xref: /linux/fs/xfs/xfs_extfree_item.c (revision c4101e55974cc7d835fbd2d8e01553a3f61e9e75)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2001,2005 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_format.h"
9 #include "xfs_log_format.h"
10 #include "xfs_trans_resv.h"
11 #include "xfs_bit.h"
12 #include "xfs_shared.h"
13 #include "xfs_mount.h"
14 #include "xfs_ag.h"
15 #include "xfs_defer.h"
16 #include "xfs_trans.h"
17 #include "xfs_trans_priv.h"
18 #include "xfs_extfree_item.h"
19 #include "xfs_log.h"
20 #include "xfs_btree.h"
21 #include "xfs_rmap.h"
22 #include "xfs_alloc.h"
23 #include "xfs_bmap.h"
24 #include "xfs_trace.h"
25 #include "xfs_error.h"
26 #include "xfs_log_priv.h"
27 #include "xfs_log_recover.h"
28 
29 struct kmem_cache	*xfs_efi_cache;
30 struct kmem_cache	*xfs_efd_cache;
31 
32 static const struct xfs_item_ops xfs_efi_item_ops;
33 
34 static inline struct xfs_efi_log_item *EFI_ITEM(struct xfs_log_item *lip)
35 {
36 	return container_of(lip, struct xfs_efi_log_item, efi_item);
37 }
38 
39 STATIC void
40 xfs_efi_item_free(
41 	struct xfs_efi_log_item	*efip)
42 {
43 	kmem_free(efip->efi_item.li_lv_shadow);
44 	if (efip->efi_format.efi_nextents > XFS_EFI_MAX_FAST_EXTENTS)
45 		kmem_free(efip);
46 	else
47 		kmem_cache_free(xfs_efi_cache, efip);
48 }
49 
50 /*
51  * Freeing the efi requires that we remove it from the AIL if it has already
52  * been placed there. However, the EFI may not yet have been placed in the AIL
53  * when called by xfs_efi_release() from EFD processing due to the ordering of
54  * committed vs unpin operations in bulk insert operations. Hence the reference
55  * count to ensure only the last caller frees the EFI.
56  */
57 STATIC void
58 xfs_efi_release(
59 	struct xfs_efi_log_item	*efip)
60 {
61 	ASSERT(atomic_read(&efip->efi_refcount) > 0);
62 	if (!atomic_dec_and_test(&efip->efi_refcount))
63 		return;
64 
65 	xfs_trans_ail_delete(&efip->efi_item, 0);
66 	xfs_efi_item_free(efip);
67 }
68 
69 STATIC void
70 xfs_efi_item_size(
71 	struct xfs_log_item	*lip,
72 	int			*nvecs,
73 	int			*nbytes)
74 {
75 	struct xfs_efi_log_item	*efip = EFI_ITEM(lip);
76 
77 	*nvecs += 1;
78 	*nbytes += xfs_efi_log_format_sizeof(efip->efi_format.efi_nextents);
79 }
80 
81 /*
82  * This is called to fill in the vector of log iovecs for the
83  * given efi log item. We use only 1 iovec, and we point that
84  * at the efi_log_format structure embedded in the efi item.
85  * It is at this point that we assert that all of the extent
86  * slots in the efi item have been filled.
87  */
88 STATIC void
89 xfs_efi_item_format(
90 	struct xfs_log_item	*lip,
91 	struct xfs_log_vec	*lv)
92 {
93 	struct xfs_efi_log_item	*efip = EFI_ITEM(lip);
94 	struct xfs_log_iovec	*vecp = NULL;
95 
96 	ASSERT(atomic_read(&efip->efi_next_extent) ==
97 				efip->efi_format.efi_nextents);
98 
99 	efip->efi_format.efi_type = XFS_LI_EFI;
100 	efip->efi_format.efi_size = 1;
101 
102 	xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_EFI_FORMAT,
103 			&efip->efi_format,
104 			xfs_efi_log_format_sizeof(efip->efi_format.efi_nextents));
105 }
106 
107 
108 /*
109  * The unpin operation is the last place an EFI is manipulated in the log. It is
110  * either inserted in the AIL or aborted in the event of a log I/O error. In
111  * either case, the EFI transaction has been successfully committed to make it
112  * this far. Therefore, we expect whoever committed the EFI to either construct
113  * and commit the EFD or drop the EFD's reference in the event of error. Simply
114  * drop the log's EFI reference now that the log is done with it.
115  */
116 STATIC void
117 xfs_efi_item_unpin(
118 	struct xfs_log_item	*lip,
119 	int			remove)
120 {
121 	struct xfs_efi_log_item	*efip = EFI_ITEM(lip);
122 	xfs_efi_release(efip);
123 }
124 
125 /*
126  * The EFI has been either committed or aborted if the transaction has been
127  * cancelled. If the transaction was cancelled, an EFD isn't going to be
128  * constructed and thus we free the EFI here directly.
129  */
130 STATIC void
131 xfs_efi_item_release(
132 	struct xfs_log_item	*lip)
133 {
134 	xfs_efi_release(EFI_ITEM(lip));
135 }
136 
137 /*
138  * Allocate and initialize an efi item with the given number of extents.
139  */
140 STATIC struct xfs_efi_log_item *
141 xfs_efi_init(
142 	struct xfs_mount	*mp,
143 	uint			nextents)
144 
145 {
146 	struct xfs_efi_log_item	*efip;
147 
148 	ASSERT(nextents > 0);
149 	if (nextents > XFS_EFI_MAX_FAST_EXTENTS) {
150 		efip = kzalloc(xfs_efi_log_item_sizeof(nextents),
151 				GFP_KERNEL | __GFP_NOFAIL);
152 	} else {
153 		efip = kmem_cache_zalloc(xfs_efi_cache,
154 					 GFP_KERNEL | __GFP_NOFAIL);
155 	}
156 
157 	xfs_log_item_init(mp, &efip->efi_item, XFS_LI_EFI, &xfs_efi_item_ops);
158 	efip->efi_format.efi_nextents = nextents;
159 	efip->efi_format.efi_id = (uintptr_t)(void *)efip;
160 	atomic_set(&efip->efi_next_extent, 0);
161 	atomic_set(&efip->efi_refcount, 2);
162 
163 	return efip;
164 }
165 
166 /*
167  * Copy an EFI format buffer from the given buf, and into the destination
168  * EFI format structure.
169  * The given buffer can be in 32 bit or 64 bit form (which has different padding),
170  * one of which will be the native format for this kernel.
171  * It will handle the conversion of formats if necessary.
172  */
173 STATIC int
174 xfs_efi_copy_format(xfs_log_iovec_t *buf, xfs_efi_log_format_t *dst_efi_fmt)
175 {
176 	xfs_efi_log_format_t *src_efi_fmt = buf->i_addr;
177 	uint i;
178 	uint len = xfs_efi_log_format_sizeof(src_efi_fmt->efi_nextents);
179 	uint len32 = xfs_efi_log_format32_sizeof(src_efi_fmt->efi_nextents);
180 	uint len64 = xfs_efi_log_format64_sizeof(src_efi_fmt->efi_nextents);
181 
182 	if (buf->i_len == len) {
183 		memcpy(dst_efi_fmt, src_efi_fmt,
184 		       offsetof(struct xfs_efi_log_format, efi_extents));
185 		for (i = 0; i < src_efi_fmt->efi_nextents; i++)
186 			memcpy(&dst_efi_fmt->efi_extents[i],
187 			       &src_efi_fmt->efi_extents[i],
188 			       sizeof(struct xfs_extent));
189 		return 0;
190 	} else if (buf->i_len == len32) {
191 		xfs_efi_log_format_32_t *src_efi_fmt_32 = buf->i_addr;
192 
193 		dst_efi_fmt->efi_type     = src_efi_fmt_32->efi_type;
194 		dst_efi_fmt->efi_size     = src_efi_fmt_32->efi_size;
195 		dst_efi_fmt->efi_nextents = src_efi_fmt_32->efi_nextents;
196 		dst_efi_fmt->efi_id       = src_efi_fmt_32->efi_id;
197 		for (i = 0; i < dst_efi_fmt->efi_nextents; i++) {
198 			dst_efi_fmt->efi_extents[i].ext_start =
199 				src_efi_fmt_32->efi_extents[i].ext_start;
200 			dst_efi_fmt->efi_extents[i].ext_len =
201 				src_efi_fmt_32->efi_extents[i].ext_len;
202 		}
203 		return 0;
204 	} else if (buf->i_len == len64) {
205 		xfs_efi_log_format_64_t *src_efi_fmt_64 = buf->i_addr;
206 
207 		dst_efi_fmt->efi_type     = src_efi_fmt_64->efi_type;
208 		dst_efi_fmt->efi_size     = src_efi_fmt_64->efi_size;
209 		dst_efi_fmt->efi_nextents = src_efi_fmt_64->efi_nextents;
210 		dst_efi_fmt->efi_id       = src_efi_fmt_64->efi_id;
211 		for (i = 0; i < dst_efi_fmt->efi_nextents; i++) {
212 			dst_efi_fmt->efi_extents[i].ext_start =
213 				src_efi_fmt_64->efi_extents[i].ext_start;
214 			dst_efi_fmt->efi_extents[i].ext_len =
215 				src_efi_fmt_64->efi_extents[i].ext_len;
216 		}
217 		return 0;
218 	}
219 	XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, NULL, buf->i_addr,
220 			buf->i_len);
221 	return -EFSCORRUPTED;
222 }
223 
224 static inline struct xfs_efd_log_item *EFD_ITEM(struct xfs_log_item *lip)
225 {
226 	return container_of(lip, struct xfs_efd_log_item, efd_item);
227 }
228 
229 STATIC void
230 xfs_efd_item_free(struct xfs_efd_log_item *efdp)
231 {
232 	kmem_free(efdp->efd_item.li_lv_shadow);
233 	if (efdp->efd_format.efd_nextents > XFS_EFD_MAX_FAST_EXTENTS)
234 		kmem_free(efdp);
235 	else
236 		kmem_cache_free(xfs_efd_cache, efdp);
237 }
238 
239 STATIC void
240 xfs_efd_item_size(
241 	struct xfs_log_item	*lip,
242 	int			*nvecs,
243 	int			*nbytes)
244 {
245 	struct xfs_efd_log_item	*efdp = EFD_ITEM(lip);
246 
247 	*nvecs += 1;
248 	*nbytes += xfs_efd_log_format_sizeof(efdp->efd_format.efd_nextents);
249 }
250 
251 /*
252  * This is called to fill in the vector of log iovecs for the
253  * given efd log item. We use only 1 iovec, and we point that
254  * at the efd_log_format structure embedded in the efd item.
255  * It is at this point that we assert that all of the extent
256  * slots in the efd item have been filled.
257  */
258 STATIC void
259 xfs_efd_item_format(
260 	struct xfs_log_item	*lip,
261 	struct xfs_log_vec	*lv)
262 {
263 	struct xfs_efd_log_item	*efdp = EFD_ITEM(lip);
264 	struct xfs_log_iovec	*vecp = NULL;
265 
266 	ASSERT(efdp->efd_next_extent == efdp->efd_format.efd_nextents);
267 
268 	efdp->efd_format.efd_type = XFS_LI_EFD;
269 	efdp->efd_format.efd_size = 1;
270 
271 	xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_EFD_FORMAT,
272 			&efdp->efd_format,
273 			xfs_efd_log_format_sizeof(efdp->efd_format.efd_nextents));
274 }
275 
276 /*
277  * The EFD is either committed or aborted if the transaction is cancelled. If
278  * the transaction is cancelled, drop our reference to the EFI and free the EFD.
279  */
280 STATIC void
281 xfs_efd_item_release(
282 	struct xfs_log_item	*lip)
283 {
284 	struct xfs_efd_log_item	*efdp = EFD_ITEM(lip);
285 
286 	xfs_efi_release(efdp->efd_efip);
287 	xfs_efd_item_free(efdp);
288 }
289 
290 static struct xfs_log_item *
291 xfs_efd_item_intent(
292 	struct xfs_log_item	*lip)
293 {
294 	return &EFD_ITEM(lip)->efd_efip->efi_item;
295 }
296 
297 static const struct xfs_item_ops xfs_efd_item_ops = {
298 	.flags		= XFS_ITEM_RELEASE_WHEN_COMMITTED |
299 			  XFS_ITEM_INTENT_DONE,
300 	.iop_size	= xfs_efd_item_size,
301 	.iop_format	= xfs_efd_item_format,
302 	.iop_release	= xfs_efd_item_release,
303 	.iop_intent	= xfs_efd_item_intent,
304 };
305 
306 /*
307  * Fill the EFD with all extents from the EFI when we need to roll the
308  * transaction and continue with a new EFI.
309  *
310  * This simply copies all the extents in the EFI to the EFD rather than make
311  * assumptions about which extents in the EFI have already been processed. We
312  * currently keep the xefi list in the same order as the EFI extent list, but
313  * that may not always be the case. Copying everything avoids leaving a landmine
314  * were we fail to cancel all the extents in an EFI if the xefi list is
315  * processed in a different order to the extents in the EFI.
316  */
317 static void
318 xfs_efd_from_efi(
319 	struct xfs_efd_log_item	*efdp)
320 {
321 	struct xfs_efi_log_item *efip = efdp->efd_efip;
322 	uint                    i;
323 
324 	ASSERT(efip->efi_format.efi_nextents > 0);
325 	ASSERT(efdp->efd_next_extent < efip->efi_format.efi_nextents);
326 
327 	for (i = 0; i < efip->efi_format.efi_nextents; i++) {
328 	       efdp->efd_format.efd_extents[i] =
329 		       efip->efi_format.efi_extents[i];
330 	}
331 	efdp->efd_next_extent = efip->efi_format.efi_nextents;
332 }
333 
334 /* Sort bmap items by AG. */
335 static int
336 xfs_extent_free_diff_items(
337 	void				*priv,
338 	const struct list_head		*a,
339 	const struct list_head		*b)
340 {
341 	struct xfs_extent_free_item	*ra;
342 	struct xfs_extent_free_item	*rb;
343 
344 	ra = container_of(a, struct xfs_extent_free_item, xefi_list);
345 	rb = container_of(b, struct xfs_extent_free_item, xefi_list);
346 
347 	return ra->xefi_pag->pag_agno - rb->xefi_pag->pag_agno;
348 }
349 
350 /* Log a free extent to the intent item. */
351 STATIC void
352 xfs_extent_free_log_item(
353 	struct xfs_trans		*tp,
354 	struct xfs_efi_log_item		*efip,
355 	struct xfs_extent_free_item	*xefi)
356 {
357 	uint				next_extent;
358 	struct xfs_extent		*extp;
359 
360 	/*
361 	 * atomic_inc_return gives us the value after the increment;
362 	 * we want to use it as an array index so we need to subtract 1 from
363 	 * it.
364 	 */
365 	next_extent = atomic_inc_return(&efip->efi_next_extent) - 1;
366 	ASSERT(next_extent < efip->efi_format.efi_nextents);
367 	extp = &efip->efi_format.efi_extents[next_extent];
368 	extp->ext_start = xefi->xefi_startblock;
369 	extp->ext_len = xefi->xefi_blockcount;
370 }
371 
372 static struct xfs_log_item *
373 xfs_extent_free_create_intent(
374 	struct xfs_trans		*tp,
375 	struct list_head		*items,
376 	unsigned int			count,
377 	bool				sort)
378 {
379 	struct xfs_mount		*mp = tp->t_mountp;
380 	struct xfs_efi_log_item		*efip = xfs_efi_init(mp, count);
381 	struct xfs_extent_free_item	*xefi;
382 
383 	ASSERT(count > 0);
384 
385 	if (sort)
386 		list_sort(mp, items, xfs_extent_free_diff_items);
387 	list_for_each_entry(xefi, items, xefi_list)
388 		xfs_extent_free_log_item(tp, efip, xefi);
389 	return &efip->efi_item;
390 }
391 
392 /* Get an EFD so we can process all the free extents. */
393 static struct xfs_log_item *
394 xfs_extent_free_create_done(
395 	struct xfs_trans		*tp,
396 	struct xfs_log_item		*intent,
397 	unsigned int			count)
398 {
399 	struct xfs_efi_log_item		*efip = EFI_ITEM(intent);
400 	struct xfs_efd_log_item		*efdp;
401 
402 	ASSERT(count > 0);
403 
404 	if (count > XFS_EFD_MAX_FAST_EXTENTS) {
405 		efdp = kzalloc(xfs_efd_log_item_sizeof(count),
406 				GFP_KERNEL | __GFP_NOFAIL);
407 	} else {
408 		efdp = kmem_cache_zalloc(xfs_efd_cache,
409 					GFP_KERNEL | __GFP_NOFAIL);
410 	}
411 
412 	xfs_log_item_init(tp->t_mountp, &efdp->efd_item, XFS_LI_EFD,
413 			  &xfs_efd_item_ops);
414 	efdp->efd_efip = efip;
415 	efdp->efd_format.efd_nextents = count;
416 	efdp->efd_format.efd_efi_id = efip->efi_format.efi_id;
417 
418 	return &efdp->efd_item;
419 }
420 
421 /* Take a passive ref to the AG containing the space we're freeing. */
422 void
423 xfs_extent_free_get_group(
424 	struct xfs_mount		*mp,
425 	struct xfs_extent_free_item	*xefi)
426 {
427 	xfs_agnumber_t			agno;
428 
429 	agno = XFS_FSB_TO_AGNO(mp, xefi->xefi_startblock);
430 	xefi->xefi_pag = xfs_perag_intent_get(mp, agno);
431 }
432 
433 /* Release a passive AG ref after some freeing work. */
434 static inline void
435 xfs_extent_free_put_group(
436 	struct xfs_extent_free_item	*xefi)
437 {
438 	xfs_perag_intent_put(xefi->xefi_pag);
439 }
440 
441 /* Process a free extent. */
442 STATIC int
443 xfs_extent_free_finish_item(
444 	struct xfs_trans		*tp,
445 	struct xfs_log_item		*done,
446 	struct list_head		*item,
447 	struct xfs_btree_cur		**state)
448 {
449 	struct xfs_owner_info		oinfo = { };
450 	struct xfs_extent_free_item	*xefi;
451 	struct xfs_efd_log_item		*efdp = EFD_ITEM(done);
452 	struct xfs_mount		*mp = tp->t_mountp;
453 	struct xfs_extent		*extp;
454 	uint				next_extent;
455 	xfs_agblock_t			agbno;
456 	int				error = 0;
457 
458 	xefi = container_of(item, struct xfs_extent_free_item, xefi_list);
459 	agbno = XFS_FSB_TO_AGBNO(mp, xefi->xefi_startblock);
460 
461 	oinfo.oi_owner = xefi->xefi_owner;
462 	if (xefi->xefi_flags & XFS_EFI_ATTR_FORK)
463 		oinfo.oi_flags |= XFS_OWNER_INFO_ATTR_FORK;
464 	if (xefi->xefi_flags & XFS_EFI_BMBT_BLOCK)
465 		oinfo.oi_flags |= XFS_OWNER_INFO_BMBT_BLOCK;
466 
467 	trace_xfs_bmap_free_deferred(tp->t_mountp, xefi->xefi_pag->pag_agno, 0,
468 			agbno, xefi->xefi_blockcount);
469 
470 	/*
471 	 * If we need a new transaction to make progress, the caller will log a
472 	 * new EFI with the current contents. It will also log an EFD to cancel
473 	 * the existing EFI, and so we need to copy all the unprocessed extents
474 	 * in this EFI to the EFD so this works correctly.
475 	 */
476 	if (!(xefi->xefi_flags & XFS_EFI_CANCELLED))
477 		error = __xfs_free_extent(tp, xefi->xefi_pag, agbno,
478 				xefi->xefi_blockcount, &oinfo, xefi->xefi_agresv,
479 				xefi->xefi_flags & XFS_EFI_SKIP_DISCARD);
480 	if (error == -EAGAIN) {
481 		xfs_efd_from_efi(efdp);
482 		return error;
483 	}
484 
485 	/* Add the work we finished to the EFD, even though nobody uses that */
486 	next_extent = efdp->efd_next_extent;
487 	ASSERT(next_extent < efdp->efd_format.efd_nextents);
488 	extp = &(efdp->efd_format.efd_extents[next_extent]);
489 	extp->ext_start = xefi->xefi_startblock;
490 	extp->ext_len = xefi->xefi_blockcount;
491 	efdp->efd_next_extent++;
492 
493 	xfs_extent_free_put_group(xefi);
494 	kmem_cache_free(xfs_extfree_item_cache, xefi);
495 	return error;
496 }
497 
498 /* Abort all pending EFIs. */
499 STATIC void
500 xfs_extent_free_abort_intent(
501 	struct xfs_log_item		*intent)
502 {
503 	xfs_efi_release(EFI_ITEM(intent));
504 }
505 
506 /* Cancel a free extent. */
507 STATIC void
508 xfs_extent_free_cancel_item(
509 	struct list_head		*item)
510 {
511 	struct xfs_extent_free_item	*xefi;
512 
513 	xefi = container_of(item, struct xfs_extent_free_item, xefi_list);
514 
515 	xfs_extent_free_put_group(xefi);
516 	kmem_cache_free(xfs_extfree_item_cache, xefi);
517 }
518 
519 /*
520  * AGFL blocks are accounted differently in the reserve pools and are not
521  * inserted into the busy extent list.
522  */
523 STATIC int
524 xfs_agfl_free_finish_item(
525 	struct xfs_trans		*tp,
526 	struct xfs_log_item		*done,
527 	struct list_head		*item,
528 	struct xfs_btree_cur		**state)
529 {
530 	struct xfs_owner_info		oinfo = { };
531 	struct xfs_mount		*mp = tp->t_mountp;
532 	struct xfs_efd_log_item		*efdp = EFD_ITEM(done);
533 	struct xfs_extent_free_item	*xefi;
534 	struct xfs_extent		*extp;
535 	struct xfs_buf			*agbp;
536 	int				error;
537 	xfs_agblock_t			agbno;
538 	uint				next_extent;
539 
540 	xefi = container_of(item, struct xfs_extent_free_item, xefi_list);
541 	ASSERT(xefi->xefi_blockcount == 1);
542 	agbno = XFS_FSB_TO_AGBNO(mp, xefi->xefi_startblock);
543 	oinfo.oi_owner = xefi->xefi_owner;
544 
545 	trace_xfs_agfl_free_deferred(mp, xefi->xefi_pag->pag_agno, 0, agbno,
546 			xefi->xefi_blockcount);
547 
548 	error = xfs_alloc_read_agf(xefi->xefi_pag, tp, 0, &agbp);
549 	if (!error)
550 		error = xfs_free_agfl_block(tp, xefi->xefi_pag->pag_agno,
551 				agbno, agbp, &oinfo);
552 
553 	next_extent = efdp->efd_next_extent;
554 	ASSERT(next_extent < efdp->efd_format.efd_nextents);
555 	extp = &(efdp->efd_format.efd_extents[next_extent]);
556 	extp->ext_start = xefi->xefi_startblock;
557 	extp->ext_len = xefi->xefi_blockcount;
558 	efdp->efd_next_extent++;
559 
560 	xfs_extent_free_put_group(xefi);
561 	kmem_cache_free(xfs_extfree_item_cache, xefi);
562 	return error;
563 }
564 
565 /* Is this recovered EFI ok? */
566 static inline bool
567 xfs_efi_validate_ext(
568 	struct xfs_mount		*mp,
569 	struct xfs_extent		*extp)
570 {
571 	return xfs_verify_fsbext(mp, extp->ext_start, extp->ext_len);
572 }
573 
574 static inline void
575 xfs_efi_recover_work(
576 	struct xfs_mount		*mp,
577 	struct xfs_defer_pending	*dfp,
578 	struct xfs_extent		*extp)
579 {
580 	struct xfs_extent_free_item	*xefi;
581 
582 	xefi = kmem_cache_zalloc(xfs_extfree_item_cache,
583 			       GFP_KERNEL | __GFP_NOFAIL);
584 	xefi->xefi_startblock = extp->ext_start;
585 	xefi->xefi_blockcount = extp->ext_len;
586 	xefi->xefi_agresv = XFS_AG_RESV_NONE;
587 	xefi->xefi_owner = XFS_RMAP_OWN_UNKNOWN;
588 	xfs_extent_free_get_group(mp, xefi);
589 
590 	xfs_defer_add_item(dfp, &xefi->xefi_list);
591 }
592 
593 /*
594  * Process an extent free intent item that was recovered from
595  * the log.  We need to free the extents that it describes.
596  */
597 STATIC int
598 xfs_extent_free_recover_work(
599 	struct xfs_defer_pending	*dfp,
600 	struct list_head		*capture_list)
601 {
602 	struct xfs_trans_res		resv;
603 	struct xfs_log_item		*lip = dfp->dfp_intent;
604 	struct xfs_efi_log_item		*efip = EFI_ITEM(lip);
605 	struct xfs_mount		*mp = lip->li_log->l_mp;
606 	struct xfs_trans		*tp;
607 	int				i;
608 	int				error = 0;
609 
610 	/*
611 	 * First check the validity of the extents described by the
612 	 * EFI.  If any are bad, then assume that all are bad and
613 	 * just toss the EFI.
614 	 */
615 	for (i = 0; i < efip->efi_format.efi_nextents; i++) {
616 		if (!xfs_efi_validate_ext(mp,
617 					&efip->efi_format.efi_extents[i])) {
618 			XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp,
619 					&efip->efi_format,
620 					sizeof(efip->efi_format));
621 			return -EFSCORRUPTED;
622 		}
623 
624 		xfs_efi_recover_work(mp, dfp, &efip->efi_format.efi_extents[i]);
625 	}
626 
627 	resv = xlog_recover_resv(&M_RES(mp)->tr_itruncate);
628 	error = xfs_trans_alloc(mp, &resv, 0, 0, 0, &tp);
629 	if (error)
630 		return error;
631 
632 	error = xlog_recover_finish_intent(tp, dfp);
633 	if (error == -EFSCORRUPTED)
634 		XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp,
635 				&efip->efi_format,
636 				sizeof(efip->efi_format));
637 	if (error)
638 		goto abort_error;
639 
640 	return xfs_defer_ops_capture_and_commit(tp, capture_list);
641 
642 abort_error:
643 	xfs_trans_cancel(tp);
644 	return error;
645 }
646 
647 /* Relog an intent item to push the log tail forward. */
648 static struct xfs_log_item *
649 xfs_extent_free_relog_intent(
650 	struct xfs_trans		*tp,
651 	struct xfs_log_item		*intent,
652 	struct xfs_log_item		*done_item)
653 {
654 	struct xfs_efd_log_item		*efdp = EFD_ITEM(done_item);
655 	struct xfs_efi_log_item		*efip;
656 	struct xfs_extent		*extp;
657 	unsigned int			count;
658 
659 	count = EFI_ITEM(intent)->efi_format.efi_nextents;
660 	extp = EFI_ITEM(intent)->efi_format.efi_extents;
661 
662 	efdp->efd_next_extent = count;
663 	memcpy(efdp->efd_format.efd_extents, extp, count * sizeof(*extp));
664 
665 	efip = xfs_efi_init(tp->t_mountp, count);
666 	memcpy(efip->efi_format.efi_extents, extp, count * sizeof(*extp));
667 	atomic_set(&efip->efi_next_extent, count);
668 
669 	return &efip->efi_item;
670 }
671 
672 const struct xfs_defer_op_type xfs_extent_free_defer_type = {
673 	.name		= "extent_free",
674 	.max_items	= XFS_EFI_MAX_FAST_EXTENTS,
675 	.create_intent	= xfs_extent_free_create_intent,
676 	.abort_intent	= xfs_extent_free_abort_intent,
677 	.create_done	= xfs_extent_free_create_done,
678 	.finish_item	= xfs_extent_free_finish_item,
679 	.cancel_item	= xfs_extent_free_cancel_item,
680 	.recover_work	= xfs_extent_free_recover_work,
681 	.relog_intent	= xfs_extent_free_relog_intent,
682 };
683 
684 /* sub-type with special handling for AGFL deferred frees */
685 const struct xfs_defer_op_type xfs_agfl_free_defer_type = {
686 	.name		= "agfl_free",
687 	.max_items	= XFS_EFI_MAX_FAST_EXTENTS,
688 	.create_intent	= xfs_extent_free_create_intent,
689 	.abort_intent	= xfs_extent_free_abort_intent,
690 	.create_done	= xfs_extent_free_create_done,
691 	.finish_item	= xfs_agfl_free_finish_item,
692 	.cancel_item	= xfs_extent_free_cancel_item,
693 	.recover_work	= xfs_extent_free_recover_work,
694 	.relog_intent	= xfs_extent_free_relog_intent,
695 };
696 
697 STATIC bool
698 xfs_efi_item_match(
699 	struct xfs_log_item	*lip,
700 	uint64_t		intent_id)
701 {
702 	return EFI_ITEM(lip)->efi_format.efi_id == intent_id;
703 }
704 
705 static const struct xfs_item_ops xfs_efi_item_ops = {
706 	.flags		= XFS_ITEM_INTENT,
707 	.iop_size	= xfs_efi_item_size,
708 	.iop_format	= xfs_efi_item_format,
709 	.iop_unpin	= xfs_efi_item_unpin,
710 	.iop_release	= xfs_efi_item_release,
711 	.iop_match	= xfs_efi_item_match,
712 };
713 
714 /*
715  * This routine is called to create an in-core extent free intent
716  * item from the efi format structure which was logged on disk.
717  * It allocates an in-core efi, copies the extents from the format
718  * structure into it, and adds the efi to the AIL with the given
719  * LSN.
720  */
721 STATIC int
722 xlog_recover_efi_commit_pass2(
723 	struct xlog			*log,
724 	struct list_head		*buffer_list,
725 	struct xlog_recover_item	*item,
726 	xfs_lsn_t			lsn)
727 {
728 	struct xfs_mount		*mp = log->l_mp;
729 	struct xfs_efi_log_item		*efip;
730 	struct xfs_efi_log_format	*efi_formatp;
731 	int				error;
732 
733 	efi_formatp = item->ri_buf[0].i_addr;
734 
735 	if (item->ri_buf[0].i_len < xfs_efi_log_format_sizeof(0)) {
736 		XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp,
737 				item->ri_buf[0].i_addr, item->ri_buf[0].i_len);
738 		return -EFSCORRUPTED;
739 	}
740 
741 	efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
742 	error = xfs_efi_copy_format(&item->ri_buf[0], &efip->efi_format);
743 	if (error) {
744 		xfs_efi_item_free(efip);
745 		return error;
746 	}
747 	atomic_set(&efip->efi_next_extent, efi_formatp->efi_nextents);
748 
749 	xlog_recover_intent_item(log, &efip->efi_item, lsn,
750 			&xfs_extent_free_defer_type);
751 	return 0;
752 }
753 
754 const struct xlog_recover_item_ops xlog_efi_item_ops = {
755 	.item_type		= XFS_LI_EFI,
756 	.commit_pass2		= xlog_recover_efi_commit_pass2,
757 };
758 
759 /*
760  * This routine is called when an EFD format structure is found in a committed
761  * transaction in the log. Its purpose is to cancel the corresponding EFI if it
762  * was still in the log. To do this it searches the AIL for the EFI with an id
763  * equal to that in the EFD format structure. If we find it we drop the EFD
764  * reference, which removes the EFI from the AIL and frees it.
765  */
766 STATIC int
767 xlog_recover_efd_commit_pass2(
768 	struct xlog			*log,
769 	struct list_head		*buffer_list,
770 	struct xlog_recover_item	*item,
771 	xfs_lsn_t			lsn)
772 {
773 	struct xfs_efd_log_format	*efd_formatp;
774 	int				buflen = item->ri_buf[0].i_len;
775 
776 	efd_formatp = item->ri_buf[0].i_addr;
777 
778 	if (buflen < sizeof(struct xfs_efd_log_format)) {
779 		XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, log->l_mp,
780 				efd_formatp, buflen);
781 		return -EFSCORRUPTED;
782 	}
783 
784 	if (item->ri_buf[0].i_len != xfs_efd_log_format32_sizeof(
785 						efd_formatp->efd_nextents) &&
786 	    item->ri_buf[0].i_len != xfs_efd_log_format64_sizeof(
787 						efd_formatp->efd_nextents)) {
788 		XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, log->l_mp,
789 				efd_formatp, buflen);
790 		return -EFSCORRUPTED;
791 	}
792 
793 	xlog_recover_release_intent(log, XFS_LI_EFI, efd_formatp->efd_efi_id);
794 	return 0;
795 }
796 
797 const struct xlog_recover_item_ops xlog_efd_item_ops = {
798 	.item_type		= XFS_LI_EFD,
799 	.commit_pass2		= xlog_recover_efd_commit_pass2,
800 };
801