1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_mount.h" 13 #include "xfs_inode.h" 14 #include "xfs_trans.h" 15 #include "xfs_inode_item.h" 16 #include "xfs_bmap.h" 17 #include "xfs_bmap_util.h" 18 #include "xfs_dir2.h" 19 #include "xfs_dir2_priv.h" 20 #include "xfs_ioctl.h" 21 #include "xfs_trace.h" 22 #include "xfs_log.h" 23 #include "xfs_icache.h" 24 #include "xfs_pnfs.h" 25 #include "xfs_iomap.h" 26 #include "xfs_reflink.h" 27 28 #include <linux/falloc.h> 29 #include <linux/backing-dev.h> 30 #include <linux/mman.h> 31 #include <linux/fadvise.h> 32 33 static const struct vm_operations_struct xfs_file_vm_ops; 34 35 int 36 xfs_update_prealloc_flags( 37 struct xfs_inode *ip, 38 enum xfs_prealloc_flags flags) 39 { 40 struct xfs_trans *tp; 41 int error; 42 43 error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_writeid, 44 0, 0, 0, &tp); 45 if (error) 46 return error; 47 48 xfs_ilock(ip, XFS_ILOCK_EXCL); 49 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 50 51 if (!(flags & XFS_PREALLOC_INVISIBLE)) { 52 VFS_I(ip)->i_mode &= ~S_ISUID; 53 if (VFS_I(ip)->i_mode & S_IXGRP) 54 VFS_I(ip)->i_mode &= ~S_ISGID; 55 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 56 } 57 58 if (flags & XFS_PREALLOC_SET) 59 ip->i_d.di_flags |= XFS_DIFLAG_PREALLOC; 60 if (flags & XFS_PREALLOC_CLEAR) 61 ip->i_d.di_flags &= ~XFS_DIFLAG_PREALLOC; 62 63 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 64 if (flags & XFS_PREALLOC_SYNC) 65 xfs_trans_set_sync(tp); 66 return xfs_trans_commit(tp); 67 } 68 69 /* 70 * Fsync operations on directories are much simpler than on regular files, 71 * as there is no file data to flush, and thus also no need for explicit 72 * cache flush operations, and there are no non-transaction metadata updates 73 * on directories either. 74 */ 75 STATIC int 76 xfs_dir_fsync( 77 struct file *file, 78 loff_t start, 79 loff_t end, 80 int datasync) 81 { 82 struct xfs_inode *ip = XFS_I(file->f_mapping->host); 83 struct xfs_mount *mp = ip->i_mount; 84 xfs_lsn_t lsn = 0; 85 86 trace_xfs_dir_fsync(ip); 87 88 xfs_ilock(ip, XFS_ILOCK_SHARED); 89 if (xfs_ipincount(ip)) 90 lsn = ip->i_itemp->ili_last_lsn; 91 xfs_iunlock(ip, XFS_ILOCK_SHARED); 92 93 if (!lsn) 94 return 0; 95 return xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, NULL); 96 } 97 98 STATIC int 99 xfs_file_fsync( 100 struct file *file, 101 loff_t start, 102 loff_t end, 103 int datasync) 104 { 105 struct inode *inode = file->f_mapping->host; 106 struct xfs_inode *ip = XFS_I(inode); 107 struct xfs_mount *mp = ip->i_mount; 108 int error = 0; 109 int log_flushed = 0; 110 xfs_lsn_t lsn = 0; 111 112 trace_xfs_file_fsync(ip); 113 114 error = file_write_and_wait_range(file, start, end); 115 if (error) 116 return error; 117 118 if (XFS_FORCED_SHUTDOWN(mp)) 119 return -EIO; 120 121 xfs_iflags_clear(ip, XFS_ITRUNCATED); 122 123 /* 124 * If we have an RT and/or log subvolume we need to make sure to flush 125 * the write cache the device used for file data first. This is to 126 * ensure newly written file data make it to disk before logging the new 127 * inode size in case of an extending write. 128 */ 129 if (XFS_IS_REALTIME_INODE(ip)) 130 xfs_blkdev_issue_flush(mp->m_rtdev_targp); 131 else if (mp->m_logdev_targp != mp->m_ddev_targp) 132 xfs_blkdev_issue_flush(mp->m_ddev_targp); 133 134 /* 135 * All metadata updates are logged, which means that we just have to 136 * flush the log up to the latest LSN that touched the inode. If we have 137 * concurrent fsync/fdatasync() calls, we need them to all block on the 138 * log force before we clear the ili_fsync_fields field. This ensures 139 * that we don't get a racing sync operation that does not wait for the 140 * metadata to hit the journal before returning. If we race with 141 * clearing the ili_fsync_fields, then all that will happen is the log 142 * force will do nothing as the lsn will already be on disk. We can't 143 * race with setting ili_fsync_fields because that is done under 144 * XFS_ILOCK_EXCL, and that can't happen because we hold the lock shared 145 * until after the ili_fsync_fields is cleared. 146 */ 147 xfs_ilock(ip, XFS_ILOCK_SHARED); 148 if (xfs_ipincount(ip)) { 149 if (!datasync || 150 (ip->i_itemp->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP)) 151 lsn = ip->i_itemp->ili_last_lsn; 152 } 153 154 if (lsn) { 155 error = xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed); 156 ip->i_itemp->ili_fsync_fields = 0; 157 } 158 xfs_iunlock(ip, XFS_ILOCK_SHARED); 159 160 /* 161 * If we only have a single device, and the log force about was 162 * a no-op we might have to flush the data device cache here. 163 * This can only happen for fdatasync/O_DSYNC if we were overwriting 164 * an already allocated file and thus do not have any metadata to 165 * commit. 166 */ 167 if (!log_flushed && !XFS_IS_REALTIME_INODE(ip) && 168 mp->m_logdev_targp == mp->m_ddev_targp) 169 xfs_blkdev_issue_flush(mp->m_ddev_targp); 170 171 return error; 172 } 173 174 STATIC ssize_t 175 xfs_file_dio_aio_read( 176 struct kiocb *iocb, 177 struct iov_iter *to) 178 { 179 struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp)); 180 size_t count = iov_iter_count(to); 181 ssize_t ret; 182 183 trace_xfs_file_direct_read(ip, count, iocb->ki_pos); 184 185 if (!count) 186 return 0; /* skip atime */ 187 188 file_accessed(iocb->ki_filp); 189 190 xfs_ilock(ip, XFS_IOLOCK_SHARED); 191 ret = iomap_dio_rw(iocb, to, &xfs_iomap_ops, NULL, is_sync_kiocb(iocb)); 192 xfs_iunlock(ip, XFS_IOLOCK_SHARED); 193 194 return ret; 195 } 196 197 static noinline ssize_t 198 xfs_file_dax_read( 199 struct kiocb *iocb, 200 struct iov_iter *to) 201 { 202 struct xfs_inode *ip = XFS_I(iocb->ki_filp->f_mapping->host); 203 size_t count = iov_iter_count(to); 204 ssize_t ret = 0; 205 206 trace_xfs_file_dax_read(ip, count, iocb->ki_pos); 207 208 if (!count) 209 return 0; /* skip atime */ 210 211 if (iocb->ki_flags & IOCB_NOWAIT) { 212 if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED)) 213 return -EAGAIN; 214 } else { 215 xfs_ilock(ip, XFS_IOLOCK_SHARED); 216 } 217 218 ret = dax_iomap_rw(iocb, to, &xfs_iomap_ops); 219 xfs_iunlock(ip, XFS_IOLOCK_SHARED); 220 221 file_accessed(iocb->ki_filp); 222 return ret; 223 } 224 225 STATIC ssize_t 226 xfs_file_buffered_aio_read( 227 struct kiocb *iocb, 228 struct iov_iter *to) 229 { 230 struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp)); 231 ssize_t ret; 232 233 trace_xfs_file_buffered_read(ip, iov_iter_count(to), iocb->ki_pos); 234 235 if (iocb->ki_flags & IOCB_NOWAIT) { 236 if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED)) 237 return -EAGAIN; 238 } else { 239 xfs_ilock(ip, XFS_IOLOCK_SHARED); 240 } 241 ret = generic_file_read_iter(iocb, to); 242 xfs_iunlock(ip, XFS_IOLOCK_SHARED); 243 244 return ret; 245 } 246 247 STATIC ssize_t 248 xfs_file_read_iter( 249 struct kiocb *iocb, 250 struct iov_iter *to) 251 { 252 struct inode *inode = file_inode(iocb->ki_filp); 253 struct xfs_mount *mp = XFS_I(inode)->i_mount; 254 ssize_t ret = 0; 255 256 XFS_STATS_INC(mp, xs_read_calls); 257 258 if (XFS_FORCED_SHUTDOWN(mp)) 259 return -EIO; 260 261 if (IS_DAX(inode)) 262 ret = xfs_file_dax_read(iocb, to); 263 else if (iocb->ki_flags & IOCB_DIRECT) 264 ret = xfs_file_dio_aio_read(iocb, to); 265 else 266 ret = xfs_file_buffered_aio_read(iocb, to); 267 268 if (ret > 0) 269 XFS_STATS_ADD(mp, xs_read_bytes, ret); 270 return ret; 271 } 272 273 /* 274 * Common pre-write limit and setup checks. 275 * 276 * Called with the iolocked held either shared and exclusive according to 277 * @iolock, and returns with it held. Might upgrade the iolock to exclusive 278 * if called for a direct write beyond i_size. 279 */ 280 STATIC ssize_t 281 xfs_file_aio_write_checks( 282 struct kiocb *iocb, 283 struct iov_iter *from, 284 int *iolock) 285 { 286 struct file *file = iocb->ki_filp; 287 struct inode *inode = file->f_mapping->host; 288 struct xfs_inode *ip = XFS_I(inode); 289 ssize_t error = 0; 290 size_t count = iov_iter_count(from); 291 bool drained_dio = false; 292 loff_t isize; 293 294 restart: 295 error = generic_write_checks(iocb, from); 296 if (error <= 0) 297 return error; 298 299 error = xfs_break_layouts(inode, iolock, BREAK_WRITE); 300 if (error) 301 return error; 302 303 /* 304 * For changing security info in file_remove_privs() we need i_rwsem 305 * exclusively. 306 */ 307 if (*iolock == XFS_IOLOCK_SHARED && !IS_NOSEC(inode)) { 308 xfs_iunlock(ip, *iolock); 309 *iolock = XFS_IOLOCK_EXCL; 310 xfs_ilock(ip, *iolock); 311 goto restart; 312 } 313 /* 314 * If the offset is beyond the size of the file, we need to zero any 315 * blocks that fall between the existing EOF and the start of this 316 * write. If zeroing is needed and we are currently holding the 317 * iolock shared, we need to update it to exclusive which implies 318 * having to redo all checks before. 319 * 320 * We need to serialise against EOF updates that occur in IO 321 * completions here. We want to make sure that nobody is changing the 322 * size while we do this check until we have placed an IO barrier (i.e. 323 * hold the XFS_IOLOCK_EXCL) that prevents new IO from being dispatched. 324 * The spinlock effectively forms a memory barrier once we have the 325 * XFS_IOLOCK_EXCL so we are guaranteed to see the latest EOF value 326 * and hence be able to correctly determine if we need to run zeroing. 327 */ 328 spin_lock(&ip->i_flags_lock); 329 isize = i_size_read(inode); 330 if (iocb->ki_pos > isize) { 331 spin_unlock(&ip->i_flags_lock); 332 if (!drained_dio) { 333 if (*iolock == XFS_IOLOCK_SHARED) { 334 xfs_iunlock(ip, *iolock); 335 *iolock = XFS_IOLOCK_EXCL; 336 xfs_ilock(ip, *iolock); 337 iov_iter_reexpand(from, count); 338 } 339 /* 340 * We now have an IO submission barrier in place, but 341 * AIO can do EOF updates during IO completion and hence 342 * we now need to wait for all of them to drain. Non-AIO 343 * DIO will have drained before we are given the 344 * XFS_IOLOCK_EXCL, and so for most cases this wait is a 345 * no-op. 346 */ 347 inode_dio_wait(inode); 348 drained_dio = true; 349 goto restart; 350 } 351 352 trace_xfs_zero_eof(ip, isize, iocb->ki_pos - isize); 353 error = iomap_zero_range(inode, isize, iocb->ki_pos - isize, 354 NULL, &xfs_iomap_ops); 355 if (error) 356 return error; 357 } else 358 spin_unlock(&ip->i_flags_lock); 359 360 /* 361 * Updating the timestamps will grab the ilock again from 362 * xfs_fs_dirty_inode, so we have to call it after dropping the 363 * lock above. Eventually we should look into a way to avoid 364 * the pointless lock roundtrip. 365 */ 366 return file_modified(file); 367 } 368 369 static int 370 xfs_dio_write_end_io( 371 struct kiocb *iocb, 372 ssize_t size, 373 int error, 374 unsigned flags) 375 { 376 struct inode *inode = file_inode(iocb->ki_filp); 377 struct xfs_inode *ip = XFS_I(inode); 378 loff_t offset = iocb->ki_pos; 379 unsigned int nofs_flag; 380 381 trace_xfs_end_io_direct_write(ip, offset, size); 382 383 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) 384 return -EIO; 385 386 if (error) 387 return error; 388 if (!size) 389 return 0; 390 391 /* 392 * Capture amount written on completion as we can't reliably account 393 * for it on submission. 394 */ 395 XFS_STATS_ADD(ip->i_mount, xs_write_bytes, size); 396 397 /* 398 * We can allocate memory here while doing writeback on behalf of 399 * memory reclaim. To avoid memory allocation deadlocks set the 400 * task-wide nofs context for the following operations. 401 */ 402 nofs_flag = memalloc_nofs_save(); 403 404 if (flags & IOMAP_DIO_COW) { 405 error = xfs_reflink_end_cow(ip, offset, size); 406 if (error) 407 goto out; 408 } 409 410 /* 411 * Unwritten conversion updates the in-core isize after extent 412 * conversion but before updating the on-disk size. Updating isize any 413 * earlier allows a racing dio read to find unwritten extents before 414 * they are converted. 415 */ 416 if (flags & IOMAP_DIO_UNWRITTEN) { 417 error = xfs_iomap_write_unwritten(ip, offset, size, true); 418 goto out; 419 } 420 421 /* 422 * We need to update the in-core inode size here so that we don't end up 423 * with the on-disk inode size being outside the in-core inode size. We 424 * have no other method of updating EOF for AIO, so always do it here 425 * if necessary. 426 * 427 * We need to lock the test/set EOF update as we can be racing with 428 * other IO completions here to update the EOF. Failing to serialise 429 * here can result in EOF moving backwards and Bad Things Happen when 430 * that occurs. 431 */ 432 spin_lock(&ip->i_flags_lock); 433 if (offset + size > i_size_read(inode)) { 434 i_size_write(inode, offset + size); 435 spin_unlock(&ip->i_flags_lock); 436 error = xfs_setfilesize(ip, offset, size); 437 } else { 438 spin_unlock(&ip->i_flags_lock); 439 } 440 441 out: 442 memalloc_nofs_restore(nofs_flag); 443 return error; 444 } 445 446 static const struct iomap_dio_ops xfs_dio_write_ops = { 447 .end_io = xfs_dio_write_end_io, 448 }; 449 450 /* 451 * xfs_file_dio_aio_write - handle direct IO writes 452 * 453 * Lock the inode appropriately to prepare for and issue a direct IO write. 454 * By separating it from the buffered write path we remove all the tricky to 455 * follow locking changes and looping. 456 * 457 * If there are cached pages or we're extending the file, we need IOLOCK_EXCL 458 * until we're sure the bytes at the new EOF have been zeroed and/or the cached 459 * pages are flushed out. 460 * 461 * In most cases the direct IO writes will be done holding IOLOCK_SHARED 462 * allowing them to be done in parallel with reads and other direct IO writes. 463 * However, if the IO is not aligned to filesystem blocks, the direct IO layer 464 * needs to do sub-block zeroing and that requires serialisation against other 465 * direct IOs to the same block. In this case we need to serialise the 466 * submission of the unaligned IOs so that we don't get racing block zeroing in 467 * the dio layer. To avoid the problem with aio, we also need to wait for 468 * outstanding IOs to complete so that unwritten extent conversion is completed 469 * before we try to map the overlapping block. This is currently implemented by 470 * hitting it with a big hammer (i.e. inode_dio_wait()). 471 * 472 * Returns with locks held indicated by @iolock and errors indicated by 473 * negative return values. 474 */ 475 STATIC ssize_t 476 xfs_file_dio_aio_write( 477 struct kiocb *iocb, 478 struct iov_iter *from) 479 { 480 struct file *file = iocb->ki_filp; 481 struct address_space *mapping = file->f_mapping; 482 struct inode *inode = mapping->host; 483 struct xfs_inode *ip = XFS_I(inode); 484 struct xfs_mount *mp = ip->i_mount; 485 ssize_t ret = 0; 486 int unaligned_io = 0; 487 int iolock; 488 size_t count = iov_iter_count(from); 489 struct xfs_buftarg *target = XFS_IS_REALTIME_INODE(ip) ? 490 mp->m_rtdev_targp : mp->m_ddev_targp; 491 492 /* DIO must be aligned to device logical sector size */ 493 if ((iocb->ki_pos | count) & target->bt_logical_sectormask) 494 return -EINVAL; 495 496 /* 497 * Don't take the exclusive iolock here unless the I/O is unaligned to 498 * the file system block size. We don't need to consider the EOF 499 * extension case here because xfs_file_aio_write_checks() will relock 500 * the inode as necessary for EOF zeroing cases and fill out the new 501 * inode size as appropriate. 502 */ 503 if ((iocb->ki_pos & mp->m_blockmask) || 504 ((iocb->ki_pos + count) & mp->m_blockmask)) { 505 unaligned_io = 1; 506 507 /* 508 * We can't properly handle unaligned direct I/O to reflink 509 * files yet, as we can't unshare a partial block. 510 */ 511 if (xfs_is_cow_inode(ip)) { 512 trace_xfs_reflink_bounce_dio_write(ip, iocb->ki_pos, count); 513 return -EREMCHG; 514 } 515 iolock = XFS_IOLOCK_EXCL; 516 } else { 517 iolock = XFS_IOLOCK_SHARED; 518 } 519 520 if (iocb->ki_flags & IOCB_NOWAIT) { 521 /* unaligned dio always waits, bail */ 522 if (unaligned_io) 523 return -EAGAIN; 524 if (!xfs_ilock_nowait(ip, iolock)) 525 return -EAGAIN; 526 } else { 527 xfs_ilock(ip, iolock); 528 } 529 530 ret = xfs_file_aio_write_checks(iocb, from, &iolock); 531 if (ret) 532 goto out; 533 count = iov_iter_count(from); 534 535 /* 536 * If we are doing unaligned IO, we can't allow any other overlapping IO 537 * in-flight at the same time or we risk data corruption. Wait for all 538 * other IO to drain before we submit. If the IO is aligned, demote the 539 * iolock if we had to take the exclusive lock in 540 * xfs_file_aio_write_checks() for other reasons. 541 */ 542 if (unaligned_io) { 543 inode_dio_wait(inode); 544 } else if (iolock == XFS_IOLOCK_EXCL) { 545 xfs_ilock_demote(ip, XFS_IOLOCK_EXCL); 546 iolock = XFS_IOLOCK_SHARED; 547 } 548 549 trace_xfs_file_direct_write(ip, count, iocb->ki_pos); 550 /* 551 * If unaligned, this is the only IO in-flight. Wait on it before we 552 * release the iolock to prevent subsequent overlapping IO. 553 */ 554 ret = iomap_dio_rw(iocb, from, &xfs_iomap_ops, &xfs_dio_write_ops, 555 is_sync_kiocb(iocb) || unaligned_io); 556 out: 557 xfs_iunlock(ip, iolock); 558 559 /* 560 * No fallback to buffered IO on errors for XFS, direct IO will either 561 * complete fully or fail. 562 */ 563 ASSERT(ret < 0 || ret == count); 564 return ret; 565 } 566 567 static noinline ssize_t 568 xfs_file_dax_write( 569 struct kiocb *iocb, 570 struct iov_iter *from) 571 { 572 struct inode *inode = iocb->ki_filp->f_mapping->host; 573 struct xfs_inode *ip = XFS_I(inode); 574 int iolock = XFS_IOLOCK_EXCL; 575 ssize_t ret, error = 0; 576 size_t count; 577 loff_t pos; 578 579 if (iocb->ki_flags & IOCB_NOWAIT) { 580 if (!xfs_ilock_nowait(ip, iolock)) 581 return -EAGAIN; 582 } else { 583 xfs_ilock(ip, iolock); 584 } 585 586 ret = xfs_file_aio_write_checks(iocb, from, &iolock); 587 if (ret) 588 goto out; 589 590 pos = iocb->ki_pos; 591 count = iov_iter_count(from); 592 593 trace_xfs_file_dax_write(ip, count, pos); 594 ret = dax_iomap_rw(iocb, from, &xfs_iomap_ops); 595 if (ret > 0 && iocb->ki_pos > i_size_read(inode)) { 596 i_size_write(inode, iocb->ki_pos); 597 error = xfs_setfilesize(ip, pos, ret); 598 } 599 out: 600 xfs_iunlock(ip, iolock); 601 if (error) 602 return error; 603 604 if (ret > 0) { 605 XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret); 606 607 /* Handle various SYNC-type writes */ 608 ret = generic_write_sync(iocb, ret); 609 } 610 return ret; 611 } 612 613 STATIC ssize_t 614 xfs_file_buffered_aio_write( 615 struct kiocb *iocb, 616 struct iov_iter *from) 617 { 618 struct file *file = iocb->ki_filp; 619 struct address_space *mapping = file->f_mapping; 620 struct inode *inode = mapping->host; 621 struct xfs_inode *ip = XFS_I(inode); 622 ssize_t ret; 623 int enospc = 0; 624 int iolock; 625 626 if (iocb->ki_flags & IOCB_NOWAIT) 627 return -EOPNOTSUPP; 628 629 write_retry: 630 iolock = XFS_IOLOCK_EXCL; 631 xfs_ilock(ip, iolock); 632 633 ret = xfs_file_aio_write_checks(iocb, from, &iolock); 634 if (ret) 635 goto out; 636 637 /* We can write back this queue in page reclaim */ 638 current->backing_dev_info = inode_to_bdi(inode); 639 640 trace_xfs_file_buffered_write(ip, iov_iter_count(from), iocb->ki_pos); 641 ret = iomap_file_buffered_write(iocb, from, &xfs_iomap_ops); 642 if (likely(ret >= 0)) 643 iocb->ki_pos += ret; 644 645 /* 646 * If we hit a space limit, try to free up some lingering preallocated 647 * space before returning an error. In the case of ENOSPC, first try to 648 * write back all dirty inodes to free up some of the excess reserved 649 * metadata space. This reduces the chances that the eofblocks scan 650 * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this 651 * also behaves as a filter to prevent too many eofblocks scans from 652 * running at the same time. 653 */ 654 if (ret == -EDQUOT && !enospc) { 655 xfs_iunlock(ip, iolock); 656 enospc = xfs_inode_free_quota_eofblocks(ip); 657 if (enospc) 658 goto write_retry; 659 enospc = xfs_inode_free_quota_cowblocks(ip); 660 if (enospc) 661 goto write_retry; 662 iolock = 0; 663 } else if (ret == -ENOSPC && !enospc) { 664 struct xfs_eofblocks eofb = {0}; 665 666 enospc = 1; 667 xfs_flush_inodes(ip->i_mount); 668 669 xfs_iunlock(ip, iolock); 670 eofb.eof_flags = XFS_EOF_FLAGS_SYNC; 671 xfs_icache_free_eofblocks(ip->i_mount, &eofb); 672 xfs_icache_free_cowblocks(ip->i_mount, &eofb); 673 goto write_retry; 674 } 675 676 current->backing_dev_info = NULL; 677 out: 678 if (iolock) 679 xfs_iunlock(ip, iolock); 680 681 if (ret > 0) { 682 XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret); 683 /* Handle various SYNC-type writes */ 684 ret = generic_write_sync(iocb, ret); 685 } 686 return ret; 687 } 688 689 STATIC ssize_t 690 xfs_file_write_iter( 691 struct kiocb *iocb, 692 struct iov_iter *from) 693 { 694 struct file *file = iocb->ki_filp; 695 struct address_space *mapping = file->f_mapping; 696 struct inode *inode = mapping->host; 697 struct xfs_inode *ip = XFS_I(inode); 698 ssize_t ret; 699 size_t ocount = iov_iter_count(from); 700 701 XFS_STATS_INC(ip->i_mount, xs_write_calls); 702 703 if (ocount == 0) 704 return 0; 705 706 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) 707 return -EIO; 708 709 if (IS_DAX(inode)) 710 return xfs_file_dax_write(iocb, from); 711 712 if (iocb->ki_flags & IOCB_DIRECT) { 713 /* 714 * Allow a directio write to fall back to a buffered 715 * write *only* in the case that we're doing a reflink 716 * CoW. In all other directio scenarios we do not 717 * allow an operation to fall back to buffered mode. 718 */ 719 ret = xfs_file_dio_aio_write(iocb, from); 720 if (ret != -EREMCHG) 721 return ret; 722 } 723 724 return xfs_file_buffered_aio_write(iocb, from); 725 } 726 727 static void 728 xfs_wait_dax_page( 729 struct inode *inode) 730 { 731 struct xfs_inode *ip = XFS_I(inode); 732 733 xfs_iunlock(ip, XFS_MMAPLOCK_EXCL); 734 schedule(); 735 xfs_ilock(ip, XFS_MMAPLOCK_EXCL); 736 } 737 738 static int 739 xfs_break_dax_layouts( 740 struct inode *inode, 741 bool *retry) 742 { 743 struct page *page; 744 745 ASSERT(xfs_isilocked(XFS_I(inode), XFS_MMAPLOCK_EXCL)); 746 747 page = dax_layout_busy_page(inode->i_mapping); 748 if (!page) 749 return 0; 750 751 *retry = true; 752 return ___wait_var_event(&page->_refcount, 753 atomic_read(&page->_refcount) == 1, TASK_INTERRUPTIBLE, 754 0, 0, xfs_wait_dax_page(inode)); 755 } 756 757 int 758 xfs_break_layouts( 759 struct inode *inode, 760 uint *iolock, 761 enum layout_break_reason reason) 762 { 763 bool retry; 764 int error; 765 766 ASSERT(xfs_isilocked(XFS_I(inode), XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)); 767 768 do { 769 retry = false; 770 switch (reason) { 771 case BREAK_UNMAP: 772 error = xfs_break_dax_layouts(inode, &retry); 773 if (error || retry) 774 break; 775 /* fall through */ 776 case BREAK_WRITE: 777 error = xfs_break_leased_layouts(inode, iolock, &retry); 778 break; 779 default: 780 WARN_ON_ONCE(1); 781 error = -EINVAL; 782 } 783 } while (error == 0 && retry); 784 785 return error; 786 } 787 788 #define XFS_FALLOC_FL_SUPPORTED \ 789 (FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | \ 790 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE | \ 791 FALLOC_FL_INSERT_RANGE | FALLOC_FL_UNSHARE_RANGE) 792 793 STATIC long 794 xfs_file_fallocate( 795 struct file *file, 796 int mode, 797 loff_t offset, 798 loff_t len) 799 { 800 struct inode *inode = file_inode(file); 801 struct xfs_inode *ip = XFS_I(inode); 802 long error; 803 enum xfs_prealloc_flags flags = 0; 804 uint iolock = XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL; 805 loff_t new_size = 0; 806 bool do_file_insert = false; 807 808 if (!S_ISREG(inode->i_mode)) 809 return -EINVAL; 810 if (mode & ~XFS_FALLOC_FL_SUPPORTED) 811 return -EOPNOTSUPP; 812 813 xfs_ilock(ip, iolock); 814 error = xfs_break_layouts(inode, &iolock, BREAK_UNMAP); 815 if (error) 816 goto out_unlock; 817 818 if (mode & FALLOC_FL_PUNCH_HOLE) { 819 error = xfs_free_file_space(ip, offset, len); 820 if (error) 821 goto out_unlock; 822 } else if (mode & FALLOC_FL_COLLAPSE_RANGE) { 823 unsigned int blksize_mask = i_blocksize(inode) - 1; 824 825 if (offset & blksize_mask || len & blksize_mask) { 826 error = -EINVAL; 827 goto out_unlock; 828 } 829 830 /* 831 * There is no need to overlap collapse range with EOF, 832 * in which case it is effectively a truncate operation 833 */ 834 if (offset + len >= i_size_read(inode)) { 835 error = -EINVAL; 836 goto out_unlock; 837 } 838 839 new_size = i_size_read(inode) - len; 840 841 error = xfs_collapse_file_space(ip, offset, len); 842 if (error) 843 goto out_unlock; 844 } else if (mode & FALLOC_FL_INSERT_RANGE) { 845 unsigned int blksize_mask = i_blocksize(inode) - 1; 846 loff_t isize = i_size_read(inode); 847 848 if (offset & blksize_mask || len & blksize_mask) { 849 error = -EINVAL; 850 goto out_unlock; 851 } 852 853 /* 854 * New inode size must not exceed ->s_maxbytes, accounting for 855 * possible signed overflow. 856 */ 857 if (inode->i_sb->s_maxbytes - isize < len) { 858 error = -EFBIG; 859 goto out_unlock; 860 } 861 new_size = isize + len; 862 863 /* Offset should be less than i_size */ 864 if (offset >= isize) { 865 error = -EINVAL; 866 goto out_unlock; 867 } 868 do_file_insert = true; 869 } else { 870 flags |= XFS_PREALLOC_SET; 871 872 if (!(mode & FALLOC_FL_KEEP_SIZE) && 873 offset + len > i_size_read(inode)) { 874 new_size = offset + len; 875 error = inode_newsize_ok(inode, new_size); 876 if (error) 877 goto out_unlock; 878 } 879 880 if (mode & FALLOC_FL_ZERO_RANGE) { 881 error = xfs_zero_file_space(ip, offset, len); 882 } else if (mode & FALLOC_FL_UNSHARE_RANGE) { 883 error = xfs_reflink_unshare(ip, offset, len); 884 if (error) 885 goto out_unlock; 886 887 if (!xfs_is_always_cow_inode(ip)) { 888 error = xfs_alloc_file_space(ip, offset, len, 889 XFS_BMAPI_PREALLOC); 890 } 891 } else { 892 /* 893 * If always_cow mode we can't use preallocations and 894 * thus should not create them. 895 */ 896 if (xfs_is_always_cow_inode(ip)) { 897 error = -EOPNOTSUPP; 898 goto out_unlock; 899 } 900 901 error = xfs_alloc_file_space(ip, offset, len, 902 XFS_BMAPI_PREALLOC); 903 } 904 if (error) 905 goto out_unlock; 906 } 907 908 if (file->f_flags & O_DSYNC) 909 flags |= XFS_PREALLOC_SYNC; 910 911 error = xfs_update_prealloc_flags(ip, flags); 912 if (error) 913 goto out_unlock; 914 915 /* Change file size if needed */ 916 if (new_size) { 917 struct iattr iattr; 918 919 iattr.ia_valid = ATTR_SIZE; 920 iattr.ia_size = new_size; 921 error = xfs_vn_setattr_size(file_dentry(file), &iattr); 922 if (error) 923 goto out_unlock; 924 } 925 926 /* 927 * Perform hole insertion now that the file size has been 928 * updated so that if we crash during the operation we don't 929 * leave shifted extents past EOF and hence losing access to 930 * the data that is contained within them. 931 */ 932 if (do_file_insert) 933 error = xfs_insert_file_space(ip, offset, len); 934 935 out_unlock: 936 xfs_iunlock(ip, iolock); 937 return error; 938 } 939 940 STATIC int 941 xfs_file_fadvise( 942 struct file *file, 943 loff_t start, 944 loff_t end, 945 int advice) 946 { 947 struct xfs_inode *ip = XFS_I(file_inode(file)); 948 int ret; 949 int lockflags = 0; 950 951 /* 952 * Operations creating pages in page cache need protection from hole 953 * punching and similar ops 954 */ 955 if (advice == POSIX_FADV_WILLNEED) { 956 lockflags = XFS_IOLOCK_SHARED; 957 xfs_ilock(ip, lockflags); 958 } 959 ret = generic_fadvise(file, start, end, advice); 960 if (lockflags) 961 xfs_iunlock(ip, lockflags); 962 return ret; 963 } 964 965 STATIC loff_t 966 xfs_file_remap_range( 967 struct file *file_in, 968 loff_t pos_in, 969 struct file *file_out, 970 loff_t pos_out, 971 loff_t len, 972 unsigned int remap_flags) 973 { 974 struct inode *inode_in = file_inode(file_in); 975 struct xfs_inode *src = XFS_I(inode_in); 976 struct inode *inode_out = file_inode(file_out); 977 struct xfs_inode *dest = XFS_I(inode_out); 978 struct xfs_mount *mp = src->i_mount; 979 loff_t remapped = 0; 980 xfs_extlen_t cowextsize; 981 int ret; 982 983 if (remap_flags & ~(REMAP_FILE_DEDUP | REMAP_FILE_ADVISORY)) 984 return -EINVAL; 985 986 if (!xfs_sb_version_hasreflink(&mp->m_sb)) 987 return -EOPNOTSUPP; 988 989 if (XFS_FORCED_SHUTDOWN(mp)) 990 return -EIO; 991 992 /* Prepare and then clone file data. */ 993 ret = xfs_reflink_remap_prep(file_in, pos_in, file_out, pos_out, 994 &len, remap_flags); 995 if (ret < 0 || len == 0) 996 return ret; 997 998 trace_xfs_reflink_remap_range(src, pos_in, len, dest, pos_out); 999 1000 ret = xfs_reflink_remap_blocks(src, pos_in, dest, pos_out, len, 1001 &remapped); 1002 if (ret) 1003 goto out_unlock; 1004 1005 /* 1006 * Carry the cowextsize hint from src to dest if we're sharing the 1007 * entire source file to the entire destination file, the source file 1008 * has a cowextsize hint, and the destination file does not. 1009 */ 1010 cowextsize = 0; 1011 if (pos_in == 0 && len == i_size_read(inode_in) && 1012 (src->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE) && 1013 pos_out == 0 && len >= i_size_read(inode_out) && 1014 !(dest->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE)) 1015 cowextsize = src->i_d.di_cowextsize; 1016 1017 ret = xfs_reflink_update_dest(dest, pos_out + len, cowextsize, 1018 remap_flags); 1019 1020 out_unlock: 1021 xfs_reflink_remap_unlock(file_in, file_out); 1022 if (ret) 1023 trace_xfs_reflink_remap_range_error(dest, ret, _RET_IP_); 1024 return remapped > 0 ? remapped : ret; 1025 } 1026 1027 STATIC int 1028 xfs_file_open( 1029 struct inode *inode, 1030 struct file *file) 1031 { 1032 if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS) 1033 return -EFBIG; 1034 if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb))) 1035 return -EIO; 1036 file->f_mode |= FMODE_NOWAIT; 1037 return 0; 1038 } 1039 1040 STATIC int 1041 xfs_dir_open( 1042 struct inode *inode, 1043 struct file *file) 1044 { 1045 struct xfs_inode *ip = XFS_I(inode); 1046 int mode; 1047 int error; 1048 1049 error = xfs_file_open(inode, file); 1050 if (error) 1051 return error; 1052 1053 /* 1054 * If there are any blocks, read-ahead block 0 as we're almost 1055 * certain to have the next operation be a read there. 1056 */ 1057 mode = xfs_ilock_data_map_shared(ip); 1058 if (ip->i_d.di_nextents > 0) 1059 error = xfs_dir3_data_readahead(ip, 0, -1); 1060 xfs_iunlock(ip, mode); 1061 return error; 1062 } 1063 1064 STATIC int 1065 xfs_file_release( 1066 struct inode *inode, 1067 struct file *filp) 1068 { 1069 return xfs_release(XFS_I(inode)); 1070 } 1071 1072 STATIC int 1073 xfs_file_readdir( 1074 struct file *file, 1075 struct dir_context *ctx) 1076 { 1077 struct inode *inode = file_inode(file); 1078 xfs_inode_t *ip = XFS_I(inode); 1079 size_t bufsize; 1080 1081 /* 1082 * The Linux API doesn't pass down the total size of the buffer 1083 * we read into down to the filesystem. With the filldir concept 1084 * it's not needed for correct information, but the XFS dir2 leaf 1085 * code wants an estimate of the buffer size to calculate it's 1086 * readahead window and size the buffers used for mapping to 1087 * physical blocks. 1088 * 1089 * Try to give it an estimate that's good enough, maybe at some 1090 * point we can change the ->readdir prototype to include the 1091 * buffer size. For now we use the current glibc buffer size. 1092 */ 1093 bufsize = (size_t)min_t(loff_t, XFS_READDIR_BUFSIZE, ip->i_d.di_size); 1094 1095 return xfs_readdir(NULL, ip, ctx, bufsize); 1096 } 1097 1098 STATIC loff_t 1099 xfs_file_llseek( 1100 struct file *file, 1101 loff_t offset, 1102 int whence) 1103 { 1104 struct inode *inode = file->f_mapping->host; 1105 1106 if (XFS_FORCED_SHUTDOWN(XFS_I(inode)->i_mount)) 1107 return -EIO; 1108 1109 switch (whence) { 1110 default: 1111 return generic_file_llseek(file, offset, whence); 1112 case SEEK_HOLE: 1113 offset = iomap_seek_hole(inode, offset, &xfs_seek_iomap_ops); 1114 break; 1115 case SEEK_DATA: 1116 offset = iomap_seek_data(inode, offset, &xfs_seek_iomap_ops); 1117 break; 1118 } 1119 1120 if (offset < 0) 1121 return offset; 1122 return vfs_setpos(file, offset, inode->i_sb->s_maxbytes); 1123 } 1124 1125 /* 1126 * Locking for serialisation of IO during page faults. This results in a lock 1127 * ordering of: 1128 * 1129 * mmap_sem (MM) 1130 * sb_start_pagefault(vfs, freeze) 1131 * i_mmaplock (XFS - truncate serialisation) 1132 * page_lock (MM) 1133 * i_lock (XFS - extent map serialisation) 1134 */ 1135 static vm_fault_t 1136 __xfs_filemap_fault( 1137 struct vm_fault *vmf, 1138 enum page_entry_size pe_size, 1139 bool write_fault) 1140 { 1141 struct inode *inode = file_inode(vmf->vma->vm_file); 1142 struct xfs_inode *ip = XFS_I(inode); 1143 vm_fault_t ret; 1144 1145 trace_xfs_filemap_fault(ip, pe_size, write_fault); 1146 1147 if (write_fault) { 1148 sb_start_pagefault(inode->i_sb); 1149 file_update_time(vmf->vma->vm_file); 1150 } 1151 1152 xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED); 1153 if (IS_DAX(inode)) { 1154 pfn_t pfn; 1155 1156 ret = dax_iomap_fault(vmf, pe_size, &pfn, NULL, &xfs_iomap_ops); 1157 if (ret & VM_FAULT_NEEDDSYNC) 1158 ret = dax_finish_sync_fault(vmf, pe_size, pfn); 1159 } else { 1160 if (write_fault) 1161 ret = iomap_page_mkwrite(vmf, &xfs_iomap_ops); 1162 else 1163 ret = filemap_fault(vmf); 1164 } 1165 xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED); 1166 1167 if (write_fault) 1168 sb_end_pagefault(inode->i_sb); 1169 return ret; 1170 } 1171 1172 static vm_fault_t 1173 xfs_filemap_fault( 1174 struct vm_fault *vmf) 1175 { 1176 /* DAX can shortcut the normal fault path on write faults! */ 1177 return __xfs_filemap_fault(vmf, PE_SIZE_PTE, 1178 IS_DAX(file_inode(vmf->vma->vm_file)) && 1179 (vmf->flags & FAULT_FLAG_WRITE)); 1180 } 1181 1182 static vm_fault_t 1183 xfs_filemap_huge_fault( 1184 struct vm_fault *vmf, 1185 enum page_entry_size pe_size) 1186 { 1187 if (!IS_DAX(file_inode(vmf->vma->vm_file))) 1188 return VM_FAULT_FALLBACK; 1189 1190 /* DAX can shortcut the normal fault path on write faults! */ 1191 return __xfs_filemap_fault(vmf, pe_size, 1192 (vmf->flags & FAULT_FLAG_WRITE)); 1193 } 1194 1195 static vm_fault_t 1196 xfs_filemap_page_mkwrite( 1197 struct vm_fault *vmf) 1198 { 1199 return __xfs_filemap_fault(vmf, PE_SIZE_PTE, true); 1200 } 1201 1202 /* 1203 * pfn_mkwrite was originally intended to ensure we capture time stamp updates 1204 * on write faults. In reality, it needs to serialise against truncate and 1205 * prepare memory for writing so handle is as standard write fault. 1206 */ 1207 static vm_fault_t 1208 xfs_filemap_pfn_mkwrite( 1209 struct vm_fault *vmf) 1210 { 1211 1212 return __xfs_filemap_fault(vmf, PE_SIZE_PTE, true); 1213 } 1214 1215 static const struct vm_operations_struct xfs_file_vm_ops = { 1216 .fault = xfs_filemap_fault, 1217 .huge_fault = xfs_filemap_huge_fault, 1218 .map_pages = filemap_map_pages, 1219 .page_mkwrite = xfs_filemap_page_mkwrite, 1220 .pfn_mkwrite = xfs_filemap_pfn_mkwrite, 1221 }; 1222 1223 STATIC int 1224 xfs_file_mmap( 1225 struct file *filp, 1226 struct vm_area_struct *vma) 1227 { 1228 struct dax_device *dax_dev; 1229 1230 dax_dev = xfs_find_daxdev_for_inode(file_inode(filp)); 1231 /* 1232 * We don't support synchronous mappings for non-DAX files and 1233 * for DAX files if underneath dax_device is not synchronous. 1234 */ 1235 if (!daxdev_mapping_supported(vma, dax_dev)) 1236 return -EOPNOTSUPP; 1237 1238 file_accessed(filp); 1239 vma->vm_ops = &xfs_file_vm_ops; 1240 if (IS_DAX(file_inode(filp))) 1241 vma->vm_flags |= VM_HUGEPAGE; 1242 return 0; 1243 } 1244 1245 const struct file_operations xfs_file_operations = { 1246 .llseek = xfs_file_llseek, 1247 .read_iter = xfs_file_read_iter, 1248 .write_iter = xfs_file_write_iter, 1249 .splice_read = generic_file_splice_read, 1250 .splice_write = iter_file_splice_write, 1251 .iopoll = iomap_dio_iopoll, 1252 .unlocked_ioctl = xfs_file_ioctl, 1253 #ifdef CONFIG_COMPAT 1254 .compat_ioctl = xfs_file_compat_ioctl, 1255 #endif 1256 .mmap = xfs_file_mmap, 1257 .mmap_supported_flags = MAP_SYNC, 1258 .open = xfs_file_open, 1259 .release = xfs_file_release, 1260 .fsync = xfs_file_fsync, 1261 .get_unmapped_area = thp_get_unmapped_area, 1262 .fallocate = xfs_file_fallocate, 1263 .fadvise = xfs_file_fadvise, 1264 .remap_file_range = xfs_file_remap_range, 1265 }; 1266 1267 const struct file_operations xfs_dir_file_operations = { 1268 .open = xfs_dir_open, 1269 .read = generic_read_dir, 1270 .iterate_shared = xfs_file_readdir, 1271 .llseek = generic_file_llseek, 1272 .unlocked_ioctl = xfs_file_ioctl, 1273 #ifdef CONFIG_COMPAT 1274 .compat_ioctl = xfs_file_compat_ioctl, 1275 #endif 1276 .fsync = xfs_dir_fsync, 1277 }; 1278