1 /* 2 * Copyright (c) 2000-2001 Silicon Graphics, Inc. All Rights Reserved. 3 * 4 * This program is free software; you can redistribute it and/or modify it 5 * under the terms of version 2 of the GNU General Public License as 6 * published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it would be useful, but 9 * WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. 11 * 12 * Further, this software is distributed without any warranty that it is 13 * free of the rightful claim of any third person regarding infringement 14 * or the like. Any license provided herein, whether implied or 15 * otherwise, applies only to this software file. Patent licenses, if 16 * any, provided herein do not apply to combinations of this program with 17 * other software, or any other product whatsoever. 18 * 19 * You should have received a copy of the GNU General Public License along 20 * with this program; if not, write the Free Software Foundation, Inc., 59 21 * Temple Place - Suite 330, Boston MA 02111-1307, USA. 22 * 23 * Contact information: Silicon Graphics, Inc., 1600 Amphitheatre Pkwy, 24 * Mountain View, CA 94043, or: 25 * 26 * http://www.sgi.com 27 * 28 * For further information regarding this notice, see: 29 * 30 * http://oss.sgi.com/projects/GenInfo/SGIGPLNoticeExplan/ 31 */ 32 33 /* 34 * This file contains the implementation of the xfs_efi_log_item 35 * and xfs_efd_log_item items. 36 */ 37 38 #include "xfs.h" 39 40 #include "xfs_macros.h" 41 #include "xfs_types.h" 42 #include "xfs_inum.h" 43 #include "xfs_log.h" 44 #include "xfs_trans.h" 45 #include "xfs_buf_item.h" 46 #include "xfs_sb.h" 47 #include "xfs_dir.h" 48 #include "xfs_dmapi.h" 49 #include "xfs_mount.h" 50 #include "xfs_trans_priv.h" 51 #include "xfs_extfree_item.h" 52 53 54 kmem_zone_t *xfs_efi_zone; 55 kmem_zone_t *xfs_efd_zone; 56 57 STATIC void xfs_efi_item_unlock(xfs_efi_log_item_t *); 58 STATIC void xfs_efi_item_abort(xfs_efi_log_item_t *); 59 STATIC void xfs_efd_item_abort(xfs_efd_log_item_t *); 60 61 62 void 63 xfs_efi_item_free(xfs_efi_log_item_t *efip) 64 { 65 int nexts = efip->efi_format.efi_nextents; 66 67 if (nexts > XFS_EFI_MAX_FAST_EXTENTS) { 68 kmem_free(efip, sizeof(xfs_efi_log_item_t) + 69 (nexts - 1) * sizeof(xfs_extent_t)); 70 } else { 71 kmem_zone_free(xfs_efi_zone, efip); 72 } 73 } 74 75 /* 76 * This returns the number of iovecs needed to log the given efi item. 77 * We only need 1 iovec for an efi item. It just logs the efi_log_format 78 * structure. 79 */ 80 /*ARGSUSED*/ 81 STATIC uint 82 xfs_efi_item_size(xfs_efi_log_item_t *efip) 83 { 84 return 1; 85 } 86 87 /* 88 * This is called to fill in the vector of log iovecs for the 89 * given efi log item. We use only 1 iovec, and we point that 90 * at the efi_log_format structure embedded in the efi item. 91 * It is at this point that we assert that all of the extent 92 * slots in the efi item have been filled. 93 */ 94 STATIC void 95 xfs_efi_item_format(xfs_efi_log_item_t *efip, 96 xfs_log_iovec_t *log_vector) 97 { 98 uint size; 99 100 ASSERT(efip->efi_next_extent == efip->efi_format.efi_nextents); 101 102 efip->efi_format.efi_type = XFS_LI_EFI; 103 104 size = sizeof(xfs_efi_log_format_t); 105 size += (efip->efi_format.efi_nextents - 1) * sizeof(xfs_extent_t); 106 efip->efi_format.efi_size = 1; 107 108 log_vector->i_addr = (xfs_caddr_t)&(efip->efi_format); 109 log_vector->i_len = size; 110 ASSERT(size >= sizeof(xfs_efi_log_format_t)); 111 } 112 113 114 /* 115 * Pinning has no meaning for an efi item, so just return. 116 */ 117 /*ARGSUSED*/ 118 STATIC void 119 xfs_efi_item_pin(xfs_efi_log_item_t *efip) 120 { 121 return; 122 } 123 124 125 /* 126 * While EFIs cannot really be pinned, the unpin operation is the 127 * last place at which the EFI is manipulated during a transaction. 128 * Here we coordinate with xfs_efi_cancel() to determine who gets to 129 * free the EFI. 130 */ 131 /*ARGSUSED*/ 132 STATIC void 133 xfs_efi_item_unpin(xfs_efi_log_item_t *efip, int stale) 134 { 135 xfs_mount_t *mp; 136 SPLDECL(s); 137 138 mp = efip->efi_item.li_mountp; 139 AIL_LOCK(mp, s); 140 if (efip->efi_flags & XFS_EFI_CANCELED) { 141 /* 142 * xfs_trans_delete_ail() drops the AIL lock. 143 */ 144 xfs_trans_delete_ail(mp, (xfs_log_item_t *)efip, s); 145 xfs_efi_item_free(efip); 146 } else { 147 efip->efi_flags |= XFS_EFI_COMMITTED; 148 AIL_UNLOCK(mp, s); 149 } 150 } 151 152 /* 153 * like unpin only we have to also clear the xaction descriptor 154 * pointing the log item if we free the item. This routine duplicates 155 * unpin because efi_flags is protected by the AIL lock. Freeing 156 * the descriptor and then calling unpin would force us to drop the AIL 157 * lock which would open up a race condition. 158 */ 159 STATIC void 160 xfs_efi_item_unpin_remove(xfs_efi_log_item_t *efip, xfs_trans_t *tp) 161 { 162 xfs_mount_t *mp; 163 xfs_log_item_desc_t *lidp; 164 SPLDECL(s); 165 166 mp = efip->efi_item.li_mountp; 167 AIL_LOCK(mp, s); 168 if (efip->efi_flags & XFS_EFI_CANCELED) { 169 /* 170 * free the xaction descriptor pointing to this item 171 */ 172 lidp = xfs_trans_find_item(tp, (xfs_log_item_t *) efip); 173 xfs_trans_free_item(tp, lidp); 174 /* 175 * pull the item off the AIL. 176 * xfs_trans_delete_ail() drops the AIL lock. 177 */ 178 xfs_trans_delete_ail(mp, (xfs_log_item_t *)efip, s); 179 xfs_efi_item_free(efip); 180 } else { 181 efip->efi_flags |= XFS_EFI_COMMITTED; 182 AIL_UNLOCK(mp, s); 183 } 184 } 185 186 /* 187 * Efi items have no locking or pushing. However, since EFIs are 188 * pulled from the AIL when their corresponding EFDs are committed 189 * to disk, their situation is very similar to being pinned. Return 190 * XFS_ITEM_PINNED so that the caller will eventually flush the log. 191 * This should help in getting the EFI out of the AIL. 192 */ 193 /*ARGSUSED*/ 194 STATIC uint 195 xfs_efi_item_trylock(xfs_efi_log_item_t *efip) 196 { 197 return XFS_ITEM_PINNED; 198 } 199 200 /* 201 * Efi items have no locking, so just return. 202 */ 203 /*ARGSUSED*/ 204 STATIC void 205 xfs_efi_item_unlock(xfs_efi_log_item_t *efip) 206 { 207 if (efip->efi_item.li_flags & XFS_LI_ABORTED) 208 xfs_efi_item_abort(efip); 209 return; 210 } 211 212 /* 213 * The EFI is logged only once and cannot be moved in the log, so 214 * simply return the lsn at which it's been logged. The canceled 215 * flag is not paid any attention here. Checking for that is delayed 216 * until the EFI is unpinned. 217 */ 218 /*ARGSUSED*/ 219 STATIC xfs_lsn_t 220 xfs_efi_item_committed(xfs_efi_log_item_t *efip, xfs_lsn_t lsn) 221 { 222 return lsn; 223 } 224 225 /* 226 * This is called when the transaction logging the EFI is aborted. 227 * Free up the EFI and return. No need to clean up the slot for 228 * the item in the transaction. That was done by the unpin code 229 * which is called prior to this routine in the abort/fs-shutdown path. 230 */ 231 STATIC void 232 xfs_efi_item_abort(xfs_efi_log_item_t *efip) 233 { 234 xfs_efi_item_free(efip); 235 } 236 237 /* 238 * There isn't much you can do to push on an efi item. It is simply 239 * stuck waiting for all of its corresponding efd items to be 240 * committed to disk. 241 */ 242 /*ARGSUSED*/ 243 STATIC void 244 xfs_efi_item_push(xfs_efi_log_item_t *efip) 245 { 246 return; 247 } 248 249 /* 250 * The EFI dependency tracking op doesn't do squat. It can't because 251 * it doesn't know where the free extent is coming from. The dependency 252 * tracking has to be handled by the "enclosing" metadata object. For 253 * example, for inodes, the inode is locked throughout the extent freeing 254 * so the dependency should be recorded there. 255 */ 256 /*ARGSUSED*/ 257 STATIC void 258 xfs_efi_item_committing(xfs_efi_log_item_t *efip, xfs_lsn_t lsn) 259 { 260 return; 261 } 262 263 /* 264 * This is the ops vector shared by all efi log items. 265 */ 266 STATIC struct xfs_item_ops xfs_efi_item_ops = { 267 .iop_size = (uint(*)(xfs_log_item_t*))xfs_efi_item_size, 268 .iop_format = (void(*)(xfs_log_item_t*, xfs_log_iovec_t*)) 269 xfs_efi_item_format, 270 .iop_pin = (void(*)(xfs_log_item_t*))xfs_efi_item_pin, 271 .iop_unpin = (void(*)(xfs_log_item_t*, int))xfs_efi_item_unpin, 272 .iop_unpin_remove = (void(*)(xfs_log_item_t*, xfs_trans_t *)) 273 xfs_efi_item_unpin_remove, 274 .iop_trylock = (uint(*)(xfs_log_item_t*))xfs_efi_item_trylock, 275 .iop_unlock = (void(*)(xfs_log_item_t*))xfs_efi_item_unlock, 276 .iop_committed = (xfs_lsn_t(*)(xfs_log_item_t*, xfs_lsn_t)) 277 xfs_efi_item_committed, 278 .iop_push = (void(*)(xfs_log_item_t*))xfs_efi_item_push, 279 .iop_abort = (void(*)(xfs_log_item_t*))xfs_efi_item_abort, 280 .iop_pushbuf = NULL, 281 .iop_committing = (void(*)(xfs_log_item_t*, xfs_lsn_t)) 282 xfs_efi_item_committing 283 }; 284 285 286 /* 287 * Allocate and initialize an efi item with the given number of extents. 288 */ 289 xfs_efi_log_item_t * 290 xfs_efi_init(xfs_mount_t *mp, 291 uint nextents) 292 293 { 294 xfs_efi_log_item_t *efip; 295 uint size; 296 297 ASSERT(nextents > 0); 298 if (nextents > XFS_EFI_MAX_FAST_EXTENTS) { 299 size = (uint)(sizeof(xfs_efi_log_item_t) + 300 ((nextents - 1) * sizeof(xfs_extent_t))); 301 efip = (xfs_efi_log_item_t*)kmem_zalloc(size, KM_SLEEP); 302 } else { 303 efip = (xfs_efi_log_item_t*)kmem_zone_zalloc(xfs_efi_zone, 304 KM_SLEEP); 305 } 306 307 efip->efi_item.li_type = XFS_LI_EFI; 308 efip->efi_item.li_ops = &xfs_efi_item_ops; 309 efip->efi_item.li_mountp = mp; 310 efip->efi_format.efi_nextents = nextents; 311 efip->efi_format.efi_id = (__psint_t)(void*)efip; 312 313 return (efip); 314 } 315 316 /* 317 * This is called by the efd item code below to release references to 318 * the given efi item. Each efd calls this with the number of 319 * extents that it has logged, and when the sum of these reaches 320 * the total number of extents logged by this efi item we can free 321 * the efi item. 322 * 323 * Freeing the efi item requires that we remove it from the AIL. 324 * We'll use the AIL lock to protect our counters as well as 325 * the removal from the AIL. 326 */ 327 void 328 xfs_efi_release(xfs_efi_log_item_t *efip, 329 uint nextents) 330 { 331 xfs_mount_t *mp; 332 int extents_left; 333 SPLDECL(s); 334 335 mp = efip->efi_item.li_mountp; 336 ASSERT(efip->efi_next_extent > 0); 337 ASSERT(efip->efi_flags & XFS_EFI_COMMITTED); 338 339 AIL_LOCK(mp, s); 340 ASSERT(efip->efi_next_extent >= nextents); 341 efip->efi_next_extent -= nextents; 342 extents_left = efip->efi_next_extent; 343 if (extents_left == 0) { 344 /* 345 * xfs_trans_delete_ail() drops the AIL lock. 346 */ 347 xfs_trans_delete_ail(mp, (xfs_log_item_t *)efip, s); 348 xfs_efi_item_free(efip); 349 } else { 350 AIL_UNLOCK(mp, s); 351 } 352 } 353 354 /* 355 * This is called when the transaction that should be committing the 356 * EFD corresponding to the given EFI is aborted. The committed and 357 * canceled flags are used to coordinate the freeing of the EFI and 358 * the references by the transaction that committed it. 359 */ 360 STATIC void 361 xfs_efi_cancel( 362 xfs_efi_log_item_t *efip) 363 { 364 xfs_mount_t *mp; 365 SPLDECL(s); 366 367 mp = efip->efi_item.li_mountp; 368 AIL_LOCK(mp, s); 369 if (efip->efi_flags & XFS_EFI_COMMITTED) { 370 /* 371 * xfs_trans_delete_ail() drops the AIL lock. 372 */ 373 xfs_trans_delete_ail(mp, (xfs_log_item_t *)efip, s); 374 xfs_efi_item_free(efip); 375 } else { 376 efip->efi_flags |= XFS_EFI_CANCELED; 377 AIL_UNLOCK(mp, s); 378 } 379 } 380 381 STATIC void 382 xfs_efd_item_free(xfs_efd_log_item_t *efdp) 383 { 384 int nexts = efdp->efd_format.efd_nextents; 385 386 if (nexts > XFS_EFD_MAX_FAST_EXTENTS) { 387 kmem_free(efdp, sizeof(xfs_efd_log_item_t) + 388 (nexts - 1) * sizeof(xfs_extent_t)); 389 } else { 390 kmem_zone_free(xfs_efd_zone, efdp); 391 } 392 } 393 394 /* 395 * This returns the number of iovecs needed to log the given efd item. 396 * We only need 1 iovec for an efd item. It just logs the efd_log_format 397 * structure. 398 */ 399 /*ARGSUSED*/ 400 STATIC uint 401 xfs_efd_item_size(xfs_efd_log_item_t *efdp) 402 { 403 return 1; 404 } 405 406 /* 407 * This is called to fill in the vector of log iovecs for the 408 * given efd log item. We use only 1 iovec, and we point that 409 * at the efd_log_format structure embedded in the efd item. 410 * It is at this point that we assert that all of the extent 411 * slots in the efd item have been filled. 412 */ 413 STATIC void 414 xfs_efd_item_format(xfs_efd_log_item_t *efdp, 415 xfs_log_iovec_t *log_vector) 416 { 417 uint size; 418 419 ASSERT(efdp->efd_next_extent == efdp->efd_format.efd_nextents); 420 421 efdp->efd_format.efd_type = XFS_LI_EFD; 422 423 size = sizeof(xfs_efd_log_format_t); 424 size += (efdp->efd_format.efd_nextents - 1) * sizeof(xfs_extent_t); 425 efdp->efd_format.efd_size = 1; 426 427 log_vector->i_addr = (xfs_caddr_t)&(efdp->efd_format); 428 log_vector->i_len = size; 429 ASSERT(size >= sizeof(xfs_efd_log_format_t)); 430 } 431 432 433 /* 434 * Pinning has no meaning for an efd item, so just return. 435 */ 436 /*ARGSUSED*/ 437 STATIC void 438 xfs_efd_item_pin(xfs_efd_log_item_t *efdp) 439 { 440 return; 441 } 442 443 444 /* 445 * Since pinning has no meaning for an efd item, unpinning does 446 * not either. 447 */ 448 /*ARGSUSED*/ 449 STATIC void 450 xfs_efd_item_unpin(xfs_efd_log_item_t *efdp, int stale) 451 { 452 return; 453 } 454 455 /*ARGSUSED*/ 456 STATIC void 457 xfs_efd_item_unpin_remove(xfs_efd_log_item_t *efdp, xfs_trans_t *tp) 458 { 459 return; 460 } 461 462 /* 463 * Efd items have no locking, so just return success. 464 */ 465 /*ARGSUSED*/ 466 STATIC uint 467 xfs_efd_item_trylock(xfs_efd_log_item_t *efdp) 468 { 469 return XFS_ITEM_LOCKED; 470 } 471 472 /* 473 * Efd items have no locking or pushing, so return failure 474 * so that the caller doesn't bother with us. 475 */ 476 /*ARGSUSED*/ 477 STATIC void 478 xfs_efd_item_unlock(xfs_efd_log_item_t *efdp) 479 { 480 if (efdp->efd_item.li_flags & XFS_LI_ABORTED) 481 xfs_efd_item_abort(efdp); 482 return; 483 } 484 485 /* 486 * When the efd item is committed to disk, all we need to do 487 * is delete our reference to our partner efi item and then 488 * free ourselves. Since we're freeing ourselves we must 489 * return -1 to keep the transaction code from further referencing 490 * this item. 491 */ 492 /*ARGSUSED*/ 493 STATIC xfs_lsn_t 494 xfs_efd_item_committed(xfs_efd_log_item_t *efdp, xfs_lsn_t lsn) 495 { 496 /* 497 * If we got a log I/O error, it's always the case that the LR with the 498 * EFI got unpinned and freed before the EFD got aborted. 499 */ 500 if ((efdp->efd_item.li_flags & XFS_LI_ABORTED) == 0) 501 xfs_efi_release(efdp->efd_efip, efdp->efd_format.efd_nextents); 502 503 xfs_efd_item_free(efdp); 504 return (xfs_lsn_t)-1; 505 } 506 507 /* 508 * The transaction of which this EFD is a part has been aborted. 509 * Inform its companion EFI of this fact and then clean up after 510 * ourselves. No need to clean up the slot for the item in the 511 * transaction. That was done by the unpin code which is called 512 * prior to this routine in the abort/fs-shutdown path. 513 */ 514 STATIC void 515 xfs_efd_item_abort(xfs_efd_log_item_t *efdp) 516 { 517 /* 518 * If we got a log I/O error, it's always the case that the LR with the 519 * EFI got unpinned and freed before the EFD got aborted. So don't 520 * reference the EFI at all in that case. 521 */ 522 if ((efdp->efd_item.li_flags & XFS_LI_ABORTED) == 0) 523 xfs_efi_cancel(efdp->efd_efip); 524 525 xfs_efd_item_free(efdp); 526 } 527 528 /* 529 * There isn't much you can do to push on an efd item. It is simply 530 * stuck waiting for the log to be flushed to disk. 531 */ 532 /*ARGSUSED*/ 533 STATIC void 534 xfs_efd_item_push(xfs_efd_log_item_t *efdp) 535 { 536 return; 537 } 538 539 /* 540 * The EFD dependency tracking op doesn't do squat. It can't because 541 * it doesn't know where the free extent is coming from. The dependency 542 * tracking has to be handled by the "enclosing" metadata object. For 543 * example, for inodes, the inode is locked throughout the extent freeing 544 * so the dependency should be recorded there. 545 */ 546 /*ARGSUSED*/ 547 STATIC void 548 xfs_efd_item_committing(xfs_efd_log_item_t *efip, xfs_lsn_t lsn) 549 { 550 return; 551 } 552 553 /* 554 * This is the ops vector shared by all efd log items. 555 */ 556 STATIC struct xfs_item_ops xfs_efd_item_ops = { 557 .iop_size = (uint(*)(xfs_log_item_t*))xfs_efd_item_size, 558 .iop_format = (void(*)(xfs_log_item_t*, xfs_log_iovec_t*)) 559 xfs_efd_item_format, 560 .iop_pin = (void(*)(xfs_log_item_t*))xfs_efd_item_pin, 561 .iop_unpin = (void(*)(xfs_log_item_t*, int))xfs_efd_item_unpin, 562 .iop_unpin_remove = (void(*)(xfs_log_item_t*, xfs_trans_t*)) 563 xfs_efd_item_unpin_remove, 564 .iop_trylock = (uint(*)(xfs_log_item_t*))xfs_efd_item_trylock, 565 .iop_unlock = (void(*)(xfs_log_item_t*))xfs_efd_item_unlock, 566 .iop_committed = (xfs_lsn_t(*)(xfs_log_item_t*, xfs_lsn_t)) 567 xfs_efd_item_committed, 568 .iop_push = (void(*)(xfs_log_item_t*))xfs_efd_item_push, 569 .iop_abort = (void(*)(xfs_log_item_t*))xfs_efd_item_abort, 570 .iop_pushbuf = NULL, 571 .iop_committing = (void(*)(xfs_log_item_t*, xfs_lsn_t)) 572 xfs_efd_item_committing 573 }; 574 575 576 /* 577 * Allocate and initialize an efd item with the given number of extents. 578 */ 579 xfs_efd_log_item_t * 580 xfs_efd_init(xfs_mount_t *mp, 581 xfs_efi_log_item_t *efip, 582 uint nextents) 583 584 { 585 xfs_efd_log_item_t *efdp; 586 uint size; 587 588 ASSERT(nextents > 0); 589 if (nextents > XFS_EFD_MAX_FAST_EXTENTS) { 590 size = (uint)(sizeof(xfs_efd_log_item_t) + 591 ((nextents - 1) * sizeof(xfs_extent_t))); 592 efdp = (xfs_efd_log_item_t*)kmem_zalloc(size, KM_SLEEP); 593 } else { 594 efdp = (xfs_efd_log_item_t*)kmem_zone_zalloc(xfs_efd_zone, 595 KM_SLEEP); 596 } 597 598 efdp->efd_item.li_type = XFS_LI_EFD; 599 efdp->efd_item.li_ops = &xfs_efd_item_ops; 600 efdp->efd_item.li_mountp = mp; 601 efdp->efd_efip = efip; 602 efdp->efd_format.efd_nextents = nextents; 603 efdp->efd_format.efd_efi_id = efip->efi_format.efi_id; 604 605 return (efdp); 606 } 607