1 /* 2 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_fs.h" 20 #include "xfs_shared.h" 21 #include "xfs_format.h" 22 #include "xfs_log_format.h" 23 #include "xfs_trans_resv.h" 24 #include "xfs_mount.h" 25 #include "xfs_da_format.h" 26 #include "xfs_da_btree.h" 27 #include "xfs_inode.h" 28 #include "xfs_trans.h" 29 #include "xfs_inode_item.h" 30 #include "xfs_bmap.h" 31 #include "xfs_bmap_util.h" 32 #include "xfs_error.h" 33 #include "xfs_dir2.h" 34 #include "xfs_dir2_priv.h" 35 #include "xfs_ioctl.h" 36 #include "xfs_trace.h" 37 #include "xfs_log.h" 38 #include "xfs_icache.h" 39 #include "xfs_pnfs.h" 40 41 #include <linux/dcache.h> 42 #include <linux/falloc.h> 43 #include <linux/pagevec.h> 44 #include <linux/backing-dev.h> 45 46 static const struct vm_operations_struct xfs_file_vm_ops; 47 48 /* 49 * Locking primitives for read and write IO paths to ensure we consistently use 50 * and order the inode->i_mutex, ip->i_lock and ip->i_iolock. 51 */ 52 static inline void 53 xfs_rw_ilock( 54 struct xfs_inode *ip, 55 int type) 56 { 57 if (type & XFS_IOLOCK_EXCL) 58 inode_lock(VFS_I(ip)); 59 xfs_ilock(ip, type); 60 } 61 62 static inline void 63 xfs_rw_iunlock( 64 struct xfs_inode *ip, 65 int type) 66 { 67 xfs_iunlock(ip, type); 68 if (type & XFS_IOLOCK_EXCL) 69 inode_unlock(VFS_I(ip)); 70 } 71 72 static inline void 73 xfs_rw_ilock_demote( 74 struct xfs_inode *ip, 75 int type) 76 { 77 xfs_ilock_demote(ip, type); 78 if (type & XFS_IOLOCK_EXCL) 79 inode_unlock(VFS_I(ip)); 80 } 81 82 /* 83 * xfs_iozero clears the specified range supplied via the page cache (except in 84 * the DAX case). Writes through the page cache will allocate blocks over holes, 85 * though the callers usually map the holes first and avoid them. If a block is 86 * not completely zeroed, then it will be read from disk before being partially 87 * zeroed. 88 * 89 * In the DAX case, we can just directly write to the underlying pages. This 90 * will not allocate blocks, but will avoid holes and unwritten extents and so 91 * not do unnecessary work. 92 */ 93 int 94 xfs_iozero( 95 struct xfs_inode *ip, /* inode */ 96 loff_t pos, /* offset in file */ 97 size_t count) /* size of data to zero */ 98 { 99 struct page *page; 100 struct address_space *mapping; 101 int status = 0; 102 103 104 mapping = VFS_I(ip)->i_mapping; 105 do { 106 unsigned offset, bytes; 107 void *fsdata; 108 109 offset = (pos & (PAGE_SIZE -1)); /* Within page */ 110 bytes = PAGE_SIZE - offset; 111 if (bytes > count) 112 bytes = count; 113 114 if (IS_DAX(VFS_I(ip))) { 115 status = dax_zero_page_range(VFS_I(ip), pos, bytes, 116 xfs_get_blocks_direct); 117 if (status) 118 break; 119 } else { 120 status = pagecache_write_begin(NULL, mapping, pos, bytes, 121 AOP_FLAG_UNINTERRUPTIBLE, 122 &page, &fsdata); 123 if (status) 124 break; 125 126 zero_user(page, offset, bytes); 127 128 status = pagecache_write_end(NULL, mapping, pos, bytes, 129 bytes, page, fsdata); 130 WARN_ON(status <= 0); /* can't return less than zero! */ 131 status = 0; 132 } 133 pos += bytes; 134 count -= bytes; 135 } while (count); 136 137 return status; 138 } 139 140 int 141 xfs_update_prealloc_flags( 142 struct xfs_inode *ip, 143 enum xfs_prealloc_flags flags) 144 { 145 struct xfs_trans *tp; 146 int error; 147 148 tp = xfs_trans_alloc(ip->i_mount, XFS_TRANS_WRITEID); 149 error = xfs_trans_reserve(tp, &M_RES(ip->i_mount)->tr_writeid, 0, 0); 150 if (error) { 151 xfs_trans_cancel(tp); 152 return error; 153 } 154 155 xfs_ilock(ip, XFS_ILOCK_EXCL); 156 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 157 158 if (!(flags & XFS_PREALLOC_INVISIBLE)) { 159 VFS_I(ip)->i_mode &= ~S_ISUID; 160 if (VFS_I(ip)->i_mode & S_IXGRP) 161 VFS_I(ip)->i_mode &= ~S_ISGID; 162 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 163 } 164 165 if (flags & XFS_PREALLOC_SET) 166 ip->i_d.di_flags |= XFS_DIFLAG_PREALLOC; 167 if (flags & XFS_PREALLOC_CLEAR) 168 ip->i_d.di_flags &= ~XFS_DIFLAG_PREALLOC; 169 170 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 171 if (flags & XFS_PREALLOC_SYNC) 172 xfs_trans_set_sync(tp); 173 return xfs_trans_commit(tp); 174 } 175 176 /* 177 * Fsync operations on directories are much simpler than on regular files, 178 * as there is no file data to flush, and thus also no need for explicit 179 * cache flush operations, and there are no non-transaction metadata updates 180 * on directories either. 181 */ 182 STATIC int 183 xfs_dir_fsync( 184 struct file *file, 185 loff_t start, 186 loff_t end, 187 int datasync) 188 { 189 struct xfs_inode *ip = XFS_I(file->f_mapping->host); 190 struct xfs_mount *mp = ip->i_mount; 191 xfs_lsn_t lsn = 0; 192 193 trace_xfs_dir_fsync(ip); 194 195 xfs_ilock(ip, XFS_ILOCK_SHARED); 196 if (xfs_ipincount(ip)) 197 lsn = ip->i_itemp->ili_last_lsn; 198 xfs_iunlock(ip, XFS_ILOCK_SHARED); 199 200 if (!lsn) 201 return 0; 202 return _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, NULL); 203 } 204 205 STATIC int 206 xfs_file_fsync( 207 struct file *file, 208 loff_t start, 209 loff_t end, 210 int datasync) 211 { 212 struct inode *inode = file->f_mapping->host; 213 struct xfs_inode *ip = XFS_I(inode); 214 struct xfs_mount *mp = ip->i_mount; 215 int error = 0; 216 int log_flushed = 0; 217 xfs_lsn_t lsn = 0; 218 219 trace_xfs_file_fsync(ip); 220 221 error = filemap_write_and_wait_range(inode->i_mapping, start, end); 222 if (error) 223 return error; 224 225 if (XFS_FORCED_SHUTDOWN(mp)) 226 return -EIO; 227 228 xfs_iflags_clear(ip, XFS_ITRUNCATED); 229 230 if (mp->m_flags & XFS_MOUNT_BARRIER) { 231 /* 232 * If we have an RT and/or log subvolume we need to make sure 233 * to flush the write cache the device used for file data 234 * first. This is to ensure newly written file data make 235 * it to disk before logging the new inode size in case of 236 * an extending write. 237 */ 238 if (XFS_IS_REALTIME_INODE(ip)) 239 xfs_blkdev_issue_flush(mp->m_rtdev_targp); 240 else if (mp->m_logdev_targp != mp->m_ddev_targp) 241 xfs_blkdev_issue_flush(mp->m_ddev_targp); 242 } 243 244 /* 245 * All metadata updates are logged, which means that we just have to 246 * flush the log up to the latest LSN that touched the inode. If we have 247 * concurrent fsync/fdatasync() calls, we need them to all block on the 248 * log force before we clear the ili_fsync_fields field. This ensures 249 * that we don't get a racing sync operation that does not wait for the 250 * metadata to hit the journal before returning. If we race with 251 * clearing the ili_fsync_fields, then all that will happen is the log 252 * force will do nothing as the lsn will already be on disk. We can't 253 * race with setting ili_fsync_fields because that is done under 254 * XFS_ILOCK_EXCL, and that can't happen because we hold the lock shared 255 * until after the ili_fsync_fields is cleared. 256 */ 257 xfs_ilock(ip, XFS_ILOCK_SHARED); 258 if (xfs_ipincount(ip)) { 259 if (!datasync || 260 (ip->i_itemp->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP)) 261 lsn = ip->i_itemp->ili_last_lsn; 262 } 263 264 if (lsn) { 265 error = _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed); 266 ip->i_itemp->ili_fsync_fields = 0; 267 } 268 xfs_iunlock(ip, XFS_ILOCK_SHARED); 269 270 /* 271 * If we only have a single device, and the log force about was 272 * a no-op we might have to flush the data device cache here. 273 * This can only happen for fdatasync/O_DSYNC if we were overwriting 274 * an already allocated file and thus do not have any metadata to 275 * commit. 276 */ 277 if ((mp->m_flags & XFS_MOUNT_BARRIER) && 278 mp->m_logdev_targp == mp->m_ddev_targp && 279 !XFS_IS_REALTIME_INODE(ip) && 280 !log_flushed) 281 xfs_blkdev_issue_flush(mp->m_ddev_targp); 282 283 return error; 284 } 285 286 STATIC ssize_t 287 xfs_file_read_iter( 288 struct kiocb *iocb, 289 struct iov_iter *to) 290 { 291 struct file *file = iocb->ki_filp; 292 struct inode *inode = file->f_mapping->host; 293 struct xfs_inode *ip = XFS_I(inode); 294 struct xfs_mount *mp = ip->i_mount; 295 size_t size = iov_iter_count(to); 296 ssize_t ret = 0; 297 int ioflags = 0; 298 xfs_fsize_t n; 299 loff_t pos = iocb->ki_pos; 300 301 XFS_STATS_INC(mp, xs_read_calls); 302 303 if (unlikely(iocb->ki_flags & IOCB_DIRECT)) 304 ioflags |= XFS_IO_ISDIRECT; 305 if (file->f_mode & FMODE_NOCMTIME) 306 ioflags |= XFS_IO_INVIS; 307 308 if ((ioflags & XFS_IO_ISDIRECT) && !IS_DAX(inode)) { 309 xfs_buftarg_t *target = 310 XFS_IS_REALTIME_INODE(ip) ? 311 mp->m_rtdev_targp : mp->m_ddev_targp; 312 /* DIO must be aligned to device logical sector size */ 313 if ((pos | size) & target->bt_logical_sectormask) { 314 if (pos == i_size_read(inode)) 315 return 0; 316 return -EINVAL; 317 } 318 } 319 320 n = mp->m_super->s_maxbytes - pos; 321 if (n <= 0 || size == 0) 322 return 0; 323 324 if (n < size) 325 size = n; 326 327 if (XFS_FORCED_SHUTDOWN(mp)) 328 return -EIO; 329 330 /* 331 * Locking is a bit tricky here. If we take an exclusive lock for direct 332 * IO, we effectively serialise all new concurrent read IO to this file 333 * and block it behind IO that is currently in progress because IO in 334 * progress holds the IO lock shared. We only need to hold the lock 335 * exclusive to blow away the page cache, so only take lock exclusively 336 * if the page cache needs invalidation. This allows the normal direct 337 * IO case of no page cache pages to proceeed concurrently without 338 * serialisation. 339 */ 340 xfs_rw_ilock(ip, XFS_IOLOCK_SHARED); 341 if ((ioflags & XFS_IO_ISDIRECT) && inode->i_mapping->nrpages) { 342 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED); 343 xfs_rw_ilock(ip, XFS_IOLOCK_EXCL); 344 345 /* 346 * The generic dio code only flushes the range of the particular 347 * I/O. Because we take an exclusive lock here, this whole 348 * sequence is considerably more expensive for us. This has a 349 * noticeable performance impact for any file with cached pages, 350 * even when outside of the range of the particular I/O. 351 * 352 * Hence, amortize the cost of the lock against a full file 353 * flush and reduce the chances of repeated iolock cycles going 354 * forward. 355 */ 356 if (inode->i_mapping->nrpages) { 357 ret = filemap_write_and_wait(VFS_I(ip)->i_mapping); 358 if (ret) { 359 xfs_rw_iunlock(ip, XFS_IOLOCK_EXCL); 360 return ret; 361 } 362 363 /* 364 * Invalidate whole pages. This can return an error if 365 * we fail to invalidate a page, but this should never 366 * happen on XFS. Warn if it does fail. 367 */ 368 ret = invalidate_inode_pages2(VFS_I(ip)->i_mapping); 369 WARN_ON_ONCE(ret); 370 ret = 0; 371 } 372 xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL); 373 } 374 375 trace_xfs_file_read(ip, size, pos, ioflags); 376 377 ret = generic_file_read_iter(iocb, to); 378 if (ret > 0) 379 XFS_STATS_ADD(mp, xs_read_bytes, ret); 380 381 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED); 382 return ret; 383 } 384 385 STATIC ssize_t 386 xfs_file_splice_read( 387 struct file *infilp, 388 loff_t *ppos, 389 struct pipe_inode_info *pipe, 390 size_t count, 391 unsigned int flags) 392 { 393 struct xfs_inode *ip = XFS_I(infilp->f_mapping->host); 394 int ioflags = 0; 395 ssize_t ret; 396 397 XFS_STATS_INC(ip->i_mount, xs_read_calls); 398 399 if (infilp->f_mode & FMODE_NOCMTIME) 400 ioflags |= XFS_IO_INVIS; 401 402 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) 403 return -EIO; 404 405 trace_xfs_file_splice_read(ip, count, *ppos, ioflags); 406 407 /* 408 * DAX inodes cannot ues the page cache for splice, so we have to push 409 * them through the VFS IO path. This means it goes through 410 * ->read_iter, which for us takes the XFS_IOLOCK_SHARED. Hence we 411 * cannot lock the splice operation at this level for DAX inodes. 412 */ 413 if (IS_DAX(VFS_I(ip))) { 414 ret = default_file_splice_read(infilp, ppos, pipe, count, 415 flags); 416 goto out; 417 } 418 419 xfs_rw_ilock(ip, XFS_IOLOCK_SHARED); 420 ret = generic_file_splice_read(infilp, ppos, pipe, count, flags); 421 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED); 422 out: 423 if (ret > 0) 424 XFS_STATS_ADD(ip->i_mount, xs_read_bytes, ret); 425 return ret; 426 } 427 428 /* 429 * This routine is called to handle zeroing any space in the last block of the 430 * file that is beyond the EOF. We do this since the size is being increased 431 * without writing anything to that block and we don't want to read the 432 * garbage on the disk. 433 */ 434 STATIC int /* error (positive) */ 435 xfs_zero_last_block( 436 struct xfs_inode *ip, 437 xfs_fsize_t offset, 438 xfs_fsize_t isize, 439 bool *did_zeroing) 440 { 441 struct xfs_mount *mp = ip->i_mount; 442 xfs_fileoff_t last_fsb = XFS_B_TO_FSBT(mp, isize); 443 int zero_offset = XFS_B_FSB_OFFSET(mp, isize); 444 int zero_len; 445 int nimaps = 1; 446 int error = 0; 447 struct xfs_bmbt_irec imap; 448 449 xfs_ilock(ip, XFS_ILOCK_EXCL); 450 error = xfs_bmapi_read(ip, last_fsb, 1, &imap, &nimaps, 0); 451 xfs_iunlock(ip, XFS_ILOCK_EXCL); 452 if (error) 453 return error; 454 455 ASSERT(nimaps > 0); 456 457 /* 458 * If the block underlying isize is just a hole, then there 459 * is nothing to zero. 460 */ 461 if (imap.br_startblock == HOLESTARTBLOCK) 462 return 0; 463 464 zero_len = mp->m_sb.sb_blocksize - zero_offset; 465 if (isize + zero_len > offset) 466 zero_len = offset - isize; 467 *did_zeroing = true; 468 return xfs_iozero(ip, isize, zero_len); 469 } 470 471 /* 472 * Zero any on disk space between the current EOF and the new, larger EOF. 473 * 474 * This handles the normal case of zeroing the remainder of the last block in 475 * the file and the unusual case of zeroing blocks out beyond the size of the 476 * file. This second case only happens with fixed size extents and when the 477 * system crashes before the inode size was updated but after blocks were 478 * allocated. 479 * 480 * Expects the iolock to be held exclusive, and will take the ilock internally. 481 */ 482 int /* error (positive) */ 483 xfs_zero_eof( 484 struct xfs_inode *ip, 485 xfs_off_t offset, /* starting I/O offset */ 486 xfs_fsize_t isize, /* current inode size */ 487 bool *did_zeroing) 488 { 489 struct xfs_mount *mp = ip->i_mount; 490 xfs_fileoff_t start_zero_fsb; 491 xfs_fileoff_t end_zero_fsb; 492 xfs_fileoff_t zero_count_fsb; 493 xfs_fileoff_t last_fsb; 494 xfs_fileoff_t zero_off; 495 xfs_fsize_t zero_len; 496 int nimaps; 497 int error = 0; 498 struct xfs_bmbt_irec imap; 499 500 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL)); 501 ASSERT(offset > isize); 502 503 trace_xfs_zero_eof(ip, isize, offset - isize); 504 505 /* 506 * First handle zeroing the block on which isize resides. 507 * 508 * We only zero a part of that block so it is handled specially. 509 */ 510 if (XFS_B_FSB_OFFSET(mp, isize) != 0) { 511 error = xfs_zero_last_block(ip, offset, isize, did_zeroing); 512 if (error) 513 return error; 514 } 515 516 /* 517 * Calculate the range between the new size and the old where blocks 518 * needing to be zeroed may exist. 519 * 520 * To get the block where the last byte in the file currently resides, 521 * we need to subtract one from the size and truncate back to a block 522 * boundary. We subtract 1 in case the size is exactly on a block 523 * boundary. 524 */ 525 last_fsb = isize ? XFS_B_TO_FSBT(mp, isize - 1) : (xfs_fileoff_t)-1; 526 start_zero_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize); 527 end_zero_fsb = XFS_B_TO_FSBT(mp, offset - 1); 528 ASSERT((xfs_sfiloff_t)last_fsb < (xfs_sfiloff_t)start_zero_fsb); 529 if (last_fsb == end_zero_fsb) { 530 /* 531 * The size was only incremented on its last block. 532 * We took care of that above, so just return. 533 */ 534 return 0; 535 } 536 537 ASSERT(start_zero_fsb <= end_zero_fsb); 538 while (start_zero_fsb <= end_zero_fsb) { 539 nimaps = 1; 540 zero_count_fsb = end_zero_fsb - start_zero_fsb + 1; 541 542 xfs_ilock(ip, XFS_ILOCK_EXCL); 543 error = xfs_bmapi_read(ip, start_zero_fsb, zero_count_fsb, 544 &imap, &nimaps, 0); 545 xfs_iunlock(ip, XFS_ILOCK_EXCL); 546 if (error) 547 return error; 548 549 ASSERT(nimaps > 0); 550 551 if (imap.br_state == XFS_EXT_UNWRITTEN || 552 imap.br_startblock == HOLESTARTBLOCK) { 553 start_zero_fsb = imap.br_startoff + imap.br_blockcount; 554 ASSERT(start_zero_fsb <= (end_zero_fsb + 1)); 555 continue; 556 } 557 558 /* 559 * There are blocks we need to zero. 560 */ 561 zero_off = XFS_FSB_TO_B(mp, start_zero_fsb); 562 zero_len = XFS_FSB_TO_B(mp, imap.br_blockcount); 563 564 if ((zero_off + zero_len) > offset) 565 zero_len = offset - zero_off; 566 567 error = xfs_iozero(ip, zero_off, zero_len); 568 if (error) 569 return error; 570 571 *did_zeroing = true; 572 start_zero_fsb = imap.br_startoff + imap.br_blockcount; 573 ASSERT(start_zero_fsb <= (end_zero_fsb + 1)); 574 } 575 576 return 0; 577 } 578 579 /* 580 * Common pre-write limit and setup checks. 581 * 582 * Called with the iolocked held either shared and exclusive according to 583 * @iolock, and returns with it held. Might upgrade the iolock to exclusive 584 * if called for a direct write beyond i_size. 585 */ 586 STATIC ssize_t 587 xfs_file_aio_write_checks( 588 struct kiocb *iocb, 589 struct iov_iter *from, 590 int *iolock) 591 { 592 struct file *file = iocb->ki_filp; 593 struct inode *inode = file->f_mapping->host; 594 struct xfs_inode *ip = XFS_I(inode); 595 ssize_t error = 0; 596 size_t count = iov_iter_count(from); 597 bool drained_dio = false; 598 599 restart: 600 error = generic_write_checks(iocb, from); 601 if (error <= 0) 602 return error; 603 604 error = xfs_break_layouts(inode, iolock, true); 605 if (error) 606 return error; 607 608 /* For changing security info in file_remove_privs() we need i_mutex */ 609 if (*iolock == XFS_IOLOCK_SHARED && !IS_NOSEC(inode)) { 610 xfs_rw_iunlock(ip, *iolock); 611 *iolock = XFS_IOLOCK_EXCL; 612 xfs_rw_ilock(ip, *iolock); 613 goto restart; 614 } 615 /* 616 * If the offset is beyond the size of the file, we need to zero any 617 * blocks that fall between the existing EOF and the start of this 618 * write. If zeroing is needed and we are currently holding the 619 * iolock shared, we need to update it to exclusive which implies 620 * having to redo all checks before. 621 * 622 * We need to serialise against EOF updates that occur in IO 623 * completions here. We want to make sure that nobody is changing the 624 * size while we do this check until we have placed an IO barrier (i.e. 625 * hold the XFS_IOLOCK_EXCL) that prevents new IO from being dispatched. 626 * The spinlock effectively forms a memory barrier once we have the 627 * XFS_IOLOCK_EXCL so we are guaranteed to see the latest EOF value 628 * and hence be able to correctly determine if we need to run zeroing. 629 */ 630 spin_lock(&ip->i_flags_lock); 631 if (iocb->ki_pos > i_size_read(inode)) { 632 bool zero = false; 633 634 spin_unlock(&ip->i_flags_lock); 635 if (!drained_dio) { 636 if (*iolock == XFS_IOLOCK_SHARED) { 637 xfs_rw_iunlock(ip, *iolock); 638 *iolock = XFS_IOLOCK_EXCL; 639 xfs_rw_ilock(ip, *iolock); 640 iov_iter_reexpand(from, count); 641 } 642 /* 643 * We now have an IO submission barrier in place, but 644 * AIO can do EOF updates during IO completion and hence 645 * we now need to wait for all of them to drain. Non-AIO 646 * DIO will have drained before we are given the 647 * XFS_IOLOCK_EXCL, and so for most cases this wait is a 648 * no-op. 649 */ 650 inode_dio_wait(inode); 651 drained_dio = true; 652 goto restart; 653 } 654 error = xfs_zero_eof(ip, iocb->ki_pos, i_size_read(inode), &zero); 655 if (error) 656 return error; 657 } else 658 spin_unlock(&ip->i_flags_lock); 659 660 /* 661 * Updating the timestamps will grab the ilock again from 662 * xfs_fs_dirty_inode, so we have to call it after dropping the 663 * lock above. Eventually we should look into a way to avoid 664 * the pointless lock roundtrip. 665 */ 666 if (likely(!(file->f_mode & FMODE_NOCMTIME))) { 667 error = file_update_time(file); 668 if (error) 669 return error; 670 } 671 672 /* 673 * If we're writing the file then make sure to clear the setuid and 674 * setgid bits if the process is not being run by root. This keeps 675 * people from modifying setuid and setgid binaries. 676 */ 677 if (!IS_NOSEC(inode)) 678 return file_remove_privs(file); 679 return 0; 680 } 681 682 /* 683 * xfs_file_dio_aio_write - handle direct IO writes 684 * 685 * Lock the inode appropriately to prepare for and issue a direct IO write. 686 * By separating it from the buffered write path we remove all the tricky to 687 * follow locking changes and looping. 688 * 689 * If there are cached pages or we're extending the file, we need IOLOCK_EXCL 690 * until we're sure the bytes at the new EOF have been zeroed and/or the cached 691 * pages are flushed out. 692 * 693 * In most cases the direct IO writes will be done holding IOLOCK_SHARED 694 * allowing them to be done in parallel with reads and other direct IO writes. 695 * However, if the IO is not aligned to filesystem blocks, the direct IO layer 696 * needs to do sub-block zeroing and that requires serialisation against other 697 * direct IOs to the same block. In this case we need to serialise the 698 * submission of the unaligned IOs so that we don't get racing block zeroing in 699 * the dio layer. To avoid the problem with aio, we also need to wait for 700 * outstanding IOs to complete so that unwritten extent conversion is completed 701 * before we try to map the overlapping block. This is currently implemented by 702 * hitting it with a big hammer (i.e. inode_dio_wait()). 703 * 704 * Returns with locks held indicated by @iolock and errors indicated by 705 * negative return values. 706 */ 707 STATIC ssize_t 708 xfs_file_dio_aio_write( 709 struct kiocb *iocb, 710 struct iov_iter *from) 711 { 712 struct file *file = iocb->ki_filp; 713 struct address_space *mapping = file->f_mapping; 714 struct inode *inode = mapping->host; 715 struct xfs_inode *ip = XFS_I(inode); 716 struct xfs_mount *mp = ip->i_mount; 717 ssize_t ret = 0; 718 int unaligned_io = 0; 719 int iolock; 720 size_t count = iov_iter_count(from); 721 loff_t end; 722 struct iov_iter data; 723 struct xfs_buftarg *target = XFS_IS_REALTIME_INODE(ip) ? 724 mp->m_rtdev_targp : mp->m_ddev_targp; 725 726 /* DIO must be aligned to device logical sector size */ 727 if (!IS_DAX(inode) && 728 ((iocb->ki_pos | count) & target->bt_logical_sectormask)) 729 return -EINVAL; 730 731 /* "unaligned" here means not aligned to a filesystem block */ 732 if ((iocb->ki_pos & mp->m_blockmask) || 733 ((iocb->ki_pos + count) & mp->m_blockmask)) 734 unaligned_io = 1; 735 736 /* 737 * We don't need to take an exclusive lock unless there page cache needs 738 * to be invalidated or unaligned IO is being executed. We don't need to 739 * consider the EOF extension case here because 740 * xfs_file_aio_write_checks() will relock the inode as necessary for 741 * EOF zeroing cases and fill out the new inode size as appropriate. 742 */ 743 if (unaligned_io || mapping->nrpages) 744 iolock = XFS_IOLOCK_EXCL; 745 else 746 iolock = XFS_IOLOCK_SHARED; 747 xfs_rw_ilock(ip, iolock); 748 749 /* 750 * Recheck if there are cached pages that need invalidate after we got 751 * the iolock to protect against other threads adding new pages while 752 * we were waiting for the iolock. 753 */ 754 if (mapping->nrpages && iolock == XFS_IOLOCK_SHARED) { 755 xfs_rw_iunlock(ip, iolock); 756 iolock = XFS_IOLOCK_EXCL; 757 xfs_rw_ilock(ip, iolock); 758 } 759 760 ret = xfs_file_aio_write_checks(iocb, from, &iolock); 761 if (ret) 762 goto out; 763 count = iov_iter_count(from); 764 end = iocb->ki_pos + count - 1; 765 766 /* 767 * See xfs_file_read_iter() for why we do a full-file flush here. 768 */ 769 if (mapping->nrpages) { 770 ret = filemap_write_and_wait(VFS_I(ip)->i_mapping); 771 if (ret) 772 goto out; 773 /* 774 * Invalidate whole pages. This can return an error if we fail 775 * to invalidate a page, but this should never happen on XFS. 776 * Warn if it does fail. 777 */ 778 ret = invalidate_inode_pages2(VFS_I(ip)->i_mapping); 779 WARN_ON_ONCE(ret); 780 ret = 0; 781 } 782 783 /* 784 * If we are doing unaligned IO, wait for all other IO to drain, 785 * otherwise demote the lock if we had to flush cached pages 786 */ 787 if (unaligned_io) 788 inode_dio_wait(inode); 789 else if (iolock == XFS_IOLOCK_EXCL) { 790 xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL); 791 iolock = XFS_IOLOCK_SHARED; 792 } 793 794 trace_xfs_file_direct_write(ip, count, iocb->ki_pos, 0); 795 796 data = *from; 797 ret = mapping->a_ops->direct_IO(iocb, &data); 798 799 /* see generic_file_direct_write() for why this is necessary */ 800 if (mapping->nrpages) { 801 invalidate_inode_pages2_range(mapping, 802 iocb->ki_pos >> PAGE_SHIFT, 803 end >> PAGE_SHIFT); 804 } 805 806 if (ret > 0) { 807 iocb->ki_pos += ret; 808 iov_iter_advance(from, ret); 809 } 810 out: 811 xfs_rw_iunlock(ip, iolock); 812 813 /* 814 * No fallback to buffered IO on errors for XFS. DAX can result in 815 * partial writes, but direct IO will either complete fully or fail. 816 */ 817 ASSERT(ret < 0 || ret == count || IS_DAX(VFS_I(ip))); 818 return ret; 819 } 820 821 STATIC ssize_t 822 xfs_file_buffered_aio_write( 823 struct kiocb *iocb, 824 struct iov_iter *from) 825 { 826 struct file *file = iocb->ki_filp; 827 struct address_space *mapping = file->f_mapping; 828 struct inode *inode = mapping->host; 829 struct xfs_inode *ip = XFS_I(inode); 830 ssize_t ret; 831 int enospc = 0; 832 int iolock = XFS_IOLOCK_EXCL; 833 834 xfs_rw_ilock(ip, iolock); 835 836 ret = xfs_file_aio_write_checks(iocb, from, &iolock); 837 if (ret) 838 goto out; 839 840 /* We can write back this queue in page reclaim */ 841 current->backing_dev_info = inode_to_bdi(inode); 842 843 write_retry: 844 trace_xfs_file_buffered_write(ip, iov_iter_count(from), 845 iocb->ki_pos, 0); 846 ret = generic_perform_write(file, from, iocb->ki_pos); 847 if (likely(ret >= 0)) 848 iocb->ki_pos += ret; 849 850 /* 851 * If we hit a space limit, try to free up some lingering preallocated 852 * space before returning an error. In the case of ENOSPC, first try to 853 * write back all dirty inodes to free up some of the excess reserved 854 * metadata space. This reduces the chances that the eofblocks scan 855 * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this 856 * also behaves as a filter to prevent too many eofblocks scans from 857 * running at the same time. 858 */ 859 if (ret == -EDQUOT && !enospc) { 860 enospc = xfs_inode_free_quota_eofblocks(ip); 861 if (enospc) 862 goto write_retry; 863 } else if (ret == -ENOSPC && !enospc) { 864 struct xfs_eofblocks eofb = {0}; 865 866 enospc = 1; 867 xfs_flush_inodes(ip->i_mount); 868 eofb.eof_scan_owner = ip->i_ino; /* for locking */ 869 eofb.eof_flags = XFS_EOF_FLAGS_SYNC; 870 xfs_icache_free_eofblocks(ip->i_mount, &eofb); 871 goto write_retry; 872 } 873 874 current->backing_dev_info = NULL; 875 out: 876 xfs_rw_iunlock(ip, iolock); 877 return ret; 878 } 879 880 STATIC ssize_t 881 xfs_file_write_iter( 882 struct kiocb *iocb, 883 struct iov_iter *from) 884 { 885 struct file *file = iocb->ki_filp; 886 struct address_space *mapping = file->f_mapping; 887 struct inode *inode = mapping->host; 888 struct xfs_inode *ip = XFS_I(inode); 889 ssize_t ret; 890 size_t ocount = iov_iter_count(from); 891 892 XFS_STATS_INC(ip->i_mount, xs_write_calls); 893 894 if (ocount == 0) 895 return 0; 896 897 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) 898 return -EIO; 899 900 if ((iocb->ki_flags & IOCB_DIRECT) || IS_DAX(inode)) 901 ret = xfs_file_dio_aio_write(iocb, from); 902 else 903 ret = xfs_file_buffered_aio_write(iocb, from); 904 905 if (ret > 0) { 906 XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret); 907 908 /* Handle various SYNC-type writes */ 909 ret = generic_write_sync(iocb, ret); 910 } 911 return ret; 912 } 913 914 #define XFS_FALLOC_FL_SUPPORTED \ 915 (FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | \ 916 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE | \ 917 FALLOC_FL_INSERT_RANGE) 918 919 STATIC long 920 xfs_file_fallocate( 921 struct file *file, 922 int mode, 923 loff_t offset, 924 loff_t len) 925 { 926 struct inode *inode = file_inode(file); 927 struct xfs_inode *ip = XFS_I(inode); 928 long error; 929 enum xfs_prealloc_flags flags = 0; 930 uint iolock = XFS_IOLOCK_EXCL; 931 loff_t new_size = 0; 932 bool do_file_insert = 0; 933 934 if (!S_ISREG(inode->i_mode)) 935 return -EINVAL; 936 if (mode & ~XFS_FALLOC_FL_SUPPORTED) 937 return -EOPNOTSUPP; 938 939 xfs_ilock(ip, iolock); 940 error = xfs_break_layouts(inode, &iolock, false); 941 if (error) 942 goto out_unlock; 943 944 xfs_ilock(ip, XFS_MMAPLOCK_EXCL); 945 iolock |= XFS_MMAPLOCK_EXCL; 946 947 if (mode & FALLOC_FL_PUNCH_HOLE) { 948 error = xfs_free_file_space(ip, offset, len); 949 if (error) 950 goto out_unlock; 951 } else if (mode & FALLOC_FL_COLLAPSE_RANGE) { 952 unsigned blksize_mask = (1 << inode->i_blkbits) - 1; 953 954 if (offset & blksize_mask || len & blksize_mask) { 955 error = -EINVAL; 956 goto out_unlock; 957 } 958 959 /* 960 * There is no need to overlap collapse range with EOF, 961 * in which case it is effectively a truncate operation 962 */ 963 if (offset + len >= i_size_read(inode)) { 964 error = -EINVAL; 965 goto out_unlock; 966 } 967 968 new_size = i_size_read(inode) - len; 969 970 error = xfs_collapse_file_space(ip, offset, len); 971 if (error) 972 goto out_unlock; 973 } else if (mode & FALLOC_FL_INSERT_RANGE) { 974 unsigned blksize_mask = (1 << inode->i_blkbits) - 1; 975 976 new_size = i_size_read(inode) + len; 977 if (offset & blksize_mask || len & blksize_mask) { 978 error = -EINVAL; 979 goto out_unlock; 980 } 981 982 /* check the new inode size does not wrap through zero */ 983 if (new_size > inode->i_sb->s_maxbytes) { 984 error = -EFBIG; 985 goto out_unlock; 986 } 987 988 /* Offset should be less than i_size */ 989 if (offset >= i_size_read(inode)) { 990 error = -EINVAL; 991 goto out_unlock; 992 } 993 do_file_insert = 1; 994 } else { 995 flags |= XFS_PREALLOC_SET; 996 997 if (!(mode & FALLOC_FL_KEEP_SIZE) && 998 offset + len > i_size_read(inode)) { 999 new_size = offset + len; 1000 error = inode_newsize_ok(inode, new_size); 1001 if (error) 1002 goto out_unlock; 1003 } 1004 1005 if (mode & FALLOC_FL_ZERO_RANGE) 1006 error = xfs_zero_file_space(ip, offset, len); 1007 else 1008 error = xfs_alloc_file_space(ip, offset, len, 1009 XFS_BMAPI_PREALLOC); 1010 if (error) 1011 goto out_unlock; 1012 } 1013 1014 if (file->f_flags & O_DSYNC) 1015 flags |= XFS_PREALLOC_SYNC; 1016 1017 error = xfs_update_prealloc_flags(ip, flags); 1018 if (error) 1019 goto out_unlock; 1020 1021 /* Change file size if needed */ 1022 if (new_size) { 1023 struct iattr iattr; 1024 1025 iattr.ia_valid = ATTR_SIZE; 1026 iattr.ia_size = new_size; 1027 error = xfs_setattr_size(ip, &iattr); 1028 if (error) 1029 goto out_unlock; 1030 } 1031 1032 /* 1033 * Perform hole insertion now that the file size has been 1034 * updated so that if we crash during the operation we don't 1035 * leave shifted extents past EOF and hence losing access to 1036 * the data that is contained within them. 1037 */ 1038 if (do_file_insert) 1039 error = xfs_insert_file_space(ip, offset, len); 1040 1041 out_unlock: 1042 xfs_iunlock(ip, iolock); 1043 return error; 1044 } 1045 1046 1047 STATIC int 1048 xfs_file_open( 1049 struct inode *inode, 1050 struct file *file) 1051 { 1052 if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS) 1053 return -EFBIG; 1054 if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb))) 1055 return -EIO; 1056 return 0; 1057 } 1058 1059 STATIC int 1060 xfs_dir_open( 1061 struct inode *inode, 1062 struct file *file) 1063 { 1064 struct xfs_inode *ip = XFS_I(inode); 1065 int mode; 1066 int error; 1067 1068 error = xfs_file_open(inode, file); 1069 if (error) 1070 return error; 1071 1072 /* 1073 * If there are any blocks, read-ahead block 0 as we're almost 1074 * certain to have the next operation be a read there. 1075 */ 1076 mode = xfs_ilock_data_map_shared(ip); 1077 if (ip->i_d.di_nextents > 0) 1078 xfs_dir3_data_readahead(ip, 0, -1); 1079 xfs_iunlock(ip, mode); 1080 return 0; 1081 } 1082 1083 STATIC int 1084 xfs_file_release( 1085 struct inode *inode, 1086 struct file *filp) 1087 { 1088 return xfs_release(XFS_I(inode)); 1089 } 1090 1091 STATIC int 1092 xfs_file_readdir( 1093 struct file *file, 1094 struct dir_context *ctx) 1095 { 1096 struct inode *inode = file_inode(file); 1097 xfs_inode_t *ip = XFS_I(inode); 1098 size_t bufsize; 1099 1100 /* 1101 * The Linux API doesn't pass down the total size of the buffer 1102 * we read into down to the filesystem. With the filldir concept 1103 * it's not needed for correct information, but the XFS dir2 leaf 1104 * code wants an estimate of the buffer size to calculate it's 1105 * readahead window and size the buffers used for mapping to 1106 * physical blocks. 1107 * 1108 * Try to give it an estimate that's good enough, maybe at some 1109 * point we can change the ->readdir prototype to include the 1110 * buffer size. For now we use the current glibc buffer size. 1111 */ 1112 bufsize = (size_t)min_t(loff_t, 32768, ip->i_d.di_size); 1113 1114 return xfs_readdir(ip, ctx, bufsize); 1115 } 1116 1117 /* 1118 * This type is designed to indicate the type of offset we would like 1119 * to search from page cache for xfs_seek_hole_data(). 1120 */ 1121 enum { 1122 HOLE_OFF = 0, 1123 DATA_OFF, 1124 }; 1125 1126 /* 1127 * Lookup the desired type of offset from the given page. 1128 * 1129 * On success, return true and the offset argument will point to the 1130 * start of the region that was found. Otherwise this function will 1131 * return false and keep the offset argument unchanged. 1132 */ 1133 STATIC bool 1134 xfs_lookup_buffer_offset( 1135 struct page *page, 1136 loff_t *offset, 1137 unsigned int type) 1138 { 1139 loff_t lastoff = page_offset(page); 1140 bool found = false; 1141 struct buffer_head *bh, *head; 1142 1143 bh = head = page_buffers(page); 1144 do { 1145 /* 1146 * Unwritten extents that have data in the page 1147 * cache covering them can be identified by the 1148 * BH_Unwritten state flag. Pages with multiple 1149 * buffers might have a mix of holes, data and 1150 * unwritten extents - any buffer with valid 1151 * data in it should have BH_Uptodate flag set 1152 * on it. 1153 */ 1154 if (buffer_unwritten(bh) || 1155 buffer_uptodate(bh)) { 1156 if (type == DATA_OFF) 1157 found = true; 1158 } else { 1159 if (type == HOLE_OFF) 1160 found = true; 1161 } 1162 1163 if (found) { 1164 *offset = lastoff; 1165 break; 1166 } 1167 lastoff += bh->b_size; 1168 } while ((bh = bh->b_this_page) != head); 1169 1170 return found; 1171 } 1172 1173 /* 1174 * This routine is called to find out and return a data or hole offset 1175 * from the page cache for unwritten extents according to the desired 1176 * type for xfs_seek_hole_data(). 1177 * 1178 * The argument offset is used to tell where we start to search from the 1179 * page cache. Map is used to figure out the end points of the range to 1180 * lookup pages. 1181 * 1182 * Return true if the desired type of offset was found, and the argument 1183 * offset is filled with that address. Otherwise, return false and keep 1184 * offset unchanged. 1185 */ 1186 STATIC bool 1187 xfs_find_get_desired_pgoff( 1188 struct inode *inode, 1189 struct xfs_bmbt_irec *map, 1190 unsigned int type, 1191 loff_t *offset) 1192 { 1193 struct xfs_inode *ip = XFS_I(inode); 1194 struct xfs_mount *mp = ip->i_mount; 1195 struct pagevec pvec; 1196 pgoff_t index; 1197 pgoff_t end; 1198 loff_t endoff; 1199 loff_t startoff = *offset; 1200 loff_t lastoff = startoff; 1201 bool found = false; 1202 1203 pagevec_init(&pvec, 0); 1204 1205 index = startoff >> PAGE_SHIFT; 1206 endoff = XFS_FSB_TO_B(mp, map->br_startoff + map->br_blockcount); 1207 end = endoff >> PAGE_SHIFT; 1208 do { 1209 int want; 1210 unsigned nr_pages; 1211 unsigned int i; 1212 1213 want = min_t(pgoff_t, end - index, PAGEVEC_SIZE); 1214 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, index, 1215 want); 1216 /* 1217 * No page mapped into given range. If we are searching holes 1218 * and if this is the first time we got into the loop, it means 1219 * that the given offset is landed in a hole, return it. 1220 * 1221 * If we have already stepped through some block buffers to find 1222 * holes but they all contains data. In this case, the last 1223 * offset is already updated and pointed to the end of the last 1224 * mapped page, if it does not reach the endpoint to search, 1225 * that means there should be a hole between them. 1226 */ 1227 if (nr_pages == 0) { 1228 /* Data search found nothing */ 1229 if (type == DATA_OFF) 1230 break; 1231 1232 ASSERT(type == HOLE_OFF); 1233 if (lastoff == startoff || lastoff < endoff) { 1234 found = true; 1235 *offset = lastoff; 1236 } 1237 break; 1238 } 1239 1240 /* 1241 * At lease we found one page. If this is the first time we 1242 * step into the loop, and if the first page index offset is 1243 * greater than the given search offset, a hole was found. 1244 */ 1245 if (type == HOLE_OFF && lastoff == startoff && 1246 lastoff < page_offset(pvec.pages[0])) { 1247 found = true; 1248 break; 1249 } 1250 1251 for (i = 0; i < nr_pages; i++) { 1252 struct page *page = pvec.pages[i]; 1253 loff_t b_offset; 1254 1255 /* 1256 * At this point, the page may be truncated or 1257 * invalidated (changing page->mapping to NULL), 1258 * or even swizzled back from swapper_space to tmpfs 1259 * file mapping. However, page->index will not change 1260 * because we have a reference on the page. 1261 * 1262 * Searching done if the page index is out of range. 1263 * If the current offset is not reaches the end of 1264 * the specified search range, there should be a hole 1265 * between them. 1266 */ 1267 if (page->index > end) { 1268 if (type == HOLE_OFF && lastoff < endoff) { 1269 *offset = lastoff; 1270 found = true; 1271 } 1272 goto out; 1273 } 1274 1275 lock_page(page); 1276 /* 1277 * Page truncated or invalidated(page->mapping == NULL). 1278 * We can freely skip it and proceed to check the next 1279 * page. 1280 */ 1281 if (unlikely(page->mapping != inode->i_mapping)) { 1282 unlock_page(page); 1283 continue; 1284 } 1285 1286 if (!page_has_buffers(page)) { 1287 unlock_page(page); 1288 continue; 1289 } 1290 1291 found = xfs_lookup_buffer_offset(page, &b_offset, type); 1292 if (found) { 1293 /* 1294 * The found offset may be less than the start 1295 * point to search if this is the first time to 1296 * come here. 1297 */ 1298 *offset = max_t(loff_t, startoff, b_offset); 1299 unlock_page(page); 1300 goto out; 1301 } 1302 1303 /* 1304 * We either searching data but nothing was found, or 1305 * searching hole but found a data buffer. In either 1306 * case, probably the next page contains the desired 1307 * things, update the last offset to it so. 1308 */ 1309 lastoff = page_offset(page) + PAGE_SIZE; 1310 unlock_page(page); 1311 } 1312 1313 /* 1314 * The number of returned pages less than our desired, search 1315 * done. In this case, nothing was found for searching data, 1316 * but we found a hole behind the last offset. 1317 */ 1318 if (nr_pages < want) { 1319 if (type == HOLE_OFF) { 1320 *offset = lastoff; 1321 found = true; 1322 } 1323 break; 1324 } 1325 1326 index = pvec.pages[i - 1]->index + 1; 1327 pagevec_release(&pvec); 1328 } while (index <= end); 1329 1330 out: 1331 pagevec_release(&pvec); 1332 return found; 1333 } 1334 1335 /* 1336 * caller must lock inode with xfs_ilock_data_map_shared, 1337 * can we craft an appropriate ASSERT? 1338 * 1339 * end is because the VFS-level lseek interface is defined such that any 1340 * offset past i_size shall return -ENXIO, but we use this for quota code 1341 * which does not maintain i_size, and we want to SEEK_DATA past i_size. 1342 */ 1343 loff_t 1344 __xfs_seek_hole_data( 1345 struct inode *inode, 1346 loff_t start, 1347 loff_t end, 1348 int whence) 1349 { 1350 struct xfs_inode *ip = XFS_I(inode); 1351 struct xfs_mount *mp = ip->i_mount; 1352 loff_t uninitialized_var(offset); 1353 xfs_fileoff_t fsbno; 1354 xfs_filblks_t lastbno; 1355 int error; 1356 1357 if (start >= end) { 1358 error = -ENXIO; 1359 goto out_error; 1360 } 1361 1362 /* 1363 * Try to read extents from the first block indicated 1364 * by fsbno to the end block of the file. 1365 */ 1366 fsbno = XFS_B_TO_FSBT(mp, start); 1367 lastbno = XFS_B_TO_FSB(mp, end); 1368 1369 for (;;) { 1370 struct xfs_bmbt_irec map[2]; 1371 int nmap = 2; 1372 unsigned int i; 1373 1374 error = xfs_bmapi_read(ip, fsbno, lastbno - fsbno, map, &nmap, 1375 XFS_BMAPI_ENTIRE); 1376 if (error) 1377 goto out_error; 1378 1379 /* No extents at given offset, must be beyond EOF */ 1380 if (nmap == 0) { 1381 error = -ENXIO; 1382 goto out_error; 1383 } 1384 1385 for (i = 0; i < nmap; i++) { 1386 offset = max_t(loff_t, start, 1387 XFS_FSB_TO_B(mp, map[i].br_startoff)); 1388 1389 /* Landed in the hole we wanted? */ 1390 if (whence == SEEK_HOLE && 1391 map[i].br_startblock == HOLESTARTBLOCK) 1392 goto out; 1393 1394 /* Landed in the data extent we wanted? */ 1395 if (whence == SEEK_DATA && 1396 (map[i].br_startblock == DELAYSTARTBLOCK || 1397 (map[i].br_state == XFS_EXT_NORM && 1398 !isnullstartblock(map[i].br_startblock)))) 1399 goto out; 1400 1401 /* 1402 * Landed in an unwritten extent, try to search 1403 * for hole or data from page cache. 1404 */ 1405 if (map[i].br_state == XFS_EXT_UNWRITTEN) { 1406 if (xfs_find_get_desired_pgoff(inode, &map[i], 1407 whence == SEEK_HOLE ? HOLE_OFF : DATA_OFF, 1408 &offset)) 1409 goto out; 1410 } 1411 } 1412 1413 /* 1414 * We only received one extent out of the two requested. This 1415 * means we've hit EOF and didn't find what we are looking for. 1416 */ 1417 if (nmap == 1) { 1418 /* 1419 * If we were looking for a hole, set offset to 1420 * the end of the file (i.e., there is an implicit 1421 * hole at the end of any file). 1422 */ 1423 if (whence == SEEK_HOLE) { 1424 offset = end; 1425 break; 1426 } 1427 /* 1428 * If we were looking for data, it's nowhere to be found 1429 */ 1430 ASSERT(whence == SEEK_DATA); 1431 error = -ENXIO; 1432 goto out_error; 1433 } 1434 1435 ASSERT(i > 1); 1436 1437 /* 1438 * Nothing was found, proceed to the next round of search 1439 * if the next reading offset is not at or beyond EOF. 1440 */ 1441 fsbno = map[i - 1].br_startoff + map[i - 1].br_blockcount; 1442 start = XFS_FSB_TO_B(mp, fsbno); 1443 if (start >= end) { 1444 if (whence == SEEK_HOLE) { 1445 offset = end; 1446 break; 1447 } 1448 ASSERT(whence == SEEK_DATA); 1449 error = -ENXIO; 1450 goto out_error; 1451 } 1452 } 1453 1454 out: 1455 /* 1456 * If at this point we have found the hole we wanted, the returned 1457 * offset may be bigger than the file size as it may be aligned to 1458 * page boundary for unwritten extents. We need to deal with this 1459 * situation in particular. 1460 */ 1461 if (whence == SEEK_HOLE) 1462 offset = min_t(loff_t, offset, end); 1463 1464 return offset; 1465 1466 out_error: 1467 return error; 1468 } 1469 1470 STATIC loff_t 1471 xfs_seek_hole_data( 1472 struct file *file, 1473 loff_t start, 1474 int whence) 1475 { 1476 struct inode *inode = file->f_mapping->host; 1477 struct xfs_inode *ip = XFS_I(inode); 1478 struct xfs_mount *mp = ip->i_mount; 1479 uint lock; 1480 loff_t offset, end; 1481 int error = 0; 1482 1483 if (XFS_FORCED_SHUTDOWN(mp)) 1484 return -EIO; 1485 1486 lock = xfs_ilock_data_map_shared(ip); 1487 1488 end = i_size_read(inode); 1489 offset = __xfs_seek_hole_data(inode, start, end, whence); 1490 if (offset < 0) { 1491 error = offset; 1492 goto out_unlock; 1493 } 1494 1495 offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes); 1496 1497 out_unlock: 1498 xfs_iunlock(ip, lock); 1499 1500 if (error) 1501 return error; 1502 return offset; 1503 } 1504 1505 STATIC loff_t 1506 xfs_file_llseek( 1507 struct file *file, 1508 loff_t offset, 1509 int whence) 1510 { 1511 switch (whence) { 1512 case SEEK_END: 1513 case SEEK_CUR: 1514 case SEEK_SET: 1515 return generic_file_llseek(file, offset, whence); 1516 case SEEK_HOLE: 1517 case SEEK_DATA: 1518 return xfs_seek_hole_data(file, offset, whence); 1519 default: 1520 return -EINVAL; 1521 } 1522 } 1523 1524 /* 1525 * Locking for serialisation of IO during page faults. This results in a lock 1526 * ordering of: 1527 * 1528 * mmap_sem (MM) 1529 * sb_start_pagefault(vfs, freeze) 1530 * i_mmaplock (XFS - truncate serialisation) 1531 * page_lock (MM) 1532 * i_lock (XFS - extent map serialisation) 1533 */ 1534 1535 /* 1536 * mmap()d file has taken write protection fault and is being made writable. We 1537 * can set the page state up correctly for a writable page, which means we can 1538 * do correct delalloc accounting (ENOSPC checking!) and unwritten extent 1539 * mapping. 1540 */ 1541 STATIC int 1542 xfs_filemap_page_mkwrite( 1543 struct vm_area_struct *vma, 1544 struct vm_fault *vmf) 1545 { 1546 struct inode *inode = file_inode(vma->vm_file); 1547 int ret; 1548 1549 trace_xfs_filemap_page_mkwrite(XFS_I(inode)); 1550 1551 sb_start_pagefault(inode->i_sb); 1552 file_update_time(vma->vm_file); 1553 xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED); 1554 1555 if (IS_DAX(inode)) { 1556 ret = __dax_mkwrite(vma, vmf, xfs_get_blocks_dax_fault, NULL); 1557 } else { 1558 ret = block_page_mkwrite(vma, vmf, xfs_get_blocks); 1559 ret = block_page_mkwrite_return(ret); 1560 } 1561 1562 xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED); 1563 sb_end_pagefault(inode->i_sb); 1564 1565 return ret; 1566 } 1567 1568 STATIC int 1569 xfs_filemap_fault( 1570 struct vm_area_struct *vma, 1571 struct vm_fault *vmf) 1572 { 1573 struct inode *inode = file_inode(vma->vm_file); 1574 int ret; 1575 1576 trace_xfs_filemap_fault(XFS_I(inode)); 1577 1578 /* DAX can shortcut the normal fault path on write faults! */ 1579 if ((vmf->flags & FAULT_FLAG_WRITE) && IS_DAX(inode)) 1580 return xfs_filemap_page_mkwrite(vma, vmf); 1581 1582 xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED); 1583 if (IS_DAX(inode)) { 1584 /* 1585 * we do not want to trigger unwritten extent conversion on read 1586 * faults - that is unnecessary overhead and would also require 1587 * changes to xfs_get_blocks_direct() to map unwritten extent 1588 * ioend for conversion on read-only mappings. 1589 */ 1590 ret = __dax_fault(vma, vmf, xfs_get_blocks_dax_fault, NULL); 1591 } else 1592 ret = filemap_fault(vma, vmf); 1593 xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED); 1594 1595 return ret; 1596 } 1597 1598 /* 1599 * Similar to xfs_filemap_fault(), the DAX fault path can call into here on 1600 * both read and write faults. Hence we need to handle both cases. There is no 1601 * ->pmd_mkwrite callout for huge pages, so we have a single function here to 1602 * handle both cases here. @flags carries the information on the type of fault 1603 * occuring. 1604 */ 1605 STATIC int 1606 xfs_filemap_pmd_fault( 1607 struct vm_area_struct *vma, 1608 unsigned long addr, 1609 pmd_t *pmd, 1610 unsigned int flags) 1611 { 1612 struct inode *inode = file_inode(vma->vm_file); 1613 struct xfs_inode *ip = XFS_I(inode); 1614 int ret; 1615 1616 if (!IS_DAX(inode)) 1617 return VM_FAULT_FALLBACK; 1618 1619 trace_xfs_filemap_pmd_fault(ip); 1620 1621 if (flags & FAULT_FLAG_WRITE) { 1622 sb_start_pagefault(inode->i_sb); 1623 file_update_time(vma->vm_file); 1624 } 1625 1626 xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED); 1627 ret = __dax_pmd_fault(vma, addr, pmd, flags, xfs_get_blocks_dax_fault, 1628 NULL); 1629 xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED); 1630 1631 if (flags & FAULT_FLAG_WRITE) 1632 sb_end_pagefault(inode->i_sb); 1633 1634 return ret; 1635 } 1636 1637 /* 1638 * pfn_mkwrite was originally inteneded to ensure we capture time stamp 1639 * updates on write faults. In reality, it's need to serialise against 1640 * truncate similar to page_mkwrite. Hence we cycle the XFS_MMAPLOCK_SHARED 1641 * to ensure we serialise the fault barrier in place. 1642 */ 1643 static int 1644 xfs_filemap_pfn_mkwrite( 1645 struct vm_area_struct *vma, 1646 struct vm_fault *vmf) 1647 { 1648 1649 struct inode *inode = file_inode(vma->vm_file); 1650 struct xfs_inode *ip = XFS_I(inode); 1651 int ret = VM_FAULT_NOPAGE; 1652 loff_t size; 1653 1654 trace_xfs_filemap_pfn_mkwrite(ip); 1655 1656 sb_start_pagefault(inode->i_sb); 1657 file_update_time(vma->vm_file); 1658 1659 /* check if the faulting page hasn't raced with truncate */ 1660 xfs_ilock(ip, XFS_MMAPLOCK_SHARED); 1661 size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT; 1662 if (vmf->pgoff >= size) 1663 ret = VM_FAULT_SIGBUS; 1664 else if (IS_DAX(inode)) 1665 ret = dax_pfn_mkwrite(vma, vmf); 1666 xfs_iunlock(ip, XFS_MMAPLOCK_SHARED); 1667 sb_end_pagefault(inode->i_sb); 1668 return ret; 1669 1670 } 1671 1672 static const struct vm_operations_struct xfs_file_vm_ops = { 1673 .fault = xfs_filemap_fault, 1674 .pmd_fault = xfs_filemap_pmd_fault, 1675 .map_pages = filemap_map_pages, 1676 .page_mkwrite = xfs_filemap_page_mkwrite, 1677 .pfn_mkwrite = xfs_filemap_pfn_mkwrite, 1678 }; 1679 1680 STATIC int 1681 xfs_file_mmap( 1682 struct file *filp, 1683 struct vm_area_struct *vma) 1684 { 1685 file_accessed(filp); 1686 vma->vm_ops = &xfs_file_vm_ops; 1687 if (IS_DAX(file_inode(filp))) 1688 vma->vm_flags |= VM_MIXEDMAP | VM_HUGEPAGE; 1689 return 0; 1690 } 1691 1692 const struct file_operations xfs_file_operations = { 1693 .llseek = xfs_file_llseek, 1694 .read_iter = xfs_file_read_iter, 1695 .write_iter = xfs_file_write_iter, 1696 .splice_read = xfs_file_splice_read, 1697 .splice_write = iter_file_splice_write, 1698 .unlocked_ioctl = xfs_file_ioctl, 1699 #ifdef CONFIG_COMPAT 1700 .compat_ioctl = xfs_file_compat_ioctl, 1701 #endif 1702 .mmap = xfs_file_mmap, 1703 .open = xfs_file_open, 1704 .release = xfs_file_release, 1705 .fsync = xfs_file_fsync, 1706 .fallocate = xfs_file_fallocate, 1707 }; 1708 1709 const struct file_operations xfs_dir_file_operations = { 1710 .open = xfs_dir_open, 1711 .read = generic_read_dir, 1712 .iterate_shared = xfs_file_readdir, 1713 .llseek = generic_file_llseek, 1714 .unlocked_ioctl = xfs_file_ioctl, 1715 #ifdef CONFIG_COMPAT 1716 .compat_ioctl = xfs_file_compat_ioctl, 1717 #endif 1718 .fsync = xfs_dir_fsync, 1719 }; 1720