xref: /linux/fs/xfs/xfs_extfree_item.c (revision 4b132aacb0768ac1e652cf517097ea6f237214b9)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2001,2005 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_format.h"
9 #include "xfs_log_format.h"
10 #include "xfs_trans_resv.h"
11 #include "xfs_bit.h"
12 #include "xfs_shared.h"
13 #include "xfs_mount.h"
14 #include "xfs_ag.h"
15 #include "xfs_defer.h"
16 #include "xfs_trans.h"
17 #include "xfs_trans_priv.h"
18 #include "xfs_extfree_item.h"
19 #include "xfs_log.h"
20 #include "xfs_btree.h"
21 #include "xfs_rmap.h"
22 #include "xfs_alloc.h"
23 #include "xfs_bmap.h"
24 #include "xfs_trace.h"
25 #include "xfs_error.h"
26 #include "xfs_log_priv.h"
27 #include "xfs_log_recover.h"
28 
29 struct kmem_cache	*xfs_efi_cache;
30 struct kmem_cache	*xfs_efd_cache;
31 
32 static const struct xfs_item_ops xfs_efi_item_ops;
33 
34 static inline struct xfs_efi_log_item *EFI_ITEM(struct xfs_log_item *lip)
35 {
36 	return container_of(lip, struct xfs_efi_log_item, efi_item);
37 }
38 
39 STATIC void
40 xfs_efi_item_free(
41 	struct xfs_efi_log_item	*efip)
42 {
43 	kvfree(efip->efi_item.li_lv_shadow);
44 	if (efip->efi_format.efi_nextents > XFS_EFI_MAX_FAST_EXTENTS)
45 		kfree(efip);
46 	else
47 		kmem_cache_free(xfs_efi_cache, efip);
48 }
49 
50 /*
51  * Freeing the efi requires that we remove it from the AIL if it has already
52  * been placed there. However, the EFI may not yet have been placed in the AIL
53  * when called by xfs_efi_release() from EFD processing due to the ordering of
54  * committed vs unpin operations in bulk insert operations. Hence the reference
55  * count to ensure only the last caller frees the EFI.
56  */
57 STATIC void
58 xfs_efi_release(
59 	struct xfs_efi_log_item	*efip)
60 {
61 	ASSERT(atomic_read(&efip->efi_refcount) > 0);
62 	if (!atomic_dec_and_test(&efip->efi_refcount))
63 		return;
64 
65 	xfs_trans_ail_delete(&efip->efi_item, 0);
66 	xfs_efi_item_free(efip);
67 }
68 
69 STATIC void
70 xfs_efi_item_size(
71 	struct xfs_log_item	*lip,
72 	int			*nvecs,
73 	int			*nbytes)
74 {
75 	struct xfs_efi_log_item	*efip = EFI_ITEM(lip);
76 
77 	*nvecs += 1;
78 	*nbytes += xfs_efi_log_format_sizeof(efip->efi_format.efi_nextents);
79 }
80 
81 /*
82  * This is called to fill in the vector of log iovecs for the
83  * given efi log item. We use only 1 iovec, and we point that
84  * at the efi_log_format structure embedded in the efi item.
85  * It is at this point that we assert that all of the extent
86  * slots in the efi item have been filled.
87  */
88 STATIC void
89 xfs_efi_item_format(
90 	struct xfs_log_item	*lip,
91 	struct xfs_log_vec	*lv)
92 {
93 	struct xfs_efi_log_item	*efip = EFI_ITEM(lip);
94 	struct xfs_log_iovec	*vecp = NULL;
95 
96 	ASSERT(atomic_read(&efip->efi_next_extent) ==
97 				efip->efi_format.efi_nextents);
98 
99 	efip->efi_format.efi_type = XFS_LI_EFI;
100 	efip->efi_format.efi_size = 1;
101 
102 	xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_EFI_FORMAT,
103 			&efip->efi_format,
104 			xfs_efi_log_format_sizeof(efip->efi_format.efi_nextents));
105 }
106 
107 
108 /*
109  * The unpin operation is the last place an EFI is manipulated in the log. It is
110  * either inserted in the AIL or aborted in the event of a log I/O error. In
111  * either case, the EFI transaction has been successfully committed to make it
112  * this far. Therefore, we expect whoever committed the EFI to either construct
113  * and commit the EFD or drop the EFD's reference in the event of error. Simply
114  * drop the log's EFI reference now that the log is done with it.
115  */
116 STATIC void
117 xfs_efi_item_unpin(
118 	struct xfs_log_item	*lip,
119 	int			remove)
120 {
121 	struct xfs_efi_log_item	*efip = EFI_ITEM(lip);
122 	xfs_efi_release(efip);
123 }
124 
125 /*
126  * The EFI has been either committed or aborted if the transaction has been
127  * cancelled. If the transaction was cancelled, an EFD isn't going to be
128  * constructed and thus we free the EFI here directly.
129  */
130 STATIC void
131 xfs_efi_item_release(
132 	struct xfs_log_item	*lip)
133 {
134 	xfs_efi_release(EFI_ITEM(lip));
135 }
136 
137 /*
138  * Allocate and initialize an efi item with the given number of extents.
139  */
140 STATIC struct xfs_efi_log_item *
141 xfs_efi_init(
142 	struct xfs_mount	*mp,
143 	uint			nextents)
144 
145 {
146 	struct xfs_efi_log_item	*efip;
147 
148 	ASSERT(nextents > 0);
149 	if (nextents > XFS_EFI_MAX_FAST_EXTENTS) {
150 		efip = kzalloc(xfs_efi_log_item_sizeof(nextents),
151 				GFP_KERNEL | __GFP_NOFAIL);
152 	} else {
153 		efip = kmem_cache_zalloc(xfs_efi_cache,
154 					 GFP_KERNEL | __GFP_NOFAIL);
155 	}
156 
157 	xfs_log_item_init(mp, &efip->efi_item, XFS_LI_EFI, &xfs_efi_item_ops);
158 	efip->efi_format.efi_nextents = nextents;
159 	efip->efi_format.efi_id = (uintptr_t)(void *)efip;
160 	atomic_set(&efip->efi_next_extent, 0);
161 	atomic_set(&efip->efi_refcount, 2);
162 
163 	return efip;
164 }
165 
166 /*
167  * Copy an EFI format buffer from the given buf, and into the destination
168  * EFI format structure.
169  * The given buffer can be in 32 bit or 64 bit form (which has different padding),
170  * one of which will be the native format for this kernel.
171  * It will handle the conversion of formats if necessary.
172  */
173 STATIC int
174 xfs_efi_copy_format(xfs_log_iovec_t *buf, xfs_efi_log_format_t *dst_efi_fmt)
175 {
176 	xfs_efi_log_format_t *src_efi_fmt = buf->i_addr;
177 	uint i;
178 	uint len = xfs_efi_log_format_sizeof(src_efi_fmt->efi_nextents);
179 	uint len32 = xfs_efi_log_format32_sizeof(src_efi_fmt->efi_nextents);
180 	uint len64 = xfs_efi_log_format64_sizeof(src_efi_fmt->efi_nextents);
181 
182 	if (buf->i_len == len) {
183 		memcpy(dst_efi_fmt, src_efi_fmt,
184 		       offsetof(struct xfs_efi_log_format, efi_extents));
185 		for (i = 0; i < src_efi_fmt->efi_nextents; i++)
186 			memcpy(&dst_efi_fmt->efi_extents[i],
187 			       &src_efi_fmt->efi_extents[i],
188 			       sizeof(struct xfs_extent));
189 		return 0;
190 	} else if (buf->i_len == len32) {
191 		xfs_efi_log_format_32_t *src_efi_fmt_32 = buf->i_addr;
192 
193 		dst_efi_fmt->efi_type     = src_efi_fmt_32->efi_type;
194 		dst_efi_fmt->efi_size     = src_efi_fmt_32->efi_size;
195 		dst_efi_fmt->efi_nextents = src_efi_fmt_32->efi_nextents;
196 		dst_efi_fmt->efi_id       = src_efi_fmt_32->efi_id;
197 		for (i = 0; i < dst_efi_fmt->efi_nextents; i++) {
198 			dst_efi_fmt->efi_extents[i].ext_start =
199 				src_efi_fmt_32->efi_extents[i].ext_start;
200 			dst_efi_fmt->efi_extents[i].ext_len =
201 				src_efi_fmt_32->efi_extents[i].ext_len;
202 		}
203 		return 0;
204 	} else if (buf->i_len == len64) {
205 		xfs_efi_log_format_64_t *src_efi_fmt_64 = buf->i_addr;
206 
207 		dst_efi_fmt->efi_type     = src_efi_fmt_64->efi_type;
208 		dst_efi_fmt->efi_size     = src_efi_fmt_64->efi_size;
209 		dst_efi_fmt->efi_nextents = src_efi_fmt_64->efi_nextents;
210 		dst_efi_fmt->efi_id       = src_efi_fmt_64->efi_id;
211 		for (i = 0; i < dst_efi_fmt->efi_nextents; i++) {
212 			dst_efi_fmt->efi_extents[i].ext_start =
213 				src_efi_fmt_64->efi_extents[i].ext_start;
214 			dst_efi_fmt->efi_extents[i].ext_len =
215 				src_efi_fmt_64->efi_extents[i].ext_len;
216 		}
217 		return 0;
218 	}
219 	XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, NULL, buf->i_addr,
220 			buf->i_len);
221 	return -EFSCORRUPTED;
222 }
223 
224 static inline struct xfs_efd_log_item *EFD_ITEM(struct xfs_log_item *lip)
225 {
226 	return container_of(lip, struct xfs_efd_log_item, efd_item);
227 }
228 
229 STATIC void
230 xfs_efd_item_free(struct xfs_efd_log_item *efdp)
231 {
232 	kvfree(efdp->efd_item.li_lv_shadow);
233 	if (efdp->efd_format.efd_nextents > XFS_EFD_MAX_FAST_EXTENTS)
234 		kfree(efdp);
235 	else
236 		kmem_cache_free(xfs_efd_cache, efdp);
237 }
238 
239 STATIC void
240 xfs_efd_item_size(
241 	struct xfs_log_item	*lip,
242 	int			*nvecs,
243 	int			*nbytes)
244 {
245 	struct xfs_efd_log_item	*efdp = EFD_ITEM(lip);
246 
247 	*nvecs += 1;
248 	*nbytes += xfs_efd_log_format_sizeof(efdp->efd_format.efd_nextents);
249 }
250 
251 /*
252  * This is called to fill in the vector of log iovecs for the
253  * given efd log item. We use only 1 iovec, and we point that
254  * at the efd_log_format structure embedded in the efd item.
255  * It is at this point that we assert that all of the extent
256  * slots in the efd item have been filled.
257  */
258 STATIC void
259 xfs_efd_item_format(
260 	struct xfs_log_item	*lip,
261 	struct xfs_log_vec	*lv)
262 {
263 	struct xfs_efd_log_item	*efdp = EFD_ITEM(lip);
264 	struct xfs_log_iovec	*vecp = NULL;
265 
266 	ASSERT(efdp->efd_next_extent == efdp->efd_format.efd_nextents);
267 
268 	efdp->efd_format.efd_type = XFS_LI_EFD;
269 	efdp->efd_format.efd_size = 1;
270 
271 	xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_EFD_FORMAT,
272 			&efdp->efd_format,
273 			xfs_efd_log_format_sizeof(efdp->efd_format.efd_nextents));
274 }
275 
276 /*
277  * The EFD is either committed or aborted if the transaction is cancelled. If
278  * the transaction is cancelled, drop our reference to the EFI and free the EFD.
279  */
280 STATIC void
281 xfs_efd_item_release(
282 	struct xfs_log_item	*lip)
283 {
284 	struct xfs_efd_log_item	*efdp = EFD_ITEM(lip);
285 
286 	xfs_efi_release(efdp->efd_efip);
287 	xfs_efd_item_free(efdp);
288 }
289 
290 static struct xfs_log_item *
291 xfs_efd_item_intent(
292 	struct xfs_log_item	*lip)
293 {
294 	return &EFD_ITEM(lip)->efd_efip->efi_item;
295 }
296 
297 static const struct xfs_item_ops xfs_efd_item_ops = {
298 	.flags		= XFS_ITEM_RELEASE_WHEN_COMMITTED |
299 			  XFS_ITEM_INTENT_DONE,
300 	.iop_size	= xfs_efd_item_size,
301 	.iop_format	= xfs_efd_item_format,
302 	.iop_release	= xfs_efd_item_release,
303 	.iop_intent	= xfs_efd_item_intent,
304 };
305 
306 static inline struct xfs_extent_free_item *xefi_entry(const struct list_head *e)
307 {
308 	return list_entry(e, struct xfs_extent_free_item, xefi_list);
309 }
310 
311 /*
312  * Fill the EFD with all extents from the EFI when we need to roll the
313  * transaction and continue with a new EFI.
314  *
315  * This simply copies all the extents in the EFI to the EFD rather than make
316  * assumptions about which extents in the EFI have already been processed. We
317  * currently keep the xefi list in the same order as the EFI extent list, but
318  * that may not always be the case. Copying everything avoids leaving a landmine
319  * were we fail to cancel all the extents in an EFI if the xefi list is
320  * processed in a different order to the extents in the EFI.
321  */
322 static void
323 xfs_efd_from_efi(
324 	struct xfs_efd_log_item	*efdp)
325 {
326 	struct xfs_efi_log_item *efip = efdp->efd_efip;
327 	uint                    i;
328 
329 	ASSERT(efip->efi_format.efi_nextents > 0);
330 	ASSERT(efdp->efd_next_extent < efip->efi_format.efi_nextents);
331 
332 	for (i = 0; i < efip->efi_format.efi_nextents; i++) {
333 	       efdp->efd_format.efd_extents[i] =
334 		       efip->efi_format.efi_extents[i];
335 	}
336 	efdp->efd_next_extent = efip->efi_format.efi_nextents;
337 }
338 
339 static void
340 xfs_efd_add_extent(
341 	struct xfs_efd_log_item		*efdp,
342 	struct xfs_extent_free_item	*xefi)
343 {
344 	struct xfs_extent		*extp;
345 
346 	ASSERT(efdp->efd_next_extent < efdp->efd_format.efd_nextents);
347 
348 	extp = &efdp->efd_format.efd_extents[efdp->efd_next_extent];
349 	extp->ext_start = xefi->xefi_startblock;
350 	extp->ext_len = xefi->xefi_blockcount;
351 
352 	efdp->efd_next_extent++;
353 }
354 
355 /* Sort bmap items by AG. */
356 static int
357 xfs_extent_free_diff_items(
358 	void				*priv,
359 	const struct list_head		*a,
360 	const struct list_head		*b)
361 {
362 	struct xfs_extent_free_item	*ra = xefi_entry(a);
363 	struct xfs_extent_free_item	*rb = xefi_entry(b);
364 
365 	return ra->xefi_pag->pag_agno - rb->xefi_pag->pag_agno;
366 }
367 
368 /* Log a free extent to the intent item. */
369 STATIC void
370 xfs_extent_free_log_item(
371 	struct xfs_trans		*tp,
372 	struct xfs_efi_log_item		*efip,
373 	struct xfs_extent_free_item	*xefi)
374 {
375 	uint				next_extent;
376 	struct xfs_extent		*extp;
377 
378 	/*
379 	 * atomic_inc_return gives us the value after the increment;
380 	 * we want to use it as an array index so we need to subtract 1 from
381 	 * it.
382 	 */
383 	next_extent = atomic_inc_return(&efip->efi_next_extent) - 1;
384 	ASSERT(next_extent < efip->efi_format.efi_nextents);
385 	extp = &efip->efi_format.efi_extents[next_extent];
386 	extp->ext_start = xefi->xefi_startblock;
387 	extp->ext_len = xefi->xefi_blockcount;
388 }
389 
390 static struct xfs_log_item *
391 xfs_extent_free_create_intent(
392 	struct xfs_trans		*tp,
393 	struct list_head		*items,
394 	unsigned int			count,
395 	bool				sort)
396 {
397 	struct xfs_mount		*mp = tp->t_mountp;
398 	struct xfs_efi_log_item		*efip = xfs_efi_init(mp, count);
399 	struct xfs_extent_free_item	*xefi;
400 
401 	ASSERT(count > 0);
402 
403 	if (sort)
404 		list_sort(mp, items, xfs_extent_free_diff_items);
405 	list_for_each_entry(xefi, items, xefi_list)
406 		xfs_extent_free_log_item(tp, efip, xefi);
407 	return &efip->efi_item;
408 }
409 
410 /* Get an EFD so we can process all the free extents. */
411 static struct xfs_log_item *
412 xfs_extent_free_create_done(
413 	struct xfs_trans		*tp,
414 	struct xfs_log_item		*intent,
415 	unsigned int			count)
416 {
417 	struct xfs_efi_log_item		*efip = EFI_ITEM(intent);
418 	struct xfs_efd_log_item		*efdp;
419 
420 	ASSERT(count > 0);
421 
422 	if (count > XFS_EFD_MAX_FAST_EXTENTS) {
423 		efdp = kzalloc(xfs_efd_log_item_sizeof(count),
424 				GFP_KERNEL | __GFP_NOFAIL);
425 	} else {
426 		efdp = kmem_cache_zalloc(xfs_efd_cache,
427 					GFP_KERNEL | __GFP_NOFAIL);
428 	}
429 
430 	xfs_log_item_init(tp->t_mountp, &efdp->efd_item, XFS_LI_EFD,
431 			  &xfs_efd_item_ops);
432 	efdp->efd_efip = efip;
433 	efdp->efd_format.efd_nextents = count;
434 	efdp->efd_format.efd_efi_id = efip->efi_format.efi_id;
435 
436 	return &efdp->efd_item;
437 }
438 
439 /* Add this deferred EFI to the transaction. */
440 void
441 xfs_extent_free_defer_add(
442 	struct xfs_trans		*tp,
443 	struct xfs_extent_free_item	*xefi,
444 	struct xfs_defer_pending	**dfpp)
445 {
446 	struct xfs_mount		*mp = tp->t_mountp;
447 
448 	trace_xfs_extent_free_defer(mp, xefi);
449 
450 	xefi->xefi_pag = xfs_perag_intent_get(mp, xefi->xefi_startblock);
451 	if (xefi->xefi_agresv == XFS_AG_RESV_AGFL)
452 		*dfpp = xfs_defer_add(tp, &xefi->xefi_list,
453 				&xfs_agfl_free_defer_type);
454 	else
455 		*dfpp = xfs_defer_add(tp, &xefi->xefi_list,
456 				&xfs_extent_free_defer_type);
457 }
458 
459 /* Cancel a free extent. */
460 STATIC void
461 xfs_extent_free_cancel_item(
462 	struct list_head		*item)
463 {
464 	struct xfs_extent_free_item	*xefi = xefi_entry(item);
465 
466 	xfs_perag_intent_put(xefi->xefi_pag);
467 	kmem_cache_free(xfs_extfree_item_cache, xefi);
468 }
469 
470 /* Process a free extent. */
471 STATIC int
472 xfs_extent_free_finish_item(
473 	struct xfs_trans		*tp,
474 	struct xfs_log_item		*done,
475 	struct list_head		*item,
476 	struct xfs_btree_cur		**state)
477 {
478 	struct xfs_owner_info		oinfo = { };
479 	struct xfs_extent_free_item	*xefi = xefi_entry(item);
480 	struct xfs_efd_log_item		*efdp = EFD_ITEM(done);
481 	struct xfs_mount		*mp = tp->t_mountp;
482 	xfs_agblock_t			agbno;
483 	int				error = 0;
484 
485 	agbno = XFS_FSB_TO_AGBNO(mp, xefi->xefi_startblock);
486 
487 	oinfo.oi_owner = xefi->xefi_owner;
488 	if (xefi->xefi_flags & XFS_EFI_ATTR_FORK)
489 		oinfo.oi_flags |= XFS_OWNER_INFO_ATTR_FORK;
490 	if (xefi->xefi_flags & XFS_EFI_BMBT_BLOCK)
491 		oinfo.oi_flags |= XFS_OWNER_INFO_BMBT_BLOCK;
492 
493 	trace_xfs_extent_free_deferred(mp, xefi);
494 
495 	/*
496 	 * If we need a new transaction to make progress, the caller will log a
497 	 * new EFI with the current contents. It will also log an EFD to cancel
498 	 * the existing EFI, and so we need to copy all the unprocessed extents
499 	 * in this EFI to the EFD so this works correctly.
500 	 */
501 	if (!(xefi->xefi_flags & XFS_EFI_CANCELLED))
502 		error = __xfs_free_extent(tp, xefi->xefi_pag, agbno,
503 				xefi->xefi_blockcount, &oinfo, xefi->xefi_agresv,
504 				xefi->xefi_flags & XFS_EFI_SKIP_DISCARD);
505 	if (error == -EAGAIN) {
506 		xfs_efd_from_efi(efdp);
507 		return error;
508 	}
509 
510 	xfs_efd_add_extent(efdp, xefi);
511 	xfs_extent_free_cancel_item(item);
512 	return error;
513 }
514 
515 /* Abort all pending EFIs. */
516 STATIC void
517 xfs_extent_free_abort_intent(
518 	struct xfs_log_item		*intent)
519 {
520 	xfs_efi_release(EFI_ITEM(intent));
521 }
522 
523 /*
524  * AGFL blocks are accounted differently in the reserve pools and are not
525  * inserted into the busy extent list.
526  */
527 STATIC int
528 xfs_agfl_free_finish_item(
529 	struct xfs_trans		*tp,
530 	struct xfs_log_item		*done,
531 	struct list_head		*item,
532 	struct xfs_btree_cur		**state)
533 {
534 	struct xfs_owner_info		oinfo = { };
535 	struct xfs_mount		*mp = tp->t_mountp;
536 	struct xfs_efd_log_item		*efdp = EFD_ITEM(done);
537 	struct xfs_extent_free_item	*xefi = xefi_entry(item);
538 	struct xfs_buf			*agbp;
539 	int				error;
540 	xfs_agblock_t			agbno;
541 
542 	ASSERT(xefi->xefi_blockcount == 1);
543 	agbno = XFS_FSB_TO_AGBNO(mp, xefi->xefi_startblock);
544 	oinfo.oi_owner = xefi->xefi_owner;
545 
546 	trace_xfs_agfl_free_deferred(mp, xefi);
547 
548 	error = xfs_alloc_read_agf(xefi->xefi_pag, tp, 0, &agbp);
549 	if (!error)
550 		error = xfs_free_ag_extent(tp, agbp, xefi->xefi_pag->pag_agno,
551 				agbno, 1, &oinfo, XFS_AG_RESV_AGFL);
552 
553 	xfs_efd_add_extent(efdp, xefi);
554 	xfs_extent_free_cancel_item(&xefi->xefi_list);
555 	return error;
556 }
557 
558 /* Is this recovered EFI ok? */
559 static inline bool
560 xfs_efi_validate_ext(
561 	struct xfs_mount		*mp,
562 	struct xfs_extent		*extp)
563 {
564 	return xfs_verify_fsbext(mp, extp->ext_start, extp->ext_len);
565 }
566 
567 static inline void
568 xfs_efi_recover_work(
569 	struct xfs_mount		*mp,
570 	struct xfs_defer_pending	*dfp,
571 	struct xfs_extent		*extp)
572 {
573 	struct xfs_extent_free_item	*xefi;
574 
575 	xefi = kmem_cache_zalloc(xfs_extfree_item_cache,
576 			       GFP_KERNEL | __GFP_NOFAIL);
577 	xefi->xefi_startblock = extp->ext_start;
578 	xefi->xefi_blockcount = extp->ext_len;
579 	xefi->xefi_agresv = XFS_AG_RESV_NONE;
580 	xefi->xefi_owner = XFS_RMAP_OWN_UNKNOWN;
581 	xefi->xefi_pag = xfs_perag_intent_get(mp, extp->ext_start);
582 
583 	xfs_defer_add_item(dfp, &xefi->xefi_list);
584 }
585 
586 /*
587  * Process an extent free intent item that was recovered from
588  * the log.  We need to free the extents that it describes.
589  */
590 STATIC int
591 xfs_extent_free_recover_work(
592 	struct xfs_defer_pending	*dfp,
593 	struct list_head		*capture_list)
594 {
595 	struct xfs_trans_res		resv;
596 	struct xfs_log_item		*lip = dfp->dfp_intent;
597 	struct xfs_efi_log_item		*efip = EFI_ITEM(lip);
598 	struct xfs_mount		*mp = lip->li_log->l_mp;
599 	struct xfs_trans		*tp;
600 	int				i;
601 	int				error = 0;
602 
603 	/*
604 	 * First check the validity of the extents described by the
605 	 * EFI.  If any are bad, then assume that all are bad and
606 	 * just toss the EFI.
607 	 */
608 	for (i = 0; i < efip->efi_format.efi_nextents; i++) {
609 		if (!xfs_efi_validate_ext(mp,
610 					&efip->efi_format.efi_extents[i])) {
611 			XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp,
612 					&efip->efi_format,
613 					sizeof(efip->efi_format));
614 			return -EFSCORRUPTED;
615 		}
616 
617 		xfs_efi_recover_work(mp, dfp, &efip->efi_format.efi_extents[i]);
618 	}
619 
620 	resv = xlog_recover_resv(&M_RES(mp)->tr_itruncate);
621 	error = xfs_trans_alloc(mp, &resv, 0, 0, 0, &tp);
622 	if (error)
623 		return error;
624 
625 	error = xlog_recover_finish_intent(tp, dfp);
626 	if (error == -EFSCORRUPTED)
627 		XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp,
628 				&efip->efi_format,
629 				sizeof(efip->efi_format));
630 	if (error)
631 		goto abort_error;
632 
633 	return xfs_defer_ops_capture_and_commit(tp, capture_list);
634 
635 abort_error:
636 	xfs_trans_cancel(tp);
637 	return error;
638 }
639 
640 /* Relog an intent item to push the log tail forward. */
641 static struct xfs_log_item *
642 xfs_extent_free_relog_intent(
643 	struct xfs_trans		*tp,
644 	struct xfs_log_item		*intent,
645 	struct xfs_log_item		*done_item)
646 {
647 	struct xfs_efd_log_item		*efdp = EFD_ITEM(done_item);
648 	struct xfs_efi_log_item		*efip;
649 	struct xfs_extent		*extp;
650 	unsigned int			count;
651 
652 	count = EFI_ITEM(intent)->efi_format.efi_nextents;
653 	extp = EFI_ITEM(intent)->efi_format.efi_extents;
654 
655 	efdp->efd_next_extent = count;
656 	memcpy(efdp->efd_format.efd_extents, extp, count * sizeof(*extp));
657 
658 	efip = xfs_efi_init(tp->t_mountp, count);
659 	memcpy(efip->efi_format.efi_extents, extp, count * sizeof(*extp));
660 	atomic_set(&efip->efi_next_extent, count);
661 
662 	return &efip->efi_item;
663 }
664 
665 const struct xfs_defer_op_type xfs_extent_free_defer_type = {
666 	.name		= "extent_free",
667 	.max_items	= XFS_EFI_MAX_FAST_EXTENTS,
668 	.create_intent	= xfs_extent_free_create_intent,
669 	.abort_intent	= xfs_extent_free_abort_intent,
670 	.create_done	= xfs_extent_free_create_done,
671 	.finish_item	= xfs_extent_free_finish_item,
672 	.cancel_item	= xfs_extent_free_cancel_item,
673 	.recover_work	= xfs_extent_free_recover_work,
674 	.relog_intent	= xfs_extent_free_relog_intent,
675 };
676 
677 /* sub-type with special handling for AGFL deferred frees */
678 const struct xfs_defer_op_type xfs_agfl_free_defer_type = {
679 	.name		= "agfl_free",
680 	.max_items	= XFS_EFI_MAX_FAST_EXTENTS,
681 	.create_intent	= xfs_extent_free_create_intent,
682 	.abort_intent	= xfs_extent_free_abort_intent,
683 	.create_done	= xfs_extent_free_create_done,
684 	.finish_item	= xfs_agfl_free_finish_item,
685 	.cancel_item	= xfs_extent_free_cancel_item,
686 	.recover_work	= xfs_extent_free_recover_work,
687 	.relog_intent	= xfs_extent_free_relog_intent,
688 };
689 
690 STATIC bool
691 xfs_efi_item_match(
692 	struct xfs_log_item	*lip,
693 	uint64_t		intent_id)
694 {
695 	return EFI_ITEM(lip)->efi_format.efi_id == intent_id;
696 }
697 
698 static const struct xfs_item_ops xfs_efi_item_ops = {
699 	.flags		= XFS_ITEM_INTENT,
700 	.iop_size	= xfs_efi_item_size,
701 	.iop_format	= xfs_efi_item_format,
702 	.iop_unpin	= xfs_efi_item_unpin,
703 	.iop_release	= xfs_efi_item_release,
704 	.iop_match	= xfs_efi_item_match,
705 };
706 
707 /*
708  * This routine is called to create an in-core extent free intent
709  * item from the efi format structure which was logged on disk.
710  * It allocates an in-core efi, copies the extents from the format
711  * structure into it, and adds the efi to the AIL with the given
712  * LSN.
713  */
714 STATIC int
715 xlog_recover_efi_commit_pass2(
716 	struct xlog			*log,
717 	struct list_head		*buffer_list,
718 	struct xlog_recover_item	*item,
719 	xfs_lsn_t			lsn)
720 {
721 	struct xfs_mount		*mp = log->l_mp;
722 	struct xfs_efi_log_item		*efip;
723 	struct xfs_efi_log_format	*efi_formatp;
724 	int				error;
725 
726 	efi_formatp = item->ri_buf[0].i_addr;
727 
728 	if (item->ri_buf[0].i_len < xfs_efi_log_format_sizeof(0)) {
729 		XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp,
730 				item->ri_buf[0].i_addr, item->ri_buf[0].i_len);
731 		return -EFSCORRUPTED;
732 	}
733 
734 	efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
735 	error = xfs_efi_copy_format(&item->ri_buf[0], &efip->efi_format);
736 	if (error) {
737 		xfs_efi_item_free(efip);
738 		return error;
739 	}
740 	atomic_set(&efip->efi_next_extent, efi_formatp->efi_nextents);
741 
742 	xlog_recover_intent_item(log, &efip->efi_item, lsn,
743 			&xfs_extent_free_defer_type);
744 	return 0;
745 }
746 
747 const struct xlog_recover_item_ops xlog_efi_item_ops = {
748 	.item_type		= XFS_LI_EFI,
749 	.commit_pass2		= xlog_recover_efi_commit_pass2,
750 };
751 
752 /*
753  * This routine is called when an EFD format structure is found in a committed
754  * transaction in the log. Its purpose is to cancel the corresponding EFI if it
755  * was still in the log. To do this it searches the AIL for the EFI with an id
756  * equal to that in the EFD format structure. If we find it we drop the EFD
757  * reference, which removes the EFI from the AIL and frees it.
758  */
759 STATIC int
760 xlog_recover_efd_commit_pass2(
761 	struct xlog			*log,
762 	struct list_head		*buffer_list,
763 	struct xlog_recover_item	*item,
764 	xfs_lsn_t			lsn)
765 {
766 	struct xfs_efd_log_format	*efd_formatp;
767 	int				buflen = item->ri_buf[0].i_len;
768 
769 	efd_formatp = item->ri_buf[0].i_addr;
770 
771 	if (buflen < sizeof(struct xfs_efd_log_format)) {
772 		XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, log->l_mp,
773 				efd_formatp, buflen);
774 		return -EFSCORRUPTED;
775 	}
776 
777 	if (item->ri_buf[0].i_len != xfs_efd_log_format32_sizeof(
778 						efd_formatp->efd_nextents) &&
779 	    item->ri_buf[0].i_len != xfs_efd_log_format64_sizeof(
780 						efd_formatp->efd_nextents)) {
781 		XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, log->l_mp,
782 				efd_formatp, buflen);
783 		return -EFSCORRUPTED;
784 	}
785 
786 	xlog_recover_release_intent(log, XFS_LI_EFI, efd_formatp->efd_efi_id);
787 	return 0;
788 }
789 
790 const struct xlog_recover_item_ops xlog_efd_item_ops = {
791 	.item_type		= XFS_LI_EFD,
792 	.commit_pass2		= xlog_recover_efd_commit_pass2,
793 };
794