xref: /linux/fs/xfs/xfs_extfree_item.c (revision 77ec462536a13d4b428a1eead725c4818a49f0b1)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2001,2005 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_format.h"
9 #include "xfs_log_format.h"
10 #include "xfs_trans_resv.h"
11 #include "xfs_bit.h"
12 #include "xfs_shared.h"
13 #include "xfs_mount.h"
14 #include "xfs_defer.h"
15 #include "xfs_trans.h"
16 #include "xfs_trans_priv.h"
17 #include "xfs_extfree_item.h"
18 #include "xfs_log.h"
19 #include "xfs_btree.h"
20 #include "xfs_rmap.h"
21 #include "xfs_alloc.h"
22 #include "xfs_bmap.h"
23 #include "xfs_trace.h"
24 #include "xfs_error.h"
25 #include "xfs_log_priv.h"
26 #include "xfs_log_recover.h"
27 
28 kmem_zone_t	*xfs_efi_zone;
29 kmem_zone_t	*xfs_efd_zone;
30 
31 static const struct xfs_item_ops xfs_efi_item_ops;
32 
33 static inline struct xfs_efi_log_item *EFI_ITEM(struct xfs_log_item *lip)
34 {
35 	return container_of(lip, struct xfs_efi_log_item, efi_item);
36 }
37 
38 STATIC void
39 xfs_efi_item_free(
40 	struct xfs_efi_log_item	*efip)
41 {
42 	kmem_free(efip->efi_item.li_lv_shadow);
43 	if (efip->efi_format.efi_nextents > XFS_EFI_MAX_FAST_EXTENTS)
44 		kmem_free(efip);
45 	else
46 		kmem_cache_free(xfs_efi_zone, efip);
47 }
48 
49 /*
50  * Freeing the efi requires that we remove it from the AIL if it has already
51  * been placed there. However, the EFI may not yet have been placed in the AIL
52  * when called by xfs_efi_release() from EFD processing due to the ordering of
53  * committed vs unpin operations in bulk insert operations. Hence the reference
54  * count to ensure only the last caller frees the EFI.
55  */
56 STATIC void
57 xfs_efi_release(
58 	struct xfs_efi_log_item	*efip)
59 {
60 	ASSERT(atomic_read(&efip->efi_refcount) > 0);
61 	if (atomic_dec_and_test(&efip->efi_refcount)) {
62 		xfs_trans_ail_delete(&efip->efi_item, SHUTDOWN_LOG_IO_ERROR);
63 		xfs_efi_item_free(efip);
64 	}
65 }
66 
67 /*
68  * This returns the number of iovecs needed to log the given efi item.
69  * We only need 1 iovec for an efi item.  It just logs the efi_log_format
70  * structure.
71  */
72 static inline int
73 xfs_efi_item_sizeof(
74 	struct xfs_efi_log_item *efip)
75 {
76 	return sizeof(struct xfs_efi_log_format) +
77 	       (efip->efi_format.efi_nextents - 1) * sizeof(xfs_extent_t);
78 }
79 
80 STATIC void
81 xfs_efi_item_size(
82 	struct xfs_log_item	*lip,
83 	int			*nvecs,
84 	int			*nbytes)
85 {
86 	*nvecs += 1;
87 	*nbytes += xfs_efi_item_sizeof(EFI_ITEM(lip));
88 }
89 
90 /*
91  * This is called to fill in the vector of log iovecs for the
92  * given efi log item. We use only 1 iovec, and we point that
93  * at the efi_log_format structure embedded in the efi item.
94  * It is at this point that we assert that all of the extent
95  * slots in the efi item have been filled.
96  */
97 STATIC void
98 xfs_efi_item_format(
99 	struct xfs_log_item	*lip,
100 	struct xfs_log_vec	*lv)
101 {
102 	struct xfs_efi_log_item	*efip = EFI_ITEM(lip);
103 	struct xfs_log_iovec	*vecp = NULL;
104 
105 	ASSERT(atomic_read(&efip->efi_next_extent) ==
106 				efip->efi_format.efi_nextents);
107 
108 	efip->efi_format.efi_type = XFS_LI_EFI;
109 	efip->efi_format.efi_size = 1;
110 
111 	xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_EFI_FORMAT,
112 			&efip->efi_format,
113 			xfs_efi_item_sizeof(efip));
114 }
115 
116 
117 /*
118  * The unpin operation is the last place an EFI is manipulated in the log. It is
119  * either inserted in the AIL or aborted in the event of a log I/O error. In
120  * either case, the EFI transaction has been successfully committed to make it
121  * this far. Therefore, we expect whoever committed the EFI to either construct
122  * and commit the EFD or drop the EFD's reference in the event of error. Simply
123  * drop the log's EFI reference now that the log is done with it.
124  */
125 STATIC void
126 xfs_efi_item_unpin(
127 	struct xfs_log_item	*lip,
128 	int			remove)
129 {
130 	struct xfs_efi_log_item	*efip = EFI_ITEM(lip);
131 	xfs_efi_release(efip);
132 }
133 
134 /*
135  * The EFI has been either committed or aborted if the transaction has been
136  * cancelled. If the transaction was cancelled, an EFD isn't going to be
137  * constructed and thus we free the EFI here directly.
138  */
139 STATIC void
140 xfs_efi_item_release(
141 	struct xfs_log_item	*lip)
142 {
143 	xfs_efi_release(EFI_ITEM(lip));
144 }
145 
146 /*
147  * Allocate and initialize an efi item with the given number of extents.
148  */
149 STATIC struct xfs_efi_log_item *
150 xfs_efi_init(
151 	struct xfs_mount	*mp,
152 	uint			nextents)
153 
154 {
155 	struct xfs_efi_log_item	*efip;
156 	uint			size;
157 
158 	ASSERT(nextents > 0);
159 	if (nextents > XFS_EFI_MAX_FAST_EXTENTS) {
160 		size = (uint)(sizeof(struct xfs_efi_log_item) +
161 			((nextents - 1) * sizeof(xfs_extent_t)));
162 		efip = kmem_zalloc(size, 0);
163 	} else {
164 		efip = kmem_cache_zalloc(xfs_efi_zone,
165 					 GFP_KERNEL | __GFP_NOFAIL);
166 	}
167 
168 	xfs_log_item_init(mp, &efip->efi_item, XFS_LI_EFI, &xfs_efi_item_ops);
169 	efip->efi_format.efi_nextents = nextents;
170 	efip->efi_format.efi_id = (uintptr_t)(void *)efip;
171 	atomic_set(&efip->efi_next_extent, 0);
172 	atomic_set(&efip->efi_refcount, 2);
173 
174 	return efip;
175 }
176 
177 /*
178  * Copy an EFI format buffer from the given buf, and into the destination
179  * EFI format structure.
180  * The given buffer can be in 32 bit or 64 bit form (which has different padding),
181  * one of which will be the native format for this kernel.
182  * It will handle the conversion of formats if necessary.
183  */
184 STATIC int
185 xfs_efi_copy_format(xfs_log_iovec_t *buf, xfs_efi_log_format_t *dst_efi_fmt)
186 {
187 	xfs_efi_log_format_t *src_efi_fmt = buf->i_addr;
188 	uint i;
189 	uint len = sizeof(xfs_efi_log_format_t) +
190 		(src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_t);
191 	uint len32 = sizeof(xfs_efi_log_format_32_t) +
192 		(src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_32_t);
193 	uint len64 = sizeof(xfs_efi_log_format_64_t) +
194 		(src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_64_t);
195 
196 	if (buf->i_len == len) {
197 		memcpy((char *)dst_efi_fmt, (char*)src_efi_fmt, len);
198 		return 0;
199 	} else if (buf->i_len == len32) {
200 		xfs_efi_log_format_32_t *src_efi_fmt_32 = buf->i_addr;
201 
202 		dst_efi_fmt->efi_type     = src_efi_fmt_32->efi_type;
203 		dst_efi_fmt->efi_size     = src_efi_fmt_32->efi_size;
204 		dst_efi_fmt->efi_nextents = src_efi_fmt_32->efi_nextents;
205 		dst_efi_fmt->efi_id       = src_efi_fmt_32->efi_id;
206 		for (i = 0; i < dst_efi_fmt->efi_nextents; i++) {
207 			dst_efi_fmt->efi_extents[i].ext_start =
208 				src_efi_fmt_32->efi_extents[i].ext_start;
209 			dst_efi_fmt->efi_extents[i].ext_len =
210 				src_efi_fmt_32->efi_extents[i].ext_len;
211 		}
212 		return 0;
213 	} else if (buf->i_len == len64) {
214 		xfs_efi_log_format_64_t *src_efi_fmt_64 = buf->i_addr;
215 
216 		dst_efi_fmt->efi_type     = src_efi_fmt_64->efi_type;
217 		dst_efi_fmt->efi_size     = src_efi_fmt_64->efi_size;
218 		dst_efi_fmt->efi_nextents = src_efi_fmt_64->efi_nextents;
219 		dst_efi_fmt->efi_id       = src_efi_fmt_64->efi_id;
220 		for (i = 0; i < dst_efi_fmt->efi_nextents; i++) {
221 			dst_efi_fmt->efi_extents[i].ext_start =
222 				src_efi_fmt_64->efi_extents[i].ext_start;
223 			dst_efi_fmt->efi_extents[i].ext_len =
224 				src_efi_fmt_64->efi_extents[i].ext_len;
225 		}
226 		return 0;
227 	}
228 	XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, NULL);
229 	return -EFSCORRUPTED;
230 }
231 
232 static inline struct xfs_efd_log_item *EFD_ITEM(struct xfs_log_item *lip)
233 {
234 	return container_of(lip, struct xfs_efd_log_item, efd_item);
235 }
236 
237 STATIC void
238 xfs_efd_item_free(struct xfs_efd_log_item *efdp)
239 {
240 	kmem_free(efdp->efd_item.li_lv_shadow);
241 	if (efdp->efd_format.efd_nextents > XFS_EFD_MAX_FAST_EXTENTS)
242 		kmem_free(efdp);
243 	else
244 		kmem_cache_free(xfs_efd_zone, efdp);
245 }
246 
247 /*
248  * This returns the number of iovecs needed to log the given efd item.
249  * We only need 1 iovec for an efd item.  It just logs the efd_log_format
250  * structure.
251  */
252 static inline int
253 xfs_efd_item_sizeof(
254 	struct xfs_efd_log_item *efdp)
255 {
256 	return sizeof(xfs_efd_log_format_t) +
257 	       (efdp->efd_format.efd_nextents - 1) * sizeof(xfs_extent_t);
258 }
259 
260 STATIC void
261 xfs_efd_item_size(
262 	struct xfs_log_item	*lip,
263 	int			*nvecs,
264 	int			*nbytes)
265 {
266 	*nvecs += 1;
267 	*nbytes += xfs_efd_item_sizeof(EFD_ITEM(lip));
268 }
269 
270 /*
271  * This is called to fill in the vector of log iovecs for the
272  * given efd log item. We use only 1 iovec, and we point that
273  * at the efd_log_format structure embedded in the efd item.
274  * It is at this point that we assert that all of the extent
275  * slots in the efd item have been filled.
276  */
277 STATIC void
278 xfs_efd_item_format(
279 	struct xfs_log_item	*lip,
280 	struct xfs_log_vec	*lv)
281 {
282 	struct xfs_efd_log_item	*efdp = EFD_ITEM(lip);
283 	struct xfs_log_iovec	*vecp = NULL;
284 
285 	ASSERT(efdp->efd_next_extent == efdp->efd_format.efd_nextents);
286 
287 	efdp->efd_format.efd_type = XFS_LI_EFD;
288 	efdp->efd_format.efd_size = 1;
289 
290 	xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_EFD_FORMAT,
291 			&efdp->efd_format,
292 			xfs_efd_item_sizeof(efdp));
293 }
294 
295 /*
296  * The EFD is either committed or aborted if the transaction is cancelled. If
297  * the transaction is cancelled, drop our reference to the EFI and free the EFD.
298  */
299 STATIC void
300 xfs_efd_item_release(
301 	struct xfs_log_item	*lip)
302 {
303 	struct xfs_efd_log_item	*efdp = EFD_ITEM(lip);
304 
305 	xfs_efi_release(efdp->efd_efip);
306 	xfs_efd_item_free(efdp);
307 }
308 
309 static const struct xfs_item_ops xfs_efd_item_ops = {
310 	.flags		= XFS_ITEM_RELEASE_WHEN_COMMITTED,
311 	.iop_size	= xfs_efd_item_size,
312 	.iop_format	= xfs_efd_item_format,
313 	.iop_release	= xfs_efd_item_release,
314 };
315 
316 /*
317  * Allocate an "extent free done" log item that will hold nextents worth of
318  * extents.  The caller must use all nextents extents, because we are not
319  * flexible about this at all.
320  */
321 static struct xfs_efd_log_item *
322 xfs_trans_get_efd(
323 	struct xfs_trans		*tp,
324 	struct xfs_efi_log_item		*efip,
325 	unsigned int			nextents)
326 {
327 	struct xfs_efd_log_item		*efdp;
328 
329 	ASSERT(nextents > 0);
330 
331 	if (nextents > XFS_EFD_MAX_FAST_EXTENTS) {
332 		efdp = kmem_zalloc(sizeof(struct xfs_efd_log_item) +
333 				(nextents - 1) * sizeof(struct xfs_extent),
334 				0);
335 	} else {
336 		efdp = kmem_cache_zalloc(xfs_efd_zone,
337 					GFP_KERNEL | __GFP_NOFAIL);
338 	}
339 
340 	xfs_log_item_init(tp->t_mountp, &efdp->efd_item, XFS_LI_EFD,
341 			  &xfs_efd_item_ops);
342 	efdp->efd_efip = efip;
343 	efdp->efd_format.efd_nextents = nextents;
344 	efdp->efd_format.efd_efi_id = efip->efi_format.efi_id;
345 
346 	xfs_trans_add_item(tp, &efdp->efd_item);
347 	return efdp;
348 }
349 
350 /*
351  * Free an extent and log it to the EFD. Note that the transaction is marked
352  * dirty regardless of whether the extent free succeeds or fails to support the
353  * EFI/EFD lifecycle rules.
354  */
355 static int
356 xfs_trans_free_extent(
357 	struct xfs_trans		*tp,
358 	struct xfs_efd_log_item		*efdp,
359 	xfs_fsblock_t			start_block,
360 	xfs_extlen_t			ext_len,
361 	const struct xfs_owner_info	*oinfo,
362 	bool				skip_discard)
363 {
364 	struct xfs_mount		*mp = tp->t_mountp;
365 	struct xfs_extent		*extp;
366 	uint				next_extent;
367 	xfs_agnumber_t			agno = XFS_FSB_TO_AGNO(mp, start_block);
368 	xfs_agblock_t			agbno = XFS_FSB_TO_AGBNO(mp,
369 								start_block);
370 	int				error;
371 
372 	trace_xfs_bmap_free_deferred(tp->t_mountp, agno, 0, agbno, ext_len);
373 
374 	error = __xfs_free_extent(tp, start_block, ext_len,
375 				  oinfo, XFS_AG_RESV_NONE, skip_discard);
376 	/*
377 	 * Mark the transaction dirty, even on error. This ensures the
378 	 * transaction is aborted, which:
379 	 *
380 	 * 1.) releases the EFI and frees the EFD
381 	 * 2.) shuts down the filesystem
382 	 */
383 	tp->t_flags |= XFS_TRANS_DIRTY;
384 	set_bit(XFS_LI_DIRTY, &efdp->efd_item.li_flags);
385 
386 	next_extent = efdp->efd_next_extent;
387 	ASSERT(next_extent < efdp->efd_format.efd_nextents);
388 	extp = &(efdp->efd_format.efd_extents[next_extent]);
389 	extp->ext_start = start_block;
390 	extp->ext_len = ext_len;
391 	efdp->efd_next_extent++;
392 
393 	return error;
394 }
395 
396 /* Sort bmap items by AG. */
397 static int
398 xfs_extent_free_diff_items(
399 	void				*priv,
400 	struct list_head		*a,
401 	struct list_head		*b)
402 {
403 	struct xfs_mount		*mp = priv;
404 	struct xfs_extent_free_item	*ra;
405 	struct xfs_extent_free_item	*rb;
406 
407 	ra = container_of(a, struct xfs_extent_free_item, xefi_list);
408 	rb = container_of(b, struct xfs_extent_free_item, xefi_list);
409 	return  XFS_FSB_TO_AGNO(mp, ra->xefi_startblock) -
410 		XFS_FSB_TO_AGNO(mp, rb->xefi_startblock);
411 }
412 
413 /* Log a free extent to the intent item. */
414 STATIC void
415 xfs_extent_free_log_item(
416 	struct xfs_trans		*tp,
417 	struct xfs_efi_log_item		*efip,
418 	struct xfs_extent_free_item	*free)
419 {
420 	uint				next_extent;
421 	struct xfs_extent		*extp;
422 
423 	tp->t_flags |= XFS_TRANS_DIRTY;
424 	set_bit(XFS_LI_DIRTY, &efip->efi_item.li_flags);
425 
426 	/*
427 	 * atomic_inc_return gives us the value after the increment;
428 	 * we want to use it as an array index so we need to subtract 1 from
429 	 * it.
430 	 */
431 	next_extent = atomic_inc_return(&efip->efi_next_extent) - 1;
432 	ASSERT(next_extent < efip->efi_format.efi_nextents);
433 	extp = &efip->efi_format.efi_extents[next_extent];
434 	extp->ext_start = free->xefi_startblock;
435 	extp->ext_len = free->xefi_blockcount;
436 }
437 
438 static struct xfs_log_item *
439 xfs_extent_free_create_intent(
440 	struct xfs_trans		*tp,
441 	struct list_head		*items,
442 	unsigned int			count,
443 	bool				sort)
444 {
445 	struct xfs_mount		*mp = tp->t_mountp;
446 	struct xfs_efi_log_item		*efip = xfs_efi_init(mp, count);
447 	struct xfs_extent_free_item	*free;
448 
449 	ASSERT(count > 0);
450 
451 	xfs_trans_add_item(tp, &efip->efi_item);
452 	if (sort)
453 		list_sort(mp, items, xfs_extent_free_diff_items);
454 	list_for_each_entry(free, items, xefi_list)
455 		xfs_extent_free_log_item(tp, efip, free);
456 	return &efip->efi_item;
457 }
458 
459 /* Get an EFD so we can process all the free extents. */
460 static struct xfs_log_item *
461 xfs_extent_free_create_done(
462 	struct xfs_trans		*tp,
463 	struct xfs_log_item		*intent,
464 	unsigned int			count)
465 {
466 	return &xfs_trans_get_efd(tp, EFI_ITEM(intent), count)->efd_item;
467 }
468 
469 /* Process a free extent. */
470 STATIC int
471 xfs_extent_free_finish_item(
472 	struct xfs_trans		*tp,
473 	struct xfs_log_item		*done,
474 	struct list_head		*item,
475 	struct xfs_btree_cur		**state)
476 {
477 	struct xfs_extent_free_item	*free;
478 	int				error;
479 
480 	free = container_of(item, struct xfs_extent_free_item, xefi_list);
481 	error = xfs_trans_free_extent(tp, EFD_ITEM(done),
482 			free->xefi_startblock,
483 			free->xefi_blockcount,
484 			&free->xefi_oinfo, free->xefi_skip_discard);
485 	kmem_free(free);
486 	return error;
487 }
488 
489 /* Abort all pending EFIs. */
490 STATIC void
491 xfs_extent_free_abort_intent(
492 	struct xfs_log_item		*intent)
493 {
494 	xfs_efi_release(EFI_ITEM(intent));
495 }
496 
497 /* Cancel a free extent. */
498 STATIC void
499 xfs_extent_free_cancel_item(
500 	struct list_head		*item)
501 {
502 	struct xfs_extent_free_item	*free;
503 
504 	free = container_of(item, struct xfs_extent_free_item, xefi_list);
505 	kmem_free(free);
506 }
507 
508 const struct xfs_defer_op_type xfs_extent_free_defer_type = {
509 	.max_items	= XFS_EFI_MAX_FAST_EXTENTS,
510 	.create_intent	= xfs_extent_free_create_intent,
511 	.abort_intent	= xfs_extent_free_abort_intent,
512 	.create_done	= xfs_extent_free_create_done,
513 	.finish_item	= xfs_extent_free_finish_item,
514 	.cancel_item	= xfs_extent_free_cancel_item,
515 };
516 
517 /*
518  * AGFL blocks are accounted differently in the reserve pools and are not
519  * inserted into the busy extent list.
520  */
521 STATIC int
522 xfs_agfl_free_finish_item(
523 	struct xfs_trans		*tp,
524 	struct xfs_log_item		*done,
525 	struct list_head		*item,
526 	struct xfs_btree_cur		**state)
527 {
528 	struct xfs_mount		*mp = tp->t_mountp;
529 	struct xfs_efd_log_item		*efdp = EFD_ITEM(done);
530 	struct xfs_extent_free_item	*free;
531 	struct xfs_extent		*extp;
532 	struct xfs_buf			*agbp;
533 	int				error;
534 	xfs_agnumber_t			agno;
535 	xfs_agblock_t			agbno;
536 	uint				next_extent;
537 
538 	free = container_of(item, struct xfs_extent_free_item, xefi_list);
539 	ASSERT(free->xefi_blockcount == 1);
540 	agno = XFS_FSB_TO_AGNO(mp, free->xefi_startblock);
541 	agbno = XFS_FSB_TO_AGBNO(mp, free->xefi_startblock);
542 
543 	trace_xfs_agfl_free_deferred(mp, agno, 0, agbno, free->xefi_blockcount);
544 
545 	error = xfs_alloc_read_agf(mp, tp, agno, 0, &agbp);
546 	if (!error)
547 		error = xfs_free_agfl_block(tp, agno, agbno, agbp,
548 					    &free->xefi_oinfo);
549 
550 	/*
551 	 * Mark the transaction dirty, even on error. This ensures the
552 	 * transaction is aborted, which:
553 	 *
554 	 * 1.) releases the EFI and frees the EFD
555 	 * 2.) shuts down the filesystem
556 	 */
557 	tp->t_flags |= XFS_TRANS_DIRTY;
558 	set_bit(XFS_LI_DIRTY, &efdp->efd_item.li_flags);
559 
560 	next_extent = efdp->efd_next_extent;
561 	ASSERT(next_extent < efdp->efd_format.efd_nextents);
562 	extp = &(efdp->efd_format.efd_extents[next_extent]);
563 	extp->ext_start = free->xefi_startblock;
564 	extp->ext_len = free->xefi_blockcount;
565 	efdp->efd_next_extent++;
566 
567 	kmem_free(free);
568 	return error;
569 }
570 
571 /* sub-type with special handling for AGFL deferred frees */
572 const struct xfs_defer_op_type xfs_agfl_free_defer_type = {
573 	.max_items	= XFS_EFI_MAX_FAST_EXTENTS,
574 	.create_intent	= xfs_extent_free_create_intent,
575 	.abort_intent	= xfs_extent_free_abort_intent,
576 	.create_done	= xfs_extent_free_create_done,
577 	.finish_item	= xfs_agfl_free_finish_item,
578 	.cancel_item	= xfs_extent_free_cancel_item,
579 };
580 
581 /* Is this recovered EFI ok? */
582 static inline bool
583 xfs_efi_validate_ext(
584 	struct xfs_mount		*mp,
585 	struct xfs_extent		*extp)
586 {
587 	return xfs_verify_fsbext(mp, extp->ext_start, extp->ext_len);
588 }
589 
590 /*
591  * Process an extent free intent item that was recovered from
592  * the log.  We need to free the extents that it describes.
593  */
594 STATIC int
595 xfs_efi_item_recover(
596 	struct xfs_log_item		*lip,
597 	struct list_head		*capture_list)
598 {
599 	struct xfs_efi_log_item		*efip = EFI_ITEM(lip);
600 	struct xfs_mount		*mp = lip->li_mountp;
601 	struct xfs_efd_log_item		*efdp;
602 	struct xfs_trans		*tp;
603 	struct xfs_extent		*extp;
604 	int				i;
605 	int				error = 0;
606 
607 	/*
608 	 * First check the validity of the extents described by the
609 	 * EFI.  If any are bad, then assume that all are bad and
610 	 * just toss the EFI.
611 	 */
612 	for (i = 0; i < efip->efi_format.efi_nextents; i++) {
613 		if (!xfs_efi_validate_ext(mp,
614 					&efip->efi_format.efi_extents[i])) {
615 			XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp,
616 					&efip->efi_format,
617 					sizeof(efip->efi_format));
618 			return -EFSCORRUPTED;
619 		}
620 	}
621 
622 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp);
623 	if (error)
624 		return error;
625 	efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents);
626 
627 	for (i = 0; i < efip->efi_format.efi_nextents; i++) {
628 		extp = &efip->efi_format.efi_extents[i];
629 		error = xfs_trans_free_extent(tp, efdp, extp->ext_start,
630 					      extp->ext_len,
631 					      &XFS_RMAP_OINFO_ANY_OWNER, false);
632 		if (error)
633 			goto abort_error;
634 
635 	}
636 
637 	return xfs_defer_ops_capture_and_commit(tp, NULL, capture_list);
638 
639 abort_error:
640 	xfs_trans_cancel(tp);
641 	return error;
642 }
643 
644 STATIC bool
645 xfs_efi_item_match(
646 	struct xfs_log_item	*lip,
647 	uint64_t		intent_id)
648 {
649 	return EFI_ITEM(lip)->efi_format.efi_id == intent_id;
650 }
651 
652 /* Relog an intent item to push the log tail forward. */
653 static struct xfs_log_item *
654 xfs_efi_item_relog(
655 	struct xfs_log_item		*intent,
656 	struct xfs_trans		*tp)
657 {
658 	struct xfs_efd_log_item		*efdp;
659 	struct xfs_efi_log_item		*efip;
660 	struct xfs_extent		*extp;
661 	unsigned int			count;
662 
663 	count = EFI_ITEM(intent)->efi_format.efi_nextents;
664 	extp = EFI_ITEM(intent)->efi_format.efi_extents;
665 
666 	tp->t_flags |= XFS_TRANS_DIRTY;
667 	efdp = xfs_trans_get_efd(tp, EFI_ITEM(intent), count);
668 	efdp->efd_next_extent = count;
669 	memcpy(efdp->efd_format.efd_extents, extp, count * sizeof(*extp));
670 	set_bit(XFS_LI_DIRTY, &efdp->efd_item.li_flags);
671 
672 	efip = xfs_efi_init(tp->t_mountp, count);
673 	memcpy(efip->efi_format.efi_extents, extp, count * sizeof(*extp));
674 	atomic_set(&efip->efi_next_extent, count);
675 	xfs_trans_add_item(tp, &efip->efi_item);
676 	set_bit(XFS_LI_DIRTY, &efip->efi_item.li_flags);
677 	return &efip->efi_item;
678 }
679 
680 static const struct xfs_item_ops xfs_efi_item_ops = {
681 	.iop_size	= xfs_efi_item_size,
682 	.iop_format	= xfs_efi_item_format,
683 	.iop_unpin	= xfs_efi_item_unpin,
684 	.iop_release	= xfs_efi_item_release,
685 	.iop_recover	= xfs_efi_item_recover,
686 	.iop_match	= xfs_efi_item_match,
687 	.iop_relog	= xfs_efi_item_relog,
688 };
689 
690 /*
691  * This routine is called to create an in-core extent free intent
692  * item from the efi format structure which was logged on disk.
693  * It allocates an in-core efi, copies the extents from the format
694  * structure into it, and adds the efi to the AIL with the given
695  * LSN.
696  */
697 STATIC int
698 xlog_recover_efi_commit_pass2(
699 	struct xlog			*log,
700 	struct list_head		*buffer_list,
701 	struct xlog_recover_item	*item,
702 	xfs_lsn_t			lsn)
703 {
704 	struct xfs_mount		*mp = log->l_mp;
705 	struct xfs_efi_log_item		*efip;
706 	struct xfs_efi_log_format	*efi_formatp;
707 	int				error;
708 
709 	efi_formatp = item->ri_buf[0].i_addr;
710 
711 	efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
712 	error = xfs_efi_copy_format(&item->ri_buf[0], &efip->efi_format);
713 	if (error) {
714 		xfs_efi_item_free(efip);
715 		return error;
716 	}
717 	atomic_set(&efip->efi_next_extent, efi_formatp->efi_nextents);
718 	/*
719 	 * Insert the intent into the AIL directly and drop one reference so
720 	 * that finishing or canceling the work will drop the other.
721 	 */
722 	xfs_trans_ail_insert(log->l_ailp, &efip->efi_item, lsn);
723 	xfs_efi_release(efip);
724 	return 0;
725 }
726 
727 const struct xlog_recover_item_ops xlog_efi_item_ops = {
728 	.item_type		= XFS_LI_EFI,
729 	.commit_pass2		= xlog_recover_efi_commit_pass2,
730 };
731 
732 /*
733  * This routine is called when an EFD format structure is found in a committed
734  * transaction in the log. Its purpose is to cancel the corresponding EFI if it
735  * was still in the log. To do this it searches the AIL for the EFI with an id
736  * equal to that in the EFD format structure. If we find it we drop the EFD
737  * reference, which removes the EFI from the AIL and frees it.
738  */
739 STATIC int
740 xlog_recover_efd_commit_pass2(
741 	struct xlog			*log,
742 	struct list_head		*buffer_list,
743 	struct xlog_recover_item	*item,
744 	xfs_lsn_t			lsn)
745 {
746 	struct xfs_efd_log_format	*efd_formatp;
747 
748 	efd_formatp = item->ri_buf[0].i_addr;
749 	ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) +
750 		((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) ||
751 	       (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) +
752 		((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t)))));
753 
754 	xlog_recover_release_intent(log, XFS_LI_EFI, efd_formatp->efd_efi_id);
755 	return 0;
756 }
757 
758 const struct xlog_recover_item_ops xlog_efd_item_ops = {
759 	.item_type		= XFS_LI_EFD,
760 	.commit_pass2		= xlog_recover_efd_commit_pass2,
761 };
762