1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_mount.h" 13 #include "xfs_inode.h" 14 #include "xfs_trans.h" 15 #include "xfs_inode_item.h" 16 #include "xfs_bmap.h" 17 #include "xfs_bmap_util.h" 18 #include "xfs_dir2.h" 19 #include "xfs_dir2_priv.h" 20 #include "xfs_ioctl.h" 21 #include "xfs_trace.h" 22 #include "xfs_log.h" 23 #include "xfs_icache.h" 24 #include "xfs_pnfs.h" 25 #include "xfs_iomap.h" 26 #include "xfs_reflink.h" 27 28 #include <linux/falloc.h> 29 #include <linux/backing-dev.h> 30 #include <linux/mman.h> 31 #include <linux/fadvise.h> 32 33 static const struct vm_operations_struct xfs_file_vm_ops; 34 35 int 36 xfs_update_prealloc_flags( 37 struct xfs_inode *ip, 38 enum xfs_prealloc_flags flags) 39 { 40 struct xfs_trans *tp; 41 int error; 42 43 error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_writeid, 44 0, 0, 0, &tp); 45 if (error) 46 return error; 47 48 xfs_ilock(ip, XFS_ILOCK_EXCL); 49 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 50 51 if (!(flags & XFS_PREALLOC_INVISIBLE)) { 52 VFS_I(ip)->i_mode &= ~S_ISUID; 53 if (VFS_I(ip)->i_mode & S_IXGRP) 54 VFS_I(ip)->i_mode &= ~S_ISGID; 55 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 56 } 57 58 if (flags & XFS_PREALLOC_SET) 59 ip->i_d.di_flags |= XFS_DIFLAG_PREALLOC; 60 if (flags & XFS_PREALLOC_CLEAR) 61 ip->i_d.di_flags &= ~XFS_DIFLAG_PREALLOC; 62 63 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 64 if (flags & XFS_PREALLOC_SYNC) 65 xfs_trans_set_sync(tp); 66 return xfs_trans_commit(tp); 67 } 68 69 /* 70 * Fsync operations on directories are much simpler than on regular files, 71 * as there is no file data to flush, and thus also no need for explicit 72 * cache flush operations, and there are no non-transaction metadata updates 73 * on directories either. 74 */ 75 STATIC int 76 xfs_dir_fsync( 77 struct file *file, 78 loff_t start, 79 loff_t end, 80 int datasync) 81 { 82 struct xfs_inode *ip = XFS_I(file->f_mapping->host); 83 struct xfs_mount *mp = ip->i_mount; 84 xfs_lsn_t lsn = 0; 85 86 trace_xfs_dir_fsync(ip); 87 88 xfs_ilock(ip, XFS_ILOCK_SHARED); 89 if (xfs_ipincount(ip)) 90 lsn = ip->i_itemp->ili_last_lsn; 91 xfs_iunlock(ip, XFS_ILOCK_SHARED); 92 93 if (!lsn) 94 return 0; 95 return xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, NULL); 96 } 97 98 STATIC int 99 xfs_file_fsync( 100 struct file *file, 101 loff_t start, 102 loff_t end, 103 int datasync) 104 { 105 struct inode *inode = file->f_mapping->host; 106 struct xfs_inode *ip = XFS_I(inode); 107 struct xfs_mount *mp = ip->i_mount; 108 int error = 0; 109 int log_flushed = 0; 110 xfs_lsn_t lsn = 0; 111 112 trace_xfs_file_fsync(ip); 113 114 error = file_write_and_wait_range(file, start, end); 115 if (error) 116 return error; 117 118 if (XFS_FORCED_SHUTDOWN(mp)) 119 return -EIO; 120 121 xfs_iflags_clear(ip, XFS_ITRUNCATED); 122 123 /* 124 * If we have an RT and/or log subvolume we need to make sure to flush 125 * the write cache the device used for file data first. This is to 126 * ensure newly written file data make it to disk before logging the new 127 * inode size in case of an extending write. 128 */ 129 if (XFS_IS_REALTIME_INODE(ip)) 130 xfs_blkdev_issue_flush(mp->m_rtdev_targp); 131 else if (mp->m_logdev_targp != mp->m_ddev_targp) 132 xfs_blkdev_issue_flush(mp->m_ddev_targp); 133 134 /* 135 * All metadata updates are logged, which means that we just have to 136 * flush the log up to the latest LSN that touched the inode. If we have 137 * concurrent fsync/fdatasync() calls, we need them to all block on the 138 * log force before we clear the ili_fsync_fields field. This ensures 139 * that we don't get a racing sync operation that does not wait for the 140 * metadata to hit the journal before returning. If we race with 141 * clearing the ili_fsync_fields, then all that will happen is the log 142 * force will do nothing as the lsn will already be on disk. We can't 143 * race with setting ili_fsync_fields because that is done under 144 * XFS_ILOCK_EXCL, and that can't happen because we hold the lock shared 145 * until after the ili_fsync_fields is cleared. 146 */ 147 xfs_ilock(ip, XFS_ILOCK_SHARED); 148 if (xfs_ipincount(ip)) { 149 if (!datasync || 150 (ip->i_itemp->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP)) 151 lsn = ip->i_itemp->ili_last_lsn; 152 } 153 154 if (lsn) { 155 error = xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed); 156 ip->i_itemp->ili_fsync_fields = 0; 157 } 158 xfs_iunlock(ip, XFS_ILOCK_SHARED); 159 160 /* 161 * If we only have a single device, and the log force about was 162 * a no-op we might have to flush the data device cache here. 163 * This can only happen for fdatasync/O_DSYNC if we were overwriting 164 * an already allocated file and thus do not have any metadata to 165 * commit. 166 */ 167 if (!log_flushed && !XFS_IS_REALTIME_INODE(ip) && 168 mp->m_logdev_targp == mp->m_ddev_targp) 169 xfs_blkdev_issue_flush(mp->m_ddev_targp); 170 171 return error; 172 } 173 174 STATIC ssize_t 175 xfs_file_dio_aio_read( 176 struct kiocb *iocb, 177 struct iov_iter *to) 178 { 179 struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp)); 180 size_t count = iov_iter_count(to); 181 ssize_t ret; 182 183 trace_xfs_file_direct_read(ip, count, iocb->ki_pos); 184 185 if (!count) 186 return 0; /* skip atime */ 187 188 file_accessed(iocb->ki_filp); 189 190 xfs_ilock(ip, XFS_IOLOCK_SHARED); 191 ret = iomap_dio_rw(iocb, to, &xfs_iomap_ops, NULL); 192 xfs_iunlock(ip, XFS_IOLOCK_SHARED); 193 194 return ret; 195 } 196 197 static noinline ssize_t 198 xfs_file_dax_read( 199 struct kiocb *iocb, 200 struct iov_iter *to) 201 { 202 struct xfs_inode *ip = XFS_I(iocb->ki_filp->f_mapping->host); 203 size_t count = iov_iter_count(to); 204 ssize_t ret = 0; 205 206 trace_xfs_file_dax_read(ip, count, iocb->ki_pos); 207 208 if (!count) 209 return 0; /* skip atime */ 210 211 if (iocb->ki_flags & IOCB_NOWAIT) { 212 if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED)) 213 return -EAGAIN; 214 } else { 215 xfs_ilock(ip, XFS_IOLOCK_SHARED); 216 } 217 218 ret = dax_iomap_rw(iocb, to, &xfs_iomap_ops); 219 xfs_iunlock(ip, XFS_IOLOCK_SHARED); 220 221 file_accessed(iocb->ki_filp); 222 return ret; 223 } 224 225 STATIC ssize_t 226 xfs_file_buffered_aio_read( 227 struct kiocb *iocb, 228 struct iov_iter *to) 229 { 230 struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp)); 231 ssize_t ret; 232 233 trace_xfs_file_buffered_read(ip, iov_iter_count(to), iocb->ki_pos); 234 235 if (iocb->ki_flags & IOCB_NOWAIT) { 236 if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED)) 237 return -EAGAIN; 238 } else { 239 xfs_ilock(ip, XFS_IOLOCK_SHARED); 240 } 241 ret = generic_file_read_iter(iocb, to); 242 xfs_iunlock(ip, XFS_IOLOCK_SHARED); 243 244 return ret; 245 } 246 247 STATIC ssize_t 248 xfs_file_read_iter( 249 struct kiocb *iocb, 250 struct iov_iter *to) 251 { 252 struct inode *inode = file_inode(iocb->ki_filp); 253 struct xfs_mount *mp = XFS_I(inode)->i_mount; 254 ssize_t ret = 0; 255 256 XFS_STATS_INC(mp, xs_read_calls); 257 258 if (XFS_FORCED_SHUTDOWN(mp)) 259 return -EIO; 260 261 if (IS_DAX(inode)) 262 ret = xfs_file_dax_read(iocb, to); 263 else if (iocb->ki_flags & IOCB_DIRECT) 264 ret = xfs_file_dio_aio_read(iocb, to); 265 else 266 ret = xfs_file_buffered_aio_read(iocb, to); 267 268 if (ret > 0) 269 XFS_STATS_ADD(mp, xs_read_bytes, ret); 270 return ret; 271 } 272 273 /* 274 * Common pre-write limit and setup checks. 275 * 276 * Called with the iolocked held either shared and exclusive according to 277 * @iolock, and returns with it held. Might upgrade the iolock to exclusive 278 * if called for a direct write beyond i_size. 279 */ 280 STATIC ssize_t 281 xfs_file_aio_write_checks( 282 struct kiocb *iocb, 283 struct iov_iter *from, 284 int *iolock) 285 { 286 struct file *file = iocb->ki_filp; 287 struct inode *inode = file->f_mapping->host; 288 struct xfs_inode *ip = XFS_I(inode); 289 ssize_t error = 0; 290 size_t count = iov_iter_count(from); 291 bool drained_dio = false; 292 loff_t isize; 293 294 restart: 295 error = generic_write_checks(iocb, from); 296 if (error <= 0) 297 return error; 298 299 error = xfs_break_layouts(inode, iolock, BREAK_WRITE); 300 if (error) 301 return error; 302 303 /* 304 * For changing security info in file_remove_privs() we need i_rwsem 305 * exclusively. 306 */ 307 if (*iolock == XFS_IOLOCK_SHARED && !IS_NOSEC(inode)) { 308 xfs_iunlock(ip, *iolock); 309 *iolock = XFS_IOLOCK_EXCL; 310 xfs_ilock(ip, *iolock); 311 goto restart; 312 } 313 /* 314 * If the offset is beyond the size of the file, we need to zero any 315 * blocks that fall between the existing EOF and the start of this 316 * write. If zeroing is needed and we are currently holding the 317 * iolock shared, we need to update it to exclusive which implies 318 * having to redo all checks before. 319 * 320 * We need to serialise against EOF updates that occur in IO 321 * completions here. We want to make sure that nobody is changing the 322 * size while we do this check until we have placed an IO barrier (i.e. 323 * hold the XFS_IOLOCK_EXCL) that prevents new IO from being dispatched. 324 * The spinlock effectively forms a memory barrier once we have the 325 * XFS_IOLOCK_EXCL so we are guaranteed to see the latest EOF value 326 * and hence be able to correctly determine if we need to run zeroing. 327 */ 328 spin_lock(&ip->i_flags_lock); 329 isize = i_size_read(inode); 330 if (iocb->ki_pos > isize) { 331 spin_unlock(&ip->i_flags_lock); 332 if (!drained_dio) { 333 if (*iolock == XFS_IOLOCK_SHARED) { 334 xfs_iunlock(ip, *iolock); 335 *iolock = XFS_IOLOCK_EXCL; 336 xfs_ilock(ip, *iolock); 337 iov_iter_reexpand(from, count); 338 } 339 /* 340 * We now have an IO submission barrier in place, but 341 * AIO can do EOF updates during IO completion and hence 342 * we now need to wait for all of them to drain. Non-AIO 343 * DIO will have drained before we are given the 344 * XFS_IOLOCK_EXCL, and so for most cases this wait is a 345 * no-op. 346 */ 347 inode_dio_wait(inode); 348 drained_dio = true; 349 goto restart; 350 } 351 352 trace_xfs_zero_eof(ip, isize, iocb->ki_pos - isize); 353 error = iomap_zero_range(inode, isize, iocb->ki_pos - isize, 354 NULL, &xfs_iomap_ops); 355 if (error) 356 return error; 357 } else 358 spin_unlock(&ip->i_flags_lock); 359 360 /* 361 * Updating the timestamps will grab the ilock again from 362 * xfs_fs_dirty_inode, so we have to call it after dropping the 363 * lock above. Eventually we should look into a way to avoid 364 * the pointless lock roundtrip. 365 */ 366 return file_modified(file); 367 } 368 369 static int 370 xfs_dio_write_end_io( 371 struct kiocb *iocb, 372 ssize_t size, 373 int error, 374 unsigned flags) 375 { 376 struct inode *inode = file_inode(iocb->ki_filp); 377 struct xfs_inode *ip = XFS_I(inode); 378 loff_t offset = iocb->ki_pos; 379 unsigned int nofs_flag; 380 381 trace_xfs_end_io_direct_write(ip, offset, size); 382 383 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) 384 return -EIO; 385 386 if (error) 387 return error; 388 if (!size) 389 return 0; 390 391 /* 392 * Capture amount written on completion as we can't reliably account 393 * for it on submission. 394 */ 395 XFS_STATS_ADD(ip->i_mount, xs_write_bytes, size); 396 397 /* 398 * We can allocate memory here while doing writeback on behalf of 399 * memory reclaim. To avoid memory allocation deadlocks set the 400 * task-wide nofs context for the following operations. 401 */ 402 nofs_flag = memalloc_nofs_save(); 403 404 if (flags & IOMAP_DIO_COW) { 405 error = xfs_reflink_end_cow(ip, offset, size); 406 if (error) 407 goto out; 408 } 409 410 /* 411 * Unwritten conversion updates the in-core isize after extent 412 * conversion but before updating the on-disk size. Updating isize any 413 * earlier allows a racing dio read to find unwritten extents before 414 * they are converted. 415 */ 416 if (flags & IOMAP_DIO_UNWRITTEN) { 417 error = xfs_iomap_write_unwritten(ip, offset, size, true); 418 goto out; 419 } 420 421 /* 422 * We need to update the in-core inode size here so that we don't end up 423 * with the on-disk inode size being outside the in-core inode size. We 424 * have no other method of updating EOF for AIO, so always do it here 425 * if necessary. 426 * 427 * We need to lock the test/set EOF update as we can be racing with 428 * other IO completions here to update the EOF. Failing to serialise 429 * here can result in EOF moving backwards and Bad Things Happen when 430 * that occurs. 431 */ 432 spin_lock(&ip->i_flags_lock); 433 if (offset + size > i_size_read(inode)) { 434 i_size_write(inode, offset + size); 435 spin_unlock(&ip->i_flags_lock); 436 error = xfs_setfilesize(ip, offset, size); 437 } else { 438 spin_unlock(&ip->i_flags_lock); 439 } 440 441 out: 442 memalloc_nofs_restore(nofs_flag); 443 return error; 444 } 445 446 static const struct iomap_dio_ops xfs_dio_write_ops = { 447 .end_io = xfs_dio_write_end_io, 448 }; 449 450 /* 451 * xfs_file_dio_aio_write - handle direct IO writes 452 * 453 * Lock the inode appropriately to prepare for and issue a direct IO write. 454 * By separating it from the buffered write path we remove all the tricky to 455 * follow locking changes and looping. 456 * 457 * If there are cached pages or we're extending the file, we need IOLOCK_EXCL 458 * until we're sure the bytes at the new EOF have been zeroed and/or the cached 459 * pages are flushed out. 460 * 461 * In most cases the direct IO writes will be done holding IOLOCK_SHARED 462 * allowing them to be done in parallel with reads and other direct IO writes. 463 * However, if the IO is not aligned to filesystem blocks, the direct IO layer 464 * needs to do sub-block zeroing and that requires serialisation against other 465 * direct IOs to the same block. In this case we need to serialise the 466 * submission of the unaligned IOs so that we don't get racing block zeroing in 467 * the dio layer. To avoid the problem with aio, we also need to wait for 468 * outstanding IOs to complete so that unwritten extent conversion is completed 469 * before we try to map the overlapping block. This is currently implemented by 470 * hitting it with a big hammer (i.e. inode_dio_wait()). 471 * 472 * Returns with locks held indicated by @iolock and errors indicated by 473 * negative return values. 474 */ 475 STATIC ssize_t 476 xfs_file_dio_aio_write( 477 struct kiocb *iocb, 478 struct iov_iter *from) 479 { 480 struct file *file = iocb->ki_filp; 481 struct address_space *mapping = file->f_mapping; 482 struct inode *inode = mapping->host; 483 struct xfs_inode *ip = XFS_I(inode); 484 struct xfs_mount *mp = ip->i_mount; 485 ssize_t ret = 0; 486 int unaligned_io = 0; 487 int iolock; 488 size_t count = iov_iter_count(from); 489 struct xfs_buftarg *target = XFS_IS_REALTIME_INODE(ip) ? 490 mp->m_rtdev_targp : mp->m_ddev_targp; 491 492 /* DIO must be aligned to device logical sector size */ 493 if ((iocb->ki_pos | count) & target->bt_logical_sectormask) 494 return -EINVAL; 495 496 /* 497 * Don't take the exclusive iolock here unless the I/O is unaligned to 498 * the file system block size. We don't need to consider the EOF 499 * extension case here because xfs_file_aio_write_checks() will relock 500 * the inode as necessary for EOF zeroing cases and fill out the new 501 * inode size as appropriate. 502 */ 503 if ((iocb->ki_pos & mp->m_blockmask) || 504 ((iocb->ki_pos + count) & mp->m_blockmask)) { 505 unaligned_io = 1; 506 507 /* 508 * We can't properly handle unaligned direct I/O to reflink 509 * files yet, as we can't unshare a partial block. 510 */ 511 if (xfs_is_cow_inode(ip)) { 512 trace_xfs_reflink_bounce_dio_write(ip, iocb->ki_pos, count); 513 return -EREMCHG; 514 } 515 iolock = XFS_IOLOCK_EXCL; 516 } else { 517 iolock = XFS_IOLOCK_SHARED; 518 } 519 520 if (iocb->ki_flags & IOCB_NOWAIT) { 521 /* unaligned dio always waits, bail */ 522 if (unaligned_io) 523 return -EAGAIN; 524 if (!xfs_ilock_nowait(ip, iolock)) 525 return -EAGAIN; 526 } else { 527 xfs_ilock(ip, iolock); 528 } 529 530 ret = xfs_file_aio_write_checks(iocb, from, &iolock); 531 if (ret) 532 goto out; 533 count = iov_iter_count(from); 534 535 /* 536 * If we are doing unaligned IO, we can't allow any other overlapping IO 537 * in-flight at the same time or we risk data corruption. Wait for all 538 * other IO to drain before we submit. If the IO is aligned, demote the 539 * iolock if we had to take the exclusive lock in 540 * xfs_file_aio_write_checks() for other reasons. 541 */ 542 if (unaligned_io) { 543 inode_dio_wait(inode); 544 } else if (iolock == XFS_IOLOCK_EXCL) { 545 xfs_ilock_demote(ip, XFS_IOLOCK_EXCL); 546 iolock = XFS_IOLOCK_SHARED; 547 } 548 549 trace_xfs_file_direct_write(ip, count, iocb->ki_pos); 550 ret = iomap_dio_rw(iocb, from, &xfs_iomap_ops, &xfs_dio_write_ops); 551 552 /* 553 * If unaligned, this is the only IO in-flight. If it has not yet 554 * completed, wait on it before we release the iolock to prevent 555 * subsequent overlapping IO. 556 */ 557 if (ret == -EIOCBQUEUED && unaligned_io) 558 inode_dio_wait(inode); 559 out: 560 xfs_iunlock(ip, iolock); 561 562 /* 563 * No fallback to buffered IO on errors for XFS, direct IO will either 564 * complete fully or fail. 565 */ 566 ASSERT(ret < 0 || ret == count); 567 return ret; 568 } 569 570 static noinline ssize_t 571 xfs_file_dax_write( 572 struct kiocb *iocb, 573 struct iov_iter *from) 574 { 575 struct inode *inode = iocb->ki_filp->f_mapping->host; 576 struct xfs_inode *ip = XFS_I(inode); 577 int iolock = XFS_IOLOCK_EXCL; 578 ssize_t ret, error = 0; 579 size_t count; 580 loff_t pos; 581 582 if (iocb->ki_flags & IOCB_NOWAIT) { 583 if (!xfs_ilock_nowait(ip, iolock)) 584 return -EAGAIN; 585 } else { 586 xfs_ilock(ip, iolock); 587 } 588 589 ret = xfs_file_aio_write_checks(iocb, from, &iolock); 590 if (ret) 591 goto out; 592 593 pos = iocb->ki_pos; 594 count = iov_iter_count(from); 595 596 trace_xfs_file_dax_write(ip, count, pos); 597 ret = dax_iomap_rw(iocb, from, &xfs_iomap_ops); 598 if (ret > 0 && iocb->ki_pos > i_size_read(inode)) { 599 i_size_write(inode, iocb->ki_pos); 600 error = xfs_setfilesize(ip, pos, ret); 601 } 602 out: 603 xfs_iunlock(ip, iolock); 604 if (error) 605 return error; 606 607 if (ret > 0) { 608 XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret); 609 610 /* Handle various SYNC-type writes */ 611 ret = generic_write_sync(iocb, ret); 612 } 613 return ret; 614 } 615 616 STATIC ssize_t 617 xfs_file_buffered_aio_write( 618 struct kiocb *iocb, 619 struct iov_iter *from) 620 { 621 struct file *file = iocb->ki_filp; 622 struct address_space *mapping = file->f_mapping; 623 struct inode *inode = mapping->host; 624 struct xfs_inode *ip = XFS_I(inode); 625 ssize_t ret; 626 int enospc = 0; 627 int iolock; 628 629 if (iocb->ki_flags & IOCB_NOWAIT) 630 return -EOPNOTSUPP; 631 632 write_retry: 633 iolock = XFS_IOLOCK_EXCL; 634 xfs_ilock(ip, iolock); 635 636 ret = xfs_file_aio_write_checks(iocb, from, &iolock); 637 if (ret) 638 goto out; 639 640 /* We can write back this queue in page reclaim */ 641 current->backing_dev_info = inode_to_bdi(inode); 642 643 trace_xfs_file_buffered_write(ip, iov_iter_count(from), iocb->ki_pos); 644 ret = iomap_file_buffered_write(iocb, from, &xfs_iomap_ops); 645 if (likely(ret >= 0)) 646 iocb->ki_pos += ret; 647 648 /* 649 * If we hit a space limit, try to free up some lingering preallocated 650 * space before returning an error. In the case of ENOSPC, first try to 651 * write back all dirty inodes to free up some of the excess reserved 652 * metadata space. This reduces the chances that the eofblocks scan 653 * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this 654 * also behaves as a filter to prevent too many eofblocks scans from 655 * running at the same time. 656 */ 657 if (ret == -EDQUOT && !enospc) { 658 xfs_iunlock(ip, iolock); 659 enospc = xfs_inode_free_quota_eofblocks(ip); 660 if (enospc) 661 goto write_retry; 662 enospc = xfs_inode_free_quota_cowblocks(ip); 663 if (enospc) 664 goto write_retry; 665 iolock = 0; 666 } else if (ret == -ENOSPC && !enospc) { 667 struct xfs_eofblocks eofb = {0}; 668 669 enospc = 1; 670 xfs_flush_inodes(ip->i_mount); 671 672 xfs_iunlock(ip, iolock); 673 eofb.eof_flags = XFS_EOF_FLAGS_SYNC; 674 xfs_icache_free_eofblocks(ip->i_mount, &eofb); 675 xfs_icache_free_cowblocks(ip->i_mount, &eofb); 676 goto write_retry; 677 } 678 679 current->backing_dev_info = NULL; 680 out: 681 if (iolock) 682 xfs_iunlock(ip, iolock); 683 684 if (ret > 0) { 685 XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret); 686 /* Handle various SYNC-type writes */ 687 ret = generic_write_sync(iocb, ret); 688 } 689 return ret; 690 } 691 692 STATIC ssize_t 693 xfs_file_write_iter( 694 struct kiocb *iocb, 695 struct iov_iter *from) 696 { 697 struct file *file = iocb->ki_filp; 698 struct address_space *mapping = file->f_mapping; 699 struct inode *inode = mapping->host; 700 struct xfs_inode *ip = XFS_I(inode); 701 ssize_t ret; 702 size_t ocount = iov_iter_count(from); 703 704 XFS_STATS_INC(ip->i_mount, xs_write_calls); 705 706 if (ocount == 0) 707 return 0; 708 709 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) 710 return -EIO; 711 712 if (IS_DAX(inode)) 713 return xfs_file_dax_write(iocb, from); 714 715 if (iocb->ki_flags & IOCB_DIRECT) { 716 /* 717 * Allow a directio write to fall back to a buffered 718 * write *only* in the case that we're doing a reflink 719 * CoW. In all other directio scenarios we do not 720 * allow an operation to fall back to buffered mode. 721 */ 722 ret = xfs_file_dio_aio_write(iocb, from); 723 if (ret != -EREMCHG) 724 return ret; 725 } 726 727 return xfs_file_buffered_aio_write(iocb, from); 728 } 729 730 static void 731 xfs_wait_dax_page( 732 struct inode *inode) 733 { 734 struct xfs_inode *ip = XFS_I(inode); 735 736 xfs_iunlock(ip, XFS_MMAPLOCK_EXCL); 737 schedule(); 738 xfs_ilock(ip, XFS_MMAPLOCK_EXCL); 739 } 740 741 static int 742 xfs_break_dax_layouts( 743 struct inode *inode, 744 bool *retry) 745 { 746 struct page *page; 747 748 ASSERT(xfs_isilocked(XFS_I(inode), XFS_MMAPLOCK_EXCL)); 749 750 page = dax_layout_busy_page(inode->i_mapping); 751 if (!page) 752 return 0; 753 754 *retry = true; 755 return ___wait_var_event(&page->_refcount, 756 atomic_read(&page->_refcount) == 1, TASK_INTERRUPTIBLE, 757 0, 0, xfs_wait_dax_page(inode)); 758 } 759 760 int 761 xfs_break_layouts( 762 struct inode *inode, 763 uint *iolock, 764 enum layout_break_reason reason) 765 { 766 bool retry; 767 int error; 768 769 ASSERT(xfs_isilocked(XFS_I(inode), XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)); 770 771 do { 772 retry = false; 773 switch (reason) { 774 case BREAK_UNMAP: 775 error = xfs_break_dax_layouts(inode, &retry); 776 if (error || retry) 777 break; 778 /* fall through */ 779 case BREAK_WRITE: 780 error = xfs_break_leased_layouts(inode, iolock, &retry); 781 break; 782 default: 783 WARN_ON_ONCE(1); 784 error = -EINVAL; 785 } 786 } while (error == 0 && retry); 787 788 return error; 789 } 790 791 #define XFS_FALLOC_FL_SUPPORTED \ 792 (FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | \ 793 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE | \ 794 FALLOC_FL_INSERT_RANGE | FALLOC_FL_UNSHARE_RANGE) 795 796 STATIC long 797 xfs_file_fallocate( 798 struct file *file, 799 int mode, 800 loff_t offset, 801 loff_t len) 802 { 803 struct inode *inode = file_inode(file); 804 struct xfs_inode *ip = XFS_I(inode); 805 long error; 806 enum xfs_prealloc_flags flags = 0; 807 uint iolock = XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL; 808 loff_t new_size = 0; 809 bool do_file_insert = false; 810 811 if (!S_ISREG(inode->i_mode)) 812 return -EINVAL; 813 if (mode & ~XFS_FALLOC_FL_SUPPORTED) 814 return -EOPNOTSUPP; 815 816 xfs_ilock(ip, iolock); 817 error = xfs_break_layouts(inode, &iolock, BREAK_UNMAP); 818 if (error) 819 goto out_unlock; 820 821 if (mode & FALLOC_FL_PUNCH_HOLE) { 822 error = xfs_free_file_space(ip, offset, len); 823 if (error) 824 goto out_unlock; 825 } else if (mode & FALLOC_FL_COLLAPSE_RANGE) { 826 unsigned int blksize_mask = i_blocksize(inode) - 1; 827 828 if (offset & blksize_mask || len & blksize_mask) { 829 error = -EINVAL; 830 goto out_unlock; 831 } 832 833 /* 834 * There is no need to overlap collapse range with EOF, 835 * in which case it is effectively a truncate operation 836 */ 837 if (offset + len >= i_size_read(inode)) { 838 error = -EINVAL; 839 goto out_unlock; 840 } 841 842 new_size = i_size_read(inode) - len; 843 844 error = xfs_collapse_file_space(ip, offset, len); 845 if (error) 846 goto out_unlock; 847 } else if (mode & FALLOC_FL_INSERT_RANGE) { 848 unsigned int blksize_mask = i_blocksize(inode) - 1; 849 loff_t isize = i_size_read(inode); 850 851 if (offset & blksize_mask || len & blksize_mask) { 852 error = -EINVAL; 853 goto out_unlock; 854 } 855 856 /* 857 * New inode size must not exceed ->s_maxbytes, accounting for 858 * possible signed overflow. 859 */ 860 if (inode->i_sb->s_maxbytes - isize < len) { 861 error = -EFBIG; 862 goto out_unlock; 863 } 864 new_size = isize + len; 865 866 /* Offset should be less than i_size */ 867 if (offset >= isize) { 868 error = -EINVAL; 869 goto out_unlock; 870 } 871 do_file_insert = true; 872 } else { 873 flags |= XFS_PREALLOC_SET; 874 875 if (!(mode & FALLOC_FL_KEEP_SIZE) && 876 offset + len > i_size_read(inode)) { 877 new_size = offset + len; 878 error = inode_newsize_ok(inode, new_size); 879 if (error) 880 goto out_unlock; 881 } 882 883 if (mode & FALLOC_FL_ZERO_RANGE) { 884 error = xfs_zero_file_space(ip, offset, len); 885 } else if (mode & FALLOC_FL_UNSHARE_RANGE) { 886 error = xfs_reflink_unshare(ip, offset, len); 887 if (error) 888 goto out_unlock; 889 890 if (!xfs_is_always_cow_inode(ip)) { 891 error = xfs_alloc_file_space(ip, offset, len, 892 XFS_BMAPI_PREALLOC); 893 } 894 } else { 895 /* 896 * If always_cow mode we can't use preallocations and 897 * thus should not create them. 898 */ 899 if (xfs_is_always_cow_inode(ip)) { 900 error = -EOPNOTSUPP; 901 goto out_unlock; 902 } 903 904 error = xfs_alloc_file_space(ip, offset, len, 905 XFS_BMAPI_PREALLOC); 906 } 907 if (error) 908 goto out_unlock; 909 } 910 911 if (file->f_flags & O_DSYNC) 912 flags |= XFS_PREALLOC_SYNC; 913 914 error = xfs_update_prealloc_flags(ip, flags); 915 if (error) 916 goto out_unlock; 917 918 /* Change file size if needed */ 919 if (new_size) { 920 struct iattr iattr; 921 922 iattr.ia_valid = ATTR_SIZE; 923 iattr.ia_size = new_size; 924 error = xfs_vn_setattr_size(file_dentry(file), &iattr); 925 if (error) 926 goto out_unlock; 927 } 928 929 /* 930 * Perform hole insertion now that the file size has been 931 * updated so that if we crash during the operation we don't 932 * leave shifted extents past EOF and hence losing access to 933 * the data that is contained within them. 934 */ 935 if (do_file_insert) 936 error = xfs_insert_file_space(ip, offset, len); 937 938 out_unlock: 939 xfs_iunlock(ip, iolock); 940 return error; 941 } 942 943 STATIC int 944 xfs_file_fadvise( 945 struct file *file, 946 loff_t start, 947 loff_t end, 948 int advice) 949 { 950 struct xfs_inode *ip = XFS_I(file_inode(file)); 951 int ret; 952 int lockflags = 0; 953 954 /* 955 * Operations creating pages in page cache need protection from hole 956 * punching and similar ops 957 */ 958 if (advice == POSIX_FADV_WILLNEED) { 959 lockflags = XFS_IOLOCK_SHARED; 960 xfs_ilock(ip, lockflags); 961 } 962 ret = generic_fadvise(file, start, end, advice); 963 if (lockflags) 964 xfs_iunlock(ip, lockflags); 965 return ret; 966 } 967 968 STATIC loff_t 969 xfs_file_remap_range( 970 struct file *file_in, 971 loff_t pos_in, 972 struct file *file_out, 973 loff_t pos_out, 974 loff_t len, 975 unsigned int remap_flags) 976 { 977 struct inode *inode_in = file_inode(file_in); 978 struct xfs_inode *src = XFS_I(inode_in); 979 struct inode *inode_out = file_inode(file_out); 980 struct xfs_inode *dest = XFS_I(inode_out); 981 struct xfs_mount *mp = src->i_mount; 982 loff_t remapped = 0; 983 xfs_extlen_t cowextsize; 984 int ret; 985 986 if (remap_flags & ~(REMAP_FILE_DEDUP | REMAP_FILE_ADVISORY)) 987 return -EINVAL; 988 989 if (!xfs_sb_version_hasreflink(&mp->m_sb)) 990 return -EOPNOTSUPP; 991 992 if (XFS_FORCED_SHUTDOWN(mp)) 993 return -EIO; 994 995 /* Prepare and then clone file data. */ 996 ret = xfs_reflink_remap_prep(file_in, pos_in, file_out, pos_out, 997 &len, remap_flags); 998 if (ret < 0 || len == 0) 999 return ret; 1000 1001 trace_xfs_reflink_remap_range(src, pos_in, len, dest, pos_out); 1002 1003 ret = xfs_reflink_remap_blocks(src, pos_in, dest, pos_out, len, 1004 &remapped); 1005 if (ret) 1006 goto out_unlock; 1007 1008 /* 1009 * Carry the cowextsize hint from src to dest if we're sharing the 1010 * entire source file to the entire destination file, the source file 1011 * has a cowextsize hint, and the destination file does not. 1012 */ 1013 cowextsize = 0; 1014 if (pos_in == 0 && len == i_size_read(inode_in) && 1015 (src->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE) && 1016 pos_out == 0 && len >= i_size_read(inode_out) && 1017 !(dest->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE)) 1018 cowextsize = src->i_d.di_cowextsize; 1019 1020 ret = xfs_reflink_update_dest(dest, pos_out + len, cowextsize, 1021 remap_flags); 1022 1023 out_unlock: 1024 xfs_reflink_remap_unlock(file_in, file_out); 1025 if (ret) 1026 trace_xfs_reflink_remap_range_error(dest, ret, _RET_IP_); 1027 return remapped > 0 ? remapped : ret; 1028 } 1029 1030 STATIC int 1031 xfs_file_open( 1032 struct inode *inode, 1033 struct file *file) 1034 { 1035 if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS) 1036 return -EFBIG; 1037 if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb))) 1038 return -EIO; 1039 file->f_mode |= FMODE_NOWAIT; 1040 return 0; 1041 } 1042 1043 STATIC int 1044 xfs_dir_open( 1045 struct inode *inode, 1046 struct file *file) 1047 { 1048 struct xfs_inode *ip = XFS_I(inode); 1049 int mode; 1050 int error; 1051 1052 error = xfs_file_open(inode, file); 1053 if (error) 1054 return error; 1055 1056 /* 1057 * If there are any blocks, read-ahead block 0 as we're almost 1058 * certain to have the next operation be a read there. 1059 */ 1060 mode = xfs_ilock_data_map_shared(ip); 1061 if (ip->i_d.di_nextents > 0) 1062 error = xfs_dir3_data_readahead(ip, 0, -1); 1063 xfs_iunlock(ip, mode); 1064 return error; 1065 } 1066 1067 STATIC int 1068 xfs_file_release( 1069 struct inode *inode, 1070 struct file *filp) 1071 { 1072 return xfs_release(XFS_I(inode)); 1073 } 1074 1075 STATIC int 1076 xfs_file_readdir( 1077 struct file *file, 1078 struct dir_context *ctx) 1079 { 1080 struct inode *inode = file_inode(file); 1081 xfs_inode_t *ip = XFS_I(inode); 1082 size_t bufsize; 1083 1084 /* 1085 * The Linux API doesn't pass down the total size of the buffer 1086 * we read into down to the filesystem. With the filldir concept 1087 * it's not needed for correct information, but the XFS dir2 leaf 1088 * code wants an estimate of the buffer size to calculate it's 1089 * readahead window and size the buffers used for mapping to 1090 * physical blocks. 1091 * 1092 * Try to give it an estimate that's good enough, maybe at some 1093 * point we can change the ->readdir prototype to include the 1094 * buffer size. For now we use the current glibc buffer size. 1095 */ 1096 bufsize = (size_t)min_t(loff_t, XFS_READDIR_BUFSIZE, ip->i_d.di_size); 1097 1098 return xfs_readdir(NULL, ip, ctx, bufsize); 1099 } 1100 1101 STATIC loff_t 1102 xfs_file_llseek( 1103 struct file *file, 1104 loff_t offset, 1105 int whence) 1106 { 1107 struct inode *inode = file->f_mapping->host; 1108 1109 if (XFS_FORCED_SHUTDOWN(XFS_I(inode)->i_mount)) 1110 return -EIO; 1111 1112 switch (whence) { 1113 default: 1114 return generic_file_llseek(file, offset, whence); 1115 case SEEK_HOLE: 1116 offset = iomap_seek_hole(inode, offset, &xfs_seek_iomap_ops); 1117 break; 1118 case SEEK_DATA: 1119 offset = iomap_seek_data(inode, offset, &xfs_seek_iomap_ops); 1120 break; 1121 } 1122 1123 if (offset < 0) 1124 return offset; 1125 return vfs_setpos(file, offset, inode->i_sb->s_maxbytes); 1126 } 1127 1128 /* 1129 * Locking for serialisation of IO during page faults. This results in a lock 1130 * ordering of: 1131 * 1132 * mmap_sem (MM) 1133 * sb_start_pagefault(vfs, freeze) 1134 * i_mmaplock (XFS - truncate serialisation) 1135 * page_lock (MM) 1136 * i_lock (XFS - extent map serialisation) 1137 */ 1138 static vm_fault_t 1139 __xfs_filemap_fault( 1140 struct vm_fault *vmf, 1141 enum page_entry_size pe_size, 1142 bool write_fault) 1143 { 1144 struct inode *inode = file_inode(vmf->vma->vm_file); 1145 struct xfs_inode *ip = XFS_I(inode); 1146 vm_fault_t ret; 1147 1148 trace_xfs_filemap_fault(ip, pe_size, write_fault); 1149 1150 if (write_fault) { 1151 sb_start_pagefault(inode->i_sb); 1152 file_update_time(vmf->vma->vm_file); 1153 } 1154 1155 xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED); 1156 if (IS_DAX(inode)) { 1157 pfn_t pfn; 1158 1159 ret = dax_iomap_fault(vmf, pe_size, &pfn, NULL, &xfs_iomap_ops); 1160 if (ret & VM_FAULT_NEEDDSYNC) 1161 ret = dax_finish_sync_fault(vmf, pe_size, pfn); 1162 } else { 1163 if (write_fault) 1164 ret = iomap_page_mkwrite(vmf, &xfs_iomap_ops); 1165 else 1166 ret = filemap_fault(vmf); 1167 } 1168 xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED); 1169 1170 if (write_fault) 1171 sb_end_pagefault(inode->i_sb); 1172 return ret; 1173 } 1174 1175 static vm_fault_t 1176 xfs_filemap_fault( 1177 struct vm_fault *vmf) 1178 { 1179 /* DAX can shortcut the normal fault path on write faults! */ 1180 return __xfs_filemap_fault(vmf, PE_SIZE_PTE, 1181 IS_DAX(file_inode(vmf->vma->vm_file)) && 1182 (vmf->flags & FAULT_FLAG_WRITE)); 1183 } 1184 1185 static vm_fault_t 1186 xfs_filemap_huge_fault( 1187 struct vm_fault *vmf, 1188 enum page_entry_size pe_size) 1189 { 1190 if (!IS_DAX(file_inode(vmf->vma->vm_file))) 1191 return VM_FAULT_FALLBACK; 1192 1193 /* DAX can shortcut the normal fault path on write faults! */ 1194 return __xfs_filemap_fault(vmf, pe_size, 1195 (vmf->flags & FAULT_FLAG_WRITE)); 1196 } 1197 1198 static vm_fault_t 1199 xfs_filemap_page_mkwrite( 1200 struct vm_fault *vmf) 1201 { 1202 return __xfs_filemap_fault(vmf, PE_SIZE_PTE, true); 1203 } 1204 1205 /* 1206 * pfn_mkwrite was originally intended to ensure we capture time stamp updates 1207 * on write faults. In reality, it needs to serialise against truncate and 1208 * prepare memory for writing so handle is as standard write fault. 1209 */ 1210 static vm_fault_t 1211 xfs_filemap_pfn_mkwrite( 1212 struct vm_fault *vmf) 1213 { 1214 1215 return __xfs_filemap_fault(vmf, PE_SIZE_PTE, true); 1216 } 1217 1218 static const struct vm_operations_struct xfs_file_vm_ops = { 1219 .fault = xfs_filemap_fault, 1220 .huge_fault = xfs_filemap_huge_fault, 1221 .map_pages = filemap_map_pages, 1222 .page_mkwrite = xfs_filemap_page_mkwrite, 1223 .pfn_mkwrite = xfs_filemap_pfn_mkwrite, 1224 }; 1225 1226 STATIC int 1227 xfs_file_mmap( 1228 struct file *filp, 1229 struct vm_area_struct *vma) 1230 { 1231 struct dax_device *dax_dev; 1232 1233 dax_dev = xfs_find_daxdev_for_inode(file_inode(filp)); 1234 /* 1235 * We don't support synchronous mappings for non-DAX files and 1236 * for DAX files if underneath dax_device is not synchronous. 1237 */ 1238 if (!daxdev_mapping_supported(vma, dax_dev)) 1239 return -EOPNOTSUPP; 1240 1241 file_accessed(filp); 1242 vma->vm_ops = &xfs_file_vm_ops; 1243 if (IS_DAX(file_inode(filp))) 1244 vma->vm_flags |= VM_HUGEPAGE; 1245 return 0; 1246 } 1247 1248 const struct file_operations xfs_file_operations = { 1249 .llseek = xfs_file_llseek, 1250 .read_iter = xfs_file_read_iter, 1251 .write_iter = xfs_file_write_iter, 1252 .splice_read = generic_file_splice_read, 1253 .splice_write = iter_file_splice_write, 1254 .iopoll = iomap_dio_iopoll, 1255 .unlocked_ioctl = xfs_file_ioctl, 1256 #ifdef CONFIG_COMPAT 1257 .compat_ioctl = xfs_file_compat_ioctl, 1258 #endif 1259 .mmap = xfs_file_mmap, 1260 .mmap_supported_flags = MAP_SYNC, 1261 .open = xfs_file_open, 1262 .release = xfs_file_release, 1263 .fsync = xfs_file_fsync, 1264 .get_unmapped_area = thp_get_unmapped_area, 1265 .fallocate = xfs_file_fallocate, 1266 .fadvise = xfs_file_fadvise, 1267 .remap_file_range = xfs_file_remap_range, 1268 }; 1269 1270 const struct file_operations xfs_dir_file_operations = { 1271 .open = xfs_dir_open, 1272 .read = generic_read_dir, 1273 .iterate_shared = xfs_file_readdir, 1274 .llseek = generic_file_llseek, 1275 .unlocked_ioctl = xfs_file_ioctl, 1276 #ifdef CONFIG_COMPAT 1277 .compat_ioctl = xfs_file_compat_ioctl, 1278 #endif 1279 .fsync = xfs_dir_fsync, 1280 }; 1281