error = -EINVAL; 778 goto out_unlock; 779 } 780 781 /* check the new inode size does not wrap through zero */ 782 if (new_size > inode->i_sb->s_maxbytes) { 783 error = -EFBIG; 784 goto out_unlock; 785 } 786 787 /* Offset should be less than i_size */ 788 if (offset >= i_size_read(inode)) { 789 error = -EINVAL; 790 goto out_unlock; 791 } 792 do_file_insert = 1; 793 } else { 794 flags |= XFS_PREALLOC_SET; 795 796 if (!(mode & FALLOC_FL_KEEP_SIZE) && 797 offset + len > i_size_read(inode)) { 798 new_size = offset + len; 799 error = inode_newsize_ok(inode, new_size); 800 if (error) 801 goto out_unlock; 802 } 803 804 if (mode & FALLOC_FL_ZERO_RANGE) 805 error = xfs_zero_file_space(ip, offset, len); 806 else { 807 if (mode & FALLOC_FL_UNSHARE_RANGE) { 808 error = xfs_reflink_unshare(ip, offset, len); 809 if (error) 810 goto out_unlock; 811 } 812 error = xfs_alloc_file_space(ip, offset, len, 813 XFS_BMAPI_PREALLOC); 814 } 815 if (error) 816 goto out_unlock; 817 } 818 819 if (file->f_flags & O_DSYNC) 820 flags |= XFS_PREALLOC_SYNC; 821 822 error = xfs_update_prealloc_flags(ip, flags); 823 if (error) 824 goto out_unlock; 825 826 /* Change file size if needed */ 827 if (new_size) { 828 struct iattr iattr; 829 830 iattr.ia_valid = ATTR_SIZE; 831 iattr.ia_size = new_size; 832 error = xfs_vn_setattr_size(file_dentry(file), &iattr); 833 if (error) 834 goto out_unlock; 835 } 836 837 /* 838 * Perform hole insertion now that the file size has been 839 * updated so that if we crash during the operation we don't 840 * leave shifted extents past EOF and hence losing access to 841 * the data that is contained within them. 842 */ 843 if (do_file_insert) 844 error = xfs_insert_file_space(ip, offset, len); 845 846 out_unlock: 847 xfs_iunlock(ip, iolock); 848 return error; 849 } 850 851 STATIC int 852 xfs_file_clone_range( 853 struct file *file_in, 854 loff_t pos_in, 855 struct file *file_out, 856 loff_t pos_out, 857 u64 len) 858 { 859 return xfs_reflink_remap_range(file_in, pos_in, file_out, pos_out, 860 len, false); 861 } 862 863 STATIC ssize_t 864 xfs_file_dedupe_range( 865 struct file *src_file, 866 u64 loff, 867 u64 len, 868 struct file *dst_file, 869 u64 dst_loff) 870 { 871 int error; 872 873 error = xfs_reflink_remap_range(src_file, loff, dst_file, dst_loff, 874 len, true); 875 if (error) 876 return error; 877 return len; 878 } 879 880 STATIC int 881 xfs_file_open( 882 struct inode *inode, 883 struct file *file) 884 { 885 if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS) 886 return -EFBIG; 887 if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb))) 888 return -EIO; 889 return 0; 890 } 891 892 STATIC int 893 xfs_dir_open( 894 struct inode *inode, 895 struct file *file) 896 { 897 struct xfs_inode *ip = XFS_I(inode); 898 int mode; 899 int error; 900 901 error = xfs_file_open(inode, file); 902 if (error) 903 return error; 904 905 /* 906 * If there are any blocks, read-ahead block 0 as we're almost 907 * certain to have the next operation be a read there. 908 */ 909 mode = xfs_ilock_data_map_shared(ip); 910 if (ip->i_d.di_nextents > 0) 911 xfs_dir3_data_readahead(ip, 0, -1); 912 xfs_iunlock(ip, mode); 913 return 0; 914 } 915 916 STATIC int 917 xfs_file_release( 918 struct inode *inode, 919 struct file *filp) 920 { 921 return xfs_release(XFS_I(inode)); 922 } 923 924 STATIC int 925 xfs_file_readdir( 926 struct file *file, 927 struct dir_context *ctx) 928 { 929 struct inode *inode = file_inode(file); 930 xfs_inode_t *ip = XFS_I(inode); 931 size_t bufsize; 932 933 /* 934 * The Linux API doesn't pass down the total size of the buffer 935 * we read into down to the filesystem. With the filldir concept 936 * it's not needed for correct information, but the XFS dir2 leaf 937 * code wants an estimate of the buffer size to calculate it's 938 * readahead window and size the buffers used for mapping to 939 * physical blocks. 940 * 941 * Try to give it an estimate that's good enough, maybe at some 942 * point we can change the ->readdir prototype to include the 943 * buffer size. For now we use the current glibc buffer size. 944 */ 945 bufsize = (size_t)min_t(loff_t, 32768, ip->i_d.di_size); 946 947 return xfs_readdir(ip, ctx, bufsize); 948 } 949 950 /* 951 * This type is designed to indicate the type of offset we would like 952 * to search from page cache for xfs_seek_hole_data(). 953 */ 954 enum { 955 HOLE_OFF = 0, 956 DATA_OFF, 957 }; 958 959 /* 960 * Lookup the desired type of offset from the given page. 961 * 962 * On success, return true and the offset argument will point to the 963 * start of the region that was found. Otherwise this function will 964 * return false and keep the offset argument unchanged. 965 */ 966 STATIC bool 967 xfs_lookup_buffer_offset( 968 struct page *page, 969 loff_t *offset, 970 unsigned int type) 971 { 972 loff_t lastoff = page_offset(page); 973 bool found = false; 974 struct buffer_head *bh, *head; 975 976 bh = head = page_buffers(page); 977 do { 978 /* 979 * Unwritten extents that have data in the page 980 * cache covering them can be identified by the 981 * BH_Unwritten state flag. Pages with multiple 982 * buffers might have a mix of holes, data and 983 * unwritten extents - any buffer with valid 984 * data in it should have BH_Uptodate flag set 985 * on it. 986 */ 987 if (buffer_unwritten(bh) || 988 buffer_uptodate(bh)) { 989 if (type == DATA_OFF) 990 found = true; 991 } else { 992 if (type == HOLE_OFF) 993 found = true; 994 } 995 996 if (found) { 997 *offset = lastoff; 998 break; 999 } 1000 lastoff += bh->b_size; 1001 } while ((bh = bh->b_this_page) != head); 1002 1003 return found; 1004 } 1005 1006 /* 1007 * This routine is called to find out and return a data or hole offset 1008 * from the page cache for unwritten extents according to the desired 1009 * type for xfs_seek_hole_data(). 1010 * 1011 * The argument offset is used to tell where we start to search from the 1012 * page cache. Map is used to figure out the end points of the range to 1013 * lookup pages. 1014 * 1015 * Return true if the desired type of offset was found, and the argument 1016 * offset is filled with that address. Otherwise, return false and keep 1017 * offset unchanged. 1018 */ 1019 STATIC bool 1020 xfs_find_get_desired_pgoff( 1021 struct inode *inode, 1022 struct xfs_bmbt_irec *map, 1023 unsigned int type, 1024 loff_t *offset) 1025 { 1026 struct xfs_inode *ip = XFS_I(inode); 1027 struct xfs_mount *mp = ip->i_mount; 1028 struct pagevec pvec; 1029 pgoff_t index; 1030 pgoff_t end; 1031 loff_t endoff; 1032 loff_t startoff = *offset; 1033 loff_t lastoff = startoff; 1034 bool found = false; 1035 1036 pagevec_init(&pvec, 0); 1037 1038 index = startoff >> PAGE_SHIFT; 1039 endoff = XFS_FSB_TO_B(mp, map->br_startoff + map->br_blockcount); 1040 end = endoff >> PAGE_SHIFT; 1041 do { 1042 int want; 1043 unsigned nr_pages; 1044 unsigned int i; 1045 1046 want = min_t(pgoff_t, end - index, PAGEVEC_SIZE); 1047 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, index, 1048 want); 1049 /* 1050 * No page mapped into given range. If we are searching holes 1051 * and if this is the first time we got into the loop, it means 1052 * that the given offset is landed in a hole, return it. 1053 * 1054 * If we have already stepped through some block buffers to find 1055 * holes but they all contains data. In this case, the last 1056 * offset is already updated and pointed to the end of the last 1057 * mapped page, if it does not reach the endpoint to search, 1058 * that means there should be a hole between them. 1059 */ 1060 if (nr_pages == 0) { 1061 /* Data search found nothing */ 1062 if (type == DATA_OFF) 1063 break; 1064 1065 ASSERT(type == HOLE_OFF); 1066 if (lastoff == startoff || lastoff < endoff) { 1067 found = true; 1068 *offset = lastoff; 1069 } 1070 break; 1071 } 1072 1073 /* 1074 * At lease we found one page. If this is the first time we 1075 * step into the loop, and if the first page index offset is 1076 * greater than the given search offset, a hole was found. 1077 */ 1078 if (type == HOLE_OFF && lastoff == startoff && 1079 lastoff < page_offset(pvec.pages[0])) { 1080 found = true; 1081 break; 1082 } 1083 1084 for (i = 0; i < nr_pages; i++) { 1085 struct page *page = pvec.pages[i]; 1086 loff_t b_offset; 1087 1088 /* 1089 * At this point, the page may be truncated or 1090 * invalidated (changing page->mapping to NULL), 1091 * or even swizzled back from swapper_space to tmpfs 1092 * file mapping. However, page->index will not change 1093 * because we have a reference on the page. 1094 * 1095 * Searching done if the page index is out of range. 1096 * If the current offset is not reaches the end of 1097 * the specified search range, there should be a hole 1098 * between them. 1099 */ 1100 if (page->index > end) { 1101 if (type == HOLE_OFF && lastoff < endoff) { 1102 *offset = lastoff; 1103 found = true; 1104 } 1105 goto out; 1106 } 1107 1108 lock_page(page); 1109 /* 1110 * Page truncated or invalidated(page->mapping == NULL). 1111 * We can freely skip it and proceed to check the next 1112 * page. 1113 */ 1114 if (unlikely(page->mapping != inode->i_mapping)) { 1115 unlock_page(page); 1116 continue; 1117 } 1118 1119 if (!page_has_buffers(page)) { 1120 unlock_page(page); 1121 continue; 1122 } 1123 1124 found = xfs_lookup_buffer_offset(page, &b_offset, type); 1125 if (found) { 1126 /* 1127 * The found offset may be less than the start 1128 * point to search if this is the first time to 1129 * come here. 1130 */ 1131 *offset = max_t(loff_t, startoff, b_offset); 1132 unlock_page(page); 1133 goto out; 1134 } 1135 1136 /* 1137 * We either searching data but nothing was found, or 1138 * searching hole but found a data buffer. In either 1139 * case, probably the next page contains the desired 1140 * things, update the last offset to it so. 1141 */ 1142 lastoff = page_offset(page) + PAGE_SIZE; 1143 unlock_page(page); 1144 } 1145 1146 /* 1147 * The number of returned pages less than our desired, search 1148 * done. In this case, nothing was found for searching data, 1149 * but we found a hole behind the last offset. 1150 */ 1151 if (nr_pages < want) { 1152 if (type == HOLE_OFF) { 1153 *offset = lastoff; 1154 found = true; 1155 } 1156 break; 1157 } 1158 1159 index = pvec.pages[i - 1]->index + 1; 1160 pagevec_release(&pvec); 1161 } while (index <= end); 1162 1163 out: 1164 pagevec_release(&pvec); 1165 return found; 1166 } 1167 1168 /* 1169 * caller must lock inode with xfs_ilock_data_map_shared, 1170 * can we craft an appropriate ASSERT? 1171 * 1172 * end is because the VFS-level lseek interface is defined such that any 1173 * offset past i_size shall return -ENXIO, but we use this for quota code 1174 * which does not maintain i_size, and we want to SEEK_DATA past i_size. 1175 */ 1176 loff_t 1177 __xfs_seek_hole_data( 1178 struct inode *inode, 1179 loff_t start, 1180 loff_t end, 1181 int whence) 1182 { 1183 struct xfs_inode *ip = XFS_I(inode); 1184 struct xfs_mount *mp = ip->i_mount; 1185 loff_t uninitialized_var(offset); 1186 xfs_fileoff_t fsbno; 1187 xfs_filblks_t lastbno; 1188 int error; 1189 1190 if (start >= end) { 1191 error = -ENXIO; 1192 goto out_error; 1193 } 1194 1195 /* 1196 * Try to read extents from the first block indicated 1197 * by fsbno to the end block of the file. 1198 */ 1199 fsbno = XFS_B_TO_FSBT(mp, start); 1200 lastbno = XFS_B_TO_FSB(mp, end); 1201 1202 for (;;) { 1203 struct xfs_bmbt_irec map[2]; 1204 int nmap = 2; 1205 unsigned int i; 1206 1207 error = xfs_bmapi_read(ip, fsbno, lastbno - fsbno, map, &nmap, 1208 XFS_BMAPI_ENTIRE); 1209 if (error) 1210 goto out_error; 1211 1212 /* No extents at given offset, must be beyond EOF */ 1213 if (nmap == 0) { 1214 error = -ENXIO; 1215 goto out_error; 1216 } 1217 1218 for (i = 0; i < nmap; i++) { 1219 offset = max_t(loff_t, start, 1220 XFS_FSB_TO_B(mp, map[i].br_startoff)); 1221 1222 /* Landed in the hole we wanted? */ 1223 if (whence == SEEK_HOLE && 1224 map[i].br_startblock == HOLESTARTBLOCK) 1225 goto out; 1226 1227 /* Landed in the data extent we wanted? */ 1228 if (whence == SEEK_DATA && 1229 (map[i].br_startblock == DELAYSTARTBLOCK || 1230 (map[i].br_state == XFS_EXT_NORM && 1231 !isnullstartblock(map[i].br_startblock)))) 1232 goto out; 1233 1234 /* 1235 * Landed in an unwritten extent, try to search 1236 * for hole or data from page cache. 1237 */ 1238 if (map[i].br_state == XFS_EXT_UNWRITTEN) { 1239 if (xfs_find_get_desired_pgoff(inode, &map[i], 1240 whence == SEEK_HOLE ? HOLE_OFF : DATA_OFF, 1241 &offset)) 1242 goto out; 1243 } 1244 } 1245 1246 /* 1247 * We only received one extent out of the two requested. This 1248 * means we've hit EOF and didn't find what we are looking for. 1249 */ 1250 if (nmap == 1) { 1251 /* 1252 * If we were looking for a hole, set offset to 1253 * the end of the file (i.e., there is an implicit 1254 * hole at the end of any file). 1255 */ 1256 if (whence == SEEK_HOLE) { 1257 offset = end; 1258 break; 1259 } 1260 /* 1261 * If we were looking for data, it's nowhere to be found 1262 */ 1263 ASSERT(whence == SEEK_DATA); 1264 error = -ENXIO; 1265 goto out_error; 1266 } 1267 1268 ASSERT(i > 1); 1269 1270 /* 1271 * Nothing was found, proceed to the next round of search 1272 * if the next reading offset is not at or beyond EOF. 1273 */ 1274 fsbno = map[i - 1].br_startoff + map[i - 1].br_blockcount; 1275 start = XFS_FSB_TO_B(mp, fsbno); 1276 if (start >= end) { 1277 if (whence == SEEK_HOLE) { 1278 offset = end; 1279 break; 1280 } 1281 ASSERT(whence == SEEK_DATA); 1282 error = -ENXIO; 1283 goto out_error; 1284 } 1285 } 1286 1287 out: 1288 /* 1289 * If at this point we have found the hole we wanted, the returned 1290 * offset may be bigger than the file size as it may be aligned to 1291 * page boundary for unwritten extents. We need to deal with this 1292 * situation in particular. 1293 */ 1294 if (whence == SEEK_HOLE) 1295 offset = min_t(loff_t, offset, end); 1296 1297 return offset; 1298 1299 out_error: 1300 return error; 1301 } 1302 1303 STATIC loff_t 1304 xfs_seek_hole_data( 1305 struct file *file, 1306 loff_t start, 1307 int whence) 1308 { 1309 struct inode *inode = file->f_mapping->host; 1310 struct xfs_inode *ip = XFS_I(inode); 1311 struct xfs_mount *mp = ip->i_mount; 1312 uint lock; 1313 loff_t offset, end; 1314 int error = 0; 1315 1316 if (XFS_FORCED_SHUTDOWN(mp)) 1317 return -EIO; 1318 1319 lock = xfs_ilock_data_map_shared(ip); 1320 1321 end = i_size_read(inode); 1322 offset = __xfs_seek_hole_data(inode, start, end, whence); 1323 if (offset < 0) { 1324 error = offset; 1325 goto out_unlock; 1326 } 1327 1328 offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes); 1329 1330 out_unlock: 1331 xfs_iunlock(ip, lock); 1332 1333 if (error) 1334 return error; 1335 return offset; 1336 } 1337 1338 STATIC loff_t 1339 xfs_file_llseek( 1340 struct file *file, 1341 loff_t offset, 1342 int whence) 1343 { 1344 switch (whence) { 1345 case SEEK_END: 1346 case SEEK_CUR: 1347 case SEEK_SET: 1348 return generic_file_llseek(file, offset, whence); 1349 case SEEK_HOLE: 1350 case SEEK_DATA: 1351 return xfs_seek_hole_data(file, offset, whence); 1352 default: 1353 return -EINVAL; 1354 } 1355 } 1356 1357 /* 1358 * Locking for serialisation of IO during page faults. This results in a lock 1359 * ordering of: 1360 * 1361 * mmap_sem (MM) 1362 * sb_start_pagefault(vfs, freeze) 1363 * i_mmaplock (XFS - truncate serialisation) 1364 * page_lock (MM) 1365 * i_lock (XFS - extent map serialisation) 1366 */ 1367 1368 /* 1369 * mmap()d file has taken write protection fault and is being made writable. We 1370 * can set the page state up correctly for a writable page, which means we can 1371 * do correct delalloc accounting (ENOSPC checking!) and unwritten extent 1372 * mapping. 1373 */ 1374 STATIC int 1375 xfs_filemap_page_mkwrite( 1376 struct vm_area_struct *vma, 1377 struct vm_fault *vmf) 1378 { 1379 struct inode *inode = file_inode(vma->vm_file); 1380 int ret; 1381 1382 trace_xfs_filemap_page_mkwrite(XFS_I(inode)); 1383 1384 sb_start_pagefault(inode->i_sb); 1385 file_update_time(vma->vm_file); 1386 xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED); 1387 1388 if (IS_DAX(inode)) { 1389 ret = dax_iomap_fault(vma, vmf, &xfs_iomap_ops); 1390 } else { 1391 ret = iomap_page_mkwrite(vma, vmf, &xfs_iomap_ops); 1392 ret = block_page_mkwrite_return(ret); 1393 } 1394 1395 xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED); 1396 sb_end_pagefault(inode->i_sb); 1397 1398 return ret; 1399 } 1400 1401 STATIC int 1402 xfs_filemap_fault( 1403 struct vm_area_struct *vma, 1404 struct vm_fault *vmf) 1405 { 1406 struct inode *inode = file_inode(vma->vm_file); 1407 int ret; 1408 1409 trace_xfs_filemap_fault(XFS_I(inode)); 1410 1411 /* DAX can shortcut the normal fault path on write faults! */ 1412 if ((vmf->flags & FAULT_FLAG_WRITE) && IS_DAX(inode)) 1413 return xfs_filemap_page_mkwrite(vma, vmf); 1414 1415 xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED); 1416 if (IS_DAX(inode)) 1417 ret = dax_iomap_fault(vma, vmf, &xfs_iomap_ops); 1418 else 1419 ret = filemap_fault(vma, vmf); 1420 xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED); 1421 1422 return ret; 1423 } 1424 1425 /* 1426 * Similar to xfs_filemap_fault(), the DAX fault path can call into here on 1427 * both read and write faults. Hence we need to handle both cases. There is no 1428 * ->pmd_mkwrite callout for huge pages, so we have a single function here to 1429 * handle both cases here. @flags carries the information on the type of fault 1430 * occuring. 1431 */ 1432 STATIC int 1433 xfs_filemap_pmd_fault( 1434 struct vm_area_struct *vma, 1435 unsigned long addr, 1436 pmd_t *pmd, 1437 unsigned int flags) 1438 { 1439 struct inode *inode = file_inode(vma->vm_file); 1440 struct xfs_inode *ip = XFS_I(inode); 1441 int ret; 1442 1443 if (!IS_DAX(inode)) 1444 return VM_FAULT_FALLBACK; 1445 1446 trace_xfs_filemap_pmd_fault(ip); 1447 1448 if (flags & FAULT_FLAG_WRITE) { 1449 sb_start_pagefault(inode->i_sb); 1450 file_update_time(vma->vm_file); 1451 } 1452 1453 xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED); 1454 ret = dax_iomap_pmd_fault(vma, addr, pmd, flags, &xfs_iomap_ops); 1455 xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED); 1456 1457 if (flags & FAULT_FLAG_WRITE) 1458 sb_end_pagefault(inode->i_sb); 1459 1460 return ret; 1461 } 1462 1463 /* 1464 * pfn_mkwrite was originally inteneded to ensure we capture time stamp 1465 * updates on write faults. In reality, it's need to serialise against 1466 * truncate similar to page_mkwrite. Hence we cycle the XFS_MMAPLOCK_SHARED 1467 * to ensure we serialise the fault barrier in place. 1468 */ 1469 static int 1470 xfs_filemap_pfn_mkwrite( 1471 struct vm_area_struct *vma, 1472 struct vm_fault *vmf) 1473 { 1474 1475 struct inode *inode = file_inode(vma->vm_file); 1476 struct xfs_inode *ip = XFS_I(inode); 1477 int ret = VM_FAULT_NOPAGE; 1478 loff_t size; 1479 1480 trace_xfs_filemap_pfn_mkwrite(ip); 1481 1482 sb_start_pagefault(inode->i_sb); 1483 file_update_time(vma->vm_file); 1484 1485 /* check if the faulting page hasn't raced with truncate */ 1486 xfs_ilock(ip, XFS_MMAPLOCK_SHARED); 1487 size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT; 1488 if (vmf->pgoff >= size) 1489 ret = VM_FAULT_SIGBUS; 1490 else if (IS_DAX(inode)) 1491 ret = dax_pfn_mkwrite(vma, vmf); 1492 xfs_iunlock(ip, XFS_MMAPLOCK_SHARED); 1493 sb_end_pagefault(inode->i_sb); 1494 return ret; 1495 1496 } 1497 1498 static const struct vm_operations_struct xfs_file_vm_ops = { 1499 .fault = xfs_filemap_fault, 1500 .pmd_fault = xfs_filemap_pmd_fault, 1501 .map_pages = filemap_map_pages, 1502 .page_mkwrite = xfs_filemap_page_mkwrite, 1503 .pfn_mkwrite = xfs_filemap_pfn_mkwrite, 1504 }; 1505 1506 STATIC int 1507 xfs_file_mmap( 1508 struct file *filp, 1509 struct vm_area_struct *vma) 1510 { 1511 file_accessed(filp); 1512 vma->vm_ops = &xfs_file_vm_ops; 1513 if (IS_DAX(file_inode(filp))) 1514 vma->vm_flags |= VM_MIXEDMAP | VM_HUGEPAGE; 1515 return 0; 1516 } 1517 1518 const struct file_operations xfs_file_operations = { 1519 .llseek = xfs_file_llseek, 1520 .read_iter = xfs_file_read_iter, 1521 .write_iter = xfs_file_write_iter, 1522 .splice_read = generic_file_splice_read, 1523 .splice_write = iter_file_splice_write, 1524 .unlocked_ioctl = xfs_file_ioctl, 1525 #ifdef CONFIG_COMPAT 1526 .compat_ioctl = xfs_file_compat_ioctl, 1527 #endif 1528 .mmap = xfs_file_mmap, 1529 .open = xfs_file_open, 1530 .release = xfs_file_release, 1531 .fsync = xfs_file_fsync, 1532 .get_unmapped_area = thp_get_unmapped_area, 1533 .fallocate = xfs_file_fallocate, 1534 .clone_file_range = xfs_file_clone_range, 1535 .dedupe_file_range = xfs_file_dedupe_range, 1536 }; 1537 1538 const struct file_operations xfs_dir_file_operations = { 1539 .open = xfs_dir_open, 1540 .read = generic_read_dir, 1541 .iterate_shared = xfs_file_readdir, 1542 .llseek = generic_file_llseek, 1543 .unlocked_ioctl = xfs_file_ioctl, 1544 #ifdef CONFIG_COMPAT 1545 .compat_ioctl = xfs_file_compat_ioctl, 1546 #endif 1547 .fsync = xfs_dir_fsync, 1548 }; 1549