1 /* 2 * Copyright (c) 2000-2001,2005 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_fs.h" 20 #include "xfs_types.h" 21 #include "xfs_log.h" 22 #include "xfs_inum.h" 23 #include "xfs_trans.h" 24 #include "xfs_buf_item.h" 25 #include "xfs_sb.h" 26 #include "xfs_ag.h" 27 #include "xfs_mount.h" 28 #include "xfs_trans_priv.h" 29 #include "xfs_extfree_item.h" 30 31 32 kmem_zone_t *xfs_efi_zone; 33 kmem_zone_t *xfs_efd_zone; 34 35 static inline struct xfs_efi_log_item *EFI_ITEM(struct xfs_log_item *lip) 36 { 37 return container_of(lip, struct xfs_efi_log_item, efi_item); 38 } 39 40 void 41 xfs_efi_item_free( 42 struct xfs_efi_log_item *efip) 43 { 44 if (efip->efi_format.efi_nextents > XFS_EFI_MAX_FAST_EXTENTS) 45 kmem_free(efip); 46 else 47 kmem_zone_free(xfs_efi_zone, efip); 48 } 49 50 /* 51 * Freeing the efi requires that we remove it from the AIL if it has already 52 * been placed there. However, the EFI may not yet have been placed in the AIL 53 * when called by xfs_efi_release() from EFD processing due to the ordering of 54 * committed vs unpin operations in bulk insert operations. Hence the 55 * test_and_clear_bit(XFS_EFI_COMMITTED) to ensure only the last caller frees 56 * the EFI. 57 */ 58 STATIC void 59 __xfs_efi_release( 60 struct xfs_efi_log_item *efip) 61 { 62 struct xfs_ail *ailp = efip->efi_item.li_ailp; 63 64 if (!test_and_clear_bit(XFS_EFI_COMMITTED, &efip->efi_flags)) { 65 spin_lock(&ailp->xa_lock); 66 /* xfs_trans_ail_delete() drops the AIL lock. */ 67 xfs_trans_ail_delete(ailp, &efip->efi_item); 68 xfs_efi_item_free(efip); 69 } 70 } 71 72 /* 73 * This returns the number of iovecs needed to log the given efi item. 74 * We only need 1 iovec for an efi item. It just logs the efi_log_format 75 * structure. 76 */ 77 STATIC uint 78 xfs_efi_item_size( 79 struct xfs_log_item *lip) 80 { 81 return 1; 82 } 83 84 /* 85 * This is called to fill in the vector of log iovecs for the 86 * given efi log item. We use only 1 iovec, and we point that 87 * at the efi_log_format structure embedded in the efi item. 88 * It is at this point that we assert that all of the extent 89 * slots in the efi item have been filled. 90 */ 91 STATIC void 92 xfs_efi_item_format( 93 struct xfs_log_item *lip, 94 struct xfs_log_iovec *log_vector) 95 { 96 struct xfs_efi_log_item *efip = EFI_ITEM(lip); 97 uint size; 98 99 ASSERT(atomic_read(&efip->efi_next_extent) == 100 efip->efi_format.efi_nextents); 101 102 efip->efi_format.efi_type = XFS_LI_EFI; 103 104 size = sizeof(xfs_efi_log_format_t); 105 size += (efip->efi_format.efi_nextents - 1) * sizeof(xfs_extent_t); 106 efip->efi_format.efi_size = 1; 107 108 log_vector->i_addr = &efip->efi_format; 109 log_vector->i_len = size; 110 log_vector->i_type = XLOG_REG_TYPE_EFI_FORMAT; 111 ASSERT(size >= sizeof(xfs_efi_log_format_t)); 112 } 113 114 115 /* 116 * Pinning has no meaning for an efi item, so just return. 117 */ 118 STATIC void 119 xfs_efi_item_pin( 120 struct xfs_log_item *lip) 121 { 122 } 123 124 /* 125 * While EFIs cannot really be pinned, the unpin operation is the last place at 126 * which the EFI is manipulated during a transaction. If we are being asked to 127 * remove the EFI it's because the transaction has been cancelled and by 128 * definition that means the EFI cannot be in the AIL so remove it from the 129 * transaction and free it. Otherwise coordinate with xfs_efi_release() (via 130 * XFS_EFI_COMMITTED) to determine who gets to free the EFI. 131 */ 132 STATIC void 133 xfs_efi_item_unpin( 134 struct xfs_log_item *lip, 135 int remove) 136 { 137 struct xfs_efi_log_item *efip = EFI_ITEM(lip); 138 139 if (remove) { 140 ASSERT(!(lip->li_flags & XFS_LI_IN_AIL)); 141 if (lip->li_desc) 142 xfs_trans_del_item(lip); 143 xfs_efi_item_free(efip); 144 return; 145 } 146 __xfs_efi_release(efip); 147 } 148 149 /* 150 * Efi items have no locking or pushing. However, since EFIs are 151 * pulled from the AIL when their corresponding EFDs are committed 152 * to disk, their situation is very similar to being pinned. Return 153 * XFS_ITEM_PINNED so that the caller will eventually flush the log. 154 * This should help in getting the EFI out of the AIL. 155 */ 156 STATIC uint 157 xfs_efi_item_trylock( 158 struct xfs_log_item *lip) 159 { 160 return XFS_ITEM_PINNED; 161 } 162 163 /* 164 * Efi items have no locking, so just return. 165 */ 166 STATIC void 167 xfs_efi_item_unlock( 168 struct xfs_log_item *lip) 169 { 170 if (lip->li_flags & XFS_LI_ABORTED) 171 xfs_efi_item_free(EFI_ITEM(lip)); 172 } 173 174 /* 175 * The EFI is logged only once and cannot be moved in the log, so simply return 176 * the lsn at which it's been logged. For bulk transaction committed 177 * processing, the EFI may be processed but not yet unpinned prior to the EFD 178 * being processed. Set the XFS_EFI_COMMITTED flag so this case can be detected 179 * when processing the EFD. 180 */ 181 STATIC xfs_lsn_t 182 xfs_efi_item_committed( 183 struct xfs_log_item *lip, 184 xfs_lsn_t lsn) 185 { 186 struct xfs_efi_log_item *efip = EFI_ITEM(lip); 187 188 set_bit(XFS_EFI_COMMITTED, &efip->efi_flags); 189 return lsn; 190 } 191 192 /* 193 * There isn't much you can do to push on an efi item. It is simply 194 * stuck waiting for all of its corresponding efd items to be 195 * committed to disk. 196 */ 197 STATIC void 198 xfs_efi_item_push( 199 struct xfs_log_item *lip) 200 { 201 } 202 203 /* 204 * The EFI dependency tracking op doesn't do squat. It can't because 205 * it doesn't know where the free extent is coming from. The dependency 206 * tracking has to be handled by the "enclosing" metadata object. For 207 * example, for inodes, the inode is locked throughout the extent freeing 208 * so the dependency should be recorded there. 209 */ 210 STATIC void 211 xfs_efi_item_committing( 212 struct xfs_log_item *lip, 213 xfs_lsn_t lsn) 214 { 215 } 216 217 /* 218 * This is the ops vector shared by all efi log items. 219 */ 220 static struct xfs_item_ops xfs_efi_item_ops = { 221 .iop_size = xfs_efi_item_size, 222 .iop_format = xfs_efi_item_format, 223 .iop_pin = xfs_efi_item_pin, 224 .iop_unpin = xfs_efi_item_unpin, 225 .iop_trylock = xfs_efi_item_trylock, 226 .iop_unlock = xfs_efi_item_unlock, 227 .iop_committed = xfs_efi_item_committed, 228 .iop_push = xfs_efi_item_push, 229 .iop_committing = xfs_efi_item_committing 230 }; 231 232 233 /* 234 * Allocate and initialize an efi item with the given number of extents. 235 */ 236 struct xfs_efi_log_item * 237 xfs_efi_init( 238 struct xfs_mount *mp, 239 uint nextents) 240 241 { 242 struct xfs_efi_log_item *efip; 243 uint size; 244 245 ASSERT(nextents > 0); 246 if (nextents > XFS_EFI_MAX_FAST_EXTENTS) { 247 size = (uint)(sizeof(xfs_efi_log_item_t) + 248 ((nextents - 1) * sizeof(xfs_extent_t))); 249 efip = kmem_zalloc(size, KM_SLEEP); 250 } else { 251 efip = kmem_zone_zalloc(xfs_efi_zone, KM_SLEEP); 252 } 253 254 xfs_log_item_init(mp, &efip->efi_item, XFS_LI_EFI, &xfs_efi_item_ops); 255 efip->efi_format.efi_nextents = nextents; 256 efip->efi_format.efi_id = (__psint_t)(void*)efip; 257 atomic_set(&efip->efi_next_extent, 0); 258 259 return efip; 260 } 261 262 /* 263 * Copy an EFI format buffer from the given buf, and into the destination 264 * EFI format structure. 265 * The given buffer can be in 32 bit or 64 bit form (which has different padding), 266 * one of which will be the native format for this kernel. 267 * It will handle the conversion of formats if necessary. 268 */ 269 int 270 xfs_efi_copy_format(xfs_log_iovec_t *buf, xfs_efi_log_format_t *dst_efi_fmt) 271 { 272 xfs_efi_log_format_t *src_efi_fmt = buf->i_addr; 273 uint i; 274 uint len = sizeof(xfs_efi_log_format_t) + 275 (src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_t); 276 uint len32 = sizeof(xfs_efi_log_format_32_t) + 277 (src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_32_t); 278 uint len64 = sizeof(xfs_efi_log_format_64_t) + 279 (src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_64_t); 280 281 if (buf->i_len == len) { 282 memcpy((char *)dst_efi_fmt, (char*)src_efi_fmt, len); 283 return 0; 284 } else if (buf->i_len == len32) { 285 xfs_efi_log_format_32_t *src_efi_fmt_32 = buf->i_addr; 286 287 dst_efi_fmt->efi_type = src_efi_fmt_32->efi_type; 288 dst_efi_fmt->efi_size = src_efi_fmt_32->efi_size; 289 dst_efi_fmt->efi_nextents = src_efi_fmt_32->efi_nextents; 290 dst_efi_fmt->efi_id = src_efi_fmt_32->efi_id; 291 for (i = 0; i < dst_efi_fmt->efi_nextents; i++) { 292 dst_efi_fmt->efi_extents[i].ext_start = 293 src_efi_fmt_32->efi_extents[i].ext_start; 294 dst_efi_fmt->efi_extents[i].ext_len = 295 src_efi_fmt_32->efi_extents[i].ext_len; 296 } 297 return 0; 298 } else if (buf->i_len == len64) { 299 xfs_efi_log_format_64_t *src_efi_fmt_64 = buf->i_addr; 300 301 dst_efi_fmt->efi_type = src_efi_fmt_64->efi_type; 302 dst_efi_fmt->efi_size = src_efi_fmt_64->efi_size; 303 dst_efi_fmt->efi_nextents = src_efi_fmt_64->efi_nextents; 304 dst_efi_fmt->efi_id = src_efi_fmt_64->efi_id; 305 for (i = 0; i < dst_efi_fmt->efi_nextents; i++) { 306 dst_efi_fmt->efi_extents[i].ext_start = 307 src_efi_fmt_64->efi_extents[i].ext_start; 308 dst_efi_fmt->efi_extents[i].ext_len = 309 src_efi_fmt_64->efi_extents[i].ext_len; 310 } 311 return 0; 312 } 313 return EFSCORRUPTED; 314 } 315 316 /* 317 * This is called by the efd item code below to release references to the given 318 * efi item. Each efd calls this with the number of extents that it has 319 * logged, and when the sum of these reaches the total number of extents logged 320 * by this efi item we can free the efi item. 321 */ 322 void 323 xfs_efi_release(xfs_efi_log_item_t *efip, 324 uint nextents) 325 { 326 ASSERT(atomic_read(&efip->efi_next_extent) >= nextents); 327 if (atomic_sub_and_test(nextents, &efip->efi_next_extent)) 328 __xfs_efi_release(efip); 329 } 330 331 static inline struct xfs_efd_log_item *EFD_ITEM(struct xfs_log_item *lip) 332 { 333 return container_of(lip, struct xfs_efd_log_item, efd_item); 334 } 335 336 STATIC void 337 xfs_efd_item_free(struct xfs_efd_log_item *efdp) 338 { 339 if (efdp->efd_format.efd_nextents > XFS_EFD_MAX_FAST_EXTENTS) 340 kmem_free(efdp); 341 else 342 kmem_zone_free(xfs_efd_zone, efdp); 343 } 344 345 /* 346 * This returns the number of iovecs needed to log the given efd item. 347 * We only need 1 iovec for an efd item. It just logs the efd_log_format 348 * structure. 349 */ 350 STATIC uint 351 xfs_efd_item_size( 352 struct xfs_log_item *lip) 353 { 354 return 1; 355 } 356 357 /* 358 * This is called to fill in the vector of log iovecs for the 359 * given efd log item. We use only 1 iovec, and we point that 360 * at the efd_log_format structure embedded in the efd item. 361 * It is at this point that we assert that all of the extent 362 * slots in the efd item have been filled. 363 */ 364 STATIC void 365 xfs_efd_item_format( 366 struct xfs_log_item *lip, 367 struct xfs_log_iovec *log_vector) 368 { 369 struct xfs_efd_log_item *efdp = EFD_ITEM(lip); 370 uint size; 371 372 ASSERT(efdp->efd_next_extent == efdp->efd_format.efd_nextents); 373 374 efdp->efd_format.efd_type = XFS_LI_EFD; 375 376 size = sizeof(xfs_efd_log_format_t); 377 size += (efdp->efd_format.efd_nextents - 1) * sizeof(xfs_extent_t); 378 efdp->efd_format.efd_size = 1; 379 380 log_vector->i_addr = &efdp->efd_format; 381 log_vector->i_len = size; 382 log_vector->i_type = XLOG_REG_TYPE_EFD_FORMAT; 383 ASSERT(size >= sizeof(xfs_efd_log_format_t)); 384 } 385 386 /* 387 * Pinning has no meaning for an efd item, so just return. 388 */ 389 STATIC void 390 xfs_efd_item_pin( 391 struct xfs_log_item *lip) 392 { 393 } 394 395 /* 396 * Since pinning has no meaning for an efd item, unpinning does 397 * not either. 398 */ 399 STATIC void 400 xfs_efd_item_unpin( 401 struct xfs_log_item *lip, 402 int remove) 403 { 404 } 405 406 /* 407 * Efd items have no locking, so just return success. 408 */ 409 STATIC uint 410 xfs_efd_item_trylock( 411 struct xfs_log_item *lip) 412 { 413 return XFS_ITEM_LOCKED; 414 } 415 416 /* 417 * Efd items have no locking or pushing, so return failure 418 * so that the caller doesn't bother with us. 419 */ 420 STATIC void 421 xfs_efd_item_unlock( 422 struct xfs_log_item *lip) 423 { 424 if (lip->li_flags & XFS_LI_ABORTED) 425 xfs_efd_item_free(EFD_ITEM(lip)); 426 } 427 428 /* 429 * When the efd item is committed to disk, all we need to do 430 * is delete our reference to our partner efi item and then 431 * free ourselves. Since we're freeing ourselves we must 432 * return -1 to keep the transaction code from further referencing 433 * this item. 434 */ 435 STATIC xfs_lsn_t 436 xfs_efd_item_committed( 437 struct xfs_log_item *lip, 438 xfs_lsn_t lsn) 439 { 440 struct xfs_efd_log_item *efdp = EFD_ITEM(lip); 441 442 /* 443 * If we got a log I/O error, it's always the case that the LR with the 444 * EFI got unpinned and freed before the EFD got aborted. 445 */ 446 if (!(lip->li_flags & XFS_LI_ABORTED)) 447 xfs_efi_release(efdp->efd_efip, efdp->efd_format.efd_nextents); 448 449 xfs_efd_item_free(efdp); 450 return (xfs_lsn_t)-1; 451 } 452 453 /* 454 * There isn't much you can do to push on an efd item. It is simply 455 * stuck waiting for the log to be flushed to disk. 456 */ 457 STATIC void 458 xfs_efd_item_push( 459 struct xfs_log_item *lip) 460 { 461 } 462 463 /* 464 * The EFD dependency tracking op doesn't do squat. It can't because 465 * it doesn't know where the free extent is coming from. The dependency 466 * tracking has to be handled by the "enclosing" metadata object. For 467 * example, for inodes, the inode is locked throughout the extent freeing 468 * so the dependency should be recorded there. 469 */ 470 STATIC void 471 xfs_efd_item_committing( 472 struct xfs_log_item *lip, 473 xfs_lsn_t lsn) 474 { 475 } 476 477 /* 478 * This is the ops vector shared by all efd log items. 479 */ 480 static struct xfs_item_ops xfs_efd_item_ops = { 481 .iop_size = xfs_efd_item_size, 482 .iop_format = xfs_efd_item_format, 483 .iop_pin = xfs_efd_item_pin, 484 .iop_unpin = xfs_efd_item_unpin, 485 .iop_trylock = xfs_efd_item_trylock, 486 .iop_unlock = xfs_efd_item_unlock, 487 .iop_committed = xfs_efd_item_committed, 488 .iop_push = xfs_efd_item_push, 489 .iop_committing = xfs_efd_item_committing 490 }; 491 492 /* 493 * Allocate and initialize an efd item with the given number of extents. 494 */ 495 struct xfs_efd_log_item * 496 xfs_efd_init( 497 struct xfs_mount *mp, 498 struct xfs_efi_log_item *efip, 499 uint nextents) 500 501 { 502 struct xfs_efd_log_item *efdp; 503 uint size; 504 505 ASSERT(nextents > 0); 506 if (nextents > XFS_EFD_MAX_FAST_EXTENTS) { 507 size = (uint)(sizeof(xfs_efd_log_item_t) + 508 ((nextents - 1) * sizeof(xfs_extent_t))); 509 efdp = kmem_zalloc(size, KM_SLEEP); 510 } else { 511 efdp = kmem_zone_zalloc(xfs_efd_zone, KM_SLEEP); 512 } 513 514 xfs_log_item_init(mp, &efdp->efd_item, XFS_LI_EFD, &xfs_efd_item_ops); 515 efdp->efd_efip = efip; 516 efdp->efd_format.efd_nextents = nextents; 517 efdp->efd_format.efd_efi_id = efip->efi_format.efi_id; 518 519 return efdp; 520 } 521