1 /* 2 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_fs.h" 20 #include "xfs_shared.h" 21 #include "xfs_format.h" 22 #include "xfs_log_format.h" 23 #include "xfs_trans_resv.h" 24 #include "xfs_mount.h" 25 #include "xfs_da_format.h" 26 #include "xfs_da_btree.h" 27 #include "xfs_inode.h" 28 #include "xfs_trans.h" 29 #include "xfs_inode_item.h" 30 #include "xfs_bmap.h" 31 #include "xfs_bmap_util.h" 32 #include "xfs_error.h" 33 #include "xfs_dir2.h" 34 #include "xfs_dir2_priv.h" 35 #include "xfs_ioctl.h" 36 #include "xfs_trace.h" 37 #include "xfs_log.h" 38 #include "xfs_icache.h" 39 #include "xfs_pnfs.h" 40 41 #include <linux/dcache.h> 42 #include <linux/falloc.h> 43 #include <linux/pagevec.h> 44 #include <linux/backing-dev.h> 45 46 static const struct vm_operations_struct xfs_file_vm_ops; 47 48 /* 49 * Locking primitives for read and write IO paths to ensure we consistently use 50 * and order the inode->i_mutex, ip->i_lock and ip->i_iolock. 51 */ 52 static inline void 53 xfs_rw_ilock( 54 struct xfs_inode *ip, 55 int type) 56 { 57 if (type & XFS_IOLOCK_EXCL) 58 inode_lock(VFS_I(ip)); 59 xfs_ilock(ip, type); 60 } 61 62 static inline void 63 xfs_rw_iunlock( 64 struct xfs_inode *ip, 65 int type) 66 { 67 xfs_iunlock(ip, type); 68 if (type & XFS_IOLOCK_EXCL) 69 inode_unlock(VFS_I(ip)); 70 } 71 72 static inline void 73 xfs_rw_ilock_demote( 74 struct xfs_inode *ip, 75 int type) 76 { 77 xfs_ilock_demote(ip, type); 78 if (type & XFS_IOLOCK_EXCL) 79 inode_unlock(VFS_I(ip)); 80 } 81 82 /* 83 * xfs_iozero clears the specified range supplied via the page cache (except in 84 * the DAX case). Writes through the page cache will allocate blocks over holes, 85 * though the callers usually map the holes first and avoid them. If a block is 86 * not completely zeroed, then it will be read from disk before being partially 87 * zeroed. 88 * 89 * In the DAX case, we can just directly write to the underlying pages. This 90 * will not allocate blocks, but will avoid holes and unwritten extents and so 91 * not do unnecessary work. 92 */ 93 int 94 xfs_iozero( 95 struct xfs_inode *ip, /* inode */ 96 loff_t pos, /* offset in file */ 97 size_t count) /* size of data to zero */ 98 { 99 struct page *page; 100 struct address_space *mapping; 101 int status = 0; 102 103 104 mapping = VFS_I(ip)->i_mapping; 105 do { 106 unsigned offset, bytes; 107 void *fsdata; 108 109 offset = (pos & (PAGE_SIZE -1)); /* Within page */ 110 bytes = PAGE_SIZE - offset; 111 if (bytes > count) 112 bytes = count; 113 114 if (IS_DAX(VFS_I(ip))) { 115 status = dax_zero_page_range(VFS_I(ip), pos, bytes, 116 xfs_get_blocks_direct); 117 if (status) 118 break; 119 } else { 120 status = pagecache_write_begin(NULL, mapping, pos, bytes, 121 AOP_FLAG_UNINTERRUPTIBLE, 122 &page, &fsdata); 123 if (status) 124 break; 125 126 zero_user(page, offset, bytes); 127 128 status = pagecache_write_end(NULL, mapping, pos, bytes, 129 bytes, page, fsdata); 130 WARN_ON(status <= 0); /* can't return less than zero! */ 131 status = 0; 132 } 133 pos += bytes; 134 count -= bytes; 135 } while (count); 136 137 return status; 138 } 139 140 int 141 xfs_update_prealloc_flags( 142 struct xfs_inode *ip, 143 enum xfs_prealloc_flags flags) 144 { 145 struct xfs_trans *tp; 146 int error; 147 148 tp = xfs_trans_alloc(ip->i_mount, XFS_TRANS_WRITEID); 149 error = xfs_trans_reserve(tp, &M_RES(ip->i_mount)->tr_writeid, 0, 0); 150 if (error) { 151 xfs_trans_cancel(tp); 152 return error; 153 } 154 155 xfs_ilock(ip, XFS_ILOCK_EXCL); 156 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 157 158 if (!(flags & XFS_PREALLOC_INVISIBLE)) { 159 VFS_I(ip)->i_mode &= ~S_ISUID; 160 if (VFS_I(ip)->i_mode & S_IXGRP) 161 VFS_I(ip)->i_mode &= ~S_ISGID; 162 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 163 } 164 165 if (flags & XFS_PREALLOC_SET) 166 ip->i_d.di_flags |= XFS_DIFLAG_PREALLOC; 167 if (flags & XFS_PREALLOC_CLEAR) 168 ip->i_d.di_flags &= ~XFS_DIFLAG_PREALLOC; 169 170 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 171 if (flags & XFS_PREALLOC_SYNC) 172 xfs_trans_set_sync(tp); 173 return xfs_trans_commit(tp); 174 } 175 176 /* 177 * Fsync operations on directories are much simpler than on regular files, 178 * as there is no file data to flush, and thus also no need for explicit 179 * cache flush operations, and there are no non-transaction metadata updates 180 * on directories either. 181 */ 182 STATIC int 183 xfs_dir_fsync( 184 struct file *file, 185 loff_t start, 186 loff_t end, 187 int datasync) 188 { 189 struct xfs_inode *ip = XFS_I(file->f_mapping->host); 190 struct xfs_mount *mp = ip->i_mount; 191 xfs_lsn_t lsn = 0; 192 193 trace_xfs_dir_fsync(ip); 194 195 xfs_ilock(ip, XFS_ILOCK_SHARED); 196 if (xfs_ipincount(ip)) 197 lsn = ip->i_itemp->ili_last_lsn; 198 xfs_iunlock(ip, XFS_ILOCK_SHARED); 199 200 if (!lsn) 201 return 0; 202 return _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, NULL); 203 } 204 205 STATIC int 206 xfs_file_fsync( 207 struct file *file, 208 loff_t start, 209 loff_t end, 210 int datasync) 211 { 212 struct inode *inode = file->f_mapping->host; 213 struct xfs_inode *ip = XFS_I(inode); 214 struct xfs_mount *mp = ip->i_mount; 215 int error = 0; 216 int log_flushed = 0; 217 xfs_lsn_t lsn = 0; 218 219 trace_xfs_file_fsync(ip); 220 221 error = filemap_write_and_wait_range(inode->i_mapping, start, end); 222 if (error) 223 return error; 224 225 if (XFS_FORCED_SHUTDOWN(mp)) 226 return -EIO; 227 228 xfs_iflags_clear(ip, XFS_ITRUNCATED); 229 230 if (mp->m_flags & XFS_MOUNT_BARRIER) { 231 /* 232 * If we have an RT and/or log subvolume we need to make sure 233 * to flush the write cache the device used for file data 234 * first. This is to ensure newly written file data make 235 * it to disk before logging the new inode size in case of 236 * an extending write. 237 */ 238 if (XFS_IS_REALTIME_INODE(ip)) 239 xfs_blkdev_issue_flush(mp->m_rtdev_targp); 240 else if (mp->m_logdev_targp != mp->m_ddev_targp) 241 xfs_blkdev_issue_flush(mp->m_ddev_targp); 242 } 243 244 /* 245 * All metadata updates are logged, which means that we just have to 246 * flush the log up to the latest LSN that touched the inode. If we have 247 * concurrent fsync/fdatasync() calls, we need them to all block on the 248 * log force before we clear the ili_fsync_fields field. This ensures 249 * that we don't get a racing sync operation that does not wait for the 250 * metadata to hit the journal before returning. If we race with 251 * clearing the ili_fsync_fields, then all that will happen is the log 252 * force will do nothing as the lsn will already be on disk. We can't 253 * race with setting ili_fsync_fields because that is done under 254 * XFS_ILOCK_EXCL, and that can't happen because we hold the lock shared 255 * until after the ili_fsync_fields is cleared. 256 */ 257 xfs_ilock(ip, XFS_ILOCK_SHARED); 258 if (xfs_ipincount(ip)) { 259 if (!datasync || 260 (ip->i_itemp->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP)) 261 lsn = ip->i_itemp->ili_last_lsn; 262 } 263 264 if (lsn) { 265 error = _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed); 266 ip->i_itemp->ili_fsync_fields = 0; 267 } 268 xfs_iunlock(ip, XFS_ILOCK_SHARED); 269 270 /* 271 * If we only have a single device, and the log force about was 272 * a no-op we might have to flush the data device cache here. 273 * This can only happen for fdatasync/O_DSYNC if we were overwriting 274 * an already allocated file and thus do not have any metadata to 275 * commit. 276 */ 277 if ((mp->m_flags & XFS_MOUNT_BARRIER) && 278 mp->m_logdev_targp == mp->m_ddev_targp && 279 !XFS_IS_REALTIME_INODE(ip) && 280 !log_flushed) 281 xfs_blkdev_issue_flush(mp->m_ddev_targp); 282 283 return error; 284 } 285 286 STATIC ssize_t 287 xfs_file_read_iter( 288 struct kiocb *iocb, 289 struct iov_iter *to) 290 { 291 struct file *file = iocb->ki_filp; 292 struct inode *inode = file->f_mapping->host; 293 struct xfs_inode *ip = XFS_I(inode); 294 struct xfs_mount *mp = ip->i_mount; 295 size_t size = iov_iter_count(to); 296 ssize_t ret = 0; 297 int ioflags = 0; 298 xfs_fsize_t n; 299 loff_t pos = iocb->ki_pos; 300 301 XFS_STATS_INC(mp, xs_read_calls); 302 303 if (unlikely(iocb->ki_flags & IOCB_DIRECT)) 304 ioflags |= XFS_IO_ISDIRECT; 305 if (file->f_mode & FMODE_NOCMTIME) 306 ioflags |= XFS_IO_INVIS; 307 308 if ((ioflags & XFS_IO_ISDIRECT) && !IS_DAX(inode)) { 309 xfs_buftarg_t *target = 310 XFS_IS_REALTIME_INODE(ip) ? 311 mp->m_rtdev_targp : mp->m_ddev_targp; 312 /* DIO must be aligned to device logical sector size */ 313 if ((pos | size) & target->bt_logical_sectormask) { 314 if (pos == i_size_read(inode)) 315 return 0; 316 return -EINVAL; 317 } 318 } 319 320 n = mp->m_super->s_maxbytes - pos; 321 if (n <= 0 || size == 0) 322 return 0; 323 324 if (n < size) 325 size = n; 326 327 if (XFS_FORCED_SHUTDOWN(mp)) 328 return -EIO; 329 330 /* 331 * Locking is a bit tricky here. If we take an exclusive lock for direct 332 * IO, we effectively serialise all new concurrent read IO to this file 333 * and block it behind IO that is currently in progress because IO in 334 * progress holds the IO lock shared. We only need to hold the lock 335 * exclusive to blow away the page cache, so only take lock exclusively 336 * if the page cache needs invalidation. This allows the normal direct 337 * IO case of no page cache pages to proceeed concurrently without 338 * serialisation. 339 */ 340 xfs_rw_ilock(ip, XFS_IOLOCK_SHARED); 341 if ((ioflags & XFS_IO_ISDIRECT) && inode->i_mapping->nrpages) { 342 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED); 343 xfs_rw_ilock(ip, XFS_IOLOCK_EXCL); 344 345 /* 346 * The generic dio code only flushes the range of the particular 347 * I/O. Because we take an exclusive lock here, this whole 348 * sequence is considerably more expensive for us. This has a 349 * noticeable performance impact for any file with cached pages, 350 * even when outside of the range of the particular I/O. 351 * 352 * Hence, amortize the cost of the lock against a full file 353 * flush and reduce the chances of repeated iolock cycles going 354 * forward. 355 */ 356 if (inode->i_mapping->nrpages) { 357 ret = filemap_write_and_wait(VFS_I(ip)->i_mapping); 358 if (ret) { 359 xfs_rw_iunlock(ip, XFS_IOLOCK_EXCL); 360 return ret; 361 } 362 363 /* 364 * Invalidate whole pages. This can return an error if 365 * we fail to invalidate a page, but this should never 366 * happen on XFS. Warn if it does fail. 367 */ 368 ret = invalidate_inode_pages2(VFS_I(ip)->i_mapping); 369 WARN_ON_ONCE(ret); 370 ret = 0; 371 } 372 xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL); 373 } 374 375 trace_xfs_file_read(ip, size, pos, ioflags); 376 377 ret = generic_file_read_iter(iocb, to); 378 if (ret > 0) 379 XFS_STATS_ADD(mp, xs_read_bytes, ret); 380 381 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED); 382 return ret; 383 } 384 385 STATIC ssize_t 386 xfs_file_splice_read( 387 struct file *infilp, 388 loff_t *ppos, 389 struct pipe_inode_info *pipe, 390 size_t count, 391 unsigned int flags) 392 { 393 struct xfs_inode *ip = XFS_I(infilp->f_mapping->host); 394 int ioflags = 0; 395 ssize_t ret; 396 397 XFS_STATS_INC(ip->i_mount, xs_read_calls); 398 399 if (infilp->f_mode & FMODE_NOCMTIME) 400 ioflags |= XFS_IO_INVIS; 401 402 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) 403 return -EIO; 404 405 trace_xfs_file_splice_read(ip, count, *ppos, ioflags); 406 407 /* 408 * DAX inodes cannot ues the page cache for splice, so we have to push 409 * them through the VFS IO path. This means it goes through 410 * ->read_iter, which for us takes the XFS_IOLOCK_SHARED. Hence we 411 * cannot lock the splice operation at this level for DAX inodes. 412 */ 413 if (IS_DAX(VFS_I(ip))) { 414 ret = default_file_splice_read(infilp, ppos, pipe, count, 415 flags); 416 goto out; 417 } 418 419 xfs_rw_ilock(ip, XFS_IOLOCK_SHARED); 420 ret = generic_file_splice_read(infilp, ppos, pipe, count, flags); 421 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED); 422 out: 423 if (ret > 0) 424 XFS_STATS_ADD(ip->i_mount, xs_read_bytes, ret); 425 return ret; 426 } 427 428 /* 429 * This routine is called to handle zeroing any space in the last block of the 430 * file that is beyond the EOF. We do this since the size is being increased 431 * without writing anything to that block and we don't want to read the 432 * garbage on the disk. 433 */ 434 STATIC int /* error (positive) */ 435 xfs_zero_last_block( 436 struct xfs_inode *ip, 437 xfs_fsize_t offset, 438 xfs_fsize_t isize, 439 bool *did_zeroing) 440 { 441 struct xfs_mount *mp = ip->i_mount; 442 xfs_fileoff_t last_fsb = XFS_B_TO_FSBT(mp, isize); 443 int zero_offset = XFS_B_FSB_OFFSET(mp, isize); 444 int zero_len; 445 int nimaps = 1; 446 int error = 0; 447 struct xfs_bmbt_irec imap; 448 449 xfs_ilock(ip, XFS_ILOCK_EXCL); 450 error = xfs_bmapi_read(ip, last_fsb, 1, &imap, &nimaps, 0); 451 xfs_iunlock(ip, XFS_ILOCK_EXCL); 452 if (error) 453 return error; 454 455 ASSERT(nimaps > 0); 456 457 /* 458 * If the block underlying isize is just a hole, then there 459 * is nothing to zero. 460 */ 461 if (imap.br_startblock == HOLESTARTBLOCK) 462 return 0; 463 464 zero_len = mp->m_sb.sb_blocksize - zero_offset; 465 if (isize + zero_len > offset) 466 zero_len = offset - isize; 467 *did_zeroing = true; 468 return xfs_iozero(ip, isize, zero_len); 469 } 470 471 /* 472 * Zero any on disk space between the current EOF and the new, larger EOF. 473 * 474 * This handles the normal case of zeroing the remainder of the last block in 475 * the file and the unusual case of zeroing blocks out beyond the size of the 476 * file. This second case only happens with fixed size extents and when the 477 * system crashes before the inode size was updated but after blocks were 478 * allocated. 479 * 480 * Expects the iolock to be held exclusive, and will take the ilock internally. 481 */ 482 int /* error (positive) */ 483 xfs_zero_eof( 484 struct xfs_inode *ip, 485 xfs_off_t offset, /* starting I/O offset */ 486 xfs_fsize_t isize, /* current inode size */ 487 bool *did_zeroing) 488 { 489 struct xfs_mount *mp = ip->i_mount; 490 xfs_fileoff_t start_zero_fsb; 491 xfs_fileoff_t end_zero_fsb; 492 xfs_fileoff_t zero_count_fsb; 493 xfs_fileoff_t last_fsb; 494 xfs_fileoff_t zero_off; 495 xfs_fsize_t zero_len; 496 int nimaps; 497 int error = 0; 498 struct xfs_bmbt_irec imap; 499 500 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL)); 501 ASSERT(offset > isize); 502 503 trace_xfs_zero_eof(ip, isize, offset - isize); 504 505 /* 506 * First handle zeroing the block on which isize resides. 507 * 508 * We only zero a part of that block so it is handled specially. 509 */ 510 if (XFS_B_FSB_OFFSET(mp, isize) != 0) { 511 error = xfs_zero_last_block(ip, offset, isize, did_zeroing); 512 if (error) 513 return error; 514 } 515 516 /* 517 * Calculate the range between the new size and the old where blocks 518 * needing to be zeroed may exist. 519 * 520 * To get the block where the last byte in the file currently resides, 521 * we need to subtract one from the size and truncate back to a block 522 * boundary. We subtract 1 in case the size is exactly on a block 523 * boundary. 524 */ 525 last_fsb = isize ? XFS_B_TO_FSBT(mp, isize - 1) : (xfs_fileoff_t)-1; 526 start_zero_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize); 527 end_zero_fsb = XFS_B_TO_FSBT(mp, offset - 1); 528 ASSERT((xfs_sfiloff_t)last_fsb < (xfs_sfiloff_t)start_zero_fsb); 529 if (last_fsb == end_zero_fsb) { 530 /* 531 * The size was only incremented on its last block. 532 * We took care of that above, so just return. 533 */ 534 return 0; 535 } 536 537 ASSERT(start_zero_fsb <= end_zero_fsb); 538 while (start_zero_fsb <= end_zero_fsb) { 539 nimaps = 1; 540 zero_count_fsb = end_zero_fsb - start_zero_fsb + 1; 541 542 xfs_ilock(ip, XFS_ILOCK_EXCL); 543 error = xfs_bmapi_read(ip, start_zero_fsb, zero_count_fsb, 544 &imap, &nimaps, 0); 545 xfs_iunlock(ip, XFS_ILOCK_EXCL); 546 if (error) 547 return error; 548 549 ASSERT(nimaps > 0); 550 551 if (imap.br_state == XFS_EXT_UNWRITTEN || 552 imap.br_startblock == HOLESTARTBLOCK) { 553 start_zero_fsb = imap.br_startoff + imap.br_blockcount; 554 ASSERT(start_zero_fsb <= (end_zero_fsb + 1)); 555 continue; 556 } 557 558 /* 559 * There are blocks we need to zero. 560 */ 561 zero_off = XFS_FSB_TO_B(mp, start_zero_fsb); 562 zero_len = XFS_FSB_TO_B(mp, imap.br_blockcount); 563 564 if ((zero_off + zero_len) > offset) 565 zero_len = offset - zero_off; 566 567 error = xfs_iozero(ip, zero_off, zero_len); 568 if (error) 569 return error; 570 571 *did_zeroing = true; 572 start_zero_fsb = imap.br_startoff + imap.br_blockcount; 573 ASSERT(start_zero_fsb <= (end_zero_fsb + 1)); 574 } 575 576 return 0; 577 } 578 579 /* 580 * Common pre-write limit and setup checks. 581 * 582 * Called with the iolocked held either shared and exclusive according to 583 * @iolock, and returns with it held. Might upgrade the iolock to exclusive 584 * if called for a direct write beyond i_size. 585 */ 586 STATIC ssize_t 587 xfs_file_aio_write_checks( 588 struct kiocb *iocb, 589 struct iov_iter *from, 590 int *iolock) 591 { 592 struct file *file = iocb->ki_filp; 593 struct inode *inode = file->f_mapping->host; 594 struct xfs_inode *ip = XFS_I(inode); 595 ssize_t error = 0; 596 size_t count = iov_iter_count(from); 597 bool drained_dio = false; 598 599 restart: 600 error = generic_write_checks(iocb, from); 601 if (error <= 0) 602 return error; 603 604 error = xfs_break_layouts(inode, iolock, true); 605 if (error) 606 return error; 607 608 /* For changing security info in file_remove_privs() we need i_mutex */ 609 if (*iolock == XFS_IOLOCK_SHARED && !IS_NOSEC(inode)) { 610 xfs_rw_iunlock(ip, *iolock); 611 *iolock = XFS_IOLOCK_EXCL; 612 xfs_rw_ilock(ip, *iolock); 613 goto restart; 614 } 615 /* 616 * If the offset is beyond the size of the file, we need to zero any 617 * blocks that fall between the existing EOF and the start of this 618 * write. If zeroing is needed and we are currently holding the 619 * iolock shared, we need to update it to exclusive which implies 620 * having to redo all checks before. 621 * 622 * We need to serialise against EOF updates that occur in IO 623 * completions here. We want to make sure that nobody is changing the 624 * size while we do this check until we have placed an IO barrier (i.e. 625 * hold the XFS_IOLOCK_EXCL) that prevents new IO from being dispatched. 626 * The spinlock effectively forms a memory barrier once we have the 627 * XFS_IOLOCK_EXCL so we are guaranteed to see the latest EOF value 628 * and hence be able to correctly determine if we need to run zeroing. 629 */ 630 spin_lock(&ip->i_flags_lock); 631 if (iocb->ki_pos > i_size_read(inode)) { 632 bool zero = false; 633 634 spin_unlock(&ip->i_flags_lock); 635 if (!drained_dio) { 636 if (*iolock == XFS_IOLOCK_SHARED) { 637 xfs_rw_iunlock(ip, *iolock); 638 *iolock = XFS_IOLOCK_EXCL; 639 xfs_rw_ilock(ip, *iolock); 640 iov_iter_reexpand(from, count); 641 } 642 /* 643 * We now have an IO submission barrier in place, but 644 * AIO can do EOF updates during IO completion and hence 645 * we now need to wait for all of them to drain. Non-AIO 646 * DIO will have drained before we are given the 647 * XFS_IOLOCK_EXCL, and so for most cases this wait is a 648 * no-op. 649 */ 650 inode_dio_wait(inode); 651 drained_dio = true; 652 goto restart; 653 } 654 error = xfs_zero_eof(ip, iocb->ki_pos, i_size_read(inode), &zero); 655 if (error) 656 return error; 657 } else 658 spin_unlock(&ip->i_flags_lock); 659 660 /* 661 * Updating the timestamps will grab the ilock again from 662 * xfs_fs_dirty_inode, so we have to call it after dropping the 663 * lock above. Eventually we should look into a way to avoid 664 * the pointless lock roundtrip. 665 */ 666 if (likely(!(file->f_mode & FMODE_NOCMTIME))) { 667 error = file_update_time(file); 668 if (error) 669 return error; 670 } 671 672 /* 673 * If we're writing the file then make sure to clear the setuid and 674 * setgid bits if the process is not being run by root. This keeps 675 * people from modifying setuid and setgid binaries. 676 */ 677 if (!IS_NOSEC(inode)) 678 return file_remove_privs(file); 679 return 0; 680 } 681 682 /* 683 * xfs_file_dio_aio_write - handle direct IO writes 684 * 685 * Lock the inode appropriately to prepare for and issue a direct IO write. 686 * By separating it from the buffered write path we remove all the tricky to 687 * follow locking changes and looping. 688 * 689 * If there are cached pages or we're extending the file, we need IOLOCK_EXCL 690 * until we're sure the bytes at the new EOF have been zeroed and/or the cached 691 * pages are flushed out. 692 * 693 * In most cases the direct IO writes will be done holding IOLOCK_SHARED 694 * allowing them to be done in parallel with reads and other direct IO writes. 695 * However, if the IO is not aligned to filesystem blocks, the direct IO layer 696 * needs to do sub-block zeroing and that requires serialisation against other 697 * direct IOs to the same block. In this case we need to serialise the 698 * submission of the unaligned IOs so that we don't get racing block zeroing in 699 * the dio layer. To avoid the problem with aio, we also need to wait for 700 * outstanding IOs to complete so that unwritten extent conversion is completed 701 * before we try to map the overlapping block. This is currently implemented by 702 * hitting it with a big hammer (i.e. inode_dio_wait()). 703 * 704 * Returns with locks held indicated by @iolock and errors indicated by 705 * negative return values. 706 */ 707 STATIC ssize_t 708 xfs_file_dio_aio_write( 709 struct kiocb *iocb, 710 struct iov_iter *from) 711 { 712 struct file *file = iocb->ki_filp; 713 struct address_space *mapping = file->f_mapping; 714 struct inode *inode = mapping->host; 715 struct xfs_inode *ip = XFS_I(inode); 716 struct xfs_mount *mp = ip->i_mount; 717 ssize_t ret = 0; 718 int unaligned_io = 0; 719 int iolock; 720 size_t count = iov_iter_count(from); 721 loff_t pos = iocb->ki_pos; 722 loff_t end; 723 struct iov_iter data; 724 struct xfs_buftarg *target = XFS_IS_REALTIME_INODE(ip) ? 725 mp->m_rtdev_targp : mp->m_ddev_targp; 726 727 /* DIO must be aligned to device logical sector size */ 728 if (!IS_DAX(inode) && ((pos | count) & target->bt_logical_sectormask)) 729 return -EINVAL; 730 731 /* "unaligned" here means not aligned to a filesystem block */ 732 if ((pos & mp->m_blockmask) || ((pos + count) & mp->m_blockmask)) 733 unaligned_io = 1; 734 735 /* 736 * We don't need to take an exclusive lock unless there page cache needs 737 * to be invalidated or unaligned IO is being executed. We don't need to 738 * consider the EOF extension case here because 739 * xfs_file_aio_write_checks() will relock the inode as necessary for 740 * EOF zeroing cases and fill out the new inode size as appropriate. 741 */ 742 if (unaligned_io || mapping->nrpages) 743 iolock = XFS_IOLOCK_EXCL; 744 else 745 iolock = XFS_IOLOCK_SHARED; 746 xfs_rw_ilock(ip, iolock); 747 748 /* 749 * Recheck if there are cached pages that need invalidate after we got 750 * the iolock to protect against other threads adding new pages while 751 * we were waiting for the iolock. 752 */ 753 if (mapping->nrpages && iolock == XFS_IOLOCK_SHARED) { 754 xfs_rw_iunlock(ip, iolock); 755 iolock = XFS_IOLOCK_EXCL; 756 xfs_rw_ilock(ip, iolock); 757 } 758 759 ret = xfs_file_aio_write_checks(iocb, from, &iolock); 760 if (ret) 761 goto out; 762 count = iov_iter_count(from); 763 pos = iocb->ki_pos; 764 end = pos + count - 1; 765 766 /* 767 * See xfs_file_read_iter() for why we do a full-file flush here. 768 */ 769 if (mapping->nrpages) { 770 ret = filemap_write_and_wait(VFS_I(ip)->i_mapping); 771 if (ret) 772 goto out; 773 /* 774 * Invalidate whole pages. This can return an error if we fail 775 * to invalidate a page, but this should never happen on XFS. 776 * Warn if it does fail. 777 */ 778 ret = invalidate_inode_pages2(VFS_I(ip)->i_mapping); 779 WARN_ON_ONCE(ret); 780 ret = 0; 781 } 782 783 /* 784 * If we are doing unaligned IO, wait for all other IO to drain, 785 * otherwise demote the lock if we had to flush cached pages 786 */ 787 if (unaligned_io) 788 inode_dio_wait(inode); 789 else if (iolock == XFS_IOLOCK_EXCL) { 790 xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL); 791 iolock = XFS_IOLOCK_SHARED; 792 } 793 794 trace_xfs_file_direct_write(ip, count, iocb->ki_pos, 0); 795 796 data = *from; 797 ret = mapping->a_ops->direct_IO(iocb, &data, pos); 798 799 /* see generic_file_direct_write() for why this is necessary */ 800 if (mapping->nrpages) { 801 invalidate_inode_pages2_range(mapping, 802 pos >> PAGE_SHIFT, 803 end >> PAGE_SHIFT); 804 } 805 806 if (ret > 0) { 807 pos += ret; 808 iov_iter_advance(from, ret); 809 iocb->ki_pos = pos; 810 } 811 out: 812 xfs_rw_iunlock(ip, iolock); 813 814 /* 815 * No fallback to buffered IO on errors for XFS. DAX can result in 816 * partial writes, but direct IO will either complete fully or fail. 817 */ 818 ASSERT(ret < 0 || ret == count || IS_DAX(VFS_I(ip))); 819 return ret; 820 } 821 822 STATIC ssize_t 823 xfs_file_buffered_aio_write( 824 struct kiocb *iocb, 825 struct iov_iter *from) 826 { 827 struct file *file = iocb->ki_filp; 828 struct address_space *mapping = file->f_mapping; 829 struct inode *inode = mapping->host; 830 struct xfs_inode *ip = XFS_I(inode); 831 ssize_t ret; 832 int enospc = 0; 833 int iolock = XFS_IOLOCK_EXCL; 834 835 xfs_rw_ilock(ip, iolock); 836 837 ret = xfs_file_aio_write_checks(iocb, from, &iolock); 838 if (ret) 839 goto out; 840 841 /* We can write back this queue in page reclaim */ 842 current->backing_dev_info = inode_to_bdi(inode); 843 844 write_retry: 845 trace_xfs_file_buffered_write(ip, iov_iter_count(from), 846 iocb->ki_pos, 0); 847 ret = generic_perform_write(file, from, iocb->ki_pos); 848 if (likely(ret >= 0)) 849 iocb->ki_pos += ret; 850 851 /* 852 * If we hit a space limit, try to free up some lingering preallocated 853 * space before returning an error. In the case of ENOSPC, first try to 854 * write back all dirty inodes to free up some of the excess reserved 855 * metadata space. This reduces the chances that the eofblocks scan 856 * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this 857 * also behaves as a filter to prevent too many eofblocks scans from 858 * running at the same time. 859 */ 860 if (ret == -EDQUOT && !enospc) { 861 enospc = xfs_inode_free_quota_eofblocks(ip); 862 if (enospc) 863 goto write_retry; 864 } else if (ret == -ENOSPC && !enospc) { 865 struct xfs_eofblocks eofb = {0}; 866 867 enospc = 1; 868 xfs_flush_inodes(ip->i_mount); 869 eofb.eof_scan_owner = ip->i_ino; /* for locking */ 870 eofb.eof_flags = XFS_EOF_FLAGS_SYNC; 871 xfs_icache_free_eofblocks(ip->i_mount, &eofb); 872 goto write_retry; 873 } 874 875 current->backing_dev_info = NULL; 876 out: 877 xfs_rw_iunlock(ip, iolock); 878 return ret; 879 } 880 881 STATIC ssize_t 882 xfs_file_write_iter( 883 struct kiocb *iocb, 884 struct iov_iter *from) 885 { 886 struct file *file = iocb->ki_filp; 887 struct address_space *mapping = file->f_mapping; 888 struct inode *inode = mapping->host; 889 struct xfs_inode *ip = XFS_I(inode); 890 ssize_t ret; 891 size_t ocount = iov_iter_count(from); 892 893 XFS_STATS_INC(ip->i_mount, xs_write_calls); 894 895 if (ocount == 0) 896 return 0; 897 898 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) 899 return -EIO; 900 901 if ((iocb->ki_flags & IOCB_DIRECT) || IS_DAX(inode)) 902 ret = xfs_file_dio_aio_write(iocb, from); 903 else 904 ret = xfs_file_buffered_aio_write(iocb, from); 905 906 if (ret > 0) { 907 ssize_t err; 908 909 XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret); 910 911 /* Handle various SYNC-type writes */ 912 err = generic_write_sync(file, iocb->ki_pos - ret, ret); 913 if (err < 0) 914 ret = err; 915 } 916 return ret; 917 } 918 919 #define XFS_FALLOC_FL_SUPPORTED \ 920 (FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | \ 921 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE | \ 922 FALLOC_FL_INSERT_RANGE) 923 924 STATIC long 925 xfs_file_fallocate( 926 struct file *file, 927 int mode, 928 loff_t offset, 929 loff_t len) 930 { 931 struct inode *inode = file_inode(file); 932 struct xfs_inode *ip = XFS_I(inode); 933 long error; 934 enum xfs_prealloc_flags flags = 0; 935 uint iolock = XFS_IOLOCK_EXCL; 936 loff_t new_size = 0; 937 bool do_file_insert = 0; 938 939 if (!S_ISREG(inode->i_mode)) 940 return -EINVAL; 941 if (mode & ~XFS_FALLOC_FL_SUPPORTED) 942 return -EOPNOTSUPP; 943 944 xfs_ilock(ip, iolock); 945 error = xfs_break_layouts(inode, &iolock, false); 946 if (error) 947 goto out_unlock; 948 949 xfs_ilock(ip, XFS_MMAPLOCK_EXCL); 950 iolock |= XFS_MMAPLOCK_EXCL; 951 952 if (mode & FALLOC_FL_PUNCH_HOLE) { 953 error = xfs_free_file_space(ip, offset, len); 954 if (error) 955 goto out_unlock; 956 } else if (mode & FALLOC_FL_COLLAPSE_RANGE) { 957 unsigned blksize_mask = (1 << inode->i_blkbits) - 1; 958 959 if (offset & blksize_mask || len & blksize_mask) { 960 error = -EINVAL; 961 goto out_unlock; 962 } 963 964 /* 965 * There is no need to overlap collapse range with EOF, 966 * in which case it is effectively a truncate operation 967 */ 968 if (offset + len >= i_size_read(inode)) { 969 error = -EINVAL; 970 goto out_unlock; 971 } 972 973 new_size = i_size_read(inode) - len; 974 975 error = xfs_collapse_file_space(ip, offset, len); 976 if (error) 977 goto out_unlock; 978 } else if (mode & FALLOC_FL_INSERT_RANGE) { 979 unsigned blksize_mask = (1 << inode->i_blkbits) - 1; 980 981 new_size = i_size_read(inode) + len; 982 if (offset & blksize_mask || len & blksize_mask) { 983 error = -EINVAL; 984 goto out_unlock; 985 } 986 987 /* check the new inode size does not wrap through zero */ 988 if (new_size > inode->i_sb->s_maxbytes) { 989 error = -EFBIG; 990 goto out_unlock; 991 } 992 993 /* Offset should be less than i_size */ 994 if (offset >= i_size_read(inode)) { 995 error = -EINVAL; 996 goto out_unlock; 997 } 998 do_file_insert = 1; 999 } else { 1000 flags |= XFS_PREALLOC_SET; 1001 1002 if (!(mode & FALLOC_FL_KEEP_SIZE) && 1003 offset + len > i_size_read(inode)) { 1004 new_size = offset + len; 1005 error = inode_newsize_ok(inode, new_size); 1006 if (error) 1007 goto out_unlock; 1008 } 1009 1010 if (mode & FALLOC_FL_ZERO_RANGE) 1011 error = xfs_zero_file_space(ip, offset, len); 1012 else 1013 error = xfs_alloc_file_space(ip, offset, len, 1014 XFS_BMAPI_PREALLOC); 1015 if (error) 1016 goto out_unlock; 1017 } 1018 1019 if (file->f_flags & O_DSYNC) 1020 flags |= XFS_PREALLOC_SYNC; 1021 1022 error = xfs_update_prealloc_flags(ip, flags); 1023 if (error) 1024 goto out_unlock; 1025 1026 /* Change file size if needed */ 1027 if (new_size) { 1028 struct iattr iattr; 1029 1030 iattr.ia_valid = ATTR_SIZE; 1031 iattr.ia_size = new_size; 1032 error = xfs_setattr_size(ip, &iattr); 1033 if (error) 1034 goto out_unlock; 1035 } 1036 1037 /* 1038 * Perform hole insertion now that the file size has been 1039 * updated so that if we crash during the operation we don't 1040 * leave shifted extents past EOF and hence losing access to 1041 * the data that is contained within them. 1042 */ 1043 if (do_file_insert) 1044 error = xfs_insert_file_space(ip, offset, len); 1045 1046 out_unlock: 1047 xfs_iunlock(ip, iolock); 1048 return error; 1049 } 1050 1051 1052 STATIC int 1053 xfs_file_open( 1054 struct inode *inode, 1055 struct file *file) 1056 { 1057 if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS) 1058 return -EFBIG; 1059 if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb))) 1060 return -EIO; 1061 return 0; 1062 } 1063 1064 STATIC int 1065 xfs_dir_open( 1066 struct inode *inode, 1067 struct file *file) 1068 { 1069 struct xfs_inode *ip = XFS_I(inode); 1070 int mode; 1071 int error; 1072 1073 error = xfs_file_open(inode, file); 1074 if (error) 1075 return error; 1076 1077 /* 1078 * If there are any blocks, read-ahead block 0 as we're almost 1079 * certain to have the next operation be a read there. 1080 */ 1081 mode = xfs_ilock_data_map_shared(ip); 1082 if (ip->i_d.di_nextents > 0) 1083 xfs_dir3_data_readahead(ip, 0, -1); 1084 xfs_iunlock(ip, mode); 1085 return 0; 1086 } 1087 1088 STATIC int 1089 xfs_file_release( 1090 struct inode *inode, 1091 struct file *filp) 1092 { 1093 return xfs_release(XFS_I(inode)); 1094 } 1095 1096 STATIC int 1097 xfs_file_readdir( 1098 struct file *file, 1099 struct dir_context *ctx) 1100 { 1101 struct inode *inode = file_inode(file); 1102 xfs_inode_t *ip = XFS_I(inode); 1103 size_t bufsize; 1104 1105 /* 1106 * The Linux API doesn't pass down the total size of the buffer 1107 * we read into down to the filesystem. With the filldir concept 1108 * it's not needed for correct information, but the XFS dir2 leaf 1109 * code wants an estimate of the buffer size to calculate it's 1110 * readahead window and size the buffers used for mapping to 1111 * physical blocks. 1112 * 1113 * Try to give it an estimate that's good enough, maybe at some 1114 * point we can change the ->readdir prototype to include the 1115 * buffer size. For now we use the current glibc buffer size. 1116 */ 1117 bufsize = (size_t)min_t(loff_t, 32768, ip->i_d.di_size); 1118 1119 return xfs_readdir(ip, ctx, bufsize); 1120 } 1121 1122 /* 1123 * This type is designed to indicate the type of offset we would like 1124 * to search from page cache for xfs_seek_hole_data(). 1125 */ 1126 enum { 1127 HOLE_OFF = 0, 1128 DATA_OFF, 1129 }; 1130 1131 /* 1132 * Lookup the desired type of offset from the given page. 1133 * 1134 * On success, return true and the offset argument will point to the 1135 * start of the region that was found. Otherwise this function will 1136 * return false and keep the offset argument unchanged. 1137 */ 1138 STATIC bool 1139 xfs_lookup_buffer_offset( 1140 struct page *page, 1141 loff_t *offset, 1142 unsigned int type) 1143 { 1144 loff_t lastoff = page_offset(page); 1145 bool found = false; 1146 struct buffer_head *bh, *head; 1147 1148 bh = head = page_buffers(page); 1149 do { 1150 /* 1151 * Unwritten extents that have data in the page 1152 * cache covering them can be identified by the 1153 * BH_Unwritten state flag. Pages with multiple 1154 * buffers might have a mix of holes, data and 1155 * unwritten extents - any buffer with valid 1156 * data in it should have BH_Uptodate flag set 1157 * on it. 1158 */ 1159 if (buffer_unwritten(bh) || 1160 buffer_uptodate(bh)) { 1161 if (type == DATA_OFF) 1162 found = true; 1163 } else { 1164 if (type == HOLE_OFF) 1165 found = true; 1166 } 1167 1168 if (found) { 1169 *offset = lastoff; 1170 break; 1171 } 1172 lastoff += bh->b_size; 1173 } while ((bh = bh->b_this_page) != head); 1174 1175 return found; 1176 } 1177 1178 /* 1179 * This routine is called to find out and return a data or hole offset 1180 * from the page cache for unwritten extents according to the desired 1181 * type for xfs_seek_hole_data(). 1182 * 1183 * The argument offset is used to tell where we start to search from the 1184 * page cache. Map is used to figure out the end points of the range to 1185 * lookup pages. 1186 * 1187 * Return true if the desired type of offset was found, and the argument 1188 * offset is filled with that address. Otherwise, return false and keep 1189 * offset unchanged. 1190 */ 1191 STATIC bool 1192 xfs_find_get_desired_pgoff( 1193 struct inode *inode, 1194 struct xfs_bmbt_irec *map, 1195 unsigned int type, 1196 loff_t *offset) 1197 { 1198 struct xfs_inode *ip = XFS_I(inode); 1199 struct xfs_mount *mp = ip->i_mount; 1200 struct pagevec pvec; 1201 pgoff_t index; 1202 pgoff_t end; 1203 loff_t endoff; 1204 loff_t startoff = *offset; 1205 loff_t lastoff = startoff; 1206 bool found = false; 1207 1208 pagevec_init(&pvec, 0); 1209 1210 index = startoff >> PAGE_SHIFT; 1211 endoff = XFS_FSB_TO_B(mp, map->br_startoff + map->br_blockcount); 1212 end = endoff >> PAGE_SHIFT; 1213 do { 1214 int want; 1215 unsigned nr_pages; 1216 unsigned int i; 1217 1218 want = min_t(pgoff_t, end - index, PAGEVEC_SIZE); 1219 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, index, 1220 want); 1221 /* 1222 * No page mapped into given range. If we are searching holes 1223 * and if this is the first time we got into the loop, it means 1224 * that the given offset is landed in a hole, return it. 1225 * 1226 * If we have already stepped through some block buffers to find 1227 * holes but they all contains data. In this case, the last 1228 * offset is already updated and pointed to the end of the last 1229 * mapped page, if it does not reach the endpoint to search, 1230 * that means there should be a hole between them. 1231 */ 1232 if (nr_pages == 0) { 1233 /* Data search found nothing */ 1234 if (type == DATA_OFF) 1235 break; 1236 1237 ASSERT(type == HOLE_OFF); 1238 if (lastoff == startoff || lastoff < endoff) { 1239 found = true; 1240 *offset = lastoff; 1241 } 1242 break; 1243 } 1244 1245 /* 1246 * At lease we found one page. If this is the first time we 1247 * step into the loop, and if the first page index offset is 1248 * greater than the given search offset, a hole was found. 1249 */ 1250 if (type == HOLE_OFF && lastoff == startoff && 1251 lastoff < page_offset(pvec.pages[0])) { 1252 found = true; 1253 break; 1254 } 1255 1256 for (i = 0; i < nr_pages; i++) { 1257 struct page *page = pvec.pages[i]; 1258 loff_t b_offset; 1259 1260 /* 1261 * At this point, the page may be truncated or 1262 * invalidated (changing page->mapping to NULL), 1263 * or even swizzled back from swapper_space to tmpfs 1264 * file mapping. However, page->index will not change 1265 * because we have a reference on the page. 1266 * 1267 * Searching done if the page index is out of range. 1268 * If the current offset is not reaches the end of 1269 * the specified search range, there should be a hole 1270 * between them. 1271 */ 1272 if (page->index > end) { 1273 if (type == HOLE_OFF && lastoff < endoff) { 1274 *offset = lastoff; 1275 found = true; 1276 } 1277 goto out; 1278 } 1279 1280 lock_page(page); 1281 /* 1282 * Page truncated or invalidated(page->mapping == NULL). 1283 * We can freely skip it and proceed to check the next 1284 * page. 1285 */ 1286 if (unlikely(page->mapping != inode->i_mapping)) { 1287 unlock_page(page); 1288 continue; 1289 } 1290 1291 if (!page_has_buffers(page)) { 1292 unlock_page(page); 1293 continue; 1294 } 1295 1296 found = xfs_lookup_buffer_offset(page, &b_offset, type); 1297 if (found) { 1298 /* 1299 * The found offset may be less than the start 1300 * point to search if this is the first time to 1301 * come here. 1302 */ 1303 *offset = max_t(loff_t, startoff, b_offset); 1304 unlock_page(page); 1305 goto out; 1306 } 1307 1308 /* 1309 * We either searching data but nothing was found, or 1310 * searching hole but found a data buffer. In either 1311 * case, probably the next page contains the desired 1312 * things, update the last offset to it so. 1313 */ 1314 lastoff = page_offset(page) + PAGE_SIZE; 1315 unlock_page(page); 1316 } 1317 1318 /* 1319 * The number of returned pages less than our desired, search 1320 * done. In this case, nothing was found for searching data, 1321 * but we found a hole behind the last offset. 1322 */ 1323 if (nr_pages < want) { 1324 if (type == HOLE_OFF) { 1325 *offset = lastoff; 1326 found = true; 1327 } 1328 break; 1329 } 1330 1331 index = pvec.pages[i - 1]->index + 1; 1332 pagevec_release(&pvec); 1333 } while (index <= end); 1334 1335 out: 1336 pagevec_release(&pvec); 1337 return found; 1338 } 1339 1340 /* 1341 * caller must lock inode with xfs_ilock_data_map_shared, 1342 * can we craft an appropriate ASSERT? 1343 * 1344 * end is because the VFS-level lseek interface is defined such that any 1345 * offset past i_size shall return -ENXIO, but we use this for quota code 1346 * which does not maintain i_size, and we want to SEEK_DATA past i_size. 1347 */ 1348 loff_t 1349 __xfs_seek_hole_data( 1350 struct inode *inode, 1351 loff_t start, 1352 loff_t end, 1353 int whence) 1354 { 1355 struct xfs_inode *ip = XFS_I(inode); 1356 struct xfs_mount *mp = ip->i_mount; 1357 loff_t uninitialized_var(offset); 1358 xfs_fileoff_t fsbno; 1359 xfs_filblks_t lastbno; 1360 int error; 1361 1362 if (start >= end) { 1363 error = -ENXIO; 1364 goto out_error; 1365 } 1366 1367 /* 1368 * Try to read extents from the first block indicated 1369 * by fsbno to the end block of the file. 1370 */ 1371 fsbno = XFS_B_TO_FSBT(mp, start); 1372 lastbno = XFS_B_TO_FSB(mp, end); 1373 1374 for (;;) { 1375 struct xfs_bmbt_irec map[2]; 1376 int nmap = 2; 1377 unsigned int i; 1378 1379 error = xfs_bmapi_read(ip, fsbno, lastbno - fsbno, map, &nmap, 1380 XFS_BMAPI_ENTIRE); 1381 if (error) 1382 goto out_error; 1383 1384 /* No extents at given offset, must be beyond EOF */ 1385 if (nmap == 0) { 1386 error = -ENXIO; 1387 goto out_error; 1388 } 1389 1390 for (i = 0; i < nmap; i++) { 1391 offset = max_t(loff_t, start, 1392 XFS_FSB_TO_B(mp, map[i].br_startoff)); 1393 1394 /* Landed in the hole we wanted? */ 1395 if (whence == SEEK_HOLE && 1396 map[i].br_startblock == HOLESTARTBLOCK) 1397 goto out; 1398 1399 /* Landed in the data extent we wanted? */ 1400 if (whence == SEEK_DATA && 1401 (map[i].br_startblock == DELAYSTARTBLOCK || 1402 (map[i].br_state == XFS_EXT_NORM && 1403 !isnullstartblock(map[i].br_startblock)))) 1404 goto out; 1405 1406 /* 1407 * Landed in an unwritten extent, try to search 1408 * for hole or data from page cache. 1409 */ 1410 if (map[i].br_state == XFS_EXT_UNWRITTEN) { 1411 if (xfs_find_get_desired_pgoff(inode, &map[i], 1412 whence == SEEK_HOLE ? HOLE_OFF : DATA_OFF, 1413 &offset)) 1414 goto out; 1415 } 1416 } 1417 1418 /* 1419 * We only received one extent out of the two requested. This 1420 * means we've hit EOF and didn't find what we are looking for. 1421 */ 1422 if (nmap == 1) { 1423 /* 1424 * If we were looking for a hole, set offset to 1425 * the end of the file (i.e., there is an implicit 1426 * hole at the end of any file). 1427 */ 1428 if (whence == SEEK_HOLE) { 1429 offset = end; 1430 break; 1431 } 1432 /* 1433 * If we were looking for data, it's nowhere to be found 1434 */ 1435 ASSERT(whence == SEEK_DATA); 1436 error = -ENXIO; 1437 goto out_error; 1438 } 1439 1440 ASSERT(i > 1); 1441 1442 /* 1443 * Nothing was found, proceed to the next round of search 1444 * if the next reading offset is not at or beyond EOF. 1445 */ 1446 fsbno = map[i - 1].br_startoff + map[i - 1].br_blockcount; 1447 start = XFS_FSB_TO_B(mp, fsbno); 1448 if (start >= end) { 1449 if (whence == SEEK_HOLE) { 1450 offset = end; 1451 break; 1452 } 1453 ASSERT(whence == SEEK_DATA); 1454 error = -ENXIO; 1455 goto out_error; 1456 } 1457 } 1458 1459 out: 1460 /* 1461 * If at this point we have found the hole we wanted, the returned 1462 * offset may be bigger than the file size as it may be aligned to 1463 * page boundary for unwritten extents. We need to deal with this 1464 * situation in particular. 1465 */ 1466 if (whence == SEEK_HOLE) 1467 offset = min_t(loff_t, offset, end); 1468 1469 return offset; 1470 1471 out_error: 1472 return error; 1473 } 1474 1475 STATIC loff_t 1476 xfs_seek_hole_data( 1477 struct file *file, 1478 loff_t start, 1479 int whence) 1480 { 1481 struct inode *inode = file->f_mapping->host; 1482 struct xfs_inode *ip = XFS_I(inode); 1483 struct xfs_mount *mp = ip->i_mount; 1484 uint lock; 1485 loff_t offset, end; 1486 int error = 0; 1487 1488 if (XFS_FORCED_SHUTDOWN(mp)) 1489 return -EIO; 1490 1491 lock = xfs_ilock_data_map_shared(ip); 1492 1493 end = i_size_read(inode); 1494 offset = __xfs_seek_hole_data(inode, start, end, whence); 1495 if (offset < 0) { 1496 error = offset; 1497 goto out_unlock; 1498 } 1499 1500 offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes); 1501 1502 out_unlock: 1503 xfs_iunlock(ip, lock); 1504 1505 if (error) 1506 return error; 1507 return offset; 1508 } 1509 1510 STATIC loff_t 1511 xfs_file_llseek( 1512 struct file *file, 1513 loff_t offset, 1514 int whence) 1515 { 1516 switch (whence) { 1517 case SEEK_END: 1518 case SEEK_CUR: 1519 case SEEK_SET: 1520 return generic_file_llseek(file, offset, whence); 1521 case SEEK_HOLE: 1522 case SEEK_DATA: 1523 return xfs_seek_hole_data(file, offset, whence); 1524 default: 1525 return -EINVAL; 1526 } 1527 } 1528 1529 /* 1530 * Locking for serialisation of IO during page faults. This results in a lock 1531 * ordering of: 1532 * 1533 * mmap_sem (MM) 1534 * sb_start_pagefault(vfs, freeze) 1535 * i_mmaplock (XFS - truncate serialisation) 1536 * page_lock (MM) 1537 * i_lock (XFS - extent map serialisation) 1538 */ 1539 1540 /* 1541 * mmap()d file has taken write protection fault and is being made writable. We 1542 * can set the page state up correctly for a writable page, which means we can 1543 * do correct delalloc accounting (ENOSPC checking!) and unwritten extent 1544 * mapping. 1545 */ 1546 STATIC int 1547 xfs_filemap_page_mkwrite( 1548 struct vm_area_struct *vma, 1549 struct vm_fault *vmf) 1550 { 1551 struct inode *inode = file_inode(vma->vm_file); 1552 int ret; 1553 1554 trace_xfs_filemap_page_mkwrite(XFS_I(inode)); 1555 1556 sb_start_pagefault(inode->i_sb); 1557 file_update_time(vma->vm_file); 1558 xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED); 1559 1560 if (IS_DAX(inode)) { 1561 ret = __dax_mkwrite(vma, vmf, xfs_get_blocks_dax_fault, NULL); 1562 } else { 1563 ret = block_page_mkwrite(vma, vmf, xfs_get_blocks); 1564 ret = block_page_mkwrite_return(ret); 1565 } 1566 1567 xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED); 1568 sb_end_pagefault(inode->i_sb); 1569 1570 return ret; 1571 } 1572 1573 STATIC int 1574 xfs_filemap_fault( 1575 struct vm_area_struct *vma, 1576 struct vm_fault *vmf) 1577 { 1578 struct inode *inode = file_inode(vma->vm_file); 1579 int ret; 1580 1581 trace_xfs_filemap_fault(XFS_I(inode)); 1582 1583 /* DAX can shortcut the normal fault path on write faults! */ 1584 if ((vmf->flags & FAULT_FLAG_WRITE) && IS_DAX(inode)) 1585 return xfs_filemap_page_mkwrite(vma, vmf); 1586 1587 xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED); 1588 if (IS_DAX(inode)) { 1589 /* 1590 * we do not want to trigger unwritten extent conversion on read 1591 * faults - that is unnecessary overhead and would also require 1592 * changes to xfs_get_blocks_direct() to map unwritten extent 1593 * ioend for conversion on read-only mappings. 1594 */ 1595 ret = __dax_fault(vma, vmf, xfs_get_blocks_dax_fault, NULL); 1596 } else 1597 ret = filemap_fault(vma, vmf); 1598 xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED); 1599 1600 return ret; 1601 } 1602 1603 /* 1604 * Similar to xfs_filemap_fault(), the DAX fault path can call into here on 1605 * both read and write faults. Hence we need to handle both cases. There is no 1606 * ->pmd_mkwrite callout for huge pages, so we have a single function here to 1607 * handle both cases here. @flags carries the information on the type of fault 1608 * occuring. 1609 */ 1610 STATIC int 1611 xfs_filemap_pmd_fault( 1612 struct vm_area_struct *vma, 1613 unsigned long addr, 1614 pmd_t *pmd, 1615 unsigned int flags) 1616 { 1617 struct inode *inode = file_inode(vma->vm_file); 1618 struct xfs_inode *ip = XFS_I(inode); 1619 int ret; 1620 1621 if (!IS_DAX(inode)) 1622 return VM_FAULT_FALLBACK; 1623 1624 trace_xfs_filemap_pmd_fault(ip); 1625 1626 if (flags & FAULT_FLAG_WRITE) { 1627 sb_start_pagefault(inode->i_sb); 1628 file_update_time(vma->vm_file); 1629 } 1630 1631 xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED); 1632 ret = __dax_pmd_fault(vma, addr, pmd, flags, xfs_get_blocks_dax_fault, 1633 NULL); 1634 xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED); 1635 1636 if (flags & FAULT_FLAG_WRITE) 1637 sb_end_pagefault(inode->i_sb); 1638 1639 return ret; 1640 } 1641 1642 /* 1643 * pfn_mkwrite was originally inteneded to ensure we capture time stamp 1644 * updates on write faults. In reality, it's need to serialise against 1645 * truncate similar to page_mkwrite. Hence we cycle the XFS_MMAPLOCK_SHARED 1646 * to ensure we serialise the fault barrier in place. 1647 */ 1648 static int 1649 xfs_filemap_pfn_mkwrite( 1650 struct vm_area_struct *vma, 1651 struct vm_fault *vmf) 1652 { 1653 1654 struct inode *inode = file_inode(vma->vm_file); 1655 struct xfs_inode *ip = XFS_I(inode); 1656 int ret = VM_FAULT_NOPAGE; 1657 loff_t size; 1658 1659 trace_xfs_filemap_pfn_mkwrite(ip); 1660 1661 sb_start_pagefault(inode->i_sb); 1662 file_update_time(vma->vm_file); 1663 1664 /* check if the faulting page hasn't raced with truncate */ 1665 xfs_ilock(ip, XFS_MMAPLOCK_SHARED); 1666 size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT; 1667 if (vmf->pgoff >= size) 1668 ret = VM_FAULT_SIGBUS; 1669 else if (IS_DAX(inode)) 1670 ret = dax_pfn_mkwrite(vma, vmf); 1671 xfs_iunlock(ip, XFS_MMAPLOCK_SHARED); 1672 sb_end_pagefault(inode->i_sb); 1673 return ret; 1674 1675 } 1676 1677 static const struct vm_operations_struct xfs_file_vm_ops = { 1678 .fault = xfs_filemap_fault, 1679 .pmd_fault = xfs_filemap_pmd_fault, 1680 .map_pages = filemap_map_pages, 1681 .page_mkwrite = xfs_filemap_page_mkwrite, 1682 .pfn_mkwrite = xfs_filemap_pfn_mkwrite, 1683 }; 1684 1685 STATIC int 1686 xfs_file_mmap( 1687 struct file *filp, 1688 struct vm_area_struct *vma) 1689 { 1690 file_accessed(filp); 1691 vma->vm_ops = &xfs_file_vm_ops; 1692 if (IS_DAX(file_inode(filp))) 1693 vma->vm_flags |= VM_MIXEDMAP | VM_HUGEPAGE; 1694 return 0; 1695 } 1696 1697 const struct file_operations xfs_file_operations = { 1698 .llseek = xfs_file_llseek, 1699 .read_iter = xfs_file_read_iter, 1700 .write_iter = xfs_file_write_iter, 1701 .splice_read = xfs_file_splice_read, 1702 .splice_write = iter_file_splice_write, 1703 .unlocked_ioctl = xfs_file_ioctl, 1704 #ifdef CONFIG_COMPAT 1705 .compat_ioctl = xfs_file_compat_ioctl, 1706 #endif 1707 .mmap = xfs_file_mmap, 1708 .open = xfs_file_open, 1709 .release = xfs_file_release, 1710 .fsync = xfs_file_fsync, 1711 .fallocate = xfs_file_fallocate, 1712 }; 1713 1714 const struct file_operations xfs_dir_file_operations = { 1715 .open = xfs_dir_open, 1716 .read = generic_read_dir, 1717 .iterate = xfs_file_readdir, 1718 .llseek = generic_file_llseek, 1719 .unlocked_ioctl = xfs_file_ioctl, 1720 #ifdef CONFIG_COMPAT 1721 .compat_ioctl = xfs_file_compat_ioctl, 1722 #endif 1723 .fsync = xfs_dir_fsync, 1724 }; 1725