xref: /linux/fs/xfs/xfs_file.c (revision 2c97b5ae83dca56718774e7b4bf9640f05d11867)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_inode.h"
14 #include "xfs_trans.h"
15 #include "xfs_inode_item.h"
16 #include "xfs_bmap.h"
17 #include "xfs_bmap_util.h"
18 #include "xfs_dir2.h"
19 #include "xfs_dir2_priv.h"
20 #include "xfs_ioctl.h"
21 #include "xfs_trace.h"
22 #include "xfs_log.h"
23 #include "xfs_icache.h"
24 #include "xfs_pnfs.h"
25 #include "xfs_iomap.h"
26 #include "xfs_reflink.h"
27 
28 #include <linux/falloc.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mman.h>
31 #include <linux/fadvise.h>
32 
33 static const struct vm_operations_struct xfs_file_vm_ops;
34 
35 int
36 xfs_update_prealloc_flags(
37 	struct xfs_inode	*ip,
38 	enum xfs_prealloc_flags	flags)
39 {
40 	struct xfs_trans	*tp;
41 	int			error;
42 
43 	error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_writeid,
44 			0, 0, 0, &tp);
45 	if (error)
46 		return error;
47 
48 	xfs_ilock(ip, XFS_ILOCK_EXCL);
49 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
50 
51 	if (!(flags & XFS_PREALLOC_INVISIBLE)) {
52 		VFS_I(ip)->i_mode &= ~S_ISUID;
53 		if (VFS_I(ip)->i_mode & S_IXGRP)
54 			VFS_I(ip)->i_mode &= ~S_ISGID;
55 		xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
56 	}
57 
58 	if (flags & XFS_PREALLOC_SET)
59 		ip->i_d.di_flags |= XFS_DIFLAG_PREALLOC;
60 	if (flags & XFS_PREALLOC_CLEAR)
61 		ip->i_d.di_flags &= ~XFS_DIFLAG_PREALLOC;
62 
63 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
64 	if (flags & XFS_PREALLOC_SYNC)
65 		xfs_trans_set_sync(tp);
66 	return xfs_trans_commit(tp);
67 }
68 
69 /*
70  * Fsync operations on directories are much simpler than on regular files,
71  * as there is no file data to flush, and thus also no need for explicit
72  * cache flush operations, and there are no non-transaction metadata updates
73  * on directories either.
74  */
75 STATIC int
76 xfs_dir_fsync(
77 	struct file		*file,
78 	loff_t			start,
79 	loff_t			end,
80 	int			datasync)
81 {
82 	struct xfs_inode	*ip = XFS_I(file->f_mapping->host);
83 	struct xfs_mount	*mp = ip->i_mount;
84 	xfs_lsn_t		lsn = 0;
85 
86 	trace_xfs_dir_fsync(ip);
87 
88 	xfs_ilock(ip, XFS_ILOCK_SHARED);
89 	if (xfs_ipincount(ip))
90 		lsn = ip->i_itemp->ili_last_lsn;
91 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
92 
93 	if (!lsn)
94 		return 0;
95 	return xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, NULL);
96 }
97 
98 STATIC int
99 xfs_file_fsync(
100 	struct file		*file,
101 	loff_t			start,
102 	loff_t			end,
103 	int			datasync)
104 {
105 	struct inode		*inode = file->f_mapping->host;
106 	struct xfs_inode	*ip = XFS_I(inode);
107 	struct xfs_mount	*mp = ip->i_mount;
108 	int			error = 0;
109 	int			log_flushed = 0;
110 	xfs_lsn_t		lsn = 0;
111 
112 	trace_xfs_file_fsync(ip);
113 
114 	error = file_write_and_wait_range(file, start, end);
115 	if (error)
116 		return error;
117 
118 	if (XFS_FORCED_SHUTDOWN(mp))
119 		return -EIO;
120 
121 	xfs_iflags_clear(ip, XFS_ITRUNCATED);
122 
123 	/*
124 	 * If we have an RT and/or log subvolume we need to make sure to flush
125 	 * the write cache the device used for file data first.  This is to
126 	 * ensure newly written file data make it to disk before logging the new
127 	 * inode size in case of an extending write.
128 	 */
129 	if (XFS_IS_REALTIME_INODE(ip))
130 		xfs_blkdev_issue_flush(mp->m_rtdev_targp);
131 	else if (mp->m_logdev_targp != mp->m_ddev_targp)
132 		xfs_blkdev_issue_flush(mp->m_ddev_targp);
133 
134 	/*
135 	 * All metadata updates are logged, which means that we just have to
136 	 * flush the log up to the latest LSN that touched the inode. If we have
137 	 * concurrent fsync/fdatasync() calls, we need them to all block on the
138 	 * log force before we clear the ili_fsync_fields field. This ensures
139 	 * that we don't get a racing sync operation that does not wait for the
140 	 * metadata to hit the journal before returning. If we race with
141 	 * clearing the ili_fsync_fields, then all that will happen is the log
142 	 * force will do nothing as the lsn will already be on disk. We can't
143 	 * race with setting ili_fsync_fields because that is done under
144 	 * XFS_ILOCK_EXCL, and that can't happen because we hold the lock shared
145 	 * until after the ili_fsync_fields is cleared.
146 	 */
147 	xfs_ilock(ip, XFS_ILOCK_SHARED);
148 	if (xfs_ipincount(ip)) {
149 		if (!datasync ||
150 		    (ip->i_itemp->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP))
151 			lsn = ip->i_itemp->ili_last_lsn;
152 	}
153 
154 	if (lsn) {
155 		error = xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed);
156 		ip->i_itemp->ili_fsync_fields = 0;
157 	}
158 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
159 
160 	/*
161 	 * If we only have a single device, and the log force about was
162 	 * a no-op we might have to flush the data device cache here.
163 	 * This can only happen for fdatasync/O_DSYNC if we were overwriting
164 	 * an already allocated file and thus do not have any metadata to
165 	 * commit.
166 	 */
167 	if (!log_flushed && !XFS_IS_REALTIME_INODE(ip) &&
168 	    mp->m_logdev_targp == mp->m_ddev_targp)
169 		xfs_blkdev_issue_flush(mp->m_ddev_targp);
170 
171 	return error;
172 }
173 
174 STATIC ssize_t
175 xfs_file_dio_aio_read(
176 	struct kiocb		*iocb,
177 	struct iov_iter		*to)
178 {
179 	struct xfs_inode	*ip = XFS_I(file_inode(iocb->ki_filp));
180 	size_t			count = iov_iter_count(to);
181 	ssize_t			ret;
182 
183 	trace_xfs_file_direct_read(ip, count, iocb->ki_pos);
184 
185 	if (!count)
186 		return 0; /* skip atime */
187 
188 	file_accessed(iocb->ki_filp);
189 
190 	xfs_ilock(ip, XFS_IOLOCK_SHARED);
191 	ret = iomap_dio_rw(iocb, to, &xfs_iomap_ops, NULL, is_sync_kiocb(iocb));
192 	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
193 
194 	return ret;
195 }
196 
197 static noinline ssize_t
198 xfs_file_dax_read(
199 	struct kiocb		*iocb,
200 	struct iov_iter		*to)
201 {
202 	struct xfs_inode	*ip = XFS_I(iocb->ki_filp->f_mapping->host);
203 	size_t			count = iov_iter_count(to);
204 	ssize_t			ret = 0;
205 
206 	trace_xfs_file_dax_read(ip, count, iocb->ki_pos);
207 
208 	if (!count)
209 		return 0; /* skip atime */
210 
211 	if (iocb->ki_flags & IOCB_NOWAIT) {
212 		if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED))
213 			return -EAGAIN;
214 	} else {
215 		xfs_ilock(ip, XFS_IOLOCK_SHARED);
216 	}
217 
218 	ret = dax_iomap_rw(iocb, to, &xfs_iomap_ops);
219 	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
220 
221 	file_accessed(iocb->ki_filp);
222 	return ret;
223 }
224 
225 STATIC ssize_t
226 xfs_file_buffered_aio_read(
227 	struct kiocb		*iocb,
228 	struct iov_iter		*to)
229 {
230 	struct xfs_inode	*ip = XFS_I(file_inode(iocb->ki_filp));
231 	ssize_t			ret;
232 
233 	trace_xfs_file_buffered_read(ip, iov_iter_count(to), iocb->ki_pos);
234 
235 	if (iocb->ki_flags & IOCB_NOWAIT) {
236 		if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED))
237 			return -EAGAIN;
238 	} else {
239 		xfs_ilock(ip, XFS_IOLOCK_SHARED);
240 	}
241 	ret = generic_file_read_iter(iocb, to);
242 	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
243 
244 	return ret;
245 }
246 
247 STATIC ssize_t
248 xfs_file_read_iter(
249 	struct kiocb		*iocb,
250 	struct iov_iter		*to)
251 {
252 	struct inode		*inode = file_inode(iocb->ki_filp);
253 	struct xfs_mount	*mp = XFS_I(inode)->i_mount;
254 	ssize_t			ret = 0;
255 
256 	XFS_STATS_INC(mp, xs_read_calls);
257 
258 	if (XFS_FORCED_SHUTDOWN(mp))
259 		return -EIO;
260 
261 	if (IS_DAX(inode))
262 		ret = xfs_file_dax_read(iocb, to);
263 	else if (iocb->ki_flags & IOCB_DIRECT)
264 		ret = xfs_file_dio_aio_read(iocb, to);
265 	else
266 		ret = xfs_file_buffered_aio_read(iocb, to);
267 
268 	if (ret > 0)
269 		XFS_STATS_ADD(mp, xs_read_bytes, ret);
270 	return ret;
271 }
272 
273 /*
274  * Common pre-write limit and setup checks.
275  *
276  * Called with the iolocked held either shared and exclusive according to
277  * @iolock, and returns with it held.  Might upgrade the iolock to exclusive
278  * if called for a direct write beyond i_size.
279  */
280 STATIC ssize_t
281 xfs_file_aio_write_checks(
282 	struct kiocb		*iocb,
283 	struct iov_iter		*from,
284 	int			*iolock)
285 {
286 	struct file		*file = iocb->ki_filp;
287 	struct inode		*inode = file->f_mapping->host;
288 	struct xfs_inode	*ip = XFS_I(inode);
289 	ssize_t			error = 0;
290 	size_t			count = iov_iter_count(from);
291 	bool			drained_dio = false;
292 	loff_t			isize;
293 
294 restart:
295 	error = generic_write_checks(iocb, from);
296 	if (error <= 0)
297 		return error;
298 
299 	error = xfs_break_layouts(inode, iolock, BREAK_WRITE);
300 	if (error)
301 		return error;
302 
303 	/*
304 	 * For changing security info in file_remove_privs() we need i_rwsem
305 	 * exclusively.
306 	 */
307 	if (*iolock == XFS_IOLOCK_SHARED && !IS_NOSEC(inode)) {
308 		xfs_iunlock(ip, *iolock);
309 		*iolock = XFS_IOLOCK_EXCL;
310 		xfs_ilock(ip, *iolock);
311 		goto restart;
312 	}
313 	/*
314 	 * If the offset is beyond the size of the file, we need to zero any
315 	 * blocks that fall between the existing EOF and the start of this
316 	 * write.  If zeroing is needed and we are currently holding the
317 	 * iolock shared, we need to update it to exclusive which implies
318 	 * having to redo all checks before.
319 	 *
320 	 * We need to serialise against EOF updates that occur in IO
321 	 * completions here. We want to make sure that nobody is changing the
322 	 * size while we do this check until we have placed an IO barrier (i.e.
323 	 * hold the XFS_IOLOCK_EXCL) that prevents new IO from being dispatched.
324 	 * The spinlock effectively forms a memory barrier once we have the
325 	 * XFS_IOLOCK_EXCL so we are guaranteed to see the latest EOF value
326 	 * and hence be able to correctly determine if we need to run zeroing.
327 	 */
328 	spin_lock(&ip->i_flags_lock);
329 	isize = i_size_read(inode);
330 	if (iocb->ki_pos > isize) {
331 		spin_unlock(&ip->i_flags_lock);
332 		if (!drained_dio) {
333 			if (*iolock == XFS_IOLOCK_SHARED) {
334 				xfs_iunlock(ip, *iolock);
335 				*iolock = XFS_IOLOCK_EXCL;
336 				xfs_ilock(ip, *iolock);
337 				iov_iter_reexpand(from, count);
338 			}
339 			/*
340 			 * We now have an IO submission barrier in place, but
341 			 * AIO can do EOF updates during IO completion and hence
342 			 * we now need to wait for all of them to drain. Non-AIO
343 			 * DIO will have drained before we are given the
344 			 * XFS_IOLOCK_EXCL, and so for most cases this wait is a
345 			 * no-op.
346 			 */
347 			inode_dio_wait(inode);
348 			drained_dio = true;
349 			goto restart;
350 		}
351 
352 		trace_xfs_zero_eof(ip, isize, iocb->ki_pos - isize);
353 		error = iomap_zero_range(inode, isize, iocb->ki_pos - isize,
354 				NULL, &xfs_iomap_ops);
355 		if (error)
356 			return error;
357 	} else
358 		spin_unlock(&ip->i_flags_lock);
359 
360 	/*
361 	 * Updating the timestamps will grab the ilock again from
362 	 * xfs_fs_dirty_inode, so we have to call it after dropping the
363 	 * lock above.  Eventually we should look into a way to avoid
364 	 * the pointless lock roundtrip.
365 	 */
366 	return file_modified(file);
367 }
368 
369 static int
370 xfs_dio_write_end_io(
371 	struct kiocb		*iocb,
372 	ssize_t			size,
373 	int			error,
374 	unsigned		flags)
375 {
376 	struct inode		*inode = file_inode(iocb->ki_filp);
377 	struct xfs_inode	*ip = XFS_I(inode);
378 	loff_t			offset = iocb->ki_pos;
379 	unsigned int		nofs_flag;
380 
381 	trace_xfs_end_io_direct_write(ip, offset, size);
382 
383 	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
384 		return -EIO;
385 
386 	if (error)
387 		return error;
388 	if (!size)
389 		return 0;
390 
391 	/*
392 	 * Capture amount written on completion as we can't reliably account
393 	 * for it on submission.
394 	 */
395 	XFS_STATS_ADD(ip->i_mount, xs_write_bytes, size);
396 
397 	/*
398 	 * We can allocate memory here while doing writeback on behalf of
399 	 * memory reclaim.  To avoid memory allocation deadlocks set the
400 	 * task-wide nofs context for the following operations.
401 	 */
402 	nofs_flag = memalloc_nofs_save();
403 
404 	if (flags & IOMAP_DIO_COW) {
405 		error = xfs_reflink_end_cow(ip, offset, size);
406 		if (error)
407 			goto out;
408 	}
409 
410 	/*
411 	 * Unwritten conversion updates the in-core isize after extent
412 	 * conversion but before updating the on-disk size. Updating isize any
413 	 * earlier allows a racing dio read to find unwritten extents before
414 	 * they are converted.
415 	 */
416 	if (flags & IOMAP_DIO_UNWRITTEN) {
417 		error = xfs_iomap_write_unwritten(ip, offset, size, true);
418 		goto out;
419 	}
420 
421 	/*
422 	 * We need to update the in-core inode size here so that we don't end up
423 	 * with the on-disk inode size being outside the in-core inode size. We
424 	 * have no other method of updating EOF for AIO, so always do it here
425 	 * if necessary.
426 	 *
427 	 * We need to lock the test/set EOF update as we can be racing with
428 	 * other IO completions here to update the EOF. Failing to serialise
429 	 * here can result in EOF moving backwards and Bad Things Happen when
430 	 * that occurs.
431 	 */
432 	spin_lock(&ip->i_flags_lock);
433 	if (offset + size > i_size_read(inode)) {
434 		i_size_write(inode, offset + size);
435 		spin_unlock(&ip->i_flags_lock);
436 		error = xfs_setfilesize(ip, offset, size);
437 	} else {
438 		spin_unlock(&ip->i_flags_lock);
439 	}
440 
441 out:
442 	memalloc_nofs_restore(nofs_flag);
443 	return error;
444 }
445 
446 static const struct iomap_dio_ops xfs_dio_write_ops = {
447 	.end_io		= xfs_dio_write_end_io,
448 };
449 
450 /*
451  * xfs_file_dio_aio_write - handle direct IO writes
452  *
453  * Lock the inode appropriately to prepare for and issue a direct IO write.
454  * By separating it from the buffered write path we remove all the tricky to
455  * follow locking changes and looping.
456  *
457  * If there are cached pages or we're extending the file, we need IOLOCK_EXCL
458  * until we're sure the bytes at the new EOF have been zeroed and/or the cached
459  * pages are flushed out.
460  *
461  * In most cases the direct IO writes will be done holding IOLOCK_SHARED
462  * allowing them to be done in parallel with reads and other direct IO writes.
463  * However, if the IO is not aligned to filesystem blocks, the direct IO layer
464  * needs to do sub-block zeroing and that requires serialisation against other
465  * direct IOs to the same block. In this case we need to serialise the
466  * submission of the unaligned IOs so that we don't get racing block zeroing in
467  * the dio layer.  To avoid the problem with aio, we also need to wait for
468  * outstanding IOs to complete so that unwritten extent conversion is completed
469  * before we try to map the overlapping block. This is currently implemented by
470  * hitting it with a big hammer (i.e. inode_dio_wait()).
471  *
472  * Returns with locks held indicated by @iolock and errors indicated by
473  * negative return values.
474  */
475 STATIC ssize_t
476 xfs_file_dio_aio_write(
477 	struct kiocb		*iocb,
478 	struct iov_iter		*from)
479 {
480 	struct file		*file = iocb->ki_filp;
481 	struct address_space	*mapping = file->f_mapping;
482 	struct inode		*inode = mapping->host;
483 	struct xfs_inode	*ip = XFS_I(inode);
484 	struct xfs_mount	*mp = ip->i_mount;
485 	ssize_t			ret = 0;
486 	int			unaligned_io = 0;
487 	int			iolock;
488 	size_t			count = iov_iter_count(from);
489 	struct xfs_buftarg      *target = XFS_IS_REALTIME_INODE(ip) ?
490 					mp->m_rtdev_targp : mp->m_ddev_targp;
491 
492 	/* DIO must be aligned to device logical sector size */
493 	if ((iocb->ki_pos | count) & target->bt_logical_sectormask)
494 		return -EINVAL;
495 
496 	/*
497 	 * Don't take the exclusive iolock here unless the I/O is unaligned to
498 	 * the file system block size.  We don't need to consider the EOF
499 	 * extension case here because xfs_file_aio_write_checks() will relock
500 	 * the inode as necessary for EOF zeroing cases and fill out the new
501 	 * inode size as appropriate.
502 	 */
503 	if ((iocb->ki_pos & mp->m_blockmask) ||
504 	    ((iocb->ki_pos + count) & mp->m_blockmask)) {
505 		unaligned_io = 1;
506 
507 		/*
508 		 * We can't properly handle unaligned direct I/O to reflink
509 		 * files yet, as we can't unshare a partial block.
510 		 */
511 		if (xfs_is_cow_inode(ip)) {
512 			trace_xfs_reflink_bounce_dio_write(ip, iocb->ki_pos, count);
513 			return -EREMCHG;
514 		}
515 		iolock = XFS_IOLOCK_EXCL;
516 	} else {
517 		iolock = XFS_IOLOCK_SHARED;
518 	}
519 
520 	if (iocb->ki_flags & IOCB_NOWAIT) {
521 		/* unaligned dio always waits, bail */
522 		if (unaligned_io)
523 			return -EAGAIN;
524 		if (!xfs_ilock_nowait(ip, iolock))
525 			return -EAGAIN;
526 	} else {
527 		xfs_ilock(ip, iolock);
528 	}
529 
530 	ret = xfs_file_aio_write_checks(iocb, from, &iolock);
531 	if (ret)
532 		goto out;
533 	count = iov_iter_count(from);
534 
535 	/*
536 	 * If we are doing unaligned IO, we can't allow any other overlapping IO
537 	 * in-flight at the same time or we risk data corruption. Wait for all
538 	 * other IO to drain before we submit. If the IO is aligned, demote the
539 	 * iolock if we had to take the exclusive lock in
540 	 * xfs_file_aio_write_checks() for other reasons.
541 	 */
542 	if (unaligned_io) {
543 		inode_dio_wait(inode);
544 	} else if (iolock == XFS_IOLOCK_EXCL) {
545 		xfs_ilock_demote(ip, XFS_IOLOCK_EXCL);
546 		iolock = XFS_IOLOCK_SHARED;
547 	}
548 
549 	trace_xfs_file_direct_write(ip, count, iocb->ki_pos);
550 	/*
551 	 * If unaligned, this is the only IO in-flight. Wait on it before we
552 	 * release the iolock to prevent subsequent overlapping IO.
553 	 */
554 	ret = iomap_dio_rw(iocb, from, &xfs_iomap_ops, &xfs_dio_write_ops,
555 			   is_sync_kiocb(iocb) || unaligned_io);
556 out:
557 	xfs_iunlock(ip, iolock);
558 
559 	/*
560 	 * No fallback to buffered IO on errors for XFS, direct IO will either
561 	 * complete fully or fail.
562 	 */
563 	ASSERT(ret < 0 || ret == count);
564 	return ret;
565 }
566 
567 static noinline ssize_t
568 xfs_file_dax_write(
569 	struct kiocb		*iocb,
570 	struct iov_iter		*from)
571 {
572 	struct inode		*inode = iocb->ki_filp->f_mapping->host;
573 	struct xfs_inode	*ip = XFS_I(inode);
574 	int			iolock = XFS_IOLOCK_EXCL;
575 	ssize_t			ret, error = 0;
576 	size_t			count;
577 	loff_t			pos;
578 
579 	if (iocb->ki_flags & IOCB_NOWAIT) {
580 		if (!xfs_ilock_nowait(ip, iolock))
581 			return -EAGAIN;
582 	} else {
583 		xfs_ilock(ip, iolock);
584 	}
585 
586 	ret = xfs_file_aio_write_checks(iocb, from, &iolock);
587 	if (ret)
588 		goto out;
589 
590 	pos = iocb->ki_pos;
591 	count = iov_iter_count(from);
592 
593 	trace_xfs_file_dax_write(ip, count, pos);
594 	ret = dax_iomap_rw(iocb, from, &xfs_iomap_ops);
595 	if (ret > 0 && iocb->ki_pos > i_size_read(inode)) {
596 		i_size_write(inode, iocb->ki_pos);
597 		error = xfs_setfilesize(ip, pos, ret);
598 	}
599 out:
600 	xfs_iunlock(ip, iolock);
601 	if (error)
602 		return error;
603 
604 	if (ret > 0) {
605 		XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret);
606 
607 		/* Handle various SYNC-type writes */
608 		ret = generic_write_sync(iocb, ret);
609 	}
610 	return ret;
611 }
612 
613 STATIC ssize_t
614 xfs_file_buffered_aio_write(
615 	struct kiocb		*iocb,
616 	struct iov_iter		*from)
617 {
618 	struct file		*file = iocb->ki_filp;
619 	struct address_space	*mapping = file->f_mapping;
620 	struct inode		*inode = mapping->host;
621 	struct xfs_inode	*ip = XFS_I(inode);
622 	ssize_t			ret;
623 	int			enospc = 0;
624 	int			iolock;
625 
626 	if (iocb->ki_flags & IOCB_NOWAIT)
627 		return -EOPNOTSUPP;
628 
629 write_retry:
630 	iolock = XFS_IOLOCK_EXCL;
631 	xfs_ilock(ip, iolock);
632 
633 	ret = xfs_file_aio_write_checks(iocb, from, &iolock);
634 	if (ret)
635 		goto out;
636 
637 	/* We can write back this queue in page reclaim */
638 	current->backing_dev_info = inode_to_bdi(inode);
639 
640 	trace_xfs_file_buffered_write(ip, iov_iter_count(from), iocb->ki_pos);
641 	ret = iomap_file_buffered_write(iocb, from, &xfs_iomap_ops);
642 	if (likely(ret >= 0))
643 		iocb->ki_pos += ret;
644 
645 	/*
646 	 * If we hit a space limit, try to free up some lingering preallocated
647 	 * space before returning an error. In the case of ENOSPC, first try to
648 	 * write back all dirty inodes to free up some of the excess reserved
649 	 * metadata space. This reduces the chances that the eofblocks scan
650 	 * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this
651 	 * also behaves as a filter to prevent too many eofblocks scans from
652 	 * running at the same time.
653 	 */
654 	if (ret == -EDQUOT && !enospc) {
655 		xfs_iunlock(ip, iolock);
656 		enospc = xfs_inode_free_quota_eofblocks(ip);
657 		if (enospc)
658 			goto write_retry;
659 		enospc = xfs_inode_free_quota_cowblocks(ip);
660 		if (enospc)
661 			goto write_retry;
662 		iolock = 0;
663 	} else if (ret == -ENOSPC && !enospc) {
664 		struct xfs_eofblocks eofb = {0};
665 
666 		enospc = 1;
667 		xfs_flush_inodes(ip->i_mount);
668 
669 		xfs_iunlock(ip, iolock);
670 		eofb.eof_flags = XFS_EOF_FLAGS_SYNC;
671 		xfs_icache_free_eofblocks(ip->i_mount, &eofb);
672 		xfs_icache_free_cowblocks(ip->i_mount, &eofb);
673 		goto write_retry;
674 	}
675 
676 	current->backing_dev_info = NULL;
677 out:
678 	if (iolock)
679 		xfs_iunlock(ip, iolock);
680 
681 	if (ret > 0) {
682 		XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret);
683 		/* Handle various SYNC-type writes */
684 		ret = generic_write_sync(iocb, ret);
685 	}
686 	return ret;
687 }
688 
689 STATIC ssize_t
690 xfs_file_write_iter(
691 	struct kiocb		*iocb,
692 	struct iov_iter		*from)
693 {
694 	struct file		*file = iocb->ki_filp;
695 	struct address_space	*mapping = file->f_mapping;
696 	struct inode		*inode = mapping->host;
697 	struct xfs_inode	*ip = XFS_I(inode);
698 	ssize_t			ret;
699 	size_t			ocount = iov_iter_count(from);
700 
701 	XFS_STATS_INC(ip->i_mount, xs_write_calls);
702 
703 	if (ocount == 0)
704 		return 0;
705 
706 	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
707 		return -EIO;
708 
709 	if (IS_DAX(inode))
710 		return xfs_file_dax_write(iocb, from);
711 
712 	if (iocb->ki_flags & IOCB_DIRECT) {
713 		/*
714 		 * Allow a directio write to fall back to a buffered
715 		 * write *only* in the case that we're doing a reflink
716 		 * CoW.  In all other directio scenarios we do not
717 		 * allow an operation to fall back to buffered mode.
718 		 */
719 		ret = xfs_file_dio_aio_write(iocb, from);
720 		if (ret != -EREMCHG)
721 			return ret;
722 	}
723 
724 	return xfs_file_buffered_aio_write(iocb, from);
725 }
726 
727 static void
728 xfs_wait_dax_page(
729 	struct inode		*inode)
730 {
731 	struct xfs_inode        *ip = XFS_I(inode);
732 
733 	xfs_iunlock(ip, XFS_MMAPLOCK_EXCL);
734 	schedule();
735 	xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
736 }
737 
738 static int
739 xfs_break_dax_layouts(
740 	struct inode		*inode,
741 	bool			*retry)
742 {
743 	struct page		*page;
744 
745 	ASSERT(xfs_isilocked(XFS_I(inode), XFS_MMAPLOCK_EXCL));
746 
747 	page = dax_layout_busy_page(inode->i_mapping);
748 	if (!page)
749 		return 0;
750 
751 	*retry = true;
752 	return ___wait_var_event(&page->_refcount,
753 			atomic_read(&page->_refcount) == 1, TASK_INTERRUPTIBLE,
754 			0, 0, xfs_wait_dax_page(inode));
755 }
756 
757 int
758 xfs_break_layouts(
759 	struct inode		*inode,
760 	uint			*iolock,
761 	enum layout_break_reason reason)
762 {
763 	bool			retry;
764 	int			error;
765 
766 	ASSERT(xfs_isilocked(XFS_I(inode), XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL));
767 
768 	do {
769 		retry = false;
770 		switch (reason) {
771 		case BREAK_UNMAP:
772 			error = xfs_break_dax_layouts(inode, &retry);
773 			if (error || retry)
774 				break;
775 			/* fall through */
776 		case BREAK_WRITE:
777 			error = xfs_break_leased_layouts(inode, iolock, &retry);
778 			break;
779 		default:
780 			WARN_ON_ONCE(1);
781 			error = -EINVAL;
782 		}
783 	} while (error == 0 && retry);
784 
785 	return error;
786 }
787 
788 #define	XFS_FALLOC_FL_SUPPORTED						\
789 		(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |		\
790 		 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |	\
791 		 FALLOC_FL_INSERT_RANGE | FALLOC_FL_UNSHARE_RANGE)
792 
793 STATIC long
794 xfs_file_fallocate(
795 	struct file		*file,
796 	int			mode,
797 	loff_t			offset,
798 	loff_t			len)
799 {
800 	struct inode		*inode = file_inode(file);
801 	struct xfs_inode	*ip = XFS_I(inode);
802 	long			error;
803 	enum xfs_prealloc_flags	flags = 0;
804 	uint			iolock = XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL;
805 	loff_t			new_size = 0;
806 	bool			do_file_insert = false;
807 
808 	if (!S_ISREG(inode->i_mode))
809 		return -EINVAL;
810 	if (mode & ~XFS_FALLOC_FL_SUPPORTED)
811 		return -EOPNOTSUPP;
812 
813 	xfs_ilock(ip, iolock);
814 	error = xfs_break_layouts(inode, &iolock, BREAK_UNMAP);
815 	if (error)
816 		goto out_unlock;
817 
818 	if (mode & FALLOC_FL_PUNCH_HOLE) {
819 		error = xfs_free_file_space(ip, offset, len);
820 		if (error)
821 			goto out_unlock;
822 	} else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
823 		unsigned int blksize_mask = i_blocksize(inode) - 1;
824 
825 		if (offset & blksize_mask || len & blksize_mask) {
826 			error = -EINVAL;
827 			goto out_unlock;
828 		}
829 
830 		/*
831 		 * There is no need to overlap collapse range with EOF,
832 		 * in which case it is effectively a truncate operation
833 		 */
834 		if (offset + len >= i_size_read(inode)) {
835 			error = -EINVAL;
836 			goto out_unlock;
837 		}
838 
839 		new_size = i_size_read(inode) - len;
840 
841 		error = xfs_collapse_file_space(ip, offset, len);
842 		if (error)
843 			goto out_unlock;
844 	} else if (mode & FALLOC_FL_INSERT_RANGE) {
845 		unsigned int	blksize_mask = i_blocksize(inode) - 1;
846 		loff_t		isize = i_size_read(inode);
847 
848 		if (offset & blksize_mask || len & blksize_mask) {
849 			error = -EINVAL;
850 			goto out_unlock;
851 		}
852 
853 		/*
854 		 * New inode size must not exceed ->s_maxbytes, accounting for
855 		 * possible signed overflow.
856 		 */
857 		if (inode->i_sb->s_maxbytes - isize < len) {
858 			error = -EFBIG;
859 			goto out_unlock;
860 		}
861 		new_size = isize + len;
862 
863 		/* Offset should be less than i_size */
864 		if (offset >= isize) {
865 			error = -EINVAL;
866 			goto out_unlock;
867 		}
868 		do_file_insert = true;
869 	} else {
870 		flags |= XFS_PREALLOC_SET;
871 
872 		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
873 		    offset + len > i_size_read(inode)) {
874 			new_size = offset + len;
875 			error = inode_newsize_ok(inode, new_size);
876 			if (error)
877 				goto out_unlock;
878 		}
879 
880 		if (mode & FALLOC_FL_ZERO_RANGE) {
881 			error = xfs_zero_file_space(ip, offset, len);
882 		} else if (mode & FALLOC_FL_UNSHARE_RANGE) {
883 			error = xfs_reflink_unshare(ip, offset, len);
884 			if (error)
885 				goto out_unlock;
886 
887 			if (!xfs_is_always_cow_inode(ip)) {
888 				error = xfs_alloc_file_space(ip, offset, len,
889 						XFS_BMAPI_PREALLOC);
890 			}
891 		} else {
892 			/*
893 			 * If always_cow mode we can't use preallocations and
894 			 * thus should not create them.
895 			 */
896 			if (xfs_is_always_cow_inode(ip)) {
897 				error = -EOPNOTSUPP;
898 				goto out_unlock;
899 			}
900 
901 			error = xfs_alloc_file_space(ip, offset, len,
902 						     XFS_BMAPI_PREALLOC);
903 		}
904 		if (error)
905 			goto out_unlock;
906 	}
907 
908 	if (file->f_flags & O_DSYNC)
909 		flags |= XFS_PREALLOC_SYNC;
910 
911 	error = xfs_update_prealloc_flags(ip, flags);
912 	if (error)
913 		goto out_unlock;
914 
915 	/* Change file size if needed */
916 	if (new_size) {
917 		struct iattr iattr;
918 
919 		iattr.ia_valid = ATTR_SIZE;
920 		iattr.ia_size = new_size;
921 		error = xfs_vn_setattr_size(file_dentry(file), &iattr);
922 		if (error)
923 			goto out_unlock;
924 	}
925 
926 	/*
927 	 * Perform hole insertion now that the file size has been
928 	 * updated so that if we crash during the operation we don't
929 	 * leave shifted extents past EOF and hence losing access to
930 	 * the data that is contained within them.
931 	 */
932 	if (do_file_insert)
933 		error = xfs_insert_file_space(ip, offset, len);
934 
935 out_unlock:
936 	xfs_iunlock(ip, iolock);
937 	return error;
938 }
939 
940 STATIC int
941 xfs_file_fadvise(
942 	struct file	*file,
943 	loff_t		start,
944 	loff_t		end,
945 	int		advice)
946 {
947 	struct xfs_inode *ip = XFS_I(file_inode(file));
948 	int ret;
949 	int lockflags = 0;
950 
951 	/*
952 	 * Operations creating pages in page cache need protection from hole
953 	 * punching and similar ops
954 	 */
955 	if (advice == POSIX_FADV_WILLNEED) {
956 		lockflags = XFS_IOLOCK_SHARED;
957 		xfs_ilock(ip, lockflags);
958 	}
959 	ret = generic_fadvise(file, start, end, advice);
960 	if (lockflags)
961 		xfs_iunlock(ip, lockflags);
962 	return ret;
963 }
964 
965 STATIC loff_t
966 xfs_file_remap_range(
967 	struct file		*file_in,
968 	loff_t			pos_in,
969 	struct file		*file_out,
970 	loff_t			pos_out,
971 	loff_t			len,
972 	unsigned int		remap_flags)
973 {
974 	struct inode		*inode_in = file_inode(file_in);
975 	struct xfs_inode	*src = XFS_I(inode_in);
976 	struct inode		*inode_out = file_inode(file_out);
977 	struct xfs_inode	*dest = XFS_I(inode_out);
978 	struct xfs_mount	*mp = src->i_mount;
979 	loff_t			remapped = 0;
980 	xfs_extlen_t		cowextsize;
981 	int			ret;
982 
983 	if (remap_flags & ~(REMAP_FILE_DEDUP | REMAP_FILE_ADVISORY))
984 		return -EINVAL;
985 
986 	if (!xfs_sb_version_hasreflink(&mp->m_sb))
987 		return -EOPNOTSUPP;
988 
989 	if (XFS_FORCED_SHUTDOWN(mp))
990 		return -EIO;
991 
992 	/* Prepare and then clone file data. */
993 	ret = xfs_reflink_remap_prep(file_in, pos_in, file_out, pos_out,
994 			&len, remap_flags);
995 	if (ret < 0 || len == 0)
996 		return ret;
997 
998 	trace_xfs_reflink_remap_range(src, pos_in, len, dest, pos_out);
999 
1000 	ret = xfs_reflink_remap_blocks(src, pos_in, dest, pos_out, len,
1001 			&remapped);
1002 	if (ret)
1003 		goto out_unlock;
1004 
1005 	/*
1006 	 * Carry the cowextsize hint from src to dest if we're sharing the
1007 	 * entire source file to the entire destination file, the source file
1008 	 * has a cowextsize hint, and the destination file does not.
1009 	 */
1010 	cowextsize = 0;
1011 	if (pos_in == 0 && len == i_size_read(inode_in) &&
1012 	    (src->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE) &&
1013 	    pos_out == 0 && len >= i_size_read(inode_out) &&
1014 	    !(dest->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE))
1015 		cowextsize = src->i_d.di_cowextsize;
1016 
1017 	ret = xfs_reflink_update_dest(dest, pos_out + len, cowextsize,
1018 			remap_flags);
1019 
1020 out_unlock:
1021 	xfs_reflink_remap_unlock(file_in, file_out);
1022 	if (ret)
1023 		trace_xfs_reflink_remap_range_error(dest, ret, _RET_IP_);
1024 	return remapped > 0 ? remapped : ret;
1025 }
1026 
1027 STATIC int
1028 xfs_file_open(
1029 	struct inode	*inode,
1030 	struct file	*file)
1031 {
1032 	if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS)
1033 		return -EFBIG;
1034 	if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb)))
1035 		return -EIO;
1036 	file->f_mode |= FMODE_NOWAIT;
1037 	return 0;
1038 }
1039 
1040 STATIC int
1041 xfs_dir_open(
1042 	struct inode	*inode,
1043 	struct file	*file)
1044 {
1045 	struct xfs_inode *ip = XFS_I(inode);
1046 	int		mode;
1047 	int		error;
1048 
1049 	error = xfs_file_open(inode, file);
1050 	if (error)
1051 		return error;
1052 
1053 	/*
1054 	 * If there are any blocks, read-ahead block 0 as we're almost
1055 	 * certain to have the next operation be a read there.
1056 	 */
1057 	mode = xfs_ilock_data_map_shared(ip);
1058 	if (ip->i_d.di_nextents > 0)
1059 		error = xfs_dir3_data_readahead(ip, 0, -1);
1060 	xfs_iunlock(ip, mode);
1061 	return error;
1062 }
1063 
1064 STATIC int
1065 xfs_file_release(
1066 	struct inode	*inode,
1067 	struct file	*filp)
1068 {
1069 	return xfs_release(XFS_I(inode));
1070 }
1071 
1072 STATIC int
1073 xfs_file_readdir(
1074 	struct file	*file,
1075 	struct dir_context *ctx)
1076 {
1077 	struct inode	*inode = file_inode(file);
1078 	xfs_inode_t	*ip = XFS_I(inode);
1079 	size_t		bufsize;
1080 
1081 	/*
1082 	 * The Linux API doesn't pass down the total size of the buffer
1083 	 * we read into down to the filesystem.  With the filldir concept
1084 	 * it's not needed for correct information, but the XFS dir2 leaf
1085 	 * code wants an estimate of the buffer size to calculate it's
1086 	 * readahead window and size the buffers used for mapping to
1087 	 * physical blocks.
1088 	 *
1089 	 * Try to give it an estimate that's good enough, maybe at some
1090 	 * point we can change the ->readdir prototype to include the
1091 	 * buffer size.  For now we use the current glibc buffer size.
1092 	 */
1093 	bufsize = (size_t)min_t(loff_t, XFS_READDIR_BUFSIZE, ip->i_d.di_size);
1094 
1095 	return xfs_readdir(NULL, ip, ctx, bufsize);
1096 }
1097 
1098 STATIC loff_t
1099 xfs_file_llseek(
1100 	struct file	*file,
1101 	loff_t		offset,
1102 	int		whence)
1103 {
1104 	struct inode		*inode = file->f_mapping->host;
1105 
1106 	if (XFS_FORCED_SHUTDOWN(XFS_I(inode)->i_mount))
1107 		return -EIO;
1108 
1109 	switch (whence) {
1110 	default:
1111 		return generic_file_llseek(file, offset, whence);
1112 	case SEEK_HOLE:
1113 		offset = iomap_seek_hole(inode, offset, &xfs_seek_iomap_ops);
1114 		break;
1115 	case SEEK_DATA:
1116 		offset = iomap_seek_data(inode, offset, &xfs_seek_iomap_ops);
1117 		break;
1118 	}
1119 
1120 	if (offset < 0)
1121 		return offset;
1122 	return vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
1123 }
1124 
1125 /*
1126  * Locking for serialisation of IO during page faults. This results in a lock
1127  * ordering of:
1128  *
1129  * mmap_sem (MM)
1130  *   sb_start_pagefault(vfs, freeze)
1131  *     i_mmaplock (XFS - truncate serialisation)
1132  *       page_lock (MM)
1133  *         i_lock (XFS - extent map serialisation)
1134  */
1135 static vm_fault_t
1136 __xfs_filemap_fault(
1137 	struct vm_fault		*vmf,
1138 	enum page_entry_size	pe_size,
1139 	bool			write_fault)
1140 {
1141 	struct inode		*inode = file_inode(vmf->vma->vm_file);
1142 	struct xfs_inode	*ip = XFS_I(inode);
1143 	vm_fault_t		ret;
1144 
1145 	trace_xfs_filemap_fault(ip, pe_size, write_fault);
1146 
1147 	if (write_fault) {
1148 		sb_start_pagefault(inode->i_sb);
1149 		file_update_time(vmf->vma->vm_file);
1150 	}
1151 
1152 	xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1153 	if (IS_DAX(inode)) {
1154 		pfn_t pfn;
1155 
1156 		ret = dax_iomap_fault(vmf, pe_size, &pfn, NULL, &xfs_iomap_ops);
1157 		if (ret & VM_FAULT_NEEDDSYNC)
1158 			ret = dax_finish_sync_fault(vmf, pe_size, pfn);
1159 	} else {
1160 		if (write_fault)
1161 			ret = iomap_page_mkwrite(vmf, &xfs_iomap_ops);
1162 		else
1163 			ret = filemap_fault(vmf);
1164 	}
1165 	xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1166 
1167 	if (write_fault)
1168 		sb_end_pagefault(inode->i_sb);
1169 	return ret;
1170 }
1171 
1172 static vm_fault_t
1173 xfs_filemap_fault(
1174 	struct vm_fault		*vmf)
1175 {
1176 	/* DAX can shortcut the normal fault path on write faults! */
1177 	return __xfs_filemap_fault(vmf, PE_SIZE_PTE,
1178 			IS_DAX(file_inode(vmf->vma->vm_file)) &&
1179 			(vmf->flags & FAULT_FLAG_WRITE));
1180 }
1181 
1182 static vm_fault_t
1183 xfs_filemap_huge_fault(
1184 	struct vm_fault		*vmf,
1185 	enum page_entry_size	pe_size)
1186 {
1187 	if (!IS_DAX(file_inode(vmf->vma->vm_file)))
1188 		return VM_FAULT_FALLBACK;
1189 
1190 	/* DAX can shortcut the normal fault path on write faults! */
1191 	return __xfs_filemap_fault(vmf, pe_size,
1192 			(vmf->flags & FAULT_FLAG_WRITE));
1193 }
1194 
1195 static vm_fault_t
1196 xfs_filemap_page_mkwrite(
1197 	struct vm_fault		*vmf)
1198 {
1199 	return __xfs_filemap_fault(vmf, PE_SIZE_PTE, true);
1200 }
1201 
1202 /*
1203  * pfn_mkwrite was originally intended to ensure we capture time stamp updates
1204  * on write faults. In reality, it needs to serialise against truncate and
1205  * prepare memory for writing so handle is as standard write fault.
1206  */
1207 static vm_fault_t
1208 xfs_filemap_pfn_mkwrite(
1209 	struct vm_fault		*vmf)
1210 {
1211 
1212 	return __xfs_filemap_fault(vmf, PE_SIZE_PTE, true);
1213 }
1214 
1215 static const struct vm_operations_struct xfs_file_vm_ops = {
1216 	.fault		= xfs_filemap_fault,
1217 	.huge_fault	= xfs_filemap_huge_fault,
1218 	.map_pages	= filemap_map_pages,
1219 	.page_mkwrite	= xfs_filemap_page_mkwrite,
1220 	.pfn_mkwrite	= xfs_filemap_pfn_mkwrite,
1221 };
1222 
1223 STATIC int
1224 xfs_file_mmap(
1225 	struct file	*filp,
1226 	struct vm_area_struct *vma)
1227 {
1228 	struct dax_device 	*dax_dev;
1229 
1230 	dax_dev = xfs_find_daxdev_for_inode(file_inode(filp));
1231 	/*
1232 	 * We don't support synchronous mappings for non-DAX files and
1233 	 * for DAX files if underneath dax_device is not synchronous.
1234 	 */
1235 	if (!daxdev_mapping_supported(vma, dax_dev))
1236 		return -EOPNOTSUPP;
1237 
1238 	file_accessed(filp);
1239 	vma->vm_ops = &xfs_file_vm_ops;
1240 	if (IS_DAX(file_inode(filp)))
1241 		vma->vm_flags |= VM_HUGEPAGE;
1242 	return 0;
1243 }
1244 
1245 const struct file_operations xfs_file_operations = {
1246 	.llseek		= xfs_file_llseek,
1247 	.read_iter	= xfs_file_read_iter,
1248 	.write_iter	= xfs_file_write_iter,
1249 	.splice_read	= generic_file_splice_read,
1250 	.splice_write	= iter_file_splice_write,
1251 	.iopoll		= iomap_dio_iopoll,
1252 	.unlocked_ioctl	= xfs_file_ioctl,
1253 #ifdef CONFIG_COMPAT
1254 	.compat_ioctl	= xfs_file_compat_ioctl,
1255 #endif
1256 	.mmap		= xfs_file_mmap,
1257 	.mmap_supported_flags = MAP_SYNC,
1258 	.open		= xfs_file_open,
1259 	.release	= xfs_file_release,
1260 	.fsync		= xfs_file_fsync,
1261 	.get_unmapped_area = thp_get_unmapped_area,
1262 	.fallocate	= xfs_file_fallocate,
1263 	.fadvise	= xfs_file_fadvise,
1264 	.remap_file_range = xfs_file_remap_range,
1265 };
1266 
1267 const struct file_operations xfs_dir_file_operations = {
1268 	.open		= xfs_dir_open,
1269 	.read		= generic_read_dir,
1270 	.iterate_shared	= xfs_file_readdir,
1271 	.llseek		= generic_file_llseek,
1272 	.unlocked_ioctl	= xfs_file_ioctl,
1273 #ifdef CONFIG_COMPAT
1274 	.compat_ioctl	= xfs_file_compat_ioctl,
1275 #endif
1276 	.fsync		= xfs_dir_fsync,
1277 };
1278