xref: /linux/fs/xfs/xfs_extfree_item.c (revision 160b8e75932fd51a49607d32dbfa1d417977b79c)
1 /*
2  * Copyright (c) 2000-2001,2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_format.h"
21 #include "xfs_log_format.h"
22 #include "xfs_trans_resv.h"
23 #include "xfs_bit.h"
24 #include "xfs_mount.h"
25 #include "xfs_trans.h"
26 #include "xfs_trans_priv.h"
27 #include "xfs_buf_item.h"
28 #include "xfs_extfree_item.h"
29 #include "xfs_log.h"
30 #include "xfs_btree.h"
31 #include "xfs_rmap.h"
32 
33 
34 kmem_zone_t	*xfs_efi_zone;
35 kmem_zone_t	*xfs_efd_zone;
36 
37 static inline struct xfs_efi_log_item *EFI_ITEM(struct xfs_log_item *lip)
38 {
39 	return container_of(lip, struct xfs_efi_log_item, efi_item);
40 }
41 
42 void
43 xfs_efi_item_free(
44 	struct xfs_efi_log_item	*efip)
45 {
46 	kmem_free(efip->efi_item.li_lv_shadow);
47 	if (efip->efi_format.efi_nextents > XFS_EFI_MAX_FAST_EXTENTS)
48 		kmem_free(efip);
49 	else
50 		kmem_zone_free(xfs_efi_zone, efip);
51 }
52 
53 /*
54  * This returns the number of iovecs needed to log the given efi item.
55  * We only need 1 iovec for an efi item.  It just logs the efi_log_format
56  * structure.
57  */
58 static inline int
59 xfs_efi_item_sizeof(
60 	struct xfs_efi_log_item *efip)
61 {
62 	return sizeof(struct xfs_efi_log_format) +
63 	       (efip->efi_format.efi_nextents - 1) * sizeof(xfs_extent_t);
64 }
65 
66 STATIC void
67 xfs_efi_item_size(
68 	struct xfs_log_item	*lip,
69 	int			*nvecs,
70 	int			*nbytes)
71 {
72 	*nvecs += 1;
73 	*nbytes += xfs_efi_item_sizeof(EFI_ITEM(lip));
74 }
75 
76 /*
77  * This is called to fill in the vector of log iovecs for the
78  * given efi log item. We use only 1 iovec, and we point that
79  * at the efi_log_format structure embedded in the efi item.
80  * It is at this point that we assert that all of the extent
81  * slots in the efi item have been filled.
82  */
83 STATIC void
84 xfs_efi_item_format(
85 	struct xfs_log_item	*lip,
86 	struct xfs_log_vec	*lv)
87 {
88 	struct xfs_efi_log_item	*efip = EFI_ITEM(lip);
89 	struct xfs_log_iovec	*vecp = NULL;
90 
91 	ASSERT(atomic_read(&efip->efi_next_extent) ==
92 				efip->efi_format.efi_nextents);
93 
94 	efip->efi_format.efi_type = XFS_LI_EFI;
95 	efip->efi_format.efi_size = 1;
96 
97 	xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_EFI_FORMAT,
98 			&efip->efi_format,
99 			xfs_efi_item_sizeof(efip));
100 }
101 
102 
103 /*
104  * Pinning has no meaning for an efi item, so just return.
105  */
106 STATIC void
107 xfs_efi_item_pin(
108 	struct xfs_log_item	*lip)
109 {
110 }
111 
112 /*
113  * The unpin operation is the last place an EFI is manipulated in the log. It is
114  * either inserted in the AIL or aborted in the event of a log I/O error. In
115  * either case, the EFI transaction has been successfully committed to make it
116  * this far. Therefore, we expect whoever committed the EFI to either construct
117  * and commit the EFD or drop the EFD's reference in the event of error. Simply
118  * drop the log's EFI reference now that the log is done with it.
119  */
120 STATIC void
121 xfs_efi_item_unpin(
122 	struct xfs_log_item	*lip,
123 	int			remove)
124 {
125 	struct xfs_efi_log_item	*efip = EFI_ITEM(lip);
126 	xfs_efi_release(efip);
127 }
128 
129 /*
130  * Efi items have no locking or pushing.  However, since EFIs are pulled from
131  * the AIL when their corresponding EFDs are committed to disk, their situation
132  * is very similar to being pinned.  Return XFS_ITEM_PINNED so that the caller
133  * will eventually flush the log.  This should help in getting the EFI out of
134  * the AIL.
135  */
136 STATIC uint
137 xfs_efi_item_push(
138 	struct xfs_log_item	*lip,
139 	struct list_head	*buffer_list)
140 {
141 	return XFS_ITEM_PINNED;
142 }
143 
144 /*
145  * The EFI has been either committed or aborted if the transaction has been
146  * cancelled. If the transaction was cancelled, an EFD isn't going to be
147  * constructed and thus we free the EFI here directly.
148  */
149 STATIC void
150 xfs_efi_item_unlock(
151 	struct xfs_log_item	*lip)
152 {
153 	if (lip->li_flags & XFS_LI_ABORTED)
154 		xfs_efi_item_free(EFI_ITEM(lip));
155 }
156 
157 /*
158  * The EFI is logged only once and cannot be moved in the log, so simply return
159  * the lsn at which it's been logged.
160  */
161 STATIC xfs_lsn_t
162 xfs_efi_item_committed(
163 	struct xfs_log_item	*lip,
164 	xfs_lsn_t		lsn)
165 {
166 	return lsn;
167 }
168 
169 /*
170  * The EFI dependency tracking op doesn't do squat.  It can't because
171  * it doesn't know where the free extent is coming from.  The dependency
172  * tracking has to be handled by the "enclosing" metadata object.  For
173  * example, for inodes, the inode is locked throughout the extent freeing
174  * so the dependency should be recorded there.
175  */
176 STATIC void
177 xfs_efi_item_committing(
178 	struct xfs_log_item	*lip,
179 	xfs_lsn_t		lsn)
180 {
181 }
182 
183 /*
184  * This is the ops vector shared by all efi log items.
185  */
186 static const struct xfs_item_ops xfs_efi_item_ops = {
187 	.iop_size	= xfs_efi_item_size,
188 	.iop_format	= xfs_efi_item_format,
189 	.iop_pin	= xfs_efi_item_pin,
190 	.iop_unpin	= xfs_efi_item_unpin,
191 	.iop_unlock	= xfs_efi_item_unlock,
192 	.iop_committed	= xfs_efi_item_committed,
193 	.iop_push	= xfs_efi_item_push,
194 	.iop_committing = xfs_efi_item_committing
195 };
196 
197 
198 /*
199  * Allocate and initialize an efi item with the given number of extents.
200  */
201 struct xfs_efi_log_item *
202 xfs_efi_init(
203 	struct xfs_mount	*mp,
204 	uint			nextents)
205 
206 {
207 	struct xfs_efi_log_item	*efip;
208 	uint			size;
209 
210 	ASSERT(nextents > 0);
211 	if (nextents > XFS_EFI_MAX_FAST_EXTENTS) {
212 		size = (uint)(sizeof(xfs_efi_log_item_t) +
213 			((nextents - 1) * sizeof(xfs_extent_t)));
214 		efip = kmem_zalloc(size, KM_SLEEP);
215 	} else {
216 		efip = kmem_zone_zalloc(xfs_efi_zone, KM_SLEEP);
217 	}
218 
219 	xfs_log_item_init(mp, &efip->efi_item, XFS_LI_EFI, &xfs_efi_item_ops);
220 	efip->efi_format.efi_nextents = nextents;
221 	efip->efi_format.efi_id = (uintptr_t)(void *)efip;
222 	atomic_set(&efip->efi_next_extent, 0);
223 	atomic_set(&efip->efi_refcount, 2);
224 
225 	return efip;
226 }
227 
228 /*
229  * Copy an EFI format buffer from the given buf, and into the destination
230  * EFI format structure.
231  * The given buffer can be in 32 bit or 64 bit form (which has different padding),
232  * one of which will be the native format for this kernel.
233  * It will handle the conversion of formats if necessary.
234  */
235 int
236 xfs_efi_copy_format(xfs_log_iovec_t *buf, xfs_efi_log_format_t *dst_efi_fmt)
237 {
238 	xfs_efi_log_format_t *src_efi_fmt = buf->i_addr;
239 	uint i;
240 	uint len = sizeof(xfs_efi_log_format_t) +
241 		(src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_t);
242 	uint len32 = sizeof(xfs_efi_log_format_32_t) +
243 		(src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_32_t);
244 	uint len64 = sizeof(xfs_efi_log_format_64_t) +
245 		(src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_64_t);
246 
247 	if (buf->i_len == len) {
248 		memcpy((char *)dst_efi_fmt, (char*)src_efi_fmt, len);
249 		return 0;
250 	} else if (buf->i_len == len32) {
251 		xfs_efi_log_format_32_t *src_efi_fmt_32 = buf->i_addr;
252 
253 		dst_efi_fmt->efi_type     = src_efi_fmt_32->efi_type;
254 		dst_efi_fmt->efi_size     = src_efi_fmt_32->efi_size;
255 		dst_efi_fmt->efi_nextents = src_efi_fmt_32->efi_nextents;
256 		dst_efi_fmt->efi_id       = src_efi_fmt_32->efi_id;
257 		for (i = 0; i < dst_efi_fmt->efi_nextents; i++) {
258 			dst_efi_fmt->efi_extents[i].ext_start =
259 				src_efi_fmt_32->efi_extents[i].ext_start;
260 			dst_efi_fmt->efi_extents[i].ext_len =
261 				src_efi_fmt_32->efi_extents[i].ext_len;
262 		}
263 		return 0;
264 	} else if (buf->i_len == len64) {
265 		xfs_efi_log_format_64_t *src_efi_fmt_64 = buf->i_addr;
266 
267 		dst_efi_fmt->efi_type     = src_efi_fmt_64->efi_type;
268 		dst_efi_fmt->efi_size     = src_efi_fmt_64->efi_size;
269 		dst_efi_fmt->efi_nextents = src_efi_fmt_64->efi_nextents;
270 		dst_efi_fmt->efi_id       = src_efi_fmt_64->efi_id;
271 		for (i = 0; i < dst_efi_fmt->efi_nextents; i++) {
272 			dst_efi_fmt->efi_extents[i].ext_start =
273 				src_efi_fmt_64->efi_extents[i].ext_start;
274 			dst_efi_fmt->efi_extents[i].ext_len =
275 				src_efi_fmt_64->efi_extents[i].ext_len;
276 		}
277 		return 0;
278 	}
279 	return -EFSCORRUPTED;
280 }
281 
282 /*
283  * Freeing the efi requires that we remove it from the AIL if it has already
284  * been placed there. However, the EFI may not yet have been placed in the AIL
285  * when called by xfs_efi_release() from EFD processing due to the ordering of
286  * committed vs unpin operations in bulk insert operations. Hence the reference
287  * count to ensure only the last caller frees the EFI.
288  */
289 void
290 xfs_efi_release(
291 	struct xfs_efi_log_item	*efip)
292 {
293 	ASSERT(atomic_read(&efip->efi_refcount) > 0);
294 	if (atomic_dec_and_test(&efip->efi_refcount)) {
295 		xfs_trans_ail_remove(&efip->efi_item, SHUTDOWN_LOG_IO_ERROR);
296 		xfs_efi_item_free(efip);
297 	}
298 }
299 
300 static inline struct xfs_efd_log_item *EFD_ITEM(struct xfs_log_item *lip)
301 {
302 	return container_of(lip, struct xfs_efd_log_item, efd_item);
303 }
304 
305 STATIC void
306 xfs_efd_item_free(struct xfs_efd_log_item *efdp)
307 {
308 	kmem_free(efdp->efd_item.li_lv_shadow);
309 	if (efdp->efd_format.efd_nextents > XFS_EFD_MAX_FAST_EXTENTS)
310 		kmem_free(efdp);
311 	else
312 		kmem_zone_free(xfs_efd_zone, efdp);
313 }
314 
315 /*
316  * This returns the number of iovecs needed to log the given efd item.
317  * We only need 1 iovec for an efd item.  It just logs the efd_log_format
318  * structure.
319  */
320 static inline int
321 xfs_efd_item_sizeof(
322 	struct xfs_efd_log_item *efdp)
323 {
324 	return sizeof(xfs_efd_log_format_t) +
325 	       (efdp->efd_format.efd_nextents - 1) * sizeof(xfs_extent_t);
326 }
327 
328 STATIC void
329 xfs_efd_item_size(
330 	struct xfs_log_item	*lip,
331 	int			*nvecs,
332 	int			*nbytes)
333 {
334 	*nvecs += 1;
335 	*nbytes += xfs_efd_item_sizeof(EFD_ITEM(lip));
336 }
337 
338 /*
339  * This is called to fill in the vector of log iovecs for the
340  * given efd log item. We use only 1 iovec, and we point that
341  * at the efd_log_format structure embedded in the efd item.
342  * It is at this point that we assert that all of the extent
343  * slots in the efd item have been filled.
344  */
345 STATIC void
346 xfs_efd_item_format(
347 	struct xfs_log_item	*lip,
348 	struct xfs_log_vec	*lv)
349 {
350 	struct xfs_efd_log_item	*efdp = EFD_ITEM(lip);
351 	struct xfs_log_iovec	*vecp = NULL;
352 
353 	ASSERT(efdp->efd_next_extent == efdp->efd_format.efd_nextents);
354 
355 	efdp->efd_format.efd_type = XFS_LI_EFD;
356 	efdp->efd_format.efd_size = 1;
357 
358 	xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_EFD_FORMAT,
359 			&efdp->efd_format,
360 			xfs_efd_item_sizeof(efdp));
361 }
362 
363 /*
364  * Pinning has no meaning for an efd item, so just return.
365  */
366 STATIC void
367 xfs_efd_item_pin(
368 	struct xfs_log_item	*lip)
369 {
370 }
371 
372 /*
373  * Since pinning has no meaning for an efd item, unpinning does
374  * not either.
375  */
376 STATIC void
377 xfs_efd_item_unpin(
378 	struct xfs_log_item	*lip,
379 	int			remove)
380 {
381 }
382 
383 /*
384  * There isn't much you can do to push on an efd item.  It is simply stuck
385  * waiting for the log to be flushed to disk.
386  */
387 STATIC uint
388 xfs_efd_item_push(
389 	struct xfs_log_item	*lip,
390 	struct list_head	*buffer_list)
391 {
392 	return XFS_ITEM_PINNED;
393 }
394 
395 /*
396  * The EFD is either committed or aborted if the transaction is cancelled. If
397  * the transaction is cancelled, drop our reference to the EFI and free the EFD.
398  */
399 STATIC void
400 xfs_efd_item_unlock(
401 	struct xfs_log_item	*lip)
402 {
403 	struct xfs_efd_log_item	*efdp = EFD_ITEM(lip);
404 
405 	if (lip->li_flags & XFS_LI_ABORTED) {
406 		xfs_efi_release(efdp->efd_efip);
407 		xfs_efd_item_free(efdp);
408 	}
409 }
410 
411 /*
412  * When the efd item is committed to disk, all we need to do is delete our
413  * reference to our partner efi item and then free ourselves. Since we're
414  * freeing ourselves we must return -1 to keep the transaction code from further
415  * referencing this item.
416  */
417 STATIC xfs_lsn_t
418 xfs_efd_item_committed(
419 	struct xfs_log_item	*lip,
420 	xfs_lsn_t		lsn)
421 {
422 	struct xfs_efd_log_item	*efdp = EFD_ITEM(lip);
423 
424 	/*
425 	 * Drop the EFI reference regardless of whether the EFD has been
426 	 * aborted. Once the EFD transaction is constructed, it is the sole
427 	 * responsibility of the EFD to release the EFI (even if the EFI is
428 	 * aborted due to log I/O error).
429 	 */
430 	xfs_efi_release(efdp->efd_efip);
431 	xfs_efd_item_free(efdp);
432 
433 	return (xfs_lsn_t)-1;
434 }
435 
436 /*
437  * The EFD dependency tracking op doesn't do squat.  It can't because
438  * it doesn't know where the free extent is coming from.  The dependency
439  * tracking has to be handled by the "enclosing" metadata object.  For
440  * example, for inodes, the inode is locked throughout the extent freeing
441  * so the dependency should be recorded there.
442  */
443 STATIC void
444 xfs_efd_item_committing(
445 	struct xfs_log_item	*lip,
446 	xfs_lsn_t		lsn)
447 {
448 }
449 
450 /*
451  * This is the ops vector shared by all efd log items.
452  */
453 static const struct xfs_item_ops xfs_efd_item_ops = {
454 	.iop_size	= xfs_efd_item_size,
455 	.iop_format	= xfs_efd_item_format,
456 	.iop_pin	= xfs_efd_item_pin,
457 	.iop_unpin	= xfs_efd_item_unpin,
458 	.iop_unlock	= xfs_efd_item_unlock,
459 	.iop_committed	= xfs_efd_item_committed,
460 	.iop_push	= xfs_efd_item_push,
461 	.iop_committing = xfs_efd_item_committing
462 };
463 
464 /*
465  * Allocate and initialize an efd item with the given number of extents.
466  */
467 struct xfs_efd_log_item *
468 xfs_efd_init(
469 	struct xfs_mount	*mp,
470 	struct xfs_efi_log_item	*efip,
471 	uint			nextents)
472 
473 {
474 	struct xfs_efd_log_item	*efdp;
475 	uint			size;
476 
477 	ASSERT(nextents > 0);
478 	if (nextents > XFS_EFD_MAX_FAST_EXTENTS) {
479 		size = (uint)(sizeof(xfs_efd_log_item_t) +
480 			((nextents - 1) * sizeof(xfs_extent_t)));
481 		efdp = kmem_zalloc(size, KM_SLEEP);
482 	} else {
483 		efdp = kmem_zone_zalloc(xfs_efd_zone, KM_SLEEP);
484 	}
485 
486 	xfs_log_item_init(mp, &efdp->efd_item, XFS_LI_EFD, &xfs_efd_item_ops);
487 	efdp->efd_efip = efip;
488 	efdp->efd_format.efd_nextents = nextents;
489 	efdp->efd_format.efd_efi_id = efip->efi_format.efi_id;
490 
491 	return efdp;
492 }
493 
494 /*
495  * Process an extent free intent item that was recovered from
496  * the log.  We need to free the extents that it describes.
497  */
498 int
499 xfs_efi_recover(
500 	struct xfs_mount	*mp,
501 	struct xfs_efi_log_item	*efip)
502 {
503 	struct xfs_efd_log_item	*efdp;
504 	struct xfs_trans	*tp;
505 	int			i;
506 	int			error = 0;
507 	xfs_extent_t		*extp;
508 	xfs_fsblock_t		startblock_fsb;
509 	struct xfs_owner_info	oinfo;
510 
511 	ASSERT(!test_bit(XFS_EFI_RECOVERED, &efip->efi_flags));
512 
513 	/*
514 	 * First check the validity of the extents described by the
515 	 * EFI.  If any are bad, then assume that all are bad and
516 	 * just toss the EFI.
517 	 */
518 	for (i = 0; i < efip->efi_format.efi_nextents; i++) {
519 		extp = &efip->efi_format.efi_extents[i];
520 		startblock_fsb = XFS_BB_TO_FSB(mp,
521 				   XFS_FSB_TO_DADDR(mp, extp->ext_start));
522 		if (startblock_fsb == 0 ||
523 		    extp->ext_len == 0 ||
524 		    startblock_fsb >= mp->m_sb.sb_dblocks ||
525 		    extp->ext_len >= mp->m_sb.sb_agblocks) {
526 			/*
527 			 * This will pull the EFI from the AIL and
528 			 * free the memory associated with it.
529 			 */
530 			set_bit(XFS_EFI_RECOVERED, &efip->efi_flags);
531 			xfs_efi_release(efip);
532 			return -EIO;
533 		}
534 	}
535 
536 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp);
537 	if (error)
538 		return error;
539 	efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents);
540 
541 	xfs_rmap_any_owner_update(&oinfo);
542 	for (i = 0; i < efip->efi_format.efi_nextents; i++) {
543 		extp = &efip->efi_format.efi_extents[i];
544 		error = xfs_trans_free_extent(tp, efdp, extp->ext_start,
545 					      extp->ext_len, &oinfo);
546 		if (error)
547 			goto abort_error;
548 
549 	}
550 
551 	set_bit(XFS_EFI_RECOVERED, &efip->efi_flags);
552 	error = xfs_trans_commit(tp);
553 	return error;
554 
555 abort_error:
556 	xfs_trans_cancel(tp);
557 	return error;
558 }
559