1 /* 2 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_fs.h" 20 #include "xfs_shared.h" 21 #include "xfs_format.h" 22 #include "xfs_log_format.h" 23 #include "xfs_trans_resv.h" 24 #include "xfs_mount.h" 25 #include "xfs_da_format.h" 26 #include "xfs_da_btree.h" 27 #include "xfs_inode.h" 28 #include "xfs_trans.h" 29 #include "xfs_inode_item.h" 30 #include "xfs_bmap.h" 31 #include "xfs_bmap_util.h" 32 #include "xfs_error.h" 33 #include "xfs_dir2.h" 34 #include "xfs_dir2_priv.h" 35 #include "xfs_ioctl.h" 36 #include "xfs_trace.h" 37 #include "xfs_log.h" 38 #include "xfs_icache.h" 39 #include "xfs_pnfs.h" 40 #include "xfs_iomap.h" 41 #include "xfs_reflink.h" 42 43 #include <linux/dcache.h> 44 #include <linux/falloc.h> 45 #include <linux/pagevec.h> 46 #include <linux/backing-dev.h> 47 48 static const struct vm_operations_struct xfs_file_vm_ops; 49 50 /* 51 * Clear the specified ranges to zero through either the pagecache or DAX. 52 * Holes and unwritten extents will be left as-is as they already are zeroed. 53 */ 54 int 55 xfs_zero_range( 56 struct xfs_inode *ip, 57 xfs_off_t pos, 58 xfs_off_t count, 59 bool *did_zero) 60 { 61 return iomap_zero_range(VFS_I(ip), pos, count, NULL, &xfs_iomap_ops); 62 } 63 64 int 65 xfs_update_prealloc_flags( 66 struct xfs_inode *ip, 67 enum xfs_prealloc_flags flags) 68 { 69 struct xfs_trans *tp; 70 int error; 71 72 error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_writeid, 73 0, 0, 0, &tp); 74 if (error) 75 return error; 76 77 xfs_ilock(ip, XFS_ILOCK_EXCL); 78 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 79 80 if (!(flags & XFS_PREALLOC_INVISIBLE)) { 81 VFS_I(ip)->i_mode &= ~S_ISUID; 82 if (VFS_I(ip)->i_mode & S_IXGRP) 83 VFS_I(ip)->i_mode &= ~S_ISGID; 84 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 85 } 86 87 if (flags & XFS_PREALLOC_SET) 88 ip->i_d.di_flags |= XFS_DIFLAG_PREALLOC; 89 if (flags & XFS_PREALLOC_CLEAR) 90 ip->i_d.di_flags &= ~XFS_DIFLAG_PREALLOC; 91 92 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 93 if (flags & XFS_PREALLOC_SYNC) 94 xfs_trans_set_sync(tp); 95 return xfs_trans_commit(tp); 96 } 97 98 /* 99 * Fsync operations on directories are much simpler than on regular files, 100 * as there is no file data to flush, and thus also no need for explicit 101 * cache flush operations, and there are no non-transaction metadata updates 102 * on directories either. 103 */ 104 STATIC int 105 xfs_dir_fsync( 106 struct file *file, 107 loff_t start, 108 loff_t end, 109 int datasync) 110 { 111 struct xfs_inode *ip = XFS_I(file->f_mapping->host); 112 struct xfs_mount *mp = ip->i_mount; 113 xfs_lsn_t lsn = 0; 114 115 trace_xfs_dir_fsync(ip); 116 117 xfs_ilock(ip, XFS_ILOCK_SHARED); 118 if (xfs_ipincount(ip)) 119 lsn = ip->i_itemp->ili_last_lsn; 120 xfs_iunlock(ip, XFS_ILOCK_SHARED); 121 122 if (!lsn) 123 return 0; 124 return _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, NULL); 125 } 126 127 STATIC int 128 xfs_file_fsync( 129 struct file *file, 130 loff_t start, 131 loff_t end, 132 int datasync) 133 { 134 struct inode *inode = file->f_mapping->host; 135 struct xfs_inode *ip = XFS_I(inode); 136 struct xfs_mount *mp = ip->i_mount; 137 int error = 0; 138 int log_flushed = 0; 139 xfs_lsn_t lsn = 0; 140 141 trace_xfs_file_fsync(ip); 142 143 error = file_write_and_wait_range(file, start, end); 144 if (error) 145 return error; 146 147 if (XFS_FORCED_SHUTDOWN(mp)) 148 return -EIO; 149 150 xfs_iflags_clear(ip, XFS_ITRUNCATED); 151 152 /* 153 * If we have an RT and/or log subvolume we need to make sure to flush 154 * the write cache the device used for file data first. This is to 155 * ensure newly written file data make it to disk before logging the new 156 * inode size in case of an extending write. 157 */ 158 if (XFS_IS_REALTIME_INODE(ip)) 159 xfs_blkdev_issue_flush(mp->m_rtdev_targp); 160 else if (mp->m_logdev_targp != mp->m_ddev_targp) 161 xfs_blkdev_issue_flush(mp->m_ddev_targp); 162 163 /* 164 * All metadata updates are logged, which means that we just have to 165 * flush the log up to the latest LSN that touched the inode. If we have 166 * concurrent fsync/fdatasync() calls, we need them to all block on the 167 * log force before we clear the ili_fsync_fields field. This ensures 168 * that we don't get a racing sync operation that does not wait for the 169 * metadata to hit the journal before returning. If we race with 170 * clearing the ili_fsync_fields, then all that will happen is the log 171 * force will do nothing as the lsn will already be on disk. We can't 172 * race with setting ili_fsync_fields because that is done under 173 * XFS_ILOCK_EXCL, and that can't happen because we hold the lock shared 174 * until after the ili_fsync_fields is cleared. 175 */ 176 xfs_ilock(ip, XFS_ILOCK_SHARED); 177 if (xfs_ipincount(ip)) { 178 if (!datasync || 179 (ip->i_itemp->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP)) 180 lsn = ip->i_itemp->ili_last_lsn; 181 } 182 183 if (lsn) { 184 error = _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed); 185 ip->i_itemp->ili_fsync_fields = 0; 186 } 187 xfs_iunlock(ip, XFS_ILOCK_SHARED); 188 189 /* 190 * If we only have a single device, and the log force about was 191 * a no-op we might have to flush the data device cache here. 192 * This can only happen for fdatasync/O_DSYNC if we were overwriting 193 * an already allocated file and thus do not have any metadata to 194 * commit. 195 */ 196 if (!log_flushed && !XFS_IS_REALTIME_INODE(ip) && 197 mp->m_logdev_targp == mp->m_ddev_targp) 198 xfs_blkdev_issue_flush(mp->m_ddev_targp); 199 200 return error; 201 } 202 203 STATIC ssize_t 204 xfs_file_dio_aio_read( 205 struct kiocb *iocb, 206 struct iov_iter *to) 207 { 208 struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp)); 209 size_t count = iov_iter_count(to); 210 ssize_t ret; 211 212 trace_xfs_file_direct_read(ip, count, iocb->ki_pos); 213 214 if (!count) 215 return 0; /* skip atime */ 216 217 file_accessed(iocb->ki_filp); 218 219 xfs_ilock(ip, XFS_IOLOCK_SHARED); 220 ret = iomap_dio_rw(iocb, to, &xfs_iomap_ops, NULL); 221 xfs_iunlock(ip, XFS_IOLOCK_SHARED); 222 223 return ret; 224 } 225 226 static noinline ssize_t 227 xfs_file_dax_read( 228 struct kiocb *iocb, 229 struct iov_iter *to) 230 { 231 struct xfs_inode *ip = XFS_I(iocb->ki_filp->f_mapping->host); 232 size_t count = iov_iter_count(to); 233 ssize_t ret = 0; 234 235 trace_xfs_file_dax_read(ip, count, iocb->ki_pos); 236 237 if (!count) 238 return 0; /* skip atime */ 239 240 if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED)) { 241 if (iocb->ki_flags & IOCB_NOWAIT) 242 return -EAGAIN; 243 xfs_ilock(ip, XFS_IOLOCK_SHARED); 244 } 245 ret = dax_iomap_rw(iocb, to, &xfs_iomap_ops); 246 xfs_iunlock(ip, XFS_IOLOCK_SHARED); 247 248 file_accessed(iocb->ki_filp); 249 return ret; 250 } 251 252 STATIC ssize_t 253 xfs_file_buffered_aio_read( 254 struct kiocb *iocb, 255 struct iov_iter *to) 256 { 257 struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp)); 258 ssize_t ret; 259 260 trace_xfs_file_buffered_read(ip, iov_iter_count(to), iocb->ki_pos); 261 262 xfs_ilock(ip, XFS_IOLOCK_SHARED); 263 ret = generic_file_read_iter(iocb, to); 264 xfs_iunlock(ip, XFS_IOLOCK_SHARED); 265 266 return ret; 267 } 268 269 STATIC ssize_t 270 xfs_file_read_iter( 271 struct kiocb *iocb, 272 struct iov_iter *to) 273 { 274 struct inode *inode = file_inode(iocb->ki_filp); 275 struct xfs_mount *mp = XFS_I(inode)->i_mount; 276 ssize_t ret = 0; 277 278 XFS_STATS_INC(mp, xs_read_calls); 279 280 if (XFS_FORCED_SHUTDOWN(mp)) 281 return -EIO; 282 283 if (IS_DAX(inode)) 284 ret = xfs_file_dax_read(iocb, to); 285 else if (iocb->ki_flags & IOCB_DIRECT) 286 ret = xfs_file_dio_aio_read(iocb, to); 287 else 288 ret = xfs_file_buffered_aio_read(iocb, to); 289 290 if (ret > 0) 291 XFS_STATS_ADD(mp, xs_read_bytes, ret); 292 return ret; 293 } 294 295 /* 296 * Zero any on disk space between the current EOF and the new, larger EOF. 297 * 298 * This handles the normal case of zeroing the remainder of the last block in 299 * the file and the unusual case of zeroing blocks out beyond the size of the 300 * file. This second case only happens with fixed size extents and when the 301 * system crashes before the inode size was updated but after blocks were 302 * allocated. 303 * 304 * Expects the iolock to be held exclusive, and will take the ilock internally. 305 */ 306 int /* error (positive) */ 307 xfs_zero_eof( 308 struct xfs_inode *ip, 309 xfs_off_t offset, /* starting I/O offset */ 310 xfs_fsize_t isize, /* current inode size */ 311 bool *did_zeroing) 312 { 313 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL)); 314 ASSERT(offset > isize); 315 316 trace_xfs_zero_eof(ip, isize, offset - isize); 317 return xfs_zero_range(ip, isize, offset - isize, did_zeroing); 318 } 319 320 /* 321 * Common pre-write limit and setup checks. 322 * 323 * Called with the iolocked held either shared and exclusive according to 324 * @iolock, and returns with it held. Might upgrade the iolock to exclusive 325 * if called for a direct write beyond i_size. 326 */ 327 STATIC ssize_t 328 xfs_file_aio_write_checks( 329 struct kiocb *iocb, 330 struct iov_iter *from, 331 int *iolock) 332 { 333 struct file *file = iocb->ki_filp; 334 struct inode *inode = file->f_mapping->host; 335 struct xfs_inode *ip = XFS_I(inode); 336 ssize_t error = 0; 337 size_t count = iov_iter_count(from); 338 bool drained_dio = false; 339 340 restart: 341 error = generic_write_checks(iocb, from); 342 if (error <= 0) 343 return error; 344 345 error = xfs_break_layouts(inode, iolock); 346 if (error) 347 return error; 348 349 /* 350 * For changing security info in file_remove_privs() we need i_rwsem 351 * exclusively. 352 */ 353 if (*iolock == XFS_IOLOCK_SHARED && !IS_NOSEC(inode)) { 354 xfs_iunlock(ip, *iolock); 355 *iolock = XFS_IOLOCK_EXCL; 356 xfs_ilock(ip, *iolock); 357 goto restart; 358 } 359 /* 360 * If the offset is beyond the size of the file, we need to zero any 361 * blocks that fall between the existing EOF and the start of this 362 * write. If zeroing is needed and we are currently holding the 363 * iolock shared, we need to update it to exclusive which implies 364 * having to redo all checks before. 365 * 366 * We need to serialise against EOF updates that occur in IO 367 * completions here. We want to make sure that nobody is changing the 368 * size while we do this check until we have placed an IO barrier (i.e. 369 * hold the XFS_IOLOCK_EXCL) that prevents new IO from being dispatched. 370 * The spinlock effectively forms a memory barrier once we have the 371 * XFS_IOLOCK_EXCL so we are guaranteed to see the latest EOF value 372 * and hence be able to correctly determine if we need to run zeroing. 373 */ 374 spin_lock(&ip->i_flags_lock); 375 if (iocb->ki_pos > i_size_read(inode)) { 376 bool zero = false; 377 378 spin_unlock(&ip->i_flags_lock); 379 if (!drained_dio) { 380 if (*iolock == XFS_IOLOCK_SHARED) { 381 xfs_iunlock(ip, *iolock); 382 *iolock = XFS_IOLOCK_EXCL; 383 xfs_ilock(ip, *iolock); 384 iov_iter_reexpand(from, count); 385 } 386 /* 387 * We now have an IO submission barrier in place, but 388 * AIO can do EOF updates during IO completion and hence 389 * we now need to wait for all of them to drain. Non-AIO 390 * DIO will have drained before we are given the 391 * XFS_IOLOCK_EXCL, and so for most cases this wait is a 392 * no-op. 393 */ 394 inode_dio_wait(inode); 395 drained_dio = true; 396 goto restart; 397 } 398 error = xfs_zero_eof(ip, iocb->ki_pos, i_size_read(inode), &zero); 399 if (error) 400 return error; 401 } else 402 spin_unlock(&ip->i_flags_lock); 403 404 /* 405 * Updating the timestamps will grab the ilock again from 406 * xfs_fs_dirty_inode, so we have to call it after dropping the 407 * lock above. Eventually we should look into a way to avoid 408 * the pointless lock roundtrip. 409 */ 410 if (likely(!(file->f_mode & FMODE_NOCMTIME))) { 411 error = file_update_time(file); 412 if (error) 413 return error; 414 } 415 416 /* 417 * If we're writing the file then make sure to clear the setuid and 418 * setgid bits if the process is not being run by root. This keeps 419 * people from modifying setuid and setgid binaries. 420 */ 421 if (!IS_NOSEC(inode)) 422 return file_remove_privs(file); 423 return 0; 424 } 425 426 static int 427 xfs_dio_write_end_io( 428 struct kiocb *iocb, 429 ssize_t size, 430 unsigned flags) 431 { 432 struct inode *inode = file_inode(iocb->ki_filp); 433 struct xfs_inode *ip = XFS_I(inode); 434 loff_t offset = iocb->ki_pos; 435 bool update_size = false; 436 int error = 0; 437 438 trace_xfs_end_io_direct_write(ip, offset, size); 439 440 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) 441 return -EIO; 442 443 if (size <= 0) 444 return size; 445 446 /* 447 * We need to update the in-core inode size here so that we don't end up 448 * with the on-disk inode size being outside the in-core inode size. We 449 * have no other method of updating EOF for AIO, so always do it here 450 * if necessary. 451 * 452 * We need to lock the test/set EOF update as we can be racing with 453 * other IO completions here to update the EOF. Failing to serialise 454 * here can result in EOF moving backwards and Bad Things Happen when 455 * that occurs. 456 */ 457 spin_lock(&ip->i_flags_lock); 458 if (offset + size > i_size_read(inode)) { 459 i_size_write(inode, offset + size); 460 update_size = true; 461 } 462 spin_unlock(&ip->i_flags_lock); 463 464 if (flags & IOMAP_DIO_COW) { 465 error = xfs_reflink_end_cow(ip, offset, size); 466 if (error) 467 return error; 468 } 469 470 if (flags & IOMAP_DIO_UNWRITTEN) 471 error = xfs_iomap_write_unwritten(ip, offset, size); 472 else if (update_size) 473 error = xfs_setfilesize(ip, offset, size); 474 475 return error; 476 } 477 478 /* 479 * xfs_file_dio_aio_write - handle direct IO writes 480 * 481 * Lock the inode appropriately to prepare for and issue a direct IO write. 482 * By separating it from the buffered write path we remove all the tricky to 483 * follow locking changes and looping. 484 * 485 * If there are cached pages or we're extending the file, we need IOLOCK_EXCL 486 * until we're sure the bytes at the new EOF have been zeroed and/or the cached 487 * pages are flushed out. 488 * 489 * In most cases the direct IO writes will be done holding IOLOCK_SHARED 490 * allowing them to be done in parallel with reads and other direct IO writes. 491 * However, if the IO is not aligned to filesystem blocks, the direct IO layer 492 * needs to do sub-block zeroing and that requires serialisation against other 493 * direct IOs to the same block. In this case we need to serialise the 494 * submission of the unaligned IOs so that we don't get racing block zeroing in 495 * the dio layer. To avoid the problem with aio, we also need to wait for 496 * outstanding IOs to complete so that unwritten extent conversion is completed 497 * before we try to map the overlapping block. This is currently implemented by 498 * hitting it with a big hammer (i.e. inode_dio_wait()). 499 * 500 * Returns with locks held indicated by @iolock and errors indicated by 501 * negative return values. 502 */ 503 STATIC ssize_t 504 xfs_file_dio_aio_write( 505 struct kiocb *iocb, 506 struct iov_iter *from) 507 { 508 struct file *file = iocb->ki_filp; 509 struct address_space *mapping = file->f_mapping; 510 struct inode *inode = mapping->host; 511 struct xfs_inode *ip = XFS_I(inode); 512 struct xfs_mount *mp = ip->i_mount; 513 ssize_t ret = 0; 514 int unaligned_io = 0; 515 int iolock; 516 size_t count = iov_iter_count(from); 517 struct xfs_buftarg *target = XFS_IS_REALTIME_INODE(ip) ? 518 mp->m_rtdev_targp : mp->m_ddev_targp; 519 520 /* DIO must be aligned to device logical sector size */ 521 if ((iocb->ki_pos | count) & target->bt_logical_sectormask) 522 return -EINVAL; 523 524 /* 525 * Don't take the exclusive iolock here unless the I/O is unaligned to 526 * the file system block size. We don't need to consider the EOF 527 * extension case here because xfs_file_aio_write_checks() will relock 528 * the inode as necessary for EOF zeroing cases and fill out the new 529 * inode size as appropriate. 530 */ 531 if ((iocb->ki_pos & mp->m_blockmask) || 532 ((iocb->ki_pos + count) & mp->m_blockmask)) { 533 unaligned_io = 1; 534 535 /* 536 * We can't properly handle unaligned direct I/O to reflink 537 * files yet, as we can't unshare a partial block. 538 */ 539 if (xfs_is_reflink_inode(ip)) { 540 trace_xfs_reflink_bounce_dio_write(ip, iocb->ki_pos, count); 541 return -EREMCHG; 542 } 543 iolock = XFS_IOLOCK_EXCL; 544 } else { 545 iolock = XFS_IOLOCK_SHARED; 546 } 547 548 if (!xfs_ilock_nowait(ip, iolock)) { 549 if (iocb->ki_flags & IOCB_NOWAIT) 550 return -EAGAIN; 551 xfs_ilock(ip, iolock); 552 } 553 554 ret = xfs_file_aio_write_checks(iocb, from, &iolock); 555 if (ret) 556 goto out; 557 count = iov_iter_count(from); 558 559 /* 560 * If we are doing unaligned IO, wait for all other IO to drain, 561 * otherwise demote the lock if we had to take the exclusive lock 562 * for other reasons in xfs_file_aio_write_checks. 563 */ 564 if (unaligned_io) { 565 /* If we are going to wait for other DIO to finish, bail */ 566 if (iocb->ki_flags & IOCB_NOWAIT) { 567 if (atomic_read(&inode->i_dio_count)) 568 return -EAGAIN; 569 } else { 570 inode_dio_wait(inode); 571 } 572 } else if (iolock == XFS_IOLOCK_EXCL) { 573 xfs_ilock_demote(ip, XFS_IOLOCK_EXCL); 574 iolock = XFS_IOLOCK_SHARED; 575 } 576 577 trace_xfs_file_direct_write(ip, count, iocb->ki_pos); 578 ret = iomap_dio_rw(iocb, from, &xfs_iomap_ops, xfs_dio_write_end_io); 579 out: 580 xfs_iunlock(ip, iolock); 581 582 /* 583 * No fallback to buffered IO on errors for XFS, direct IO will either 584 * complete fully or fail. 585 */ 586 ASSERT(ret < 0 || ret == count); 587 return ret; 588 } 589 590 static noinline ssize_t 591 xfs_file_dax_write( 592 struct kiocb *iocb, 593 struct iov_iter *from) 594 { 595 struct inode *inode = iocb->ki_filp->f_mapping->host; 596 struct xfs_inode *ip = XFS_I(inode); 597 int iolock = XFS_IOLOCK_EXCL; 598 ssize_t ret, error = 0; 599 size_t count; 600 loff_t pos; 601 602 if (!xfs_ilock_nowait(ip, iolock)) { 603 if (iocb->ki_flags & IOCB_NOWAIT) 604 return -EAGAIN; 605 xfs_ilock(ip, iolock); 606 } 607 608 ret = xfs_file_aio_write_checks(iocb, from, &iolock); 609 if (ret) 610 goto out; 611 612 pos = iocb->ki_pos; 613 count = iov_iter_count(from); 614 615 trace_xfs_file_dax_write(ip, count, pos); 616 ret = dax_iomap_rw(iocb, from, &xfs_iomap_ops); 617 if (ret > 0 && iocb->ki_pos > i_size_read(inode)) { 618 i_size_write(inode, iocb->ki_pos); 619 error = xfs_setfilesize(ip, pos, ret); 620 } 621 out: 622 xfs_iunlock(ip, iolock); 623 return error ? error : ret; 624 } 625 626 STATIC ssize_t 627 xfs_file_buffered_aio_write( 628 struct kiocb *iocb, 629 struct iov_iter *from) 630 { 631 struct file *file = iocb->ki_filp; 632 struct address_space *mapping = file->f_mapping; 633 struct inode *inode = mapping->host; 634 struct xfs_inode *ip = XFS_I(inode); 635 ssize_t ret; 636 int enospc = 0; 637 int iolock; 638 639 write_retry: 640 iolock = XFS_IOLOCK_EXCL; 641 xfs_ilock(ip, iolock); 642 643 ret = xfs_file_aio_write_checks(iocb, from, &iolock); 644 if (ret) 645 goto out; 646 647 /* We can write back this queue in page reclaim */ 648 current->backing_dev_info = inode_to_bdi(inode); 649 650 trace_xfs_file_buffered_write(ip, iov_iter_count(from), iocb->ki_pos); 651 ret = iomap_file_buffered_write(iocb, from, &xfs_iomap_ops); 652 if (likely(ret >= 0)) 653 iocb->ki_pos += ret; 654 655 /* 656 * If we hit a space limit, try to free up some lingering preallocated 657 * space before returning an error. In the case of ENOSPC, first try to 658 * write back all dirty inodes to free up some of the excess reserved 659 * metadata space. This reduces the chances that the eofblocks scan 660 * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this 661 * also behaves as a filter to prevent too many eofblocks scans from 662 * running at the same time. 663 */ 664 if (ret == -EDQUOT && !enospc) { 665 xfs_iunlock(ip, iolock); 666 enospc = xfs_inode_free_quota_eofblocks(ip); 667 if (enospc) 668 goto write_retry; 669 enospc = xfs_inode_free_quota_cowblocks(ip); 670 if (enospc) 671 goto write_retry; 672 iolock = 0; 673 } else if (ret == -ENOSPC && !enospc) { 674 struct xfs_eofblocks eofb = {0}; 675 676 enospc = 1; 677 xfs_flush_inodes(ip->i_mount); 678 679 xfs_iunlock(ip, iolock); 680 eofb.eof_flags = XFS_EOF_FLAGS_SYNC; 681 xfs_icache_free_eofblocks(ip->i_mount, &eofb); 682 xfs_icache_free_cowblocks(ip->i_mount, &eofb); 683 goto write_retry; 684 } 685 686 current->backing_dev_info = NULL; 687 out: 688 if (iolock) 689 xfs_iunlock(ip, iolock); 690 return ret; 691 } 692 693 STATIC ssize_t 694 xfs_file_write_iter( 695 struct kiocb *iocb, 696 struct iov_iter *from) 697 { 698 struct file *file = iocb->ki_filp; 699 struct address_space *mapping = file->f_mapping; 700 struct inode *inode = mapping->host; 701 struct xfs_inode *ip = XFS_I(inode); 702 ssize_t ret; 703 size_t ocount = iov_iter_count(from); 704 705 XFS_STATS_INC(ip->i_mount, xs_write_calls); 706 707 if (ocount == 0) 708 return 0; 709 710 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) 711 return -EIO; 712 713 if (IS_DAX(inode)) 714 ret = xfs_file_dax_write(iocb, from); 715 else if (iocb->ki_flags & IOCB_DIRECT) { 716 /* 717 * Allow a directio write to fall back to a buffered 718 * write *only* in the case that we're doing a reflink 719 * CoW. In all other directio scenarios we do not 720 * allow an operation to fall back to buffered mode. 721 */ 722 ret = xfs_file_dio_aio_write(iocb, from); 723 if (ret == -EREMCHG) 724 goto buffered; 725 } else { 726 buffered: 727 ret = xfs_file_buffered_aio_write(iocb, from); 728 } 729 730 if (ret > 0) { 731 XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret); 732 733 /* Handle various SYNC-type writes */ 734 ret = generic_write_sync(iocb, ret); 735 } 736 return ret; 737 } 738 739 #define XFS_FALLOC_FL_SUPPORTED \ 740 (FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | \ 741 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE | \ 742 FALLOC_FL_INSERT_RANGE | FALLOC_FL_UNSHARE_RANGE) 743 744 STATIC long 745 xfs_file_fallocate( 746 struct file *file, 747 int mode, 748 loff_t offset, 749 loff_t len) 750 { 751 struct inode *inode = file_inode(file); 752 struct xfs_inode *ip = XFS_I(inode); 753 long error; 754 enum xfs_prealloc_flags flags = 0; 755 uint iolock = XFS_IOLOCK_EXCL; 756 loff_t new_size = 0; 757 bool do_file_insert = 0; 758 759 if (!S_ISREG(inode->i_mode)) 760 return -EINVAL; 761 if (mode & ~XFS_FALLOC_FL_SUPPORTED) 762 return -EOPNOTSUPP; 763 764 xfs_ilock(ip, iolock); 765 error = xfs_break_layouts(inode, &iolock); 766 if (error) 767 goto out_unlock; 768 769 xfs_ilock(ip, XFS_MMAPLOCK_EXCL); 770 iolock |= XFS_MMAPLOCK_EXCL; 771 772 if (mode & FALLOC_FL_PUNCH_HOLE) { 773 error = xfs_free_file_space(ip, offset, len); 774 if (error) 775 goto out_unlock; 776 } else if (mode & FALLOC_FL_COLLAPSE_RANGE) { 777 unsigned int blksize_mask = i_blocksize(inode) - 1; 778 779 if (offset & blksize_mask || len & blksize_mask) { 780 error = -EINVAL; 781 goto out_unlock; 782 } 783 784 /* 785 * There is no need to overlap collapse range with EOF, 786 * in which case it is effectively a truncate operation 787 */ 788 if (offset + len >= i_size_read(inode)) { 789 error = -EINVAL; 790 goto out_unlock; 791 } 792 793 new_size = i_size_read(inode) - len; 794 795 error = xfs_collapse_file_space(ip, offset, len); 796 if (error) 797 goto out_unlock; 798 } else if (mode & FALLOC_FL_INSERT_RANGE) { 799 unsigned int blksize_mask = i_blocksize(inode) - 1; 800 801 new_size = i_size_read(inode) + len; 802 if (offset & blksize_mask || len & blksize_mask) { 803 error = -EINVAL; 804 goto out_unlock; 805 } 806 807 /* check the new inode size does not wrap through zero */ 808 if (new_size > inode->i_sb->s_maxbytes) { 809 error = -EFBIG; 810 goto out_unlock; 811 } 812 813 /* Offset should be less than i_size */ 814 if (offset >= i_size_read(inode)) { 815 error = -EINVAL; 816 goto out_unlock; 817 } 818 do_file_insert = 1; 819 } else { 820 flags |= XFS_PREALLOC_SET; 821 822 if (!(mode & FALLOC_FL_KEEP_SIZE) && 823 offset + len > i_size_read(inode)) { 824 new_size = offset + len; 825 error = inode_newsize_ok(inode, new_size); 826 if (error) 827 goto out_unlock; 828 } 829 830 if (mode & FALLOC_FL_ZERO_RANGE) 831 error = xfs_zero_file_space(ip, offset, len); 832 else { 833 if (mode & FALLOC_FL_UNSHARE_RANGE) { 834 error = xfs_reflink_unshare(ip, offset, len); 835 if (error) 836 goto out_unlock; 837 } 838 error = xfs_alloc_file_space(ip, offset, len, 839 XFS_BMAPI_PREALLOC); 840 } 841 if (error) 842 goto out_unlock; 843 } 844 845 if (file->f_flags & O_DSYNC) 846 flags |= XFS_PREALLOC_SYNC; 847 848 error = xfs_update_prealloc_flags(ip, flags); 849 if (error) 850 goto out_unlock; 851 852 /* Change file size if needed */ 853 if (new_size) { 854 struct iattr iattr; 855 856 iattr.ia_valid = ATTR_SIZE; 857 iattr.ia_size = new_size; 858 error = xfs_vn_setattr_size(file_dentry(file), &iattr); 859 if (error) 860 goto out_unlock; 861 } 862 863 /* 864 * Perform hole insertion now that the file size has been 865 * updated so that if we crash during the operation we don't 866 * leave shifted extents past EOF and hence losing access to 867 * the data that is contained within them. 868 */ 869 if (do_file_insert) 870 error = xfs_insert_file_space(ip, offset, len); 871 872 out_unlock: 873 xfs_iunlock(ip, iolock); 874 return error; 875 } 876 877 STATIC int 878 xfs_file_clone_range( 879 struct file *file_in, 880 loff_t pos_in, 881 struct file *file_out, 882 loff_t pos_out, 883 u64 len) 884 { 885 return xfs_reflink_remap_range(file_in, pos_in, file_out, pos_out, 886 len, false); 887 } 888 889 STATIC ssize_t 890 xfs_file_dedupe_range( 891 struct file *src_file, 892 u64 loff, 893 u64 len, 894 struct file *dst_file, 895 u64 dst_loff) 896 { 897 int error; 898 899 error = xfs_reflink_remap_range(src_file, loff, dst_file, dst_loff, 900 len, true); 901 if (error) 902 return error; 903 return len; 904 } 905 906 STATIC int 907 xfs_file_open( 908 struct inode *inode, 909 struct file *file) 910 { 911 if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS) 912 return -EFBIG; 913 if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb))) 914 return -EIO; 915 file->f_mode |= FMODE_AIO_NOWAIT; 916 return 0; 917 } 918 919 STATIC int 920 xfs_dir_open( 921 struct inode *inode, 922 struct file *file) 923 { 924 struct xfs_inode *ip = XFS_I(inode); 925 int mode; 926 int error; 927 928 error = xfs_file_open(inode, file); 929 if (error) 930 return error; 931 932 /* 933 * If there are any blocks, read-ahead block 0 as we're almost 934 * certain to have the next operation be a read there. 935 */ 936 mode = xfs_ilock_data_map_shared(ip); 937 if (ip->i_d.di_nextents > 0) 938 error = xfs_dir3_data_readahead(ip, 0, -1); 939 xfs_iunlock(ip, mode); 940 return error; 941 } 942 943 STATIC int 944 xfs_file_release( 945 struct inode *inode, 946 struct file *filp) 947 { 948 return xfs_release(XFS_I(inode)); 949 } 950 951 STATIC int 952 xfs_file_readdir( 953 struct file *file, 954 struct dir_context *ctx) 955 { 956 struct inode *inode = file_inode(file); 957 xfs_inode_t *ip = XFS_I(inode); 958 size_t bufsize; 959 960 /* 961 * The Linux API doesn't pass down the total size of the buffer 962 * we read into down to the filesystem. With the filldir concept 963 * it's not needed for correct information, but the XFS dir2 leaf 964 * code wants an estimate of the buffer size to calculate it's 965 * readahead window and size the buffers used for mapping to 966 * physical blocks. 967 * 968 * Try to give it an estimate that's good enough, maybe at some 969 * point we can change the ->readdir prototype to include the 970 * buffer size. For now we use the current glibc buffer size. 971 */ 972 bufsize = (size_t)min_t(loff_t, 32768, ip->i_d.di_size); 973 974 return xfs_readdir(NULL, ip, ctx, bufsize); 975 } 976 977 STATIC loff_t 978 xfs_file_llseek( 979 struct file *file, 980 loff_t offset, 981 int whence) 982 { 983 struct inode *inode = file->f_mapping->host; 984 985 if (XFS_FORCED_SHUTDOWN(XFS_I(inode)->i_mount)) 986 return -EIO; 987 988 switch (whence) { 989 default: 990 return generic_file_llseek(file, offset, whence); 991 case SEEK_HOLE: 992 offset = iomap_seek_hole(inode, offset, &xfs_iomap_ops); 993 break; 994 case SEEK_DATA: 995 offset = iomap_seek_data(inode, offset, &xfs_iomap_ops); 996 break; 997 } 998 999 if (offset < 0) 1000 return offset; 1001 return vfs_setpos(file, offset, inode->i_sb->s_maxbytes); 1002 } 1003 1004 /* 1005 * Locking for serialisation of IO during page faults. This results in a lock 1006 * ordering of: 1007 * 1008 * mmap_sem (MM) 1009 * sb_start_pagefault(vfs, freeze) 1010 * i_mmaplock (XFS - truncate serialisation) 1011 * page_lock (MM) 1012 * i_lock (XFS - extent map serialisation) 1013 */ 1014 1015 /* 1016 * mmap()d file has taken write protection fault and is being made writable. We 1017 * can set the page state up correctly for a writable page, which means we can 1018 * do correct delalloc accounting (ENOSPC checking!) and unwritten extent 1019 * mapping. 1020 */ 1021 STATIC int 1022 xfs_filemap_page_mkwrite( 1023 struct vm_fault *vmf) 1024 { 1025 struct inode *inode = file_inode(vmf->vma->vm_file); 1026 int ret; 1027 1028 trace_xfs_filemap_page_mkwrite(XFS_I(inode)); 1029 1030 sb_start_pagefault(inode->i_sb); 1031 file_update_time(vmf->vma->vm_file); 1032 xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED); 1033 1034 if (IS_DAX(inode)) { 1035 ret = dax_iomap_fault(vmf, PE_SIZE_PTE, &xfs_iomap_ops); 1036 } else { 1037 ret = iomap_page_mkwrite(vmf, &xfs_iomap_ops); 1038 ret = block_page_mkwrite_return(ret); 1039 } 1040 1041 xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED); 1042 sb_end_pagefault(inode->i_sb); 1043 1044 return ret; 1045 } 1046 1047 STATIC int 1048 xfs_filemap_fault( 1049 struct vm_fault *vmf) 1050 { 1051 struct inode *inode = file_inode(vmf->vma->vm_file); 1052 int ret; 1053 1054 trace_xfs_filemap_fault(XFS_I(inode)); 1055 1056 /* DAX can shortcut the normal fault path on write faults! */ 1057 if ((vmf->flags & FAULT_FLAG_WRITE) && IS_DAX(inode)) 1058 return xfs_filemap_page_mkwrite(vmf); 1059 1060 xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED); 1061 if (IS_DAX(inode)) 1062 ret = dax_iomap_fault(vmf, PE_SIZE_PTE, &xfs_iomap_ops); 1063 else 1064 ret = filemap_fault(vmf); 1065 xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED); 1066 1067 return ret; 1068 } 1069 1070 /* 1071 * Similar to xfs_filemap_fault(), the DAX fault path can call into here on 1072 * both read and write faults. Hence we need to handle both cases. There is no 1073 * ->huge_mkwrite callout for huge pages, so we have a single function here to 1074 * handle both cases here. @flags carries the information on the type of fault 1075 * occuring. 1076 */ 1077 STATIC int 1078 xfs_filemap_huge_fault( 1079 struct vm_fault *vmf, 1080 enum page_entry_size pe_size) 1081 { 1082 struct inode *inode = file_inode(vmf->vma->vm_file); 1083 struct xfs_inode *ip = XFS_I(inode); 1084 int ret; 1085 1086 if (!IS_DAX(inode)) 1087 return VM_FAULT_FALLBACK; 1088 1089 trace_xfs_filemap_huge_fault(ip); 1090 1091 if (vmf->flags & FAULT_FLAG_WRITE) { 1092 sb_start_pagefault(inode->i_sb); 1093 file_update_time(vmf->vma->vm_file); 1094 } 1095 1096 xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED); 1097 ret = dax_iomap_fault(vmf, pe_size, &xfs_iomap_ops); 1098 xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED); 1099 1100 if (vmf->flags & FAULT_FLAG_WRITE) 1101 sb_end_pagefault(inode->i_sb); 1102 1103 return ret; 1104 } 1105 1106 /* 1107 * pfn_mkwrite was originally inteneded to ensure we capture time stamp 1108 * updates on write faults. In reality, it's need to serialise against 1109 * truncate similar to page_mkwrite. Hence we cycle the XFS_MMAPLOCK_SHARED 1110 * to ensure we serialise the fault barrier in place. 1111 */ 1112 static int 1113 xfs_filemap_pfn_mkwrite( 1114 struct vm_fault *vmf) 1115 { 1116 1117 struct inode *inode = file_inode(vmf->vma->vm_file); 1118 struct xfs_inode *ip = XFS_I(inode); 1119 int ret = VM_FAULT_NOPAGE; 1120 loff_t size; 1121 1122 trace_xfs_filemap_pfn_mkwrite(ip); 1123 1124 sb_start_pagefault(inode->i_sb); 1125 file_update_time(vmf->vma->vm_file); 1126 1127 /* check if the faulting page hasn't raced with truncate */ 1128 xfs_ilock(ip, XFS_MMAPLOCK_SHARED); 1129 size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT; 1130 if (vmf->pgoff >= size) 1131 ret = VM_FAULT_SIGBUS; 1132 else if (IS_DAX(inode)) 1133 ret = dax_pfn_mkwrite(vmf); 1134 xfs_iunlock(ip, XFS_MMAPLOCK_SHARED); 1135 sb_end_pagefault(inode->i_sb); 1136 return ret; 1137 1138 } 1139 1140 static const struct vm_operations_struct xfs_file_vm_ops = { 1141 .fault = xfs_filemap_fault, 1142 .huge_fault = xfs_filemap_huge_fault, 1143 .map_pages = filemap_map_pages, 1144 .page_mkwrite = xfs_filemap_page_mkwrite, 1145 .pfn_mkwrite = xfs_filemap_pfn_mkwrite, 1146 }; 1147 1148 STATIC int 1149 xfs_file_mmap( 1150 struct file *filp, 1151 struct vm_area_struct *vma) 1152 { 1153 file_accessed(filp); 1154 vma->vm_ops = &xfs_file_vm_ops; 1155 if (IS_DAX(file_inode(filp))) 1156 vma->vm_flags |= VM_MIXEDMAP | VM_HUGEPAGE; 1157 return 0; 1158 } 1159 1160 const struct file_operations xfs_file_operations = { 1161 .llseek = xfs_file_llseek, 1162 .read_iter = xfs_file_read_iter, 1163 .write_iter = xfs_file_write_iter, 1164 .splice_read = generic_file_splice_read, 1165 .splice_write = iter_file_splice_write, 1166 .unlocked_ioctl = xfs_file_ioctl, 1167 #ifdef CONFIG_COMPAT 1168 .compat_ioctl = xfs_file_compat_ioctl, 1169 #endif 1170 .mmap = xfs_file_mmap, 1171 .open = xfs_file_open, 1172 .release = xfs_file_release, 1173 .fsync = xfs_file_fsync, 1174 .get_unmapped_area = thp_get_unmapped_area, 1175 .fallocate = xfs_file_fallocate, 1176 .clone_file_range = xfs_file_clone_range, 1177 .dedupe_file_range = xfs_file_dedupe_range, 1178 }; 1179 1180 const struct file_operations xfs_dir_file_operations = { 1181 .open = xfs_dir_open, 1182 .read = generic_read_dir, 1183 .iterate_shared = xfs_file_readdir, 1184 .llseek = generic_file_llseek, 1185 .unlocked_ioctl = xfs_file_ioctl, 1186 #ifdef CONFIG_COMPAT 1187 .compat_ioctl = xfs_file_compat_ioctl, 1188 #endif 1189 .fsync = xfs_dir_fsync, 1190 }; 1191