1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2001,2005 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_format.h" 9 #include "xfs_log_format.h" 10 #include "xfs_trans_resv.h" 11 #include "xfs_bit.h" 12 #include "xfs_shared.h" 13 #include "xfs_mount.h" 14 #include "xfs_ag.h" 15 #include "xfs_defer.h" 16 #include "xfs_trans.h" 17 #include "xfs_trans_priv.h" 18 #include "xfs_extfree_item.h" 19 #include "xfs_log.h" 20 #include "xfs_btree.h" 21 #include "xfs_rmap.h" 22 #include "xfs_alloc.h" 23 #include "xfs_bmap.h" 24 #include "xfs_trace.h" 25 #include "xfs_error.h" 26 #include "xfs_log_priv.h" 27 #include "xfs_log_recover.h" 28 29 struct kmem_cache *xfs_efi_cache; 30 struct kmem_cache *xfs_efd_cache; 31 32 static const struct xfs_item_ops xfs_efi_item_ops; 33 34 static inline struct xfs_efi_log_item *EFI_ITEM(struct xfs_log_item *lip) 35 { 36 return container_of(lip, struct xfs_efi_log_item, efi_item); 37 } 38 39 STATIC void 40 xfs_efi_item_free( 41 struct xfs_efi_log_item *efip) 42 { 43 kmem_free(efip->efi_item.li_lv_shadow); 44 if (efip->efi_format.efi_nextents > XFS_EFI_MAX_FAST_EXTENTS) 45 kmem_free(efip); 46 else 47 kmem_cache_free(xfs_efi_cache, efip); 48 } 49 50 /* 51 * Freeing the efi requires that we remove it from the AIL if it has already 52 * been placed there. However, the EFI may not yet have been placed in the AIL 53 * when called by xfs_efi_release() from EFD processing due to the ordering of 54 * committed vs unpin operations in bulk insert operations. Hence the reference 55 * count to ensure only the last caller frees the EFI. 56 */ 57 STATIC void 58 xfs_efi_release( 59 struct xfs_efi_log_item *efip) 60 { 61 ASSERT(atomic_read(&efip->efi_refcount) > 0); 62 if (!atomic_dec_and_test(&efip->efi_refcount)) 63 return; 64 65 xfs_trans_ail_delete(&efip->efi_item, 0); 66 xfs_efi_item_free(efip); 67 } 68 69 STATIC void 70 xfs_efi_item_size( 71 struct xfs_log_item *lip, 72 int *nvecs, 73 int *nbytes) 74 { 75 struct xfs_efi_log_item *efip = EFI_ITEM(lip); 76 77 *nvecs += 1; 78 *nbytes += xfs_efi_log_format_sizeof(efip->efi_format.efi_nextents); 79 } 80 81 /* 82 * This is called to fill in the vector of log iovecs for the 83 * given efi log item. We use only 1 iovec, and we point that 84 * at the efi_log_format structure embedded in the efi item. 85 * It is at this point that we assert that all of the extent 86 * slots in the efi item have been filled. 87 */ 88 STATIC void 89 xfs_efi_item_format( 90 struct xfs_log_item *lip, 91 struct xfs_log_vec *lv) 92 { 93 struct xfs_efi_log_item *efip = EFI_ITEM(lip); 94 struct xfs_log_iovec *vecp = NULL; 95 96 ASSERT(atomic_read(&efip->efi_next_extent) == 97 efip->efi_format.efi_nextents); 98 99 efip->efi_format.efi_type = XFS_LI_EFI; 100 efip->efi_format.efi_size = 1; 101 102 xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_EFI_FORMAT, 103 &efip->efi_format, 104 xfs_efi_log_format_sizeof(efip->efi_format.efi_nextents)); 105 } 106 107 108 /* 109 * The unpin operation is the last place an EFI is manipulated in the log. It is 110 * either inserted in the AIL or aborted in the event of a log I/O error. In 111 * either case, the EFI transaction has been successfully committed to make it 112 * this far. Therefore, we expect whoever committed the EFI to either construct 113 * and commit the EFD or drop the EFD's reference in the event of error. Simply 114 * drop the log's EFI reference now that the log is done with it. 115 */ 116 STATIC void 117 xfs_efi_item_unpin( 118 struct xfs_log_item *lip, 119 int remove) 120 { 121 struct xfs_efi_log_item *efip = EFI_ITEM(lip); 122 xfs_efi_release(efip); 123 } 124 125 /* 126 * The EFI has been either committed or aborted if the transaction has been 127 * cancelled. If the transaction was cancelled, an EFD isn't going to be 128 * constructed and thus we free the EFI here directly. 129 */ 130 STATIC void 131 xfs_efi_item_release( 132 struct xfs_log_item *lip) 133 { 134 xfs_efi_release(EFI_ITEM(lip)); 135 } 136 137 /* 138 * Allocate and initialize an efi item with the given number of extents. 139 */ 140 STATIC struct xfs_efi_log_item * 141 xfs_efi_init( 142 struct xfs_mount *mp, 143 uint nextents) 144 145 { 146 struct xfs_efi_log_item *efip; 147 148 ASSERT(nextents > 0); 149 if (nextents > XFS_EFI_MAX_FAST_EXTENTS) { 150 efip = kzalloc(xfs_efi_log_item_sizeof(nextents), 151 GFP_KERNEL | __GFP_NOFAIL); 152 } else { 153 efip = kmem_cache_zalloc(xfs_efi_cache, 154 GFP_KERNEL | __GFP_NOFAIL); 155 } 156 157 xfs_log_item_init(mp, &efip->efi_item, XFS_LI_EFI, &xfs_efi_item_ops); 158 efip->efi_format.efi_nextents = nextents; 159 efip->efi_format.efi_id = (uintptr_t)(void *)efip; 160 atomic_set(&efip->efi_next_extent, 0); 161 atomic_set(&efip->efi_refcount, 2); 162 163 return efip; 164 } 165 166 /* 167 * Copy an EFI format buffer from the given buf, and into the destination 168 * EFI format structure. 169 * The given buffer can be in 32 bit or 64 bit form (which has different padding), 170 * one of which will be the native format for this kernel. 171 * It will handle the conversion of formats if necessary. 172 */ 173 STATIC int 174 xfs_efi_copy_format(xfs_log_iovec_t *buf, xfs_efi_log_format_t *dst_efi_fmt) 175 { 176 xfs_efi_log_format_t *src_efi_fmt = buf->i_addr; 177 uint i; 178 uint len = xfs_efi_log_format_sizeof(src_efi_fmt->efi_nextents); 179 uint len32 = xfs_efi_log_format32_sizeof(src_efi_fmt->efi_nextents); 180 uint len64 = xfs_efi_log_format64_sizeof(src_efi_fmt->efi_nextents); 181 182 if (buf->i_len == len) { 183 memcpy(dst_efi_fmt, src_efi_fmt, 184 offsetof(struct xfs_efi_log_format, efi_extents)); 185 for (i = 0; i < src_efi_fmt->efi_nextents; i++) 186 memcpy(&dst_efi_fmt->efi_extents[i], 187 &src_efi_fmt->efi_extents[i], 188 sizeof(struct xfs_extent)); 189 return 0; 190 } else if (buf->i_len == len32) { 191 xfs_efi_log_format_32_t *src_efi_fmt_32 = buf->i_addr; 192 193 dst_efi_fmt->efi_type = src_efi_fmt_32->efi_type; 194 dst_efi_fmt->efi_size = src_efi_fmt_32->efi_size; 195 dst_efi_fmt->efi_nextents = src_efi_fmt_32->efi_nextents; 196 dst_efi_fmt->efi_id = src_efi_fmt_32->efi_id; 197 for (i = 0; i < dst_efi_fmt->efi_nextents; i++) { 198 dst_efi_fmt->efi_extents[i].ext_start = 199 src_efi_fmt_32->efi_extents[i].ext_start; 200 dst_efi_fmt->efi_extents[i].ext_len = 201 src_efi_fmt_32->efi_extents[i].ext_len; 202 } 203 return 0; 204 } else if (buf->i_len == len64) { 205 xfs_efi_log_format_64_t *src_efi_fmt_64 = buf->i_addr; 206 207 dst_efi_fmt->efi_type = src_efi_fmt_64->efi_type; 208 dst_efi_fmt->efi_size = src_efi_fmt_64->efi_size; 209 dst_efi_fmt->efi_nextents = src_efi_fmt_64->efi_nextents; 210 dst_efi_fmt->efi_id = src_efi_fmt_64->efi_id; 211 for (i = 0; i < dst_efi_fmt->efi_nextents; i++) { 212 dst_efi_fmt->efi_extents[i].ext_start = 213 src_efi_fmt_64->efi_extents[i].ext_start; 214 dst_efi_fmt->efi_extents[i].ext_len = 215 src_efi_fmt_64->efi_extents[i].ext_len; 216 } 217 return 0; 218 } 219 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, NULL, buf->i_addr, 220 buf->i_len); 221 return -EFSCORRUPTED; 222 } 223 224 static inline struct xfs_efd_log_item *EFD_ITEM(struct xfs_log_item *lip) 225 { 226 return container_of(lip, struct xfs_efd_log_item, efd_item); 227 } 228 229 STATIC void 230 xfs_efd_item_free(struct xfs_efd_log_item *efdp) 231 { 232 kmem_free(efdp->efd_item.li_lv_shadow); 233 if (efdp->efd_format.efd_nextents > XFS_EFD_MAX_FAST_EXTENTS) 234 kmem_free(efdp); 235 else 236 kmem_cache_free(xfs_efd_cache, efdp); 237 } 238 239 STATIC void 240 xfs_efd_item_size( 241 struct xfs_log_item *lip, 242 int *nvecs, 243 int *nbytes) 244 { 245 struct xfs_efd_log_item *efdp = EFD_ITEM(lip); 246 247 *nvecs += 1; 248 *nbytes += xfs_efd_log_format_sizeof(efdp->efd_format.efd_nextents); 249 } 250 251 /* 252 * This is called to fill in the vector of log iovecs for the 253 * given efd log item. We use only 1 iovec, and we point that 254 * at the efd_log_format structure embedded in the efd item. 255 * It is at this point that we assert that all of the extent 256 * slots in the efd item have been filled. 257 */ 258 STATIC void 259 xfs_efd_item_format( 260 struct xfs_log_item *lip, 261 struct xfs_log_vec *lv) 262 { 263 struct xfs_efd_log_item *efdp = EFD_ITEM(lip); 264 struct xfs_log_iovec *vecp = NULL; 265 266 ASSERT(efdp->efd_next_extent == efdp->efd_format.efd_nextents); 267 268 efdp->efd_format.efd_type = XFS_LI_EFD; 269 efdp->efd_format.efd_size = 1; 270 271 xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_EFD_FORMAT, 272 &efdp->efd_format, 273 xfs_efd_log_format_sizeof(efdp->efd_format.efd_nextents)); 274 } 275 276 /* 277 * The EFD is either committed or aborted if the transaction is cancelled. If 278 * the transaction is cancelled, drop our reference to the EFI and free the EFD. 279 */ 280 STATIC void 281 xfs_efd_item_release( 282 struct xfs_log_item *lip) 283 { 284 struct xfs_efd_log_item *efdp = EFD_ITEM(lip); 285 286 xfs_efi_release(efdp->efd_efip); 287 xfs_efd_item_free(efdp); 288 } 289 290 static struct xfs_log_item * 291 xfs_efd_item_intent( 292 struct xfs_log_item *lip) 293 { 294 return &EFD_ITEM(lip)->efd_efip->efi_item; 295 } 296 297 static const struct xfs_item_ops xfs_efd_item_ops = { 298 .flags = XFS_ITEM_RELEASE_WHEN_COMMITTED | 299 XFS_ITEM_INTENT_DONE, 300 .iop_size = xfs_efd_item_size, 301 .iop_format = xfs_efd_item_format, 302 .iop_release = xfs_efd_item_release, 303 .iop_intent = xfs_efd_item_intent, 304 }; 305 306 /* 307 * Fill the EFD with all extents from the EFI when we need to roll the 308 * transaction and continue with a new EFI. 309 * 310 * This simply copies all the extents in the EFI to the EFD rather than make 311 * assumptions about which extents in the EFI have already been processed. We 312 * currently keep the xefi list in the same order as the EFI extent list, but 313 * that may not always be the case. Copying everything avoids leaving a landmine 314 * were we fail to cancel all the extents in an EFI if the xefi list is 315 * processed in a different order to the extents in the EFI. 316 */ 317 static void 318 xfs_efd_from_efi( 319 struct xfs_efd_log_item *efdp) 320 { 321 struct xfs_efi_log_item *efip = efdp->efd_efip; 322 uint i; 323 324 ASSERT(efip->efi_format.efi_nextents > 0); 325 ASSERT(efdp->efd_next_extent < efip->efi_format.efi_nextents); 326 327 for (i = 0; i < efip->efi_format.efi_nextents; i++) { 328 efdp->efd_format.efd_extents[i] = 329 efip->efi_format.efi_extents[i]; 330 } 331 efdp->efd_next_extent = efip->efi_format.efi_nextents; 332 } 333 334 /* Sort bmap items by AG. */ 335 static int 336 xfs_extent_free_diff_items( 337 void *priv, 338 const struct list_head *a, 339 const struct list_head *b) 340 { 341 struct xfs_extent_free_item *ra; 342 struct xfs_extent_free_item *rb; 343 344 ra = container_of(a, struct xfs_extent_free_item, xefi_list); 345 rb = container_of(b, struct xfs_extent_free_item, xefi_list); 346 347 return ra->xefi_pag->pag_agno - rb->xefi_pag->pag_agno; 348 } 349 350 /* Log a free extent to the intent item. */ 351 STATIC void 352 xfs_extent_free_log_item( 353 struct xfs_trans *tp, 354 struct xfs_efi_log_item *efip, 355 struct xfs_extent_free_item *xefi) 356 { 357 uint next_extent; 358 struct xfs_extent *extp; 359 360 /* 361 * atomic_inc_return gives us the value after the increment; 362 * we want to use it as an array index so we need to subtract 1 from 363 * it. 364 */ 365 next_extent = atomic_inc_return(&efip->efi_next_extent) - 1; 366 ASSERT(next_extent < efip->efi_format.efi_nextents); 367 extp = &efip->efi_format.efi_extents[next_extent]; 368 extp->ext_start = xefi->xefi_startblock; 369 extp->ext_len = xefi->xefi_blockcount; 370 } 371 372 static struct xfs_log_item * 373 xfs_extent_free_create_intent( 374 struct xfs_trans *tp, 375 struct list_head *items, 376 unsigned int count, 377 bool sort) 378 { 379 struct xfs_mount *mp = tp->t_mountp; 380 struct xfs_efi_log_item *efip = xfs_efi_init(mp, count); 381 struct xfs_extent_free_item *xefi; 382 383 ASSERT(count > 0); 384 385 if (sort) 386 list_sort(mp, items, xfs_extent_free_diff_items); 387 list_for_each_entry(xefi, items, xefi_list) 388 xfs_extent_free_log_item(tp, efip, xefi); 389 return &efip->efi_item; 390 } 391 392 /* Get an EFD so we can process all the free extents. */ 393 static struct xfs_log_item * 394 xfs_extent_free_create_done( 395 struct xfs_trans *tp, 396 struct xfs_log_item *intent, 397 unsigned int count) 398 { 399 struct xfs_efi_log_item *efip = EFI_ITEM(intent); 400 struct xfs_efd_log_item *efdp; 401 402 ASSERT(count > 0); 403 404 if (count > XFS_EFD_MAX_FAST_EXTENTS) { 405 efdp = kzalloc(xfs_efd_log_item_sizeof(count), 406 GFP_KERNEL | __GFP_NOFAIL); 407 } else { 408 efdp = kmem_cache_zalloc(xfs_efd_cache, 409 GFP_KERNEL | __GFP_NOFAIL); 410 } 411 412 xfs_log_item_init(tp->t_mountp, &efdp->efd_item, XFS_LI_EFD, 413 &xfs_efd_item_ops); 414 efdp->efd_efip = efip; 415 efdp->efd_format.efd_nextents = count; 416 efdp->efd_format.efd_efi_id = efip->efi_format.efi_id; 417 418 return &efdp->efd_item; 419 } 420 421 /* Take a passive ref to the AG containing the space we're freeing. */ 422 void 423 xfs_extent_free_get_group( 424 struct xfs_mount *mp, 425 struct xfs_extent_free_item *xefi) 426 { 427 xfs_agnumber_t agno; 428 429 agno = XFS_FSB_TO_AGNO(mp, xefi->xefi_startblock); 430 xefi->xefi_pag = xfs_perag_intent_get(mp, agno); 431 } 432 433 /* Release a passive AG ref after some freeing work. */ 434 static inline void 435 xfs_extent_free_put_group( 436 struct xfs_extent_free_item *xefi) 437 { 438 xfs_perag_intent_put(xefi->xefi_pag); 439 } 440 441 /* Process a free extent. */ 442 STATIC int 443 xfs_extent_free_finish_item( 444 struct xfs_trans *tp, 445 struct xfs_log_item *done, 446 struct list_head *item, 447 struct xfs_btree_cur **state) 448 { 449 struct xfs_owner_info oinfo = { }; 450 struct xfs_extent_free_item *xefi; 451 struct xfs_efd_log_item *efdp = EFD_ITEM(done); 452 struct xfs_mount *mp = tp->t_mountp; 453 struct xfs_extent *extp; 454 uint next_extent; 455 xfs_agblock_t agbno; 456 int error = 0; 457 458 xefi = container_of(item, struct xfs_extent_free_item, xefi_list); 459 agbno = XFS_FSB_TO_AGBNO(mp, xefi->xefi_startblock); 460 461 oinfo.oi_owner = xefi->xefi_owner; 462 if (xefi->xefi_flags & XFS_EFI_ATTR_FORK) 463 oinfo.oi_flags |= XFS_OWNER_INFO_ATTR_FORK; 464 if (xefi->xefi_flags & XFS_EFI_BMBT_BLOCK) 465 oinfo.oi_flags |= XFS_OWNER_INFO_BMBT_BLOCK; 466 467 trace_xfs_bmap_free_deferred(tp->t_mountp, xefi->xefi_pag->pag_agno, 0, 468 agbno, xefi->xefi_blockcount); 469 470 /* 471 * If we need a new transaction to make progress, the caller will log a 472 * new EFI with the current contents. It will also log an EFD to cancel 473 * the existing EFI, and so we need to copy all the unprocessed extents 474 * in this EFI to the EFD so this works correctly. 475 */ 476 if (!(xefi->xefi_flags & XFS_EFI_CANCELLED)) 477 error = __xfs_free_extent(tp, xefi->xefi_pag, agbno, 478 xefi->xefi_blockcount, &oinfo, xefi->xefi_agresv, 479 xefi->xefi_flags & XFS_EFI_SKIP_DISCARD); 480 if (error == -EAGAIN) { 481 xfs_efd_from_efi(efdp); 482 return error; 483 } 484 485 /* Add the work we finished to the EFD, even though nobody uses that */ 486 next_extent = efdp->efd_next_extent; 487 ASSERT(next_extent < efdp->efd_format.efd_nextents); 488 extp = &(efdp->efd_format.efd_extents[next_extent]); 489 extp->ext_start = xefi->xefi_startblock; 490 extp->ext_len = xefi->xefi_blockcount; 491 efdp->efd_next_extent++; 492 493 xfs_extent_free_put_group(xefi); 494 kmem_cache_free(xfs_extfree_item_cache, xefi); 495 return error; 496 } 497 498 /* Abort all pending EFIs. */ 499 STATIC void 500 xfs_extent_free_abort_intent( 501 struct xfs_log_item *intent) 502 { 503 xfs_efi_release(EFI_ITEM(intent)); 504 } 505 506 /* Cancel a free extent. */ 507 STATIC void 508 xfs_extent_free_cancel_item( 509 struct list_head *item) 510 { 511 struct xfs_extent_free_item *xefi; 512 513 xefi = container_of(item, struct xfs_extent_free_item, xefi_list); 514 515 xfs_extent_free_put_group(xefi); 516 kmem_cache_free(xfs_extfree_item_cache, xefi); 517 } 518 519 /* 520 * AGFL blocks are accounted differently in the reserve pools and are not 521 * inserted into the busy extent list. 522 */ 523 STATIC int 524 xfs_agfl_free_finish_item( 525 struct xfs_trans *tp, 526 struct xfs_log_item *done, 527 struct list_head *item, 528 struct xfs_btree_cur **state) 529 { 530 struct xfs_owner_info oinfo = { }; 531 struct xfs_mount *mp = tp->t_mountp; 532 struct xfs_efd_log_item *efdp = EFD_ITEM(done); 533 struct xfs_extent_free_item *xefi; 534 struct xfs_extent *extp; 535 struct xfs_buf *agbp; 536 int error; 537 xfs_agblock_t agbno; 538 uint next_extent; 539 540 xefi = container_of(item, struct xfs_extent_free_item, xefi_list); 541 ASSERT(xefi->xefi_blockcount == 1); 542 agbno = XFS_FSB_TO_AGBNO(mp, xefi->xefi_startblock); 543 oinfo.oi_owner = xefi->xefi_owner; 544 545 trace_xfs_agfl_free_deferred(mp, xefi->xefi_pag->pag_agno, 0, agbno, 546 xefi->xefi_blockcount); 547 548 error = xfs_alloc_read_agf(xefi->xefi_pag, tp, 0, &agbp); 549 if (!error) 550 error = xfs_free_agfl_block(tp, xefi->xefi_pag->pag_agno, 551 agbno, agbp, &oinfo); 552 553 next_extent = efdp->efd_next_extent; 554 ASSERT(next_extent < efdp->efd_format.efd_nextents); 555 extp = &(efdp->efd_format.efd_extents[next_extent]); 556 extp->ext_start = xefi->xefi_startblock; 557 extp->ext_len = xefi->xefi_blockcount; 558 efdp->efd_next_extent++; 559 560 xfs_extent_free_put_group(xefi); 561 kmem_cache_free(xfs_extfree_item_cache, xefi); 562 return error; 563 } 564 565 /* Is this recovered EFI ok? */ 566 static inline bool 567 xfs_efi_validate_ext( 568 struct xfs_mount *mp, 569 struct xfs_extent *extp) 570 { 571 return xfs_verify_fsbext(mp, extp->ext_start, extp->ext_len); 572 } 573 574 static inline void 575 xfs_efi_recover_work( 576 struct xfs_mount *mp, 577 struct xfs_defer_pending *dfp, 578 struct xfs_extent *extp) 579 { 580 struct xfs_extent_free_item *xefi; 581 582 xefi = kmem_cache_zalloc(xfs_extfree_item_cache, 583 GFP_KERNEL | __GFP_NOFAIL); 584 xefi->xefi_startblock = extp->ext_start; 585 xefi->xefi_blockcount = extp->ext_len; 586 xefi->xefi_agresv = XFS_AG_RESV_NONE; 587 xefi->xefi_owner = XFS_RMAP_OWN_UNKNOWN; 588 xfs_extent_free_get_group(mp, xefi); 589 590 xfs_defer_add_item(dfp, &xefi->xefi_list); 591 } 592 593 /* 594 * Process an extent free intent item that was recovered from 595 * the log. We need to free the extents that it describes. 596 */ 597 STATIC int 598 xfs_extent_free_recover_work( 599 struct xfs_defer_pending *dfp, 600 struct list_head *capture_list) 601 { 602 struct xfs_trans_res resv; 603 struct xfs_log_item *lip = dfp->dfp_intent; 604 struct xfs_efi_log_item *efip = EFI_ITEM(lip); 605 struct xfs_mount *mp = lip->li_log->l_mp; 606 struct xfs_trans *tp; 607 int i; 608 int error = 0; 609 610 /* 611 * First check the validity of the extents described by the 612 * EFI. If any are bad, then assume that all are bad and 613 * just toss the EFI. 614 */ 615 for (i = 0; i < efip->efi_format.efi_nextents; i++) { 616 if (!xfs_efi_validate_ext(mp, 617 &efip->efi_format.efi_extents[i])) { 618 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp, 619 &efip->efi_format, 620 sizeof(efip->efi_format)); 621 return -EFSCORRUPTED; 622 } 623 624 xfs_efi_recover_work(mp, dfp, &efip->efi_format.efi_extents[i]); 625 } 626 627 resv = xlog_recover_resv(&M_RES(mp)->tr_itruncate); 628 error = xfs_trans_alloc(mp, &resv, 0, 0, 0, &tp); 629 if (error) 630 return error; 631 632 error = xlog_recover_finish_intent(tp, dfp); 633 if (error == -EFSCORRUPTED) 634 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp, 635 &efip->efi_format, 636 sizeof(efip->efi_format)); 637 if (error) 638 goto abort_error; 639 640 return xfs_defer_ops_capture_and_commit(tp, capture_list); 641 642 abort_error: 643 xfs_trans_cancel(tp); 644 return error; 645 } 646 647 /* Relog an intent item to push the log tail forward. */ 648 static struct xfs_log_item * 649 xfs_extent_free_relog_intent( 650 struct xfs_trans *tp, 651 struct xfs_log_item *intent, 652 struct xfs_log_item *done_item) 653 { 654 struct xfs_efd_log_item *efdp = EFD_ITEM(done_item); 655 struct xfs_efi_log_item *efip; 656 struct xfs_extent *extp; 657 unsigned int count; 658 659 count = EFI_ITEM(intent)->efi_format.efi_nextents; 660 extp = EFI_ITEM(intent)->efi_format.efi_extents; 661 662 efdp->efd_next_extent = count; 663 memcpy(efdp->efd_format.efd_extents, extp, count * sizeof(*extp)); 664 665 efip = xfs_efi_init(tp->t_mountp, count); 666 memcpy(efip->efi_format.efi_extents, extp, count * sizeof(*extp)); 667 atomic_set(&efip->efi_next_extent, count); 668 669 return &efip->efi_item; 670 } 671 672 const struct xfs_defer_op_type xfs_extent_free_defer_type = { 673 .name = "extent_free", 674 .max_items = XFS_EFI_MAX_FAST_EXTENTS, 675 .create_intent = xfs_extent_free_create_intent, 676 .abort_intent = xfs_extent_free_abort_intent, 677 .create_done = xfs_extent_free_create_done, 678 .finish_item = xfs_extent_free_finish_item, 679 .cancel_item = xfs_extent_free_cancel_item, 680 .recover_work = xfs_extent_free_recover_work, 681 .relog_intent = xfs_extent_free_relog_intent, 682 }; 683 684 /* sub-type with special handling for AGFL deferred frees */ 685 const struct xfs_defer_op_type xfs_agfl_free_defer_type = { 686 .name = "agfl_free", 687 .max_items = XFS_EFI_MAX_FAST_EXTENTS, 688 .create_intent = xfs_extent_free_create_intent, 689 .abort_intent = xfs_extent_free_abort_intent, 690 .create_done = xfs_extent_free_create_done, 691 .finish_item = xfs_agfl_free_finish_item, 692 .cancel_item = xfs_extent_free_cancel_item, 693 .recover_work = xfs_extent_free_recover_work, 694 .relog_intent = xfs_extent_free_relog_intent, 695 }; 696 697 STATIC bool 698 xfs_efi_item_match( 699 struct xfs_log_item *lip, 700 uint64_t intent_id) 701 { 702 return EFI_ITEM(lip)->efi_format.efi_id == intent_id; 703 } 704 705 static const struct xfs_item_ops xfs_efi_item_ops = { 706 .flags = XFS_ITEM_INTENT, 707 .iop_size = xfs_efi_item_size, 708 .iop_format = xfs_efi_item_format, 709 .iop_unpin = xfs_efi_item_unpin, 710 .iop_release = xfs_efi_item_release, 711 .iop_match = xfs_efi_item_match, 712 }; 713 714 /* 715 * This routine is called to create an in-core extent free intent 716 * item from the efi format structure which was logged on disk. 717 * It allocates an in-core efi, copies the extents from the format 718 * structure into it, and adds the efi to the AIL with the given 719 * LSN. 720 */ 721 STATIC int 722 xlog_recover_efi_commit_pass2( 723 struct xlog *log, 724 struct list_head *buffer_list, 725 struct xlog_recover_item *item, 726 xfs_lsn_t lsn) 727 { 728 struct xfs_mount *mp = log->l_mp; 729 struct xfs_efi_log_item *efip; 730 struct xfs_efi_log_format *efi_formatp; 731 int error; 732 733 efi_formatp = item->ri_buf[0].i_addr; 734 735 if (item->ri_buf[0].i_len < xfs_efi_log_format_sizeof(0)) { 736 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp, 737 item->ri_buf[0].i_addr, item->ri_buf[0].i_len); 738 return -EFSCORRUPTED; 739 } 740 741 efip = xfs_efi_init(mp, efi_formatp->efi_nextents); 742 error = xfs_efi_copy_format(&item->ri_buf[0], &efip->efi_format); 743 if (error) { 744 xfs_efi_item_free(efip); 745 return error; 746 } 747 atomic_set(&efip->efi_next_extent, efi_formatp->efi_nextents); 748 749 xlog_recover_intent_item(log, &efip->efi_item, lsn, 750 &xfs_extent_free_defer_type); 751 return 0; 752 } 753 754 const struct xlog_recover_item_ops xlog_efi_item_ops = { 755 .item_type = XFS_LI_EFI, 756 .commit_pass2 = xlog_recover_efi_commit_pass2, 757 }; 758 759 /* 760 * This routine is called when an EFD format structure is found in a committed 761 * transaction in the log. Its purpose is to cancel the corresponding EFI if it 762 * was still in the log. To do this it searches the AIL for the EFI with an id 763 * equal to that in the EFD format structure. If we find it we drop the EFD 764 * reference, which removes the EFI from the AIL and frees it. 765 */ 766 STATIC int 767 xlog_recover_efd_commit_pass2( 768 struct xlog *log, 769 struct list_head *buffer_list, 770 struct xlog_recover_item *item, 771 xfs_lsn_t lsn) 772 { 773 struct xfs_efd_log_format *efd_formatp; 774 int buflen = item->ri_buf[0].i_len; 775 776 efd_formatp = item->ri_buf[0].i_addr; 777 778 if (buflen < sizeof(struct xfs_efd_log_format)) { 779 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, log->l_mp, 780 efd_formatp, buflen); 781 return -EFSCORRUPTED; 782 } 783 784 if (item->ri_buf[0].i_len != xfs_efd_log_format32_sizeof( 785 efd_formatp->efd_nextents) && 786 item->ri_buf[0].i_len != xfs_efd_log_format64_sizeof( 787 efd_formatp->efd_nextents)) { 788 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, log->l_mp, 789 efd_formatp, buflen); 790 return -EFSCORRUPTED; 791 } 792 793 xlog_recover_release_intent(log, XFS_LI_EFI, efd_formatp->efd_efi_id); 794 return 0; 795 } 796 797 const struct xlog_recover_item_ops xlog_efd_item_ops = { 798 .item_type = XFS_LI_EFD, 799 .commit_pass2 = xlog_recover_efd_commit_pass2, 800 }; 801