xref: /linux/fs/xfs/xfs_extfree_item.c (revision fb7399cf2d0b33825b8039f95c45395c7deba25c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2001,2005 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_format.h"
9 #include "xfs_log_format.h"
10 #include "xfs_trans_resv.h"
11 #include "xfs_bit.h"
12 #include "xfs_shared.h"
13 #include "xfs_mount.h"
14 #include "xfs_ag.h"
15 #include "xfs_defer.h"
16 #include "xfs_trans.h"
17 #include "xfs_trans_priv.h"
18 #include "xfs_extfree_item.h"
19 #include "xfs_log.h"
20 #include "xfs_btree.h"
21 #include "xfs_rmap.h"
22 #include "xfs_alloc.h"
23 #include "xfs_bmap.h"
24 #include "xfs_trace.h"
25 #include "xfs_error.h"
26 #include "xfs_log_priv.h"
27 #include "xfs_log_recover.h"
28 #include "xfs_rtalloc.h"
29 #include "xfs_inode.h"
30 #include "xfs_rtbitmap.h"
31 #include "xfs_rtgroup.h"
32 #include "xfs_zone_alloc.h"
33 
34 struct kmem_cache	*xfs_efi_cache;
35 struct kmem_cache	*xfs_efd_cache;
36 
37 static const struct xfs_item_ops xfs_efi_item_ops;
38 
39 static inline struct xfs_efi_log_item *EFI_ITEM(struct xfs_log_item *lip)
40 {
41 	return container_of(lip, struct xfs_efi_log_item, efi_item);
42 }
43 
44 STATIC void
45 xfs_efi_item_free(
46 	struct xfs_efi_log_item	*efip)
47 {
48 	kvfree(efip->efi_item.li_lv_shadow);
49 	if (efip->efi_format.efi_nextents > XFS_EFI_MAX_FAST_EXTENTS)
50 		kfree(efip);
51 	else
52 		kmem_cache_free(xfs_efi_cache, efip);
53 }
54 
55 /*
56  * Freeing the efi requires that we remove it from the AIL if it has already
57  * been placed there. However, the EFI may not yet have been placed in the AIL
58  * when called by xfs_efi_release() from EFD processing due to the ordering of
59  * committed vs unpin operations in bulk insert operations. Hence the reference
60  * count to ensure only the last caller frees the EFI.
61  */
62 STATIC void
63 xfs_efi_release(
64 	struct xfs_efi_log_item	*efip)
65 {
66 	ASSERT(atomic_read(&efip->efi_refcount) > 0);
67 	if (!atomic_dec_and_test(&efip->efi_refcount))
68 		return;
69 
70 	xfs_trans_ail_delete(&efip->efi_item, 0);
71 	xfs_efi_item_free(efip);
72 }
73 
74 STATIC void
75 xfs_efi_item_size(
76 	struct xfs_log_item	*lip,
77 	int			*nvecs,
78 	int			*nbytes)
79 {
80 	struct xfs_efi_log_item	*efip = EFI_ITEM(lip);
81 
82 	*nvecs += 1;
83 	*nbytes += xfs_efi_log_format_sizeof(efip->efi_format.efi_nextents);
84 }
85 
86 unsigned int xfs_efi_log_space(unsigned int nr)
87 {
88 	return xlog_item_space(1, xfs_efi_log_format_sizeof(nr));
89 }
90 
91 /*
92  * This is called to fill in the vector of log iovecs for the
93  * given efi log item. We use only 1 iovec, and we point that
94  * at the efi_log_format structure embedded in the efi item.
95  * It is at this point that we assert that all of the extent
96  * slots in the efi item have been filled.
97  */
98 STATIC void
99 xfs_efi_item_format(
100 	struct xfs_log_item	*lip,
101 	struct xfs_log_vec	*lv)
102 {
103 	struct xfs_efi_log_item	*efip = EFI_ITEM(lip);
104 	struct xfs_log_iovec	*vecp = NULL;
105 
106 	ASSERT(atomic_read(&efip->efi_next_extent) ==
107 				efip->efi_format.efi_nextents);
108 	ASSERT(lip->li_type == XFS_LI_EFI || lip->li_type == XFS_LI_EFI_RT);
109 
110 	efip->efi_format.efi_type = lip->li_type;
111 	efip->efi_format.efi_size = 1;
112 
113 	xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_EFI_FORMAT, &efip->efi_format,
114 			xfs_efi_log_format_sizeof(efip->efi_format.efi_nextents));
115 }
116 
117 /*
118  * The unpin operation is the last place an EFI is manipulated in the log. It is
119  * either inserted in the AIL or aborted in the event of a log I/O error. In
120  * either case, the EFI transaction has been successfully committed to make it
121  * this far. Therefore, we expect whoever committed the EFI to either construct
122  * and commit the EFD or drop the EFD's reference in the event of error. Simply
123  * drop the log's EFI reference now that the log is done with it.
124  */
125 STATIC void
126 xfs_efi_item_unpin(
127 	struct xfs_log_item	*lip,
128 	int			remove)
129 {
130 	struct xfs_efi_log_item	*efip = EFI_ITEM(lip);
131 	xfs_efi_release(efip);
132 }
133 
134 /*
135  * The EFI has been either committed or aborted if the transaction has been
136  * cancelled. If the transaction was cancelled, an EFD isn't going to be
137  * constructed and thus we free the EFI here directly.
138  */
139 STATIC void
140 xfs_efi_item_release(
141 	struct xfs_log_item	*lip)
142 {
143 	xfs_efi_release(EFI_ITEM(lip));
144 }
145 
146 /*
147  * Allocate and initialize an efi item with the given number of extents.
148  */
149 STATIC struct xfs_efi_log_item *
150 xfs_efi_init(
151 	struct xfs_mount	*mp,
152 	unsigned short		item_type,
153 	uint			nextents)
154 {
155 	struct xfs_efi_log_item	*efip;
156 
157 	ASSERT(item_type == XFS_LI_EFI || item_type == XFS_LI_EFI_RT);
158 	ASSERT(nextents > 0);
159 
160 	if (nextents > XFS_EFI_MAX_FAST_EXTENTS) {
161 		efip = kzalloc(xfs_efi_log_item_sizeof(nextents),
162 				GFP_KERNEL | __GFP_NOFAIL);
163 	} else {
164 		efip = kmem_cache_zalloc(xfs_efi_cache,
165 					 GFP_KERNEL | __GFP_NOFAIL);
166 	}
167 
168 	xfs_log_item_init(mp, &efip->efi_item, item_type, &xfs_efi_item_ops);
169 	efip->efi_format.efi_nextents = nextents;
170 	efip->efi_format.efi_id = (uintptr_t)(void *)efip;
171 	atomic_set(&efip->efi_next_extent, 0);
172 	atomic_set(&efip->efi_refcount, 2);
173 
174 	return efip;
175 }
176 
177 /*
178  * Copy an EFI format buffer from the given buf, and into the destination
179  * EFI format structure.
180  * The given buffer can be in 32 bit or 64 bit form (which has different padding),
181  * one of which will be the native format for this kernel.
182  * It will handle the conversion of formats if necessary.
183  */
184 STATIC int
185 xfs_efi_copy_format(xfs_log_iovec_t *buf, xfs_efi_log_format_t *dst_efi_fmt)
186 {
187 	xfs_efi_log_format_t *src_efi_fmt = buf->i_addr;
188 	uint i;
189 	uint len = xfs_efi_log_format_sizeof(src_efi_fmt->efi_nextents);
190 	uint len32 = xfs_efi_log_format32_sizeof(src_efi_fmt->efi_nextents);
191 	uint len64 = xfs_efi_log_format64_sizeof(src_efi_fmt->efi_nextents);
192 
193 	if (buf->i_len == len) {
194 		memcpy(dst_efi_fmt, src_efi_fmt,
195 		       offsetof(struct xfs_efi_log_format, efi_extents));
196 		for (i = 0; i < src_efi_fmt->efi_nextents; i++)
197 			memcpy(&dst_efi_fmt->efi_extents[i],
198 			       &src_efi_fmt->efi_extents[i],
199 			       sizeof(struct xfs_extent));
200 		return 0;
201 	} else if (buf->i_len == len32) {
202 		xfs_efi_log_format_32_t *src_efi_fmt_32 = buf->i_addr;
203 
204 		dst_efi_fmt->efi_type     = src_efi_fmt_32->efi_type;
205 		dst_efi_fmt->efi_size     = src_efi_fmt_32->efi_size;
206 		dst_efi_fmt->efi_nextents = src_efi_fmt_32->efi_nextents;
207 		dst_efi_fmt->efi_id       = src_efi_fmt_32->efi_id;
208 		for (i = 0; i < dst_efi_fmt->efi_nextents; i++) {
209 			dst_efi_fmt->efi_extents[i].ext_start =
210 				src_efi_fmt_32->efi_extents[i].ext_start;
211 			dst_efi_fmt->efi_extents[i].ext_len =
212 				src_efi_fmt_32->efi_extents[i].ext_len;
213 		}
214 		return 0;
215 	} else if (buf->i_len == len64) {
216 		xfs_efi_log_format_64_t *src_efi_fmt_64 = buf->i_addr;
217 
218 		dst_efi_fmt->efi_type     = src_efi_fmt_64->efi_type;
219 		dst_efi_fmt->efi_size     = src_efi_fmt_64->efi_size;
220 		dst_efi_fmt->efi_nextents = src_efi_fmt_64->efi_nextents;
221 		dst_efi_fmt->efi_id       = src_efi_fmt_64->efi_id;
222 		for (i = 0; i < dst_efi_fmt->efi_nextents; i++) {
223 			dst_efi_fmt->efi_extents[i].ext_start =
224 				src_efi_fmt_64->efi_extents[i].ext_start;
225 			dst_efi_fmt->efi_extents[i].ext_len =
226 				src_efi_fmt_64->efi_extents[i].ext_len;
227 		}
228 		return 0;
229 	}
230 	XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, NULL, buf->i_addr,
231 			buf->i_len);
232 	return -EFSCORRUPTED;
233 }
234 
235 static inline struct xfs_efd_log_item *EFD_ITEM(struct xfs_log_item *lip)
236 {
237 	return container_of(lip, struct xfs_efd_log_item, efd_item);
238 }
239 
240 STATIC void
241 xfs_efd_item_free(struct xfs_efd_log_item *efdp)
242 {
243 	kvfree(efdp->efd_item.li_lv_shadow);
244 	if (efdp->efd_format.efd_nextents > XFS_EFD_MAX_FAST_EXTENTS)
245 		kfree(efdp);
246 	else
247 		kmem_cache_free(xfs_efd_cache, efdp);
248 }
249 
250 STATIC void
251 xfs_efd_item_size(
252 	struct xfs_log_item	*lip,
253 	int			*nvecs,
254 	int			*nbytes)
255 {
256 	struct xfs_efd_log_item	*efdp = EFD_ITEM(lip);
257 
258 	*nvecs += 1;
259 	*nbytes += xfs_efd_log_format_sizeof(efdp->efd_format.efd_nextents);
260 }
261 
262 unsigned int xfs_efd_log_space(unsigned int nr)
263 {
264 	return xlog_item_space(1, xfs_efd_log_format_sizeof(nr));
265 }
266 
267 /*
268  * This is called to fill in the vector of log iovecs for the
269  * given efd log item. We use only 1 iovec, and we point that
270  * at the efd_log_format structure embedded in the efd item.
271  * It is at this point that we assert that all of the extent
272  * slots in the efd item have been filled.
273  */
274 STATIC void
275 xfs_efd_item_format(
276 	struct xfs_log_item	*lip,
277 	struct xfs_log_vec	*lv)
278 {
279 	struct xfs_efd_log_item	*efdp = EFD_ITEM(lip);
280 	struct xfs_log_iovec	*vecp = NULL;
281 
282 	ASSERT(efdp->efd_next_extent == efdp->efd_format.efd_nextents);
283 	ASSERT(lip->li_type == XFS_LI_EFD || lip->li_type == XFS_LI_EFD_RT);
284 
285 	efdp->efd_format.efd_type = lip->li_type;
286 	efdp->efd_format.efd_size = 1;
287 
288 	xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_EFD_FORMAT, &efdp->efd_format,
289 			xfs_efd_log_format_sizeof(efdp->efd_format.efd_nextents));
290 }
291 
292 /*
293  * The EFD is either committed or aborted if the transaction is cancelled. If
294  * the transaction is cancelled, drop our reference to the EFI and free the EFD.
295  */
296 STATIC void
297 xfs_efd_item_release(
298 	struct xfs_log_item	*lip)
299 {
300 	struct xfs_efd_log_item	*efdp = EFD_ITEM(lip);
301 
302 	xfs_efi_release(efdp->efd_efip);
303 	xfs_efd_item_free(efdp);
304 }
305 
306 static struct xfs_log_item *
307 xfs_efd_item_intent(
308 	struct xfs_log_item	*lip)
309 {
310 	return &EFD_ITEM(lip)->efd_efip->efi_item;
311 }
312 
313 static const struct xfs_item_ops xfs_efd_item_ops = {
314 	.flags		= XFS_ITEM_RELEASE_WHEN_COMMITTED |
315 			  XFS_ITEM_INTENT_DONE,
316 	.iop_size	= xfs_efd_item_size,
317 	.iop_format	= xfs_efd_item_format,
318 	.iop_release	= xfs_efd_item_release,
319 	.iop_intent	= xfs_efd_item_intent,
320 };
321 
322 static inline struct xfs_extent_free_item *xefi_entry(const struct list_head *e)
323 {
324 	return list_entry(e, struct xfs_extent_free_item, xefi_list);
325 }
326 
327 static inline bool
328 xfs_efi_item_isrt(const struct xfs_log_item *lip)
329 {
330 	ASSERT(lip->li_type == XFS_LI_EFI || lip->li_type == XFS_LI_EFI_RT);
331 
332 	return lip->li_type == XFS_LI_EFI_RT;
333 }
334 
335 /*
336  * Fill the EFD with all extents from the EFI when we need to roll the
337  * transaction and continue with a new EFI.
338  *
339  * This simply copies all the extents in the EFI to the EFD rather than make
340  * assumptions about which extents in the EFI have already been processed. We
341  * currently keep the xefi list in the same order as the EFI extent list, but
342  * that may not always be the case. Copying everything avoids leaving a landmine
343  * were we fail to cancel all the extents in an EFI if the xefi list is
344  * processed in a different order to the extents in the EFI.
345  */
346 static void
347 xfs_efd_from_efi(
348 	struct xfs_efd_log_item	*efdp)
349 {
350 	struct xfs_efi_log_item *efip = efdp->efd_efip;
351 	uint                    i;
352 
353 	ASSERT(efip->efi_format.efi_nextents > 0);
354 	ASSERT(efdp->efd_next_extent < efip->efi_format.efi_nextents);
355 
356 	for (i = 0; i < efip->efi_format.efi_nextents; i++) {
357 	       efdp->efd_format.efd_extents[i] =
358 		       efip->efi_format.efi_extents[i];
359 	}
360 	efdp->efd_next_extent = efip->efi_format.efi_nextents;
361 }
362 
363 static void
364 xfs_efd_add_extent(
365 	struct xfs_efd_log_item		*efdp,
366 	struct xfs_extent_free_item	*xefi)
367 {
368 	struct xfs_extent		*extp;
369 
370 	ASSERT(efdp->efd_next_extent < efdp->efd_format.efd_nextents);
371 
372 	extp = &efdp->efd_format.efd_extents[efdp->efd_next_extent];
373 	extp->ext_start = xefi->xefi_startblock;
374 	extp->ext_len = xefi->xefi_blockcount;
375 
376 	efdp->efd_next_extent++;
377 }
378 
379 /* Sort bmap items by AG. */
380 static int
381 xfs_extent_free_diff_items(
382 	void				*priv,
383 	const struct list_head		*a,
384 	const struct list_head		*b)
385 {
386 	struct xfs_extent_free_item	*ra = xefi_entry(a);
387 	struct xfs_extent_free_item	*rb = xefi_entry(b);
388 
389 	return ra->xefi_group->xg_gno - rb->xefi_group->xg_gno;
390 }
391 
392 /* Log a free extent to the intent item. */
393 STATIC void
394 xfs_extent_free_log_item(
395 	struct xfs_trans		*tp,
396 	struct xfs_efi_log_item		*efip,
397 	struct xfs_extent_free_item	*xefi)
398 {
399 	uint				next_extent;
400 	struct xfs_extent		*extp;
401 
402 	/*
403 	 * atomic_inc_return gives us the value after the increment;
404 	 * we want to use it as an array index so we need to subtract 1 from
405 	 * it.
406 	 */
407 	next_extent = atomic_inc_return(&efip->efi_next_extent) - 1;
408 	ASSERT(next_extent < efip->efi_format.efi_nextents);
409 	extp = &efip->efi_format.efi_extents[next_extent];
410 	extp->ext_start = xefi->xefi_startblock;
411 	extp->ext_len = xefi->xefi_blockcount;
412 }
413 
414 static struct xfs_log_item *
415 __xfs_extent_free_create_intent(
416 	struct xfs_trans		*tp,
417 	struct list_head		*items,
418 	unsigned int			count,
419 	bool				sort,
420 	unsigned short			item_type)
421 {
422 	struct xfs_mount		*mp = tp->t_mountp;
423 	struct xfs_efi_log_item		*efip;
424 	struct xfs_extent_free_item	*xefi;
425 
426 	ASSERT(count > 0);
427 
428 	efip = xfs_efi_init(mp, item_type, count);
429 	if (sort)
430 		list_sort(mp, items, xfs_extent_free_diff_items);
431 	list_for_each_entry(xefi, items, xefi_list)
432 		xfs_extent_free_log_item(tp, efip, xefi);
433 	return &efip->efi_item;
434 }
435 
436 static struct xfs_log_item *
437 xfs_extent_free_create_intent(
438 	struct xfs_trans		*tp,
439 	struct list_head		*items,
440 	unsigned int			count,
441 	bool				sort)
442 {
443 	return __xfs_extent_free_create_intent(tp, items, count, sort,
444 			XFS_LI_EFI);
445 }
446 
447 static inline unsigned short
448 xfs_efd_type_from_efi(const struct xfs_efi_log_item *efip)
449 {
450 	return xfs_efi_item_isrt(&efip->efi_item) ?  XFS_LI_EFD_RT : XFS_LI_EFD;
451 }
452 
453 /* Get an EFD so we can process all the free extents. */
454 static struct xfs_log_item *
455 xfs_extent_free_create_done(
456 	struct xfs_trans		*tp,
457 	struct xfs_log_item		*intent,
458 	unsigned int			count)
459 {
460 	struct xfs_efi_log_item		*efip = EFI_ITEM(intent);
461 	struct xfs_efd_log_item		*efdp;
462 
463 	ASSERT(count > 0);
464 
465 	if (count > XFS_EFD_MAX_FAST_EXTENTS) {
466 		efdp = kzalloc(xfs_efd_log_item_sizeof(count),
467 				GFP_KERNEL | __GFP_NOFAIL);
468 	} else {
469 		efdp = kmem_cache_zalloc(xfs_efd_cache,
470 					GFP_KERNEL | __GFP_NOFAIL);
471 	}
472 
473 	xfs_log_item_init(tp->t_mountp, &efdp->efd_item,
474 			xfs_efd_type_from_efi(efip), &xfs_efd_item_ops);
475 	efdp->efd_efip = efip;
476 	efdp->efd_format.efd_nextents = count;
477 	efdp->efd_format.efd_efi_id = efip->efi_format.efi_id;
478 
479 	return &efdp->efd_item;
480 }
481 
482 static inline const struct xfs_defer_op_type *
483 xefi_ops(
484 	struct xfs_extent_free_item	*xefi)
485 {
486 	if (xfs_efi_is_realtime(xefi))
487 		return &xfs_rtextent_free_defer_type;
488 	if (xefi->xefi_agresv == XFS_AG_RESV_AGFL)
489 		return &xfs_agfl_free_defer_type;
490 	return &xfs_extent_free_defer_type;
491 }
492 
493 /* Add this deferred EFI to the transaction. */
494 void
495 xfs_extent_free_defer_add(
496 	struct xfs_trans		*tp,
497 	struct xfs_extent_free_item	*xefi,
498 	struct xfs_defer_pending	**dfpp)
499 {
500 	struct xfs_mount		*mp = tp->t_mountp;
501 
502 	xefi->xefi_group = xfs_group_intent_get(mp, xefi->xefi_startblock,
503 			xfs_efi_is_realtime(xefi) ? XG_TYPE_RTG : XG_TYPE_AG);
504 
505 	trace_xfs_extent_free_defer(mp, xefi);
506 	*dfpp = xfs_defer_add(tp, &xefi->xefi_list, xefi_ops(xefi));
507 }
508 
509 /* Cancel a free extent. */
510 STATIC void
511 xfs_extent_free_cancel_item(
512 	struct list_head		*item)
513 {
514 	struct xfs_extent_free_item	*xefi = xefi_entry(item);
515 
516 	xfs_group_intent_put(xefi->xefi_group);
517 	kmem_cache_free(xfs_extfree_item_cache, xefi);
518 }
519 
520 /* Process a free extent. */
521 STATIC int
522 xfs_extent_free_finish_item(
523 	struct xfs_trans		*tp,
524 	struct xfs_log_item		*done,
525 	struct list_head		*item,
526 	struct xfs_btree_cur		**state)
527 {
528 	struct xfs_owner_info		oinfo = { };
529 	struct xfs_extent_free_item	*xefi = xefi_entry(item);
530 	struct xfs_efd_log_item		*efdp = EFD_ITEM(done);
531 	struct xfs_mount		*mp = tp->t_mountp;
532 	xfs_agblock_t			agbno;
533 	int				error = 0;
534 
535 	agbno = XFS_FSB_TO_AGBNO(mp, xefi->xefi_startblock);
536 
537 	oinfo.oi_owner = xefi->xefi_owner;
538 	if (xefi->xefi_flags & XFS_EFI_ATTR_FORK)
539 		oinfo.oi_flags |= XFS_OWNER_INFO_ATTR_FORK;
540 	if (xefi->xefi_flags & XFS_EFI_BMBT_BLOCK)
541 		oinfo.oi_flags |= XFS_OWNER_INFO_BMBT_BLOCK;
542 
543 	trace_xfs_extent_free_deferred(mp, xefi);
544 
545 	/*
546 	 * If we need a new transaction to make progress, the caller will log a
547 	 * new EFI with the current contents. It will also log an EFD to cancel
548 	 * the existing EFI, and so we need to copy all the unprocessed extents
549 	 * in this EFI to the EFD so this works correctly.
550 	 */
551 	if (!(xefi->xefi_flags & XFS_EFI_CANCELLED))
552 		error = __xfs_free_extent(tp, to_perag(xefi->xefi_group), agbno,
553 				xefi->xefi_blockcount, &oinfo, xefi->xefi_agresv,
554 				xefi->xefi_flags & XFS_EFI_SKIP_DISCARD);
555 	if (error == -EAGAIN) {
556 		xfs_efd_from_efi(efdp);
557 		return error;
558 	}
559 
560 	xfs_efd_add_extent(efdp, xefi);
561 	xfs_extent_free_cancel_item(item);
562 	return error;
563 }
564 
565 /* Abort all pending EFIs. */
566 STATIC void
567 xfs_extent_free_abort_intent(
568 	struct xfs_log_item		*intent)
569 {
570 	xfs_efi_release(EFI_ITEM(intent));
571 }
572 
573 /*
574  * AGFL blocks are accounted differently in the reserve pools and are not
575  * inserted into the busy extent list.
576  */
577 STATIC int
578 xfs_agfl_free_finish_item(
579 	struct xfs_trans		*tp,
580 	struct xfs_log_item		*done,
581 	struct list_head		*item,
582 	struct xfs_btree_cur		**state)
583 {
584 	struct xfs_owner_info		oinfo = { };
585 	struct xfs_mount		*mp = tp->t_mountp;
586 	struct xfs_efd_log_item		*efdp = EFD_ITEM(done);
587 	struct xfs_extent_free_item	*xefi = xefi_entry(item);
588 	struct xfs_buf			*agbp;
589 	int				error;
590 	xfs_agblock_t			agbno;
591 
592 	ASSERT(xefi->xefi_blockcount == 1);
593 	agbno = XFS_FSB_TO_AGBNO(mp, xefi->xefi_startblock);
594 	oinfo.oi_owner = xefi->xefi_owner;
595 
596 	trace_xfs_agfl_free_deferred(mp, xefi);
597 
598 	error = xfs_alloc_read_agf(to_perag(xefi->xefi_group), tp, 0, &agbp);
599 	if (!error)
600 		error = xfs_free_ag_extent(tp, agbp, agbno, 1, &oinfo,
601 				XFS_AG_RESV_AGFL);
602 
603 	xfs_efd_add_extent(efdp, xefi);
604 	xfs_extent_free_cancel_item(&xefi->xefi_list);
605 	return error;
606 }
607 
608 /* Is this recovered EFI ok? */
609 static inline bool
610 xfs_efi_validate_ext(
611 	struct xfs_mount		*mp,
612 	bool				isrt,
613 	struct xfs_extent		*extp)
614 {
615 	if (isrt)
616 		return xfs_verify_rtbext(mp, extp->ext_start, extp->ext_len);
617 
618 	return xfs_verify_fsbext(mp, extp->ext_start, extp->ext_len);
619 }
620 
621 static inline void
622 xfs_efi_recover_work(
623 	struct xfs_mount		*mp,
624 	struct xfs_defer_pending	*dfp,
625 	bool				isrt,
626 	struct xfs_extent		*extp)
627 {
628 	struct xfs_extent_free_item	*xefi;
629 
630 	xefi = kmem_cache_zalloc(xfs_extfree_item_cache,
631 			       GFP_KERNEL | __GFP_NOFAIL);
632 	xefi->xefi_startblock = extp->ext_start;
633 	xefi->xefi_blockcount = extp->ext_len;
634 	xefi->xefi_agresv = XFS_AG_RESV_NONE;
635 	xefi->xefi_owner = XFS_RMAP_OWN_UNKNOWN;
636 	xefi->xefi_group = xfs_group_intent_get(mp, extp->ext_start,
637 			isrt ? XG_TYPE_RTG : XG_TYPE_AG);
638 	if (isrt)
639 		xefi->xefi_flags |= XFS_EFI_REALTIME;
640 
641 	xfs_defer_add_item(dfp, &xefi->xefi_list);
642 }
643 
644 /*
645  * Process an extent free intent item that was recovered from
646  * the log.  We need to free the extents that it describes.
647  */
648 STATIC int
649 xfs_extent_free_recover_work(
650 	struct xfs_defer_pending	*dfp,
651 	struct list_head		*capture_list)
652 {
653 	struct xfs_trans_res		resv;
654 	struct xfs_log_item		*lip = dfp->dfp_intent;
655 	struct xfs_efi_log_item		*efip = EFI_ITEM(lip);
656 	struct xfs_mount		*mp = lip->li_log->l_mp;
657 	struct xfs_trans		*tp;
658 	int				i;
659 	int				error = 0;
660 	bool				isrt = xfs_efi_item_isrt(lip);
661 
662 	/*
663 	 * First check the validity of the extents described by the EFI.  If
664 	 * any are bad, then assume that all are bad and just toss the EFI.
665 	 * Mixing RT and non-RT extents in the same EFI item is not allowed.
666 	 */
667 	for (i = 0; i < efip->efi_format.efi_nextents; i++) {
668 		if (!xfs_efi_validate_ext(mp, isrt,
669 					&efip->efi_format.efi_extents[i])) {
670 			XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp,
671 					&efip->efi_format,
672 					sizeof(efip->efi_format));
673 			return -EFSCORRUPTED;
674 		}
675 
676 		xfs_efi_recover_work(mp, dfp, isrt,
677 				&efip->efi_format.efi_extents[i]);
678 	}
679 
680 	resv = xlog_recover_resv(&M_RES(mp)->tr_itruncate);
681 	error = xfs_trans_alloc(mp, &resv, 0, 0, 0, &tp);
682 	if (error)
683 		return error;
684 
685 	error = xlog_recover_finish_intent(tp, dfp);
686 	if (error == -EFSCORRUPTED)
687 		XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp,
688 				&efip->efi_format,
689 				sizeof(efip->efi_format));
690 	if (error)
691 		goto abort_error;
692 
693 	return xfs_defer_ops_capture_and_commit(tp, capture_list);
694 
695 abort_error:
696 	xfs_trans_cancel(tp);
697 	return error;
698 }
699 
700 /* Relog an intent item to push the log tail forward. */
701 static struct xfs_log_item *
702 xfs_extent_free_relog_intent(
703 	struct xfs_trans		*tp,
704 	struct xfs_log_item		*intent,
705 	struct xfs_log_item		*done_item)
706 {
707 	struct xfs_efd_log_item		*efdp = EFD_ITEM(done_item);
708 	struct xfs_efi_log_item		*efip;
709 	struct xfs_extent		*extp;
710 	unsigned int			count;
711 
712 	count = EFI_ITEM(intent)->efi_format.efi_nextents;
713 	extp = EFI_ITEM(intent)->efi_format.efi_extents;
714 
715 	ASSERT(intent->li_type == XFS_LI_EFI || intent->li_type == XFS_LI_EFI_RT);
716 
717 	efdp->efd_next_extent = count;
718 	memcpy(efdp->efd_format.efd_extents, extp, count * sizeof(*extp));
719 
720 	efip = xfs_efi_init(tp->t_mountp, intent->li_type, count);
721 	memcpy(efip->efi_format.efi_extents, extp, count * sizeof(*extp));
722 	atomic_set(&efip->efi_next_extent, count);
723 
724 	return &efip->efi_item;
725 }
726 
727 const struct xfs_defer_op_type xfs_extent_free_defer_type = {
728 	.name		= "extent_free",
729 	.max_items	= XFS_EFI_MAX_FAST_EXTENTS,
730 	.create_intent	= xfs_extent_free_create_intent,
731 	.abort_intent	= xfs_extent_free_abort_intent,
732 	.create_done	= xfs_extent_free_create_done,
733 	.finish_item	= xfs_extent_free_finish_item,
734 	.cancel_item	= xfs_extent_free_cancel_item,
735 	.recover_work	= xfs_extent_free_recover_work,
736 	.relog_intent	= xfs_extent_free_relog_intent,
737 };
738 
739 /* sub-type with special handling for AGFL deferred frees */
740 const struct xfs_defer_op_type xfs_agfl_free_defer_type = {
741 	.name		= "agfl_free",
742 	.max_items	= XFS_EFI_MAX_FAST_EXTENTS,
743 	.create_intent	= xfs_extent_free_create_intent,
744 	.abort_intent	= xfs_extent_free_abort_intent,
745 	.create_done	= xfs_extent_free_create_done,
746 	.finish_item	= xfs_agfl_free_finish_item,
747 	.cancel_item	= xfs_extent_free_cancel_item,
748 	.recover_work	= xfs_extent_free_recover_work,
749 	.relog_intent	= xfs_extent_free_relog_intent,
750 };
751 
752 #ifdef CONFIG_XFS_RT
753 /* Create a realtime extent freeing */
754 static struct xfs_log_item *
755 xfs_rtextent_free_create_intent(
756 	struct xfs_trans		*tp,
757 	struct list_head		*items,
758 	unsigned int			count,
759 	bool				sort)
760 {
761 	return __xfs_extent_free_create_intent(tp, items, count, sort,
762 			XFS_LI_EFI_RT);
763 }
764 
765 /* Process a free realtime extent. */
766 STATIC int
767 xfs_rtextent_free_finish_item(
768 	struct xfs_trans		*tp,
769 	struct xfs_log_item		*done,
770 	struct list_head		*item,
771 	struct xfs_btree_cur		**state)
772 {
773 	struct xfs_mount		*mp = tp->t_mountp;
774 	struct xfs_extent_free_item	*xefi = xefi_entry(item);
775 	struct xfs_efd_log_item		*efdp = EFD_ITEM(done);
776 	struct xfs_rtgroup		**rtgp = (struct xfs_rtgroup **)state;
777 	int				error = 0;
778 
779 	trace_xfs_extent_free_deferred(mp, xefi);
780 
781 	if (xefi->xefi_flags & XFS_EFI_CANCELLED)
782 		goto done;
783 
784 	if (*rtgp != to_rtg(xefi->xefi_group)) {
785 		unsigned int		lock_flags;
786 
787 		if (xfs_has_zoned(mp))
788 			lock_flags = XFS_RTGLOCK_RMAP;
789 		else
790 			lock_flags = XFS_RTGLOCK_BITMAP;
791 
792 		*rtgp = to_rtg(xefi->xefi_group);
793 		xfs_rtgroup_lock(*rtgp, lock_flags);
794 		xfs_rtgroup_trans_join(tp, *rtgp, lock_flags);
795 	}
796 
797 	if (xfs_has_zoned(mp)) {
798 		error = xfs_zone_free_blocks(tp, *rtgp, xefi->xefi_startblock,
799 				xefi->xefi_blockcount);
800 	} else {
801 		error = xfs_rtfree_blocks(tp, *rtgp, xefi->xefi_startblock,
802 				xefi->xefi_blockcount);
803 	}
804 
805 	if (error == -EAGAIN) {
806 		xfs_efd_from_efi(efdp);
807 		return error;
808 	}
809 done:
810 	xfs_efd_add_extent(efdp, xefi);
811 	xfs_extent_free_cancel_item(item);
812 	return error;
813 }
814 
815 const struct xfs_defer_op_type xfs_rtextent_free_defer_type = {
816 	.name		= "rtextent_free",
817 	.max_items	= XFS_EFI_MAX_FAST_EXTENTS,
818 	.create_intent	= xfs_rtextent_free_create_intent,
819 	.abort_intent	= xfs_extent_free_abort_intent,
820 	.create_done	= xfs_extent_free_create_done,
821 	.finish_item	= xfs_rtextent_free_finish_item,
822 	.cancel_item	= xfs_extent_free_cancel_item,
823 	.recover_work	= xfs_extent_free_recover_work,
824 	.relog_intent	= xfs_extent_free_relog_intent,
825 };
826 #else
827 const struct xfs_defer_op_type xfs_rtextent_free_defer_type = {
828 	.name		= "rtextent_free",
829 };
830 #endif /* CONFIG_XFS_RT */
831 
832 STATIC bool
833 xfs_efi_item_match(
834 	struct xfs_log_item	*lip,
835 	uint64_t		intent_id)
836 {
837 	return EFI_ITEM(lip)->efi_format.efi_id == intent_id;
838 }
839 
840 static const struct xfs_item_ops xfs_efi_item_ops = {
841 	.flags		= XFS_ITEM_INTENT,
842 	.iop_size	= xfs_efi_item_size,
843 	.iop_format	= xfs_efi_item_format,
844 	.iop_unpin	= xfs_efi_item_unpin,
845 	.iop_release	= xfs_efi_item_release,
846 	.iop_match	= xfs_efi_item_match,
847 };
848 
849 /*
850  * This routine is called to create an in-core extent free intent
851  * item from the efi format structure which was logged on disk.
852  * It allocates an in-core efi, copies the extents from the format
853  * structure into it, and adds the efi to the AIL with the given
854  * LSN.
855  */
856 STATIC int
857 xlog_recover_efi_commit_pass2(
858 	struct xlog			*log,
859 	struct list_head		*buffer_list,
860 	struct xlog_recover_item	*item,
861 	xfs_lsn_t			lsn)
862 {
863 	struct xfs_mount		*mp = log->l_mp;
864 	struct xfs_efi_log_item		*efip;
865 	struct xfs_efi_log_format	*efi_formatp;
866 	int				error;
867 
868 	efi_formatp = item->ri_buf[0].i_addr;
869 
870 	if (item->ri_buf[0].i_len < xfs_efi_log_format_sizeof(0)) {
871 		XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp,
872 				item->ri_buf[0].i_addr, item->ri_buf[0].i_len);
873 		return -EFSCORRUPTED;
874 	}
875 
876 	efip = xfs_efi_init(mp, ITEM_TYPE(item), efi_formatp->efi_nextents);
877 	error = xfs_efi_copy_format(&item->ri_buf[0], &efip->efi_format);
878 	if (error) {
879 		xfs_efi_item_free(efip);
880 		return error;
881 	}
882 	atomic_set(&efip->efi_next_extent, efi_formatp->efi_nextents);
883 
884 	xlog_recover_intent_item(log, &efip->efi_item, lsn,
885 			&xfs_extent_free_defer_type);
886 	return 0;
887 }
888 
889 const struct xlog_recover_item_ops xlog_efi_item_ops = {
890 	.item_type		= XFS_LI_EFI,
891 	.commit_pass2		= xlog_recover_efi_commit_pass2,
892 };
893 
894 #ifdef CONFIG_XFS_RT
895 STATIC int
896 xlog_recover_rtefi_commit_pass2(
897 	struct xlog			*log,
898 	struct list_head		*buffer_list,
899 	struct xlog_recover_item	*item,
900 	xfs_lsn_t			lsn)
901 {
902 	struct xfs_mount		*mp = log->l_mp;
903 	struct xfs_efi_log_item		*efip;
904 	struct xfs_efi_log_format	*efi_formatp;
905 	int				error;
906 
907 	efi_formatp = item->ri_buf[0].i_addr;
908 
909 	if (item->ri_buf[0].i_len < xfs_efi_log_format_sizeof(0)) {
910 		XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp,
911 				item->ri_buf[0].i_addr, item->ri_buf[0].i_len);
912 		return -EFSCORRUPTED;
913 	}
914 
915 	efip = xfs_efi_init(mp, ITEM_TYPE(item), efi_formatp->efi_nextents);
916 	error = xfs_efi_copy_format(&item->ri_buf[0], &efip->efi_format);
917 	if (error) {
918 		xfs_efi_item_free(efip);
919 		return error;
920 	}
921 	atomic_set(&efip->efi_next_extent, efi_formatp->efi_nextents);
922 
923 	xlog_recover_intent_item(log, &efip->efi_item, lsn,
924 			&xfs_rtextent_free_defer_type);
925 	return 0;
926 }
927 #else
928 STATIC int
929 xlog_recover_rtefi_commit_pass2(
930 	struct xlog			*log,
931 	struct list_head		*buffer_list,
932 	struct xlog_recover_item	*item,
933 	xfs_lsn_t			lsn)
934 {
935 	XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, log->l_mp,
936 			item->ri_buf[0].i_addr, item->ri_buf[0].i_len);
937 	return -EFSCORRUPTED;
938 }
939 #endif
940 
941 const struct xlog_recover_item_ops xlog_rtefi_item_ops = {
942 	.item_type		= XFS_LI_EFI_RT,
943 	.commit_pass2		= xlog_recover_rtefi_commit_pass2,
944 };
945 
946 /*
947  * This routine is called when an EFD format structure is found in a committed
948  * transaction in the log. Its purpose is to cancel the corresponding EFI if it
949  * was still in the log. To do this it searches the AIL for the EFI with an id
950  * equal to that in the EFD format structure. If we find it we drop the EFD
951  * reference, which removes the EFI from the AIL and frees it.
952  */
953 STATIC int
954 xlog_recover_efd_commit_pass2(
955 	struct xlog			*log,
956 	struct list_head		*buffer_list,
957 	struct xlog_recover_item	*item,
958 	xfs_lsn_t			lsn)
959 {
960 	struct xfs_efd_log_format	*efd_formatp;
961 	int				buflen = item->ri_buf[0].i_len;
962 
963 	efd_formatp = item->ri_buf[0].i_addr;
964 
965 	if (buflen < sizeof(struct xfs_efd_log_format)) {
966 		XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, log->l_mp,
967 				efd_formatp, buflen);
968 		return -EFSCORRUPTED;
969 	}
970 
971 	if (item->ri_buf[0].i_len != xfs_efd_log_format32_sizeof(
972 						efd_formatp->efd_nextents) &&
973 	    item->ri_buf[0].i_len != xfs_efd_log_format64_sizeof(
974 						efd_formatp->efd_nextents)) {
975 		XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, log->l_mp,
976 				efd_formatp, buflen);
977 		return -EFSCORRUPTED;
978 	}
979 
980 	xlog_recover_release_intent(log, XFS_LI_EFI, efd_formatp->efd_efi_id);
981 	return 0;
982 }
983 
984 const struct xlog_recover_item_ops xlog_efd_item_ops = {
985 	.item_type		= XFS_LI_EFD,
986 	.commit_pass2		= xlog_recover_efd_commit_pass2,
987 };
988 
989 #ifdef CONFIG_XFS_RT
990 STATIC int
991 xlog_recover_rtefd_commit_pass2(
992 	struct xlog			*log,
993 	struct list_head		*buffer_list,
994 	struct xlog_recover_item	*item,
995 	xfs_lsn_t			lsn)
996 {
997 	struct xfs_efd_log_format	*efd_formatp;
998 	int				buflen = item->ri_buf[0].i_len;
999 
1000 	efd_formatp = item->ri_buf[0].i_addr;
1001 
1002 	if (buflen < sizeof(struct xfs_efd_log_format)) {
1003 		XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, log->l_mp,
1004 				efd_formatp, buflen);
1005 		return -EFSCORRUPTED;
1006 	}
1007 
1008 	if (item->ri_buf[0].i_len != xfs_efd_log_format32_sizeof(
1009 						efd_formatp->efd_nextents) &&
1010 	    item->ri_buf[0].i_len != xfs_efd_log_format64_sizeof(
1011 						efd_formatp->efd_nextents)) {
1012 		XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, log->l_mp,
1013 				efd_formatp, buflen);
1014 		return -EFSCORRUPTED;
1015 	}
1016 
1017 	xlog_recover_release_intent(log, XFS_LI_EFI_RT,
1018 			efd_formatp->efd_efi_id);
1019 	return 0;
1020 }
1021 #else
1022 # define xlog_recover_rtefd_commit_pass2	xlog_recover_rtefi_commit_pass2
1023 #endif
1024 
1025 const struct xlog_recover_item_ops xlog_rtefd_item_ops = {
1026 	.item_type		= XFS_LI_EFD_RT,
1027 	.commit_pass2		= xlog_recover_rtefd_commit_pass2,
1028 };
1029