1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2001,2005 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_format.h" 9 #include "xfs_log_format.h" 10 #include "xfs_trans_resv.h" 11 #include "xfs_bit.h" 12 #include "xfs_shared.h" 13 #include "xfs_mount.h" 14 #include "xfs_defer.h" 15 #include "xfs_trans.h" 16 #include "xfs_trans_priv.h" 17 #include "xfs_extfree_item.h" 18 #include "xfs_log.h" 19 #include "xfs_btree.h" 20 #include "xfs_rmap.h" 21 #include "xfs_alloc.h" 22 #include "xfs_bmap.h" 23 #include "xfs_trace.h" 24 #include "xfs_error.h" 25 26 kmem_zone_t *xfs_efi_zone; 27 kmem_zone_t *xfs_efd_zone; 28 29 static inline struct xfs_efi_log_item *EFI_ITEM(struct xfs_log_item *lip) 30 { 31 return container_of(lip, struct xfs_efi_log_item, efi_item); 32 } 33 34 void 35 xfs_efi_item_free( 36 struct xfs_efi_log_item *efip) 37 { 38 kmem_free(efip->efi_item.li_lv_shadow); 39 if (efip->efi_format.efi_nextents > XFS_EFI_MAX_FAST_EXTENTS) 40 kmem_free(efip); 41 else 42 kmem_cache_free(xfs_efi_zone, efip); 43 } 44 45 /* 46 * Freeing the efi requires that we remove it from the AIL if it has already 47 * been placed there. However, the EFI may not yet have been placed in the AIL 48 * when called by xfs_efi_release() from EFD processing due to the ordering of 49 * committed vs unpin operations in bulk insert operations. Hence the reference 50 * count to ensure only the last caller frees the EFI. 51 */ 52 void 53 xfs_efi_release( 54 struct xfs_efi_log_item *efip) 55 { 56 ASSERT(atomic_read(&efip->efi_refcount) > 0); 57 if (atomic_dec_and_test(&efip->efi_refcount)) { 58 xfs_trans_ail_remove(&efip->efi_item, SHUTDOWN_LOG_IO_ERROR); 59 xfs_efi_item_free(efip); 60 } 61 } 62 63 /* 64 * This returns the number of iovecs needed to log the given efi item. 65 * We only need 1 iovec for an efi item. It just logs the efi_log_format 66 * structure. 67 */ 68 static inline int 69 xfs_efi_item_sizeof( 70 struct xfs_efi_log_item *efip) 71 { 72 return sizeof(struct xfs_efi_log_format) + 73 (efip->efi_format.efi_nextents - 1) * sizeof(xfs_extent_t); 74 } 75 76 STATIC void 77 xfs_efi_item_size( 78 struct xfs_log_item *lip, 79 int *nvecs, 80 int *nbytes) 81 { 82 *nvecs += 1; 83 *nbytes += xfs_efi_item_sizeof(EFI_ITEM(lip)); 84 } 85 86 /* 87 * This is called to fill in the vector of log iovecs for the 88 * given efi log item. We use only 1 iovec, and we point that 89 * at the efi_log_format structure embedded in the efi item. 90 * It is at this point that we assert that all of the extent 91 * slots in the efi item have been filled. 92 */ 93 STATIC void 94 xfs_efi_item_format( 95 struct xfs_log_item *lip, 96 struct xfs_log_vec *lv) 97 { 98 struct xfs_efi_log_item *efip = EFI_ITEM(lip); 99 struct xfs_log_iovec *vecp = NULL; 100 101 ASSERT(atomic_read(&efip->efi_next_extent) == 102 efip->efi_format.efi_nextents); 103 104 efip->efi_format.efi_type = XFS_LI_EFI; 105 efip->efi_format.efi_size = 1; 106 107 xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_EFI_FORMAT, 108 &efip->efi_format, 109 xfs_efi_item_sizeof(efip)); 110 } 111 112 113 /* 114 * The unpin operation is the last place an EFI is manipulated in the log. It is 115 * either inserted in the AIL or aborted in the event of a log I/O error. In 116 * either case, the EFI transaction has been successfully committed to make it 117 * this far. Therefore, we expect whoever committed the EFI to either construct 118 * and commit the EFD or drop the EFD's reference in the event of error. Simply 119 * drop the log's EFI reference now that the log is done with it. 120 */ 121 STATIC void 122 xfs_efi_item_unpin( 123 struct xfs_log_item *lip, 124 int remove) 125 { 126 struct xfs_efi_log_item *efip = EFI_ITEM(lip); 127 xfs_efi_release(efip); 128 } 129 130 /* 131 * The EFI has been either committed or aborted if the transaction has been 132 * cancelled. If the transaction was cancelled, an EFD isn't going to be 133 * constructed and thus we free the EFI here directly. 134 */ 135 STATIC void 136 xfs_efi_item_release( 137 struct xfs_log_item *lip) 138 { 139 xfs_efi_release(EFI_ITEM(lip)); 140 } 141 142 static const struct xfs_item_ops xfs_efi_item_ops = { 143 .iop_size = xfs_efi_item_size, 144 .iop_format = xfs_efi_item_format, 145 .iop_unpin = xfs_efi_item_unpin, 146 .iop_release = xfs_efi_item_release, 147 }; 148 149 150 /* 151 * Allocate and initialize an efi item with the given number of extents. 152 */ 153 struct xfs_efi_log_item * 154 xfs_efi_init( 155 struct xfs_mount *mp, 156 uint nextents) 157 158 { 159 struct xfs_efi_log_item *efip; 160 uint size; 161 162 ASSERT(nextents > 0); 163 if (nextents > XFS_EFI_MAX_FAST_EXTENTS) { 164 size = (uint)(sizeof(xfs_efi_log_item_t) + 165 ((nextents - 1) * sizeof(xfs_extent_t))); 166 efip = kmem_zalloc(size, 0); 167 } else { 168 efip = kmem_zone_zalloc(xfs_efi_zone, 0); 169 } 170 171 xfs_log_item_init(mp, &efip->efi_item, XFS_LI_EFI, &xfs_efi_item_ops); 172 efip->efi_format.efi_nextents = nextents; 173 efip->efi_format.efi_id = (uintptr_t)(void *)efip; 174 atomic_set(&efip->efi_next_extent, 0); 175 atomic_set(&efip->efi_refcount, 2); 176 177 return efip; 178 } 179 180 /* 181 * Copy an EFI format buffer from the given buf, and into the destination 182 * EFI format structure. 183 * The given buffer can be in 32 bit or 64 bit form (which has different padding), 184 * one of which will be the native format for this kernel. 185 * It will handle the conversion of formats if necessary. 186 */ 187 int 188 xfs_efi_copy_format(xfs_log_iovec_t *buf, xfs_efi_log_format_t *dst_efi_fmt) 189 { 190 xfs_efi_log_format_t *src_efi_fmt = buf->i_addr; 191 uint i; 192 uint len = sizeof(xfs_efi_log_format_t) + 193 (src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_t); 194 uint len32 = sizeof(xfs_efi_log_format_32_t) + 195 (src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_32_t); 196 uint len64 = sizeof(xfs_efi_log_format_64_t) + 197 (src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_64_t); 198 199 if (buf->i_len == len) { 200 memcpy((char *)dst_efi_fmt, (char*)src_efi_fmt, len); 201 return 0; 202 } else if (buf->i_len == len32) { 203 xfs_efi_log_format_32_t *src_efi_fmt_32 = buf->i_addr; 204 205 dst_efi_fmt->efi_type = src_efi_fmt_32->efi_type; 206 dst_efi_fmt->efi_size = src_efi_fmt_32->efi_size; 207 dst_efi_fmt->efi_nextents = src_efi_fmt_32->efi_nextents; 208 dst_efi_fmt->efi_id = src_efi_fmt_32->efi_id; 209 for (i = 0; i < dst_efi_fmt->efi_nextents; i++) { 210 dst_efi_fmt->efi_extents[i].ext_start = 211 src_efi_fmt_32->efi_extents[i].ext_start; 212 dst_efi_fmt->efi_extents[i].ext_len = 213 src_efi_fmt_32->efi_extents[i].ext_len; 214 } 215 return 0; 216 } else if (buf->i_len == len64) { 217 xfs_efi_log_format_64_t *src_efi_fmt_64 = buf->i_addr; 218 219 dst_efi_fmt->efi_type = src_efi_fmt_64->efi_type; 220 dst_efi_fmt->efi_size = src_efi_fmt_64->efi_size; 221 dst_efi_fmt->efi_nextents = src_efi_fmt_64->efi_nextents; 222 dst_efi_fmt->efi_id = src_efi_fmt_64->efi_id; 223 for (i = 0; i < dst_efi_fmt->efi_nextents; i++) { 224 dst_efi_fmt->efi_extents[i].ext_start = 225 src_efi_fmt_64->efi_extents[i].ext_start; 226 dst_efi_fmt->efi_extents[i].ext_len = 227 src_efi_fmt_64->efi_extents[i].ext_len; 228 } 229 return 0; 230 } 231 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, NULL); 232 return -EFSCORRUPTED; 233 } 234 235 static inline struct xfs_efd_log_item *EFD_ITEM(struct xfs_log_item *lip) 236 { 237 return container_of(lip, struct xfs_efd_log_item, efd_item); 238 } 239 240 STATIC void 241 xfs_efd_item_free(struct xfs_efd_log_item *efdp) 242 { 243 kmem_free(efdp->efd_item.li_lv_shadow); 244 if (efdp->efd_format.efd_nextents > XFS_EFD_MAX_FAST_EXTENTS) 245 kmem_free(efdp); 246 else 247 kmem_cache_free(xfs_efd_zone, efdp); 248 } 249 250 /* 251 * This returns the number of iovecs needed to log the given efd item. 252 * We only need 1 iovec for an efd item. It just logs the efd_log_format 253 * structure. 254 */ 255 static inline int 256 xfs_efd_item_sizeof( 257 struct xfs_efd_log_item *efdp) 258 { 259 return sizeof(xfs_efd_log_format_t) + 260 (efdp->efd_format.efd_nextents - 1) * sizeof(xfs_extent_t); 261 } 262 263 STATIC void 264 xfs_efd_item_size( 265 struct xfs_log_item *lip, 266 int *nvecs, 267 int *nbytes) 268 { 269 *nvecs += 1; 270 *nbytes += xfs_efd_item_sizeof(EFD_ITEM(lip)); 271 } 272 273 /* 274 * This is called to fill in the vector of log iovecs for the 275 * given efd log item. We use only 1 iovec, and we point that 276 * at the efd_log_format structure embedded in the efd item. 277 * It is at this point that we assert that all of the extent 278 * slots in the efd item have been filled. 279 */ 280 STATIC void 281 xfs_efd_item_format( 282 struct xfs_log_item *lip, 283 struct xfs_log_vec *lv) 284 { 285 struct xfs_efd_log_item *efdp = EFD_ITEM(lip); 286 struct xfs_log_iovec *vecp = NULL; 287 288 ASSERT(efdp->efd_next_extent == efdp->efd_format.efd_nextents); 289 290 efdp->efd_format.efd_type = XFS_LI_EFD; 291 efdp->efd_format.efd_size = 1; 292 293 xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_EFD_FORMAT, 294 &efdp->efd_format, 295 xfs_efd_item_sizeof(efdp)); 296 } 297 298 /* 299 * The EFD is either committed or aborted if the transaction is cancelled. If 300 * the transaction is cancelled, drop our reference to the EFI and free the EFD. 301 */ 302 STATIC void 303 xfs_efd_item_release( 304 struct xfs_log_item *lip) 305 { 306 struct xfs_efd_log_item *efdp = EFD_ITEM(lip); 307 308 xfs_efi_release(efdp->efd_efip); 309 xfs_efd_item_free(efdp); 310 } 311 312 static const struct xfs_item_ops xfs_efd_item_ops = { 313 .flags = XFS_ITEM_RELEASE_WHEN_COMMITTED, 314 .iop_size = xfs_efd_item_size, 315 .iop_format = xfs_efd_item_format, 316 .iop_release = xfs_efd_item_release, 317 }; 318 319 /* 320 * Allocate an "extent free done" log item that will hold nextents worth of 321 * extents. The caller must use all nextents extents, because we are not 322 * flexible about this at all. 323 */ 324 static struct xfs_efd_log_item * 325 xfs_trans_get_efd( 326 struct xfs_trans *tp, 327 struct xfs_efi_log_item *efip, 328 unsigned int nextents) 329 { 330 struct xfs_efd_log_item *efdp; 331 332 ASSERT(nextents > 0); 333 334 if (nextents > XFS_EFD_MAX_FAST_EXTENTS) { 335 efdp = kmem_zalloc(sizeof(struct xfs_efd_log_item) + 336 (nextents - 1) * sizeof(struct xfs_extent), 337 0); 338 } else { 339 efdp = kmem_zone_zalloc(xfs_efd_zone, 0); 340 } 341 342 xfs_log_item_init(tp->t_mountp, &efdp->efd_item, XFS_LI_EFD, 343 &xfs_efd_item_ops); 344 efdp->efd_efip = efip; 345 efdp->efd_format.efd_nextents = nextents; 346 efdp->efd_format.efd_efi_id = efip->efi_format.efi_id; 347 348 xfs_trans_add_item(tp, &efdp->efd_item); 349 return efdp; 350 } 351 352 /* 353 * Free an extent and log it to the EFD. Note that the transaction is marked 354 * dirty regardless of whether the extent free succeeds or fails to support the 355 * EFI/EFD lifecycle rules. 356 */ 357 static int 358 xfs_trans_free_extent( 359 struct xfs_trans *tp, 360 struct xfs_efd_log_item *efdp, 361 xfs_fsblock_t start_block, 362 xfs_extlen_t ext_len, 363 const struct xfs_owner_info *oinfo, 364 bool skip_discard) 365 { 366 struct xfs_mount *mp = tp->t_mountp; 367 struct xfs_extent *extp; 368 uint next_extent; 369 xfs_agnumber_t agno = XFS_FSB_TO_AGNO(mp, start_block); 370 xfs_agblock_t agbno = XFS_FSB_TO_AGBNO(mp, 371 start_block); 372 int error; 373 374 trace_xfs_bmap_free_deferred(tp->t_mountp, agno, 0, agbno, ext_len); 375 376 error = __xfs_free_extent(tp, start_block, ext_len, 377 oinfo, XFS_AG_RESV_NONE, skip_discard); 378 /* 379 * Mark the transaction dirty, even on error. This ensures the 380 * transaction is aborted, which: 381 * 382 * 1.) releases the EFI and frees the EFD 383 * 2.) shuts down the filesystem 384 */ 385 tp->t_flags |= XFS_TRANS_DIRTY; 386 set_bit(XFS_LI_DIRTY, &efdp->efd_item.li_flags); 387 388 next_extent = efdp->efd_next_extent; 389 ASSERT(next_extent < efdp->efd_format.efd_nextents); 390 extp = &(efdp->efd_format.efd_extents[next_extent]); 391 extp->ext_start = start_block; 392 extp->ext_len = ext_len; 393 efdp->efd_next_extent++; 394 395 return error; 396 } 397 398 /* Sort bmap items by AG. */ 399 static int 400 xfs_extent_free_diff_items( 401 void *priv, 402 struct list_head *a, 403 struct list_head *b) 404 { 405 struct xfs_mount *mp = priv; 406 struct xfs_extent_free_item *ra; 407 struct xfs_extent_free_item *rb; 408 409 ra = container_of(a, struct xfs_extent_free_item, xefi_list); 410 rb = container_of(b, struct xfs_extent_free_item, xefi_list); 411 return XFS_FSB_TO_AGNO(mp, ra->xefi_startblock) - 412 XFS_FSB_TO_AGNO(mp, rb->xefi_startblock); 413 } 414 415 /* Get an EFI. */ 416 STATIC void * 417 xfs_extent_free_create_intent( 418 struct xfs_trans *tp, 419 unsigned int count) 420 { 421 struct xfs_efi_log_item *efip; 422 423 ASSERT(tp != NULL); 424 ASSERT(count > 0); 425 426 efip = xfs_efi_init(tp->t_mountp, count); 427 ASSERT(efip != NULL); 428 429 /* 430 * Get a log_item_desc to point at the new item. 431 */ 432 xfs_trans_add_item(tp, &efip->efi_item); 433 return efip; 434 } 435 436 /* Log a free extent to the intent item. */ 437 STATIC void 438 xfs_extent_free_log_item( 439 struct xfs_trans *tp, 440 void *intent, 441 struct list_head *item) 442 { 443 struct xfs_efi_log_item *efip = intent; 444 struct xfs_extent_free_item *free; 445 uint next_extent; 446 struct xfs_extent *extp; 447 448 free = container_of(item, struct xfs_extent_free_item, xefi_list); 449 450 tp->t_flags |= XFS_TRANS_DIRTY; 451 set_bit(XFS_LI_DIRTY, &efip->efi_item.li_flags); 452 453 /* 454 * atomic_inc_return gives us the value after the increment; 455 * we want to use it as an array index so we need to subtract 1 from 456 * it. 457 */ 458 next_extent = atomic_inc_return(&efip->efi_next_extent) - 1; 459 ASSERT(next_extent < efip->efi_format.efi_nextents); 460 extp = &efip->efi_format.efi_extents[next_extent]; 461 extp->ext_start = free->xefi_startblock; 462 extp->ext_len = free->xefi_blockcount; 463 } 464 465 /* Get an EFD so we can process all the free extents. */ 466 STATIC void * 467 xfs_extent_free_create_done( 468 struct xfs_trans *tp, 469 void *intent, 470 unsigned int count) 471 { 472 return xfs_trans_get_efd(tp, intent, count); 473 } 474 475 /* Process a free extent. */ 476 STATIC int 477 xfs_extent_free_finish_item( 478 struct xfs_trans *tp, 479 struct list_head *item, 480 void *done_item, 481 void **state) 482 { 483 struct xfs_extent_free_item *free; 484 int error; 485 486 free = container_of(item, struct xfs_extent_free_item, xefi_list); 487 error = xfs_trans_free_extent(tp, done_item, 488 free->xefi_startblock, 489 free->xefi_blockcount, 490 &free->xefi_oinfo, free->xefi_skip_discard); 491 kmem_free(free); 492 return error; 493 } 494 495 /* Abort all pending EFIs. */ 496 STATIC void 497 xfs_extent_free_abort_intent( 498 void *intent) 499 { 500 xfs_efi_release(intent); 501 } 502 503 /* Cancel a free extent. */ 504 STATIC void 505 xfs_extent_free_cancel_item( 506 struct list_head *item) 507 { 508 struct xfs_extent_free_item *free; 509 510 free = container_of(item, struct xfs_extent_free_item, xefi_list); 511 kmem_free(free); 512 } 513 514 const struct xfs_defer_op_type xfs_extent_free_defer_type = { 515 .max_items = XFS_EFI_MAX_FAST_EXTENTS, 516 .diff_items = xfs_extent_free_diff_items, 517 .create_intent = xfs_extent_free_create_intent, 518 .abort_intent = xfs_extent_free_abort_intent, 519 .log_item = xfs_extent_free_log_item, 520 .create_done = xfs_extent_free_create_done, 521 .finish_item = xfs_extent_free_finish_item, 522 .cancel_item = xfs_extent_free_cancel_item, 523 }; 524 525 /* 526 * AGFL blocks are accounted differently in the reserve pools and are not 527 * inserted into the busy extent list. 528 */ 529 STATIC int 530 xfs_agfl_free_finish_item( 531 struct xfs_trans *tp, 532 struct list_head *item, 533 void *done_item, 534 void **state) 535 { 536 struct xfs_mount *mp = tp->t_mountp; 537 struct xfs_efd_log_item *efdp = done_item; 538 struct xfs_extent_free_item *free; 539 struct xfs_extent *extp; 540 struct xfs_buf *agbp; 541 int error; 542 xfs_agnumber_t agno; 543 xfs_agblock_t agbno; 544 uint next_extent; 545 546 free = container_of(item, struct xfs_extent_free_item, xefi_list); 547 ASSERT(free->xefi_blockcount == 1); 548 agno = XFS_FSB_TO_AGNO(mp, free->xefi_startblock); 549 agbno = XFS_FSB_TO_AGBNO(mp, free->xefi_startblock); 550 551 trace_xfs_agfl_free_deferred(mp, agno, 0, agbno, free->xefi_blockcount); 552 553 error = xfs_alloc_read_agf(mp, tp, agno, 0, &agbp); 554 if (!error) 555 error = xfs_free_agfl_block(tp, agno, agbno, agbp, 556 &free->xefi_oinfo); 557 558 /* 559 * Mark the transaction dirty, even on error. This ensures the 560 * transaction is aborted, which: 561 * 562 * 1.) releases the EFI and frees the EFD 563 * 2.) shuts down the filesystem 564 */ 565 tp->t_flags |= XFS_TRANS_DIRTY; 566 set_bit(XFS_LI_DIRTY, &efdp->efd_item.li_flags); 567 568 next_extent = efdp->efd_next_extent; 569 ASSERT(next_extent < efdp->efd_format.efd_nextents); 570 extp = &(efdp->efd_format.efd_extents[next_extent]); 571 extp->ext_start = free->xefi_startblock; 572 extp->ext_len = free->xefi_blockcount; 573 efdp->efd_next_extent++; 574 575 kmem_free(free); 576 return error; 577 } 578 579 /* sub-type with special handling for AGFL deferred frees */ 580 const struct xfs_defer_op_type xfs_agfl_free_defer_type = { 581 .max_items = XFS_EFI_MAX_FAST_EXTENTS, 582 .diff_items = xfs_extent_free_diff_items, 583 .create_intent = xfs_extent_free_create_intent, 584 .abort_intent = xfs_extent_free_abort_intent, 585 .log_item = xfs_extent_free_log_item, 586 .create_done = xfs_extent_free_create_done, 587 .finish_item = xfs_agfl_free_finish_item, 588 .cancel_item = xfs_extent_free_cancel_item, 589 }; 590 591 /* 592 * Process an extent free intent item that was recovered from 593 * the log. We need to free the extents that it describes. 594 */ 595 int 596 xfs_efi_recover( 597 struct xfs_mount *mp, 598 struct xfs_efi_log_item *efip) 599 { 600 struct xfs_efd_log_item *efdp; 601 struct xfs_trans *tp; 602 int i; 603 int error = 0; 604 xfs_extent_t *extp; 605 xfs_fsblock_t startblock_fsb; 606 607 ASSERT(!test_bit(XFS_EFI_RECOVERED, &efip->efi_flags)); 608 609 /* 610 * First check the validity of the extents described by the 611 * EFI. If any are bad, then assume that all are bad and 612 * just toss the EFI. 613 */ 614 for (i = 0; i < efip->efi_format.efi_nextents; i++) { 615 extp = &efip->efi_format.efi_extents[i]; 616 startblock_fsb = XFS_BB_TO_FSB(mp, 617 XFS_FSB_TO_DADDR(mp, extp->ext_start)); 618 if (startblock_fsb == 0 || 619 extp->ext_len == 0 || 620 startblock_fsb >= mp->m_sb.sb_dblocks || 621 extp->ext_len >= mp->m_sb.sb_agblocks) { 622 /* 623 * This will pull the EFI from the AIL and 624 * free the memory associated with it. 625 */ 626 set_bit(XFS_EFI_RECOVERED, &efip->efi_flags); 627 xfs_efi_release(efip); 628 return -EFSCORRUPTED; 629 } 630 } 631 632 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp); 633 if (error) 634 return error; 635 efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents); 636 637 for (i = 0; i < efip->efi_format.efi_nextents; i++) { 638 extp = &efip->efi_format.efi_extents[i]; 639 error = xfs_trans_free_extent(tp, efdp, extp->ext_start, 640 extp->ext_len, 641 &XFS_RMAP_OINFO_ANY_OWNER, false); 642 if (error) 643 goto abort_error; 644 645 } 646 647 set_bit(XFS_EFI_RECOVERED, &efip->efi_flags); 648 error = xfs_trans_commit(tp); 649 return error; 650 651 abort_error: 652 xfs_trans_cancel(tp); 653 return error; 654 } 655