xref: /linux/fs/xfs/xfs_extfree_item.c (revision 4359a011e259a4608afc7fb3635370c9d4ba5943)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2001,2005 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_format.h"
9 #include "xfs_log_format.h"
10 #include "xfs_trans_resv.h"
11 #include "xfs_bit.h"
12 #include "xfs_shared.h"
13 #include "xfs_mount.h"
14 #include "xfs_ag.h"
15 #include "xfs_defer.h"
16 #include "xfs_trans.h"
17 #include "xfs_trans_priv.h"
18 #include "xfs_extfree_item.h"
19 #include "xfs_log.h"
20 #include "xfs_btree.h"
21 #include "xfs_rmap.h"
22 #include "xfs_alloc.h"
23 #include "xfs_bmap.h"
24 #include "xfs_trace.h"
25 #include "xfs_error.h"
26 #include "xfs_log_priv.h"
27 #include "xfs_log_recover.h"
28 
29 struct kmem_cache	*xfs_efi_cache;
30 struct kmem_cache	*xfs_efd_cache;
31 
32 static const struct xfs_item_ops xfs_efi_item_ops;
33 
34 static inline struct xfs_efi_log_item *EFI_ITEM(struct xfs_log_item *lip)
35 {
36 	return container_of(lip, struct xfs_efi_log_item, efi_item);
37 }
38 
39 STATIC void
40 xfs_efi_item_free(
41 	struct xfs_efi_log_item	*efip)
42 {
43 	kmem_free(efip->efi_item.li_lv_shadow);
44 	if (efip->efi_format.efi_nextents > XFS_EFI_MAX_FAST_EXTENTS)
45 		kmem_free(efip);
46 	else
47 		kmem_cache_free(xfs_efi_cache, efip);
48 }
49 
50 /*
51  * Freeing the efi requires that we remove it from the AIL if it has already
52  * been placed there. However, the EFI may not yet have been placed in the AIL
53  * when called by xfs_efi_release() from EFD processing due to the ordering of
54  * committed vs unpin operations in bulk insert operations. Hence the reference
55  * count to ensure only the last caller frees the EFI.
56  */
57 STATIC void
58 xfs_efi_release(
59 	struct xfs_efi_log_item	*efip)
60 {
61 	ASSERT(atomic_read(&efip->efi_refcount) > 0);
62 	if (!atomic_dec_and_test(&efip->efi_refcount))
63 		return;
64 
65 	xfs_trans_ail_delete(&efip->efi_item, 0);
66 	xfs_efi_item_free(efip);
67 }
68 
69 /*
70  * This returns the number of iovecs needed to log the given efi item.
71  * We only need 1 iovec for an efi item.  It just logs the efi_log_format
72  * structure.
73  */
74 static inline int
75 xfs_efi_item_sizeof(
76 	struct xfs_efi_log_item *efip)
77 {
78 	return sizeof(struct xfs_efi_log_format) +
79 	       (efip->efi_format.efi_nextents - 1) * sizeof(xfs_extent_t);
80 }
81 
82 STATIC void
83 xfs_efi_item_size(
84 	struct xfs_log_item	*lip,
85 	int			*nvecs,
86 	int			*nbytes)
87 {
88 	*nvecs += 1;
89 	*nbytes += xfs_efi_item_sizeof(EFI_ITEM(lip));
90 }
91 
92 /*
93  * This is called to fill in the vector of log iovecs for the
94  * given efi log item. We use only 1 iovec, and we point that
95  * at the efi_log_format structure embedded in the efi item.
96  * It is at this point that we assert that all of the extent
97  * slots in the efi item have been filled.
98  */
99 STATIC void
100 xfs_efi_item_format(
101 	struct xfs_log_item	*lip,
102 	struct xfs_log_vec	*lv)
103 {
104 	struct xfs_efi_log_item	*efip = EFI_ITEM(lip);
105 	struct xfs_log_iovec	*vecp = NULL;
106 
107 	ASSERT(atomic_read(&efip->efi_next_extent) ==
108 				efip->efi_format.efi_nextents);
109 
110 	efip->efi_format.efi_type = XFS_LI_EFI;
111 	efip->efi_format.efi_size = 1;
112 
113 	xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_EFI_FORMAT,
114 			&efip->efi_format,
115 			xfs_efi_item_sizeof(efip));
116 }
117 
118 
119 /*
120  * The unpin operation is the last place an EFI is manipulated in the log. It is
121  * either inserted in the AIL or aborted in the event of a log I/O error. In
122  * either case, the EFI transaction has been successfully committed to make it
123  * this far. Therefore, we expect whoever committed the EFI to either construct
124  * and commit the EFD or drop the EFD's reference in the event of error. Simply
125  * drop the log's EFI reference now that the log is done with it.
126  */
127 STATIC void
128 xfs_efi_item_unpin(
129 	struct xfs_log_item	*lip,
130 	int			remove)
131 {
132 	struct xfs_efi_log_item	*efip = EFI_ITEM(lip);
133 	xfs_efi_release(efip);
134 }
135 
136 /*
137  * The EFI has been either committed or aborted if the transaction has been
138  * cancelled. If the transaction was cancelled, an EFD isn't going to be
139  * constructed and thus we free the EFI here directly.
140  */
141 STATIC void
142 xfs_efi_item_release(
143 	struct xfs_log_item	*lip)
144 {
145 	xfs_efi_release(EFI_ITEM(lip));
146 }
147 
148 /*
149  * Allocate and initialize an efi item with the given number of extents.
150  */
151 STATIC struct xfs_efi_log_item *
152 xfs_efi_init(
153 	struct xfs_mount	*mp,
154 	uint			nextents)
155 
156 {
157 	struct xfs_efi_log_item	*efip;
158 	uint			size;
159 
160 	ASSERT(nextents > 0);
161 	if (nextents > XFS_EFI_MAX_FAST_EXTENTS) {
162 		size = (uint)(sizeof(struct xfs_efi_log_item) +
163 			((nextents - 1) * sizeof(xfs_extent_t)));
164 		efip = kmem_zalloc(size, 0);
165 	} else {
166 		efip = kmem_cache_zalloc(xfs_efi_cache,
167 					 GFP_KERNEL | __GFP_NOFAIL);
168 	}
169 
170 	xfs_log_item_init(mp, &efip->efi_item, XFS_LI_EFI, &xfs_efi_item_ops);
171 	efip->efi_format.efi_nextents = nextents;
172 	efip->efi_format.efi_id = (uintptr_t)(void *)efip;
173 	atomic_set(&efip->efi_next_extent, 0);
174 	atomic_set(&efip->efi_refcount, 2);
175 
176 	return efip;
177 }
178 
179 /*
180  * Copy an EFI format buffer from the given buf, and into the destination
181  * EFI format structure.
182  * The given buffer can be in 32 bit or 64 bit form (which has different padding),
183  * one of which will be the native format for this kernel.
184  * It will handle the conversion of formats if necessary.
185  */
186 STATIC int
187 xfs_efi_copy_format(xfs_log_iovec_t *buf, xfs_efi_log_format_t *dst_efi_fmt)
188 {
189 	xfs_efi_log_format_t *src_efi_fmt = buf->i_addr;
190 	uint i;
191 	uint len = sizeof(xfs_efi_log_format_t) +
192 		(src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_t);
193 	uint len32 = sizeof(xfs_efi_log_format_32_t) +
194 		(src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_32_t);
195 	uint len64 = sizeof(xfs_efi_log_format_64_t) +
196 		(src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_64_t);
197 
198 	if (buf->i_len == len) {
199 		memcpy((char *)dst_efi_fmt, (char*)src_efi_fmt, len);
200 		return 0;
201 	} else if (buf->i_len == len32) {
202 		xfs_efi_log_format_32_t *src_efi_fmt_32 = buf->i_addr;
203 
204 		dst_efi_fmt->efi_type     = src_efi_fmt_32->efi_type;
205 		dst_efi_fmt->efi_size     = src_efi_fmt_32->efi_size;
206 		dst_efi_fmt->efi_nextents = src_efi_fmt_32->efi_nextents;
207 		dst_efi_fmt->efi_id       = src_efi_fmt_32->efi_id;
208 		for (i = 0; i < dst_efi_fmt->efi_nextents; i++) {
209 			dst_efi_fmt->efi_extents[i].ext_start =
210 				src_efi_fmt_32->efi_extents[i].ext_start;
211 			dst_efi_fmt->efi_extents[i].ext_len =
212 				src_efi_fmt_32->efi_extents[i].ext_len;
213 		}
214 		return 0;
215 	} else if (buf->i_len == len64) {
216 		xfs_efi_log_format_64_t *src_efi_fmt_64 = buf->i_addr;
217 
218 		dst_efi_fmt->efi_type     = src_efi_fmt_64->efi_type;
219 		dst_efi_fmt->efi_size     = src_efi_fmt_64->efi_size;
220 		dst_efi_fmt->efi_nextents = src_efi_fmt_64->efi_nextents;
221 		dst_efi_fmt->efi_id       = src_efi_fmt_64->efi_id;
222 		for (i = 0; i < dst_efi_fmt->efi_nextents; i++) {
223 			dst_efi_fmt->efi_extents[i].ext_start =
224 				src_efi_fmt_64->efi_extents[i].ext_start;
225 			dst_efi_fmt->efi_extents[i].ext_len =
226 				src_efi_fmt_64->efi_extents[i].ext_len;
227 		}
228 		return 0;
229 	}
230 	XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, NULL);
231 	return -EFSCORRUPTED;
232 }
233 
234 static inline struct xfs_efd_log_item *EFD_ITEM(struct xfs_log_item *lip)
235 {
236 	return container_of(lip, struct xfs_efd_log_item, efd_item);
237 }
238 
239 STATIC void
240 xfs_efd_item_free(struct xfs_efd_log_item *efdp)
241 {
242 	kmem_free(efdp->efd_item.li_lv_shadow);
243 	if (efdp->efd_format.efd_nextents > XFS_EFD_MAX_FAST_EXTENTS)
244 		kmem_free(efdp);
245 	else
246 		kmem_cache_free(xfs_efd_cache, efdp);
247 }
248 
249 /*
250  * This returns the number of iovecs needed to log the given efd item.
251  * We only need 1 iovec for an efd item.  It just logs the efd_log_format
252  * structure.
253  */
254 static inline int
255 xfs_efd_item_sizeof(
256 	struct xfs_efd_log_item *efdp)
257 {
258 	return sizeof(xfs_efd_log_format_t) +
259 	       (efdp->efd_format.efd_nextents - 1) * sizeof(xfs_extent_t);
260 }
261 
262 STATIC void
263 xfs_efd_item_size(
264 	struct xfs_log_item	*lip,
265 	int			*nvecs,
266 	int			*nbytes)
267 {
268 	*nvecs += 1;
269 	*nbytes += xfs_efd_item_sizeof(EFD_ITEM(lip));
270 }
271 
272 /*
273  * This is called to fill in the vector of log iovecs for the
274  * given efd log item. We use only 1 iovec, and we point that
275  * at the efd_log_format structure embedded in the efd item.
276  * It is at this point that we assert that all of the extent
277  * slots in the efd item have been filled.
278  */
279 STATIC void
280 xfs_efd_item_format(
281 	struct xfs_log_item	*lip,
282 	struct xfs_log_vec	*lv)
283 {
284 	struct xfs_efd_log_item	*efdp = EFD_ITEM(lip);
285 	struct xfs_log_iovec	*vecp = NULL;
286 
287 	ASSERT(efdp->efd_next_extent == efdp->efd_format.efd_nextents);
288 
289 	efdp->efd_format.efd_type = XFS_LI_EFD;
290 	efdp->efd_format.efd_size = 1;
291 
292 	xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_EFD_FORMAT,
293 			&efdp->efd_format,
294 			xfs_efd_item_sizeof(efdp));
295 }
296 
297 /*
298  * The EFD is either committed or aborted if the transaction is cancelled. If
299  * the transaction is cancelled, drop our reference to the EFI and free the EFD.
300  */
301 STATIC void
302 xfs_efd_item_release(
303 	struct xfs_log_item	*lip)
304 {
305 	struct xfs_efd_log_item	*efdp = EFD_ITEM(lip);
306 
307 	xfs_efi_release(efdp->efd_efip);
308 	xfs_efd_item_free(efdp);
309 }
310 
311 static struct xfs_log_item *
312 xfs_efd_item_intent(
313 	struct xfs_log_item	*lip)
314 {
315 	return &EFD_ITEM(lip)->efd_efip->efi_item;
316 }
317 
318 static const struct xfs_item_ops xfs_efd_item_ops = {
319 	.flags		= XFS_ITEM_RELEASE_WHEN_COMMITTED |
320 			  XFS_ITEM_INTENT_DONE,
321 	.iop_size	= xfs_efd_item_size,
322 	.iop_format	= xfs_efd_item_format,
323 	.iop_release	= xfs_efd_item_release,
324 	.iop_intent	= xfs_efd_item_intent,
325 };
326 
327 /*
328  * Allocate an "extent free done" log item that will hold nextents worth of
329  * extents.  The caller must use all nextents extents, because we are not
330  * flexible about this at all.
331  */
332 static struct xfs_efd_log_item *
333 xfs_trans_get_efd(
334 	struct xfs_trans		*tp,
335 	struct xfs_efi_log_item		*efip,
336 	unsigned int			nextents)
337 {
338 	struct xfs_efd_log_item		*efdp;
339 
340 	ASSERT(nextents > 0);
341 
342 	if (nextents > XFS_EFD_MAX_FAST_EXTENTS) {
343 		efdp = kmem_zalloc(sizeof(struct xfs_efd_log_item) +
344 				(nextents - 1) * sizeof(struct xfs_extent),
345 				0);
346 	} else {
347 		efdp = kmem_cache_zalloc(xfs_efd_cache,
348 					GFP_KERNEL | __GFP_NOFAIL);
349 	}
350 
351 	xfs_log_item_init(tp->t_mountp, &efdp->efd_item, XFS_LI_EFD,
352 			  &xfs_efd_item_ops);
353 	efdp->efd_efip = efip;
354 	efdp->efd_format.efd_nextents = nextents;
355 	efdp->efd_format.efd_efi_id = efip->efi_format.efi_id;
356 
357 	xfs_trans_add_item(tp, &efdp->efd_item);
358 	return efdp;
359 }
360 
361 /*
362  * Free an extent and log it to the EFD. Note that the transaction is marked
363  * dirty regardless of whether the extent free succeeds or fails to support the
364  * EFI/EFD lifecycle rules.
365  */
366 static int
367 xfs_trans_free_extent(
368 	struct xfs_trans		*tp,
369 	struct xfs_efd_log_item		*efdp,
370 	xfs_fsblock_t			start_block,
371 	xfs_extlen_t			ext_len,
372 	const struct xfs_owner_info	*oinfo,
373 	bool				skip_discard)
374 {
375 	struct xfs_mount		*mp = tp->t_mountp;
376 	struct xfs_extent		*extp;
377 	uint				next_extent;
378 	xfs_agnumber_t			agno = XFS_FSB_TO_AGNO(mp, start_block);
379 	xfs_agblock_t			agbno = XFS_FSB_TO_AGBNO(mp,
380 								start_block);
381 	int				error;
382 
383 	trace_xfs_bmap_free_deferred(tp->t_mountp, agno, 0, agbno, ext_len);
384 
385 	error = __xfs_free_extent(tp, start_block, ext_len,
386 				  oinfo, XFS_AG_RESV_NONE, skip_discard);
387 	/*
388 	 * Mark the transaction dirty, even on error. This ensures the
389 	 * transaction is aborted, which:
390 	 *
391 	 * 1.) releases the EFI and frees the EFD
392 	 * 2.) shuts down the filesystem
393 	 */
394 	tp->t_flags |= XFS_TRANS_DIRTY | XFS_TRANS_HAS_INTENT_DONE;
395 	set_bit(XFS_LI_DIRTY, &efdp->efd_item.li_flags);
396 
397 	next_extent = efdp->efd_next_extent;
398 	ASSERT(next_extent < efdp->efd_format.efd_nextents);
399 	extp = &(efdp->efd_format.efd_extents[next_extent]);
400 	extp->ext_start = start_block;
401 	extp->ext_len = ext_len;
402 	efdp->efd_next_extent++;
403 
404 	return error;
405 }
406 
407 /* Sort bmap items by AG. */
408 static int
409 xfs_extent_free_diff_items(
410 	void				*priv,
411 	const struct list_head		*a,
412 	const struct list_head		*b)
413 {
414 	struct xfs_mount		*mp = priv;
415 	struct xfs_extent_free_item	*ra;
416 	struct xfs_extent_free_item	*rb;
417 
418 	ra = container_of(a, struct xfs_extent_free_item, xefi_list);
419 	rb = container_of(b, struct xfs_extent_free_item, xefi_list);
420 	return  XFS_FSB_TO_AGNO(mp, ra->xefi_startblock) -
421 		XFS_FSB_TO_AGNO(mp, rb->xefi_startblock);
422 }
423 
424 /* Log a free extent to the intent item. */
425 STATIC void
426 xfs_extent_free_log_item(
427 	struct xfs_trans		*tp,
428 	struct xfs_efi_log_item		*efip,
429 	struct xfs_extent_free_item	*free)
430 {
431 	uint				next_extent;
432 	struct xfs_extent		*extp;
433 
434 	tp->t_flags |= XFS_TRANS_DIRTY;
435 	set_bit(XFS_LI_DIRTY, &efip->efi_item.li_flags);
436 
437 	/*
438 	 * atomic_inc_return gives us the value after the increment;
439 	 * we want to use it as an array index so we need to subtract 1 from
440 	 * it.
441 	 */
442 	next_extent = atomic_inc_return(&efip->efi_next_extent) - 1;
443 	ASSERT(next_extent < efip->efi_format.efi_nextents);
444 	extp = &efip->efi_format.efi_extents[next_extent];
445 	extp->ext_start = free->xefi_startblock;
446 	extp->ext_len = free->xefi_blockcount;
447 }
448 
449 static struct xfs_log_item *
450 xfs_extent_free_create_intent(
451 	struct xfs_trans		*tp,
452 	struct list_head		*items,
453 	unsigned int			count,
454 	bool				sort)
455 {
456 	struct xfs_mount		*mp = tp->t_mountp;
457 	struct xfs_efi_log_item		*efip = xfs_efi_init(mp, count);
458 	struct xfs_extent_free_item	*free;
459 
460 	ASSERT(count > 0);
461 
462 	xfs_trans_add_item(tp, &efip->efi_item);
463 	if (sort)
464 		list_sort(mp, items, xfs_extent_free_diff_items);
465 	list_for_each_entry(free, items, xefi_list)
466 		xfs_extent_free_log_item(tp, efip, free);
467 	return &efip->efi_item;
468 }
469 
470 /* Get an EFD so we can process all the free extents. */
471 static struct xfs_log_item *
472 xfs_extent_free_create_done(
473 	struct xfs_trans		*tp,
474 	struct xfs_log_item		*intent,
475 	unsigned int			count)
476 {
477 	return &xfs_trans_get_efd(tp, EFI_ITEM(intent), count)->efd_item;
478 }
479 
480 /* Process a free extent. */
481 STATIC int
482 xfs_extent_free_finish_item(
483 	struct xfs_trans		*tp,
484 	struct xfs_log_item		*done,
485 	struct list_head		*item,
486 	struct xfs_btree_cur		**state)
487 {
488 	struct xfs_owner_info		oinfo = { };
489 	struct xfs_extent_free_item	*free;
490 	int				error;
491 
492 	free = container_of(item, struct xfs_extent_free_item, xefi_list);
493 	oinfo.oi_owner = free->xefi_owner;
494 	if (free->xefi_flags & XFS_EFI_ATTR_FORK)
495 		oinfo.oi_flags |= XFS_OWNER_INFO_ATTR_FORK;
496 	if (free->xefi_flags & XFS_EFI_BMBT_BLOCK)
497 		oinfo.oi_flags |= XFS_OWNER_INFO_BMBT_BLOCK;
498 	error = xfs_trans_free_extent(tp, EFD_ITEM(done),
499 			free->xefi_startblock,
500 			free->xefi_blockcount,
501 			&oinfo, free->xefi_flags & XFS_EFI_SKIP_DISCARD);
502 	kmem_cache_free(xfs_extfree_item_cache, free);
503 	return error;
504 }
505 
506 /* Abort all pending EFIs. */
507 STATIC void
508 xfs_extent_free_abort_intent(
509 	struct xfs_log_item		*intent)
510 {
511 	xfs_efi_release(EFI_ITEM(intent));
512 }
513 
514 /* Cancel a free extent. */
515 STATIC void
516 xfs_extent_free_cancel_item(
517 	struct list_head		*item)
518 {
519 	struct xfs_extent_free_item	*free;
520 
521 	free = container_of(item, struct xfs_extent_free_item, xefi_list);
522 	kmem_cache_free(xfs_extfree_item_cache, free);
523 }
524 
525 const struct xfs_defer_op_type xfs_extent_free_defer_type = {
526 	.max_items	= XFS_EFI_MAX_FAST_EXTENTS,
527 	.create_intent	= xfs_extent_free_create_intent,
528 	.abort_intent	= xfs_extent_free_abort_intent,
529 	.create_done	= xfs_extent_free_create_done,
530 	.finish_item	= xfs_extent_free_finish_item,
531 	.cancel_item	= xfs_extent_free_cancel_item,
532 };
533 
534 /*
535  * AGFL blocks are accounted differently in the reserve pools and are not
536  * inserted into the busy extent list.
537  */
538 STATIC int
539 xfs_agfl_free_finish_item(
540 	struct xfs_trans		*tp,
541 	struct xfs_log_item		*done,
542 	struct list_head		*item,
543 	struct xfs_btree_cur		**state)
544 {
545 	struct xfs_owner_info		oinfo = { };
546 	struct xfs_mount		*mp = tp->t_mountp;
547 	struct xfs_efd_log_item		*efdp = EFD_ITEM(done);
548 	struct xfs_extent_free_item	*free;
549 	struct xfs_extent		*extp;
550 	struct xfs_buf			*agbp;
551 	int				error;
552 	xfs_agnumber_t			agno;
553 	xfs_agblock_t			agbno;
554 	uint				next_extent;
555 	struct xfs_perag		*pag;
556 
557 	free = container_of(item, struct xfs_extent_free_item, xefi_list);
558 	ASSERT(free->xefi_blockcount == 1);
559 	agno = XFS_FSB_TO_AGNO(mp, free->xefi_startblock);
560 	agbno = XFS_FSB_TO_AGBNO(mp, free->xefi_startblock);
561 	oinfo.oi_owner = free->xefi_owner;
562 
563 	trace_xfs_agfl_free_deferred(mp, agno, 0, agbno, free->xefi_blockcount);
564 
565 	pag = xfs_perag_get(mp, agno);
566 	error = xfs_alloc_read_agf(pag, tp, 0, &agbp);
567 	if (!error)
568 		error = xfs_free_agfl_block(tp, agno, agbno, agbp, &oinfo);
569 	xfs_perag_put(pag);
570 
571 	/*
572 	 * Mark the transaction dirty, even on error. This ensures the
573 	 * transaction is aborted, which:
574 	 *
575 	 * 1.) releases the EFI and frees the EFD
576 	 * 2.) shuts down the filesystem
577 	 */
578 	tp->t_flags |= XFS_TRANS_DIRTY;
579 	set_bit(XFS_LI_DIRTY, &efdp->efd_item.li_flags);
580 
581 	next_extent = efdp->efd_next_extent;
582 	ASSERT(next_extent < efdp->efd_format.efd_nextents);
583 	extp = &(efdp->efd_format.efd_extents[next_extent]);
584 	extp->ext_start = free->xefi_startblock;
585 	extp->ext_len = free->xefi_blockcount;
586 	efdp->efd_next_extent++;
587 
588 	kmem_cache_free(xfs_extfree_item_cache, free);
589 	return error;
590 }
591 
592 /* sub-type with special handling for AGFL deferred frees */
593 const struct xfs_defer_op_type xfs_agfl_free_defer_type = {
594 	.max_items	= XFS_EFI_MAX_FAST_EXTENTS,
595 	.create_intent	= xfs_extent_free_create_intent,
596 	.abort_intent	= xfs_extent_free_abort_intent,
597 	.create_done	= xfs_extent_free_create_done,
598 	.finish_item	= xfs_agfl_free_finish_item,
599 	.cancel_item	= xfs_extent_free_cancel_item,
600 };
601 
602 /* Is this recovered EFI ok? */
603 static inline bool
604 xfs_efi_validate_ext(
605 	struct xfs_mount		*mp,
606 	struct xfs_extent		*extp)
607 {
608 	return xfs_verify_fsbext(mp, extp->ext_start, extp->ext_len);
609 }
610 
611 /*
612  * Process an extent free intent item that was recovered from
613  * the log.  We need to free the extents that it describes.
614  */
615 STATIC int
616 xfs_efi_item_recover(
617 	struct xfs_log_item		*lip,
618 	struct list_head		*capture_list)
619 {
620 	struct xfs_efi_log_item		*efip = EFI_ITEM(lip);
621 	struct xfs_mount		*mp = lip->li_log->l_mp;
622 	struct xfs_efd_log_item		*efdp;
623 	struct xfs_trans		*tp;
624 	struct xfs_extent		*extp;
625 	int				i;
626 	int				error = 0;
627 
628 	/*
629 	 * First check the validity of the extents described by the
630 	 * EFI.  If any are bad, then assume that all are bad and
631 	 * just toss the EFI.
632 	 */
633 	for (i = 0; i < efip->efi_format.efi_nextents; i++) {
634 		if (!xfs_efi_validate_ext(mp,
635 					&efip->efi_format.efi_extents[i])) {
636 			XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp,
637 					&efip->efi_format,
638 					sizeof(efip->efi_format));
639 			return -EFSCORRUPTED;
640 		}
641 	}
642 
643 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp);
644 	if (error)
645 		return error;
646 	efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents);
647 
648 	for (i = 0; i < efip->efi_format.efi_nextents; i++) {
649 		extp = &efip->efi_format.efi_extents[i];
650 		error = xfs_trans_free_extent(tp, efdp, extp->ext_start,
651 					      extp->ext_len,
652 					      &XFS_RMAP_OINFO_ANY_OWNER, false);
653 		if (error == -EFSCORRUPTED)
654 			XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp,
655 					extp, sizeof(*extp));
656 		if (error)
657 			goto abort_error;
658 
659 	}
660 
661 	return xfs_defer_ops_capture_and_commit(tp, capture_list);
662 
663 abort_error:
664 	xfs_trans_cancel(tp);
665 	return error;
666 }
667 
668 STATIC bool
669 xfs_efi_item_match(
670 	struct xfs_log_item	*lip,
671 	uint64_t		intent_id)
672 {
673 	return EFI_ITEM(lip)->efi_format.efi_id == intent_id;
674 }
675 
676 /* Relog an intent item to push the log tail forward. */
677 static struct xfs_log_item *
678 xfs_efi_item_relog(
679 	struct xfs_log_item		*intent,
680 	struct xfs_trans		*tp)
681 {
682 	struct xfs_efd_log_item		*efdp;
683 	struct xfs_efi_log_item		*efip;
684 	struct xfs_extent		*extp;
685 	unsigned int			count;
686 
687 	count = EFI_ITEM(intent)->efi_format.efi_nextents;
688 	extp = EFI_ITEM(intent)->efi_format.efi_extents;
689 
690 	tp->t_flags |= XFS_TRANS_DIRTY;
691 	efdp = xfs_trans_get_efd(tp, EFI_ITEM(intent), count);
692 	efdp->efd_next_extent = count;
693 	memcpy(efdp->efd_format.efd_extents, extp, count * sizeof(*extp));
694 	set_bit(XFS_LI_DIRTY, &efdp->efd_item.li_flags);
695 
696 	efip = xfs_efi_init(tp->t_mountp, count);
697 	memcpy(efip->efi_format.efi_extents, extp, count * sizeof(*extp));
698 	atomic_set(&efip->efi_next_extent, count);
699 	xfs_trans_add_item(tp, &efip->efi_item);
700 	set_bit(XFS_LI_DIRTY, &efip->efi_item.li_flags);
701 	return &efip->efi_item;
702 }
703 
704 static const struct xfs_item_ops xfs_efi_item_ops = {
705 	.flags		= XFS_ITEM_INTENT,
706 	.iop_size	= xfs_efi_item_size,
707 	.iop_format	= xfs_efi_item_format,
708 	.iop_unpin	= xfs_efi_item_unpin,
709 	.iop_release	= xfs_efi_item_release,
710 	.iop_recover	= xfs_efi_item_recover,
711 	.iop_match	= xfs_efi_item_match,
712 	.iop_relog	= xfs_efi_item_relog,
713 };
714 
715 /*
716  * This routine is called to create an in-core extent free intent
717  * item from the efi format structure which was logged on disk.
718  * It allocates an in-core efi, copies the extents from the format
719  * structure into it, and adds the efi to the AIL with the given
720  * LSN.
721  */
722 STATIC int
723 xlog_recover_efi_commit_pass2(
724 	struct xlog			*log,
725 	struct list_head		*buffer_list,
726 	struct xlog_recover_item	*item,
727 	xfs_lsn_t			lsn)
728 {
729 	struct xfs_mount		*mp = log->l_mp;
730 	struct xfs_efi_log_item		*efip;
731 	struct xfs_efi_log_format	*efi_formatp;
732 	int				error;
733 
734 	efi_formatp = item->ri_buf[0].i_addr;
735 
736 	efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
737 	error = xfs_efi_copy_format(&item->ri_buf[0], &efip->efi_format);
738 	if (error) {
739 		xfs_efi_item_free(efip);
740 		return error;
741 	}
742 	atomic_set(&efip->efi_next_extent, efi_formatp->efi_nextents);
743 	/*
744 	 * Insert the intent into the AIL directly and drop one reference so
745 	 * that finishing or canceling the work will drop the other.
746 	 */
747 	xfs_trans_ail_insert(log->l_ailp, &efip->efi_item, lsn);
748 	xfs_efi_release(efip);
749 	return 0;
750 }
751 
752 const struct xlog_recover_item_ops xlog_efi_item_ops = {
753 	.item_type		= XFS_LI_EFI,
754 	.commit_pass2		= xlog_recover_efi_commit_pass2,
755 };
756 
757 /*
758  * This routine is called when an EFD format structure is found in a committed
759  * transaction in the log. Its purpose is to cancel the corresponding EFI if it
760  * was still in the log. To do this it searches the AIL for the EFI with an id
761  * equal to that in the EFD format structure. If we find it we drop the EFD
762  * reference, which removes the EFI from the AIL and frees it.
763  */
764 STATIC int
765 xlog_recover_efd_commit_pass2(
766 	struct xlog			*log,
767 	struct list_head		*buffer_list,
768 	struct xlog_recover_item	*item,
769 	xfs_lsn_t			lsn)
770 {
771 	struct xfs_efd_log_format	*efd_formatp;
772 
773 	efd_formatp = item->ri_buf[0].i_addr;
774 	ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) +
775 		((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) ||
776 	       (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) +
777 		((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t)))));
778 
779 	xlog_recover_release_intent(log, XFS_LI_EFI, efd_formatp->efd_efi_id);
780 	return 0;
781 }
782 
783 const struct xlog_recover_item_ops xlog_efd_item_ops = {
784 	.item_type		= XFS_LI_EFD,
785 	.commit_pass2		= xlog_recover_efd_commit_pass2,
786 };
787