1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2001,2005 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_format.h" 9 #include "xfs_log_format.h" 10 #include "xfs_trans_resv.h" 11 #include "xfs_bit.h" 12 #include "xfs_shared.h" 13 #include "xfs_mount.h" 14 #include "xfs_ag.h" 15 #include "xfs_defer.h" 16 #include "xfs_trans.h" 17 #include "xfs_trans_priv.h" 18 #include "xfs_extfree_item.h" 19 #include "xfs_log.h" 20 #include "xfs_btree.h" 21 #include "xfs_rmap.h" 22 #include "xfs_alloc.h" 23 #include "xfs_bmap.h" 24 #include "xfs_trace.h" 25 #include "xfs_error.h" 26 #include "xfs_log_priv.h" 27 #include "xfs_log_recover.h" 28 29 struct kmem_cache *xfs_efi_cache; 30 struct kmem_cache *xfs_efd_cache; 31 32 static const struct xfs_item_ops xfs_efi_item_ops; 33 34 static inline struct xfs_efi_log_item *EFI_ITEM(struct xfs_log_item *lip) 35 { 36 return container_of(lip, struct xfs_efi_log_item, efi_item); 37 } 38 39 STATIC void 40 xfs_efi_item_free( 41 struct xfs_efi_log_item *efip) 42 { 43 kmem_free(efip->efi_item.li_lv_shadow); 44 if (efip->efi_format.efi_nextents > XFS_EFI_MAX_FAST_EXTENTS) 45 kmem_free(efip); 46 else 47 kmem_cache_free(xfs_efi_cache, efip); 48 } 49 50 /* 51 * Freeing the efi requires that we remove it from the AIL if it has already 52 * been placed there. However, the EFI may not yet have been placed in the AIL 53 * when called by xfs_efi_release() from EFD processing due to the ordering of 54 * committed vs unpin operations in bulk insert operations. Hence the reference 55 * count to ensure only the last caller frees the EFI. 56 */ 57 STATIC void 58 xfs_efi_release( 59 struct xfs_efi_log_item *efip) 60 { 61 ASSERT(atomic_read(&efip->efi_refcount) > 0); 62 if (!atomic_dec_and_test(&efip->efi_refcount)) 63 return; 64 65 xfs_trans_ail_delete(&efip->efi_item, 0); 66 xfs_efi_item_free(efip); 67 } 68 69 /* 70 * This returns the number of iovecs needed to log the given efi item. 71 * We only need 1 iovec for an efi item. It just logs the efi_log_format 72 * structure. 73 */ 74 static inline int 75 xfs_efi_item_sizeof( 76 struct xfs_efi_log_item *efip) 77 { 78 return sizeof(struct xfs_efi_log_format) + 79 (efip->efi_format.efi_nextents - 1) * sizeof(xfs_extent_t); 80 } 81 82 STATIC void 83 xfs_efi_item_size( 84 struct xfs_log_item *lip, 85 int *nvecs, 86 int *nbytes) 87 { 88 *nvecs += 1; 89 *nbytes += xfs_efi_item_sizeof(EFI_ITEM(lip)); 90 } 91 92 /* 93 * This is called to fill in the vector of log iovecs for the 94 * given efi log item. We use only 1 iovec, and we point that 95 * at the efi_log_format structure embedded in the efi item. 96 * It is at this point that we assert that all of the extent 97 * slots in the efi item have been filled. 98 */ 99 STATIC void 100 xfs_efi_item_format( 101 struct xfs_log_item *lip, 102 struct xfs_log_vec *lv) 103 { 104 struct xfs_efi_log_item *efip = EFI_ITEM(lip); 105 struct xfs_log_iovec *vecp = NULL; 106 107 ASSERT(atomic_read(&efip->efi_next_extent) == 108 efip->efi_format.efi_nextents); 109 110 efip->efi_format.efi_type = XFS_LI_EFI; 111 efip->efi_format.efi_size = 1; 112 113 xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_EFI_FORMAT, 114 &efip->efi_format, 115 xfs_efi_item_sizeof(efip)); 116 } 117 118 119 /* 120 * The unpin operation is the last place an EFI is manipulated in the log. It is 121 * either inserted in the AIL or aborted in the event of a log I/O error. In 122 * either case, the EFI transaction has been successfully committed to make it 123 * this far. Therefore, we expect whoever committed the EFI to either construct 124 * and commit the EFD or drop the EFD's reference in the event of error. Simply 125 * drop the log's EFI reference now that the log is done with it. 126 */ 127 STATIC void 128 xfs_efi_item_unpin( 129 struct xfs_log_item *lip, 130 int remove) 131 { 132 struct xfs_efi_log_item *efip = EFI_ITEM(lip); 133 xfs_efi_release(efip); 134 } 135 136 /* 137 * The EFI has been either committed or aborted if the transaction has been 138 * cancelled. If the transaction was cancelled, an EFD isn't going to be 139 * constructed and thus we free the EFI here directly. 140 */ 141 STATIC void 142 xfs_efi_item_release( 143 struct xfs_log_item *lip) 144 { 145 xfs_efi_release(EFI_ITEM(lip)); 146 } 147 148 /* 149 * Allocate and initialize an efi item with the given number of extents. 150 */ 151 STATIC struct xfs_efi_log_item * 152 xfs_efi_init( 153 struct xfs_mount *mp, 154 uint nextents) 155 156 { 157 struct xfs_efi_log_item *efip; 158 uint size; 159 160 ASSERT(nextents > 0); 161 if (nextents > XFS_EFI_MAX_FAST_EXTENTS) { 162 size = (uint)(sizeof(struct xfs_efi_log_item) + 163 ((nextents - 1) * sizeof(xfs_extent_t))); 164 efip = kmem_zalloc(size, 0); 165 } else { 166 efip = kmem_cache_zalloc(xfs_efi_cache, 167 GFP_KERNEL | __GFP_NOFAIL); 168 } 169 170 xfs_log_item_init(mp, &efip->efi_item, XFS_LI_EFI, &xfs_efi_item_ops); 171 efip->efi_format.efi_nextents = nextents; 172 efip->efi_format.efi_id = (uintptr_t)(void *)efip; 173 atomic_set(&efip->efi_next_extent, 0); 174 atomic_set(&efip->efi_refcount, 2); 175 176 return efip; 177 } 178 179 /* 180 * Copy an EFI format buffer from the given buf, and into the destination 181 * EFI format structure. 182 * The given buffer can be in 32 bit or 64 bit form (which has different padding), 183 * one of which will be the native format for this kernel. 184 * It will handle the conversion of formats if necessary. 185 */ 186 STATIC int 187 xfs_efi_copy_format(xfs_log_iovec_t *buf, xfs_efi_log_format_t *dst_efi_fmt) 188 { 189 xfs_efi_log_format_t *src_efi_fmt = buf->i_addr; 190 uint i; 191 uint len = sizeof(xfs_efi_log_format_t) + 192 (src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_t); 193 uint len32 = sizeof(xfs_efi_log_format_32_t) + 194 (src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_32_t); 195 uint len64 = sizeof(xfs_efi_log_format_64_t) + 196 (src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_64_t); 197 198 if (buf->i_len == len) { 199 memcpy((char *)dst_efi_fmt, (char*)src_efi_fmt, len); 200 return 0; 201 } else if (buf->i_len == len32) { 202 xfs_efi_log_format_32_t *src_efi_fmt_32 = buf->i_addr; 203 204 dst_efi_fmt->efi_type = src_efi_fmt_32->efi_type; 205 dst_efi_fmt->efi_size = src_efi_fmt_32->efi_size; 206 dst_efi_fmt->efi_nextents = src_efi_fmt_32->efi_nextents; 207 dst_efi_fmt->efi_id = src_efi_fmt_32->efi_id; 208 for (i = 0; i < dst_efi_fmt->efi_nextents; i++) { 209 dst_efi_fmt->efi_extents[i].ext_start = 210 src_efi_fmt_32->efi_extents[i].ext_start; 211 dst_efi_fmt->efi_extents[i].ext_len = 212 src_efi_fmt_32->efi_extents[i].ext_len; 213 } 214 return 0; 215 } else if (buf->i_len == len64) { 216 xfs_efi_log_format_64_t *src_efi_fmt_64 = buf->i_addr; 217 218 dst_efi_fmt->efi_type = src_efi_fmt_64->efi_type; 219 dst_efi_fmt->efi_size = src_efi_fmt_64->efi_size; 220 dst_efi_fmt->efi_nextents = src_efi_fmt_64->efi_nextents; 221 dst_efi_fmt->efi_id = src_efi_fmt_64->efi_id; 222 for (i = 0; i < dst_efi_fmt->efi_nextents; i++) { 223 dst_efi_fmt->efi_extents[i].ext_start = 224 src_efi_fmt_64->efi_extents[i].ext_start; 225 dst_efi_fmt->efi_extents[i].ext_len = 226 src_efi_fmt_64->efi_extents[i].ext_len; 227 } 228 return 0; 229 } 230 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, NULL); 231 return -EFSCORRUPTED; 232 } 233 234 static inline struct xfs_efd_log_item *EFD_ITEM(struct xfs_log_item *lip) 235 { 236 return container_of(lip, struct xfs_efd_log_item, efd_item); 237 } 238 239 STATIC void 240 xfs_efd_item_free(struct xfs_efd_log_item *efdp) 241 { 242 kmem_free(efdp->efd_item.li_lv_shadow); 243 if (efdp->efd_format.efd_nextents > XFS_EFD_MAX_FAST_EXTENTS) 244 kmem_free(efdp); 245 else 246 kmem_cache_free(xfs_efd_cache, efdp); 247 } 248 249 /* 250 * This returns the number of iovecs needed to log the given efd item. 251 * We only need 1 iovec for an efd item. It just logs the efd_log_format 252 * structure. 253 */ 254 static inline int 255 xfs_efd_item_sizeof( 256 struct xfs_efd_log_item *efdp) 257 { 258 return sizeof(xfs_efd_log_format_t) + 259 (efdp->efd_format.efd_nextents - 1) * sizeof(xfs_extent_t); 260 } 261 262 STATIC void 263 xfs_efd_item_size( 264 struct xfs_log_item *lip, 265 int *nvecs, 266 int *nbytes) 267 { 268 *nvecs += 1; 269 *nbytes += xfs_efd_item_sizeof(EFD_ITEM(lip)); 270 } 271 272 /* 273 * This is called to fill in the vector of log iovecs for the 274 * given efd log item. We use only 1 iovec, and we point that 275 * at the efd_log_format structure embedded in the efd item. 276 * It is at this point that we assert that all of the extent 277 * slots in the efd item have been filled. 278 */ 279 STATIC void 280 xfs_efd_item_format( 281 struct xfs_log_item *lip, 282 struct xfs_log_vec *lv) 283 { 284 struct xfs_efd_log_item *efdp = EFD_ITEM(lip); 285 struct xfs_log_iovec *vecp = NULL; 286 287 ASSERT(efdp->efd_next_extent == efdp->efd_format.efd_nextents); 288 289 efdp->efd_format.efd_type = XFS_LI_EFD; 290 efdp->efd_format.efd_size = 1; 291 292 xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_EFD_FORMAT, 293 &efdp->efd_format, 294 xfs_efd_item_sizeof(efdp)); 295 } 296 297 /* 298 * The EFD is either committed or aborted if the transaction is cancelled. If 299 * the transaction is cancelled, drop our reference to the EFI and free the EFD. 300 */ 301 STATIC void 302 xfs_efd_item_release( 303 struct xfs_log_item *lip) 304 { 305 struct xfs_efd_log_item *efdp = EFD_ITEM(lip); 306 307 xfs_efi_release(efdp->efd_efip); 308 xfs_efd_item_free(efdp); 309 } 310 311 static struct xfs_log_item * 312 xfs_efd_item_intent( 313 struct xfs_log_item *lip) 314 { 315 return &EFD_ITEM(lip)->efd_efip->efi_item; 316 } 317 318 static const struct xfs_item_ops xfs_efd_item_ops = { 319 .flags = XFS_ITEM_RELEASE_WHEN_COMMITTED | 320 XFS_ITEM_INTENT_DONE, 321 .iop_size = xfs_efd_item_size, 322 .iop_format = xfs_efd_item_format, 323 .iop_release = xfs_efd_item_release, 324 .iop_intent = xfs_efd_item_intent, 325 }; 326 327 /* 328 * Allocate an "extent free done" log item that will hold nextents worth of 329 * extents. The caller must use all nextents extents, because we are not 330 * flexible about this at all. 331 */ 332 static struct xfs_efd_log_item * 333 xfs_trans_get_efd( 334 struct xfs_trans *tp, 335 struct xfs_efi_log_item *efip, 336 unsigned int nextents) 337 { 338 struct xfs_efd_log_item *efdp; 339 340 ASSERT(nextents > 0); 341 342 if (nextents > XFS_EFD_MAX_FAST_EXTENTS) { 343 efdp = kmem_zalloc(sizeof(struct xfs_efd_log_item) + 344 (nextents - 1) * sizeof(struct xfs_extent), 345 0); 346 } else { 347 efdp = kmem_cache_zalloc(xfs_efd_cache, 348 GFP_KERNEL | __GFP_NOFAIL); 349 } 350 351 xfs_log_item_init(tp->t_mountp, &efdp->efd_item, XFS_LI_EFD, 352 &xfs_efd_item_ops); 353 efdp->efd_efip = efip; 354 efdp->efd_format.efd_nextents = nextents; 355 efdp->efd_format.efd_efi_id = efip->efi_format.efi_id; 356 357 xfs_trans_add_item(tp, &efdp->efd_item); 358 return efdp; 359 } 360 361 /* 362 * Free an extent and log it to the EFD. Note that the transaction is marked 363 * dirty regardless of whether the extent free succeeds or fails to support the 364 * EFI/EFD lifecycle rules. 365 */ 366 static int 367 xfs_trans_free_extent( 368 struct xfs_trans *tp, 369 struct xfs_efd_log_item *efdp, 370 xfs_fsblock_t start_block, 371 xfs_extlen_t ext_len, 372 const struct xfs_owner_info *oinfo, 373 bool skip_discard) 374 { 375 struct xfs_mount *mp = tp->t_mountp; 376 struct xfs_extent *extp; 377 uint next_extent; 378 xfs_agnumber_t agno = XFS_FSB_TO_AGNO(mp, start_block); 379 xfs_agblock_t agbno = XFS_FSB_TO_AGBNO(mp, 380 start_block); 381 int error; 382 383 trace_xfs_bmap_free_deferred(tp->t_mountp, agno, 0, agbno, ext_len); 384 385 error = __xfs_free_extent(tp, start_block, ext_len, 386 oinfo, XFS_AG_RESV_NONE, skip_discard); 387 /* 388 * Mark the transaction dirty, even on error. This ensures the 389 * transaction is aborted, which: 390 * 391 * 1.) releases the EFI and frees the EFD 392 * 2.) shuts down the filesystem 393 */ 394 tp->t_flags |= XFS_TRANS_DIRTY | XFS_TRANS_HAS_INTENT_DONE; 395 set_bit(XFS_LI_DIRTY, &efdp->efd_item.li_flags); 396 397 next_extent = efdp->efd_next_extent; 398 ASSERT(next_extent < efdp->efd_format.efd_nextents); 399 extp = &(efdp->efd_format.efd_extents[next_extent]); 400 extp->ext_start = start_block; 401 extp->ext_len = ext_len; 402 efdp->efd_next_extent++; 403 404 return error; 405 } 406 407 /* Sort bmap items by AG. */ 408 static int 409 xfs_extent_free_diff_items( 410 void *priv, 411 const struct list_head *a, 412 const struct list_head *b) 413 { 414 struct xfs_mount *mp = priv; 415 struct xfs_extent_free_item *ra; 416 struct xfs_extent_free_item *rb; 417 418 ra = container_of(a, struct xfs_extent_free_item, xefi_list); 419 rb = container_of(b, struct xfs_extent_free_item, xefi_list); 420 return XFS_FSB_TO_AGNO(mp, ra->xefi_startblock) - 421 XFS_FSB_TO_AGNO(mp, rb->xefi_startblock); 422 } 423 424 /* Log a free extent to the intent item. */ 425 STATIC void 426 xfs_extent_free_log_item( 427 struct xfs_trans *tp, 428 struct xfs_efi_log_item *efip, 429 struct xfs_extent_free_item *free) 430 { 431 uint next_extent; 432 struct xfs_extent *extp; 433 434 tp->t_flags |= XFS_TRANS_DIRTY; 435 set_bit(XFS_LI_DIRTY, &efip->efi_item.li_flags); 436 437 /* 438 * atomic_inc_return gives us the value after the increment; 439 * we want to use it as an array index so we need to subtract 1 from 440 * it. 441 */ 442 next_extent = atomic_inc_return(&efip->efi_next_extent) - 1; 443 ASSERT(next_extent < efip->efi_format.efi_nextents); 444 extp = &efip->efi_format.efi_extents[next_extent]; 445 extp->ext_start = free->xefi_startblock; 446 extp->ext_len = free->xefi_blockcount; 447 } 448 449 static struct xfs_log_item * 450 xfs_extent_free_create_intent( 451 struct xfs_trans *tp, 452 struct list_head *items, 453 unsigned int count, 454 bool sort) 455 { 456 struct xfs_mount *mp = tp->t_mountp; 457 struct xfs_efi_log_item *efip = xfs_efi_init(mp, count); 458 struct xfs_extent_free_item *free; 459 460 ASSERT(count > 0); 461 462 xfs_trans_add_item(tp, &efip->efi_item); 463 if (sort) 464 list_sort(mp, items, xfs_extent_free_diff_items); 465 list_for_each_entry(free, items, xefi_list) 466 xfs_extent_free_log_item(tp, efip, free); 467 return &efip->efi_item; 468 } 469 470 /* Get an EFD so we can process all the free extents. */ 471 static struct xfs_log_item * 472 xfs_extent_free_create_done( 473 struct xfs_trans *tp, 474 struct xfs_log_item *intent, 475 unsigned int count) 476 { 477 return &xfs_trans_get_efd(tp, EFI_ITEM(intent), count)->efd_item; 478 } 479 480 /* Process a free extent. */ 481 STATIC int 482 xfs_extent_free_finish_item( 483 struct xfs_trans *tp, 484 struct xfs_log_item *done, 485 struct list_head *item, 486 struct xfs_btree_cur **state) 487 { 488 struct xfs_owner_info oinfo = { }; 489 struct xfs_extent_free_item *free; 490 int error; 491 492 free = container_of(item, struct xfs_extent_free_item, xefi_list); 493 oinfo.oi_owner = free->xefi_owner; 494 if (free->xefi_flags & XFS_EFI_ATTR_FORK) 495 oinfo.oi_flags |= XFS_OWNER_INFO_ATTR_FORK; 496 if (free->xefi_flags & XFS_EFI_BMBT_BLOCK) 497 oinfo.oi_flags |= XFS_OWNER_INFO_BMBT_BLOCK; 498 error = xfs_trans_free_extent(tp, EFD_ITEM(done), 499 free->xefi_startblock, 500 free->xefi_blockcount, 501 &oinfo, free->xefi_flags & XFS_EFI_SKIP_DISCARD); 502 kmem_cache_free(xfs_extfree_item_cache, free); 503 return error; 504 } 505 506 /* Abort all pending EFIs. */ 507 STATIC void 508 xfs_extent_free_abort_intent( 509 struct xfs_log_item *intent) 510 { 511 xfs_efi_release(EFI_ITEM(intent)); 512 } 513 514 /* Cancel a free extent. */ 515 STATIC void 516 xfs_extent_free_cancel_item( 517 struct list_head *item) 518 { 519 struct xfs_extent_free_item *free; 520 521 free = container_of(item, struct xfs_extent_free_item, xefi_list); 522 kmem_cache_free(xfs_extfree_item_cache, free); 523 } 524 525 const struct xfs_defer_op_type xfs_extent_free_defer_type = { 526 .max_items = XFS_EFI_MAX_FAST_EXTENTS, 527 .create_intent = xfs_extent_free_create_intent, 528 .abort_intent = xfs_extent_free_abort_intent, 529 .create_done = xfs_extent_free_create_done, 530 .finish_item = xfs_extent_free_finish_item, 531 .cancel_item = xfs_extent_free_cancel_item, 532 }; 533 534 /* 535 * AGFL blocks are accounted differently in the reserve pools and are not 536 * inserted into the busy extent list. 537 */ 538 STATIC int 539 xfs_agfl_free_finish_item( 540 struct xfs_trans *tp, 541 struct xfs_log_item *done, 542 struct list_head *item, 543 struct xfs_btree_cur **state) 544 { 545 struct xfs_owner_info oinfo = { }; 546 struct xfs_mount *mp = tp->t_mountp; 547 struct xfs_efd_log_item *efdp = EFD_ITEM(done); 548 struct xfs_extent_free_item *free; 549 struct xfs_extent *extp; 550 struct xfs_buf *agbp; 551 int error; 552 xfs_agnumber_t agno; 553 xfs_agblock_t agbno; 554 uint next_extent; 555 struct xfs_perag *pag; 556 557 free = container_of(item, struct xfs_extent_free_item, xefi_list); 558 ASSERT(free->xefi_blockcount == 1); 559 agno = XFS_FSB_TO_AGNO(mp, free->xefi_startblock); 560 agbno = XFS_FSB_TO_AGBNO(mp, free->xefi_startblock); 561 oinfo.oi_owner = free->xefi_owner; 562 563 trace_xfs_agfl_free_deferred(mp, agno, 0, agbno, free->xefi_blockcount); 564 565 pag = xfs_perag_get(mp, agno); 566 error = xfs_alloc_read_agf(pag, tp, 0, &agbp); 567 if (!error) 568 error = xfs_free_agfl_block(tp, agno, agbno, agbp, &oinfo); 569 xfs_perag_put(pag); 570 571 /* 572 * Mark the transaction dirty, even on error. This ensures the 573 * transaction is aborted, which: 574 * 575 * 1.) releases the EFI and frees the EFD 576 * 2.) shuts down the filesystem 577 */ 578 tp->t_flags |= XFS_TRANS_DIRTY; 579 set_bit(XFS_LI_DIRTY, &efdp->efd_item.li_flags); 580 581 next_extent = efdp->efd_next_extent; 582 ASSERT(next_extent < efdp->efd_format.efd_nextents); 583 extp = &(efdp->efd_format.efd_extents[next_extent]); 584 extp->ext_start = free->xefi_startblock; 585 extp->ext_len = free->xefi_blockcount; 586 efdp->efd_next_extent++; 587 588 kmem_cache_free(xfs_extfree_item_cache, free); 589 return error; 590 } 591 592 /* sub-type with special handling for AGFL deferred frees */ 593 const struct xfs_defer_op_type xfs_agfl_free_defer_type = { 594 .max_items = XFS_EFI_MAX_FAST_EXTENTS, 595 .create_intent = xfs_extent_free_create_intent, 596 .abort_intent = xfs_extent_free_abort_intent, 597 .create_done = xfs_extent_free_create_done, 598 .finish_item = xfs_agfl_free_finish_item, 599 .cancel_item = xfs_extent_free_cancel_item, 600 }; 601 602 /* Is this recovered EFI ok? */ 603 static inline bool 604 xfs_efi_validate_ext( 605 struct xfs_mount *mp, 606 struct xfs_extent *extp) 607 { 608 return xfs_verify_fsbext(mp, extp->ext_start, extp->ext_len); 609 } 610 611 /* 612 * Process an extent free intent item that was recovered from 613 * the log. We need to free the extents that it describes. 614 */ 615 STATIC int 616 xfs_efi_item_recover( 617 struct xfs_log_item *lip, 618 struct list_head *capture_list) 619 { 620 struct xfs_efi_log_item *efip = EFI_ITEM(lip); 621 struct xfs_mount *mp = lip->li_log->l_mp; 622 struct xfs_efd_log_item *efdp; 623 struct xfs_trans *tp; 624 struct xfs_extent *extp; 625 int i; 626 int error = 0; 627 628 /* 629 * First check the validity of the extents described by the 630 * EFI. If any are bad, then assume that all are bad and 631 * just toss the EFI. 632 */ 633 for (i = 0; i < efip->efi_format.efi_nextents; i++) { 634 if (!xfs_efi_validate_ext(mp, 635 &efip->efi_format.efi_extents[i])) { 636 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp, 637 &efip->efi_format, 638 sizeof(efip->efi_format)); 639 return -EFSCORRUPTED; 640 } 641 } 642 643 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp); 644 if (error) 645 return error; 646 efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents); 647 648 for (i = 0; i < efip->efi_format.efi_nextents; i++) { 649 extp = &efip->efi_format.efi_extents[i]; 650 error = xfs_trans_free_extent(tp, efdp, extp->ext_start, 651 extp->ext_len, 652 &XFS_RMAP_OINFO_ANY_OWNER, false); 653 if (error == -EFSCORRUPTED) 654 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp, 655 extp, sizeof(*extp)); 656 if (error) 657 goto abort_error; 658 659 } 660 661 return xfs_defer_ops_capture_and_commit(tp, capture_list); 662 663 abort_error: 664 xfs_trans_cancel(tp); 665 return error; 666 } 667 668 STATIC bool 669 xfs_efi_item_match( 670 struct xfs_log_item *lip, 671 uint64_t intent_id) 672 { 673 return EFI_ITEM(lip)->efi_format.efi_id == intent_id; 674 } 675 676 /* Relog an intent item to push the log tail forward. */ 677 static struct xfs_log_item * 678 xfs_efi_item_relog( 679 struct xfs_log_item *intent, 680 struct xfs_trans *tp) 681 { 682 struct xfs_efd_log_item *efdp; 683 struct xfs_efi_log_item *efip; 684 struct xfs_extent *extp; 685 unsigned int count; 686 687 count = EFI_ITEM(intent)->efi_format.efi_nextents; 688 extp = EFI_ITEM(intent)->efi_format.efi_extents; 689 690 tp->t_flags |= XFS_TRANS_DIRTY; 691 efdp = xfs_trans_get_efd(tp, EFI_ITEM(intent), count); 692 efdp->efd_next_extent = count; 693 memcpy(efdp->efd_format.efd_extents, extp, count * sizeof(*extp)); 694 set_bit(XFS_LI_DIRTY, &efdp->efd_item.li_flags); 695 696 efip = xfs_efi_init(tp->t_mountp, count); 697 memcpy(efip->efi_format.efi_extents, extp, count * sizeof(*extp)); 698 atomic_set(&efip->efi_next_extent, count); 699 xfs_trans_add_item(tp, &efip->efi_item); 700 set_bit(XFS_LI_DIRTY, &efip->efi_item.li_flags); 701 return &efip->efi_item; 702 } 703 704 static const struct xfs_item_ops xfs_efi_item_ops = { 705 .flags = XFS_ITEM_INTENT, 706 .iop_size = xfs_efi_item_size, 707 .iop_format = xfs_efi_item_format, 708 .iop_unpin = xfs_efi_item_unpin, 709 .iop_release = xfs_efi_item_release, 710 .iop_recover = xfs_efi_item_recover, 711 .iop_match = xfs_efi_item_match, 712 .iop_relog = xfs_efi_item_relog, 713 }; 714 715 /* 716 * This routine is called to create an in-core extent free intent 717 * item from the efi format structure which was logged on disk. 718 * It allocates an in-core efi, copies the extents from the format 719 * structure into it, and adds the efi to the AIL with the given 720 * LSN. 721 */ 722 STATIC int 723 xlog_recover_efi_commit_pass2( 724 struct xlog *log, 725 struct list_head *buffer_list, 726 struct xlog_recover_item *item, 727 xfs_lsn_t lsn) 728 { 729 struct xfs_mount *mp = log->l_mp; 730 struct xfs_efi_log_item *efip; 731 struct xfs_efi_log_format *efi_formatp; 732 int error; 733 734 efi_formatp = item->ri_buf[0].i_addr; 735 736 efip = xfs_efi_init(mp, efi_formatp->efi_nextents); 737 error = xfs_efi_copy_format(&item->ri_buf[0], &efip->efi_format); 738 if (error) { 739 xfs_efi_item_free(efip); 740 return error; 741 } 742 atomic_set(&efip->efi_next_extent, efi_formatp->efi_nextents); 743 /* 744 * Insert the intent into the AIL directly and drop one reference so 745 * that finishing or canceling the work will drop the other. 746 */ 747 xfs_trans_ail_insert(log->l_ailp, &efip->efi_item, lsn); 748 xfs_efi_release(efip); 749 return 0; 750 } 751 752 const struct xlog_recover_item_ops xlog_efi_item_ops = { 753 .item_type = XFS_LI_EFI, 754 .commit_pass2 = xlog_recover_efi_commit_pass2, 755 }; 756 757 /* 758 * This routine is called when an EFD format structure is found in a committed 759 * transaction in the log. Its purpose is to cancel the corresponding EFI if it 760 * was still in the log. To do this it searches the AIL for the EFI with an id 761 * equal to that in the EFD format structure. If we find it we drop the EFD 762 * reference, which removes the EFI from the AIL and frees it. 763 */ 764 STATIC int 765 xlog_recover_efd_commit_pass2( 766 struct xlog *log, 767 struct list_head *buffer_list, 768 struct xlog_recover_item *item, 769 xfs_lsn_t lsn) 770 { 771 struct xfs_efd_log_format *efd_formatp; 772 773 efd_formatp = item->ri_buf[0].i_addr; 774 ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) + 775 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) || 776 (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) + 777 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t))))); 778 779 xlog_recover_release_intent(log, XFS_LI_EFI, efd_formatp->efd_efi_id); 780 return 0; 781 } 782 783 const struct xlog_recover_item_ops xlog_efd_item_ops = { 784 .item_type = XFS_LI_EFD, 785 .commit_pass2 = xlog_recover_efd_commit_pass2, 786 }; 787