1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2001,2005 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_format.h" 9 #include "xfs_log_format.h" 10 #include "xfs_trans_resv.h" 11 #include "xfs_bit.h" 12 #include "xfs_shared.h" 13 #include "xfs_mount.h" 14 #include "xfs_ag.h" 15 #include "xfs_defer.h" 16 #include "xfs_trans.h" 17 #include "xfs_trans_priv.h" 18 #include "xfs_extfree_item.h" 19 #include "xfs_log.h" 20 #include "xfs_btree.h" 21 #include "xfs_rmap.h" 22 #include "xfs_alloc.h" 23 #include "xfs_bmap.h" 24 #include "xfs_trace.h" 25 #include "xfs_error.h" 26 #include "xfs_log_priv.h" 27 #include "xfs_log_recover.h" 28 29 struct kmem_cache *xfs_efi_cache; 30 struct kmem_cache *xfs_efd_cache; 31 32 static const struct xfs_item_ops xfs_efi_item_ops; 33 34 static inline struct xfs_efi_log_item *EFI_ITEM(struct xfs_log_item *lip) 35 { 36 return container_of(lip, struct xfs_efi_log_item, efi_item); 37 } 38 39 STATIC void 40 xfs_efi_item_free( 41 struct xfs_efi_log_item *efip) 42 { 43 kmem_free(efip->efi_item.li_lv_shadow); 44 if (efip->efi_format.efi_nextents > XFS_EFI_MAX_FAST_EXTENTS) 45 kmem_free(efip); 46 else 47 kmem_cache_free(xfs_efi_cache, efip); 48 } 49 50 /* 51 * Freeing the efi requires that we remove it from the AIL if it has already 52 * been placed there. However, the EFI may not yet have been placed in the AIL 53 * when called by xfs_efi_release() from EFD processing due to the ordering of 54 * committed vs unpin operations in bulk insert operations. Hence the reference 55 * count to ensure only the last caller frees the EFI. 56 */ 57 STATIC void 58 xfs_efi_release( 59 struct xfs_efi_log_item *efip) 60 { 61 ASSERT(atomic_read(&efip->efi_refcount) > 0); 62 if (!atomic_dec_and_test(&efip->efi_refcount)) 63 return; 64 65 xfs_trans_ail_delete(&efip->efi_item, 0); 66 xfs_efi_item_free(efip); 67 } 68 69 STATIC void 70 xfs_efi_item_size( 71 struct xfs_log_item *lip, 72 int *nvecs, 73 int *nbytes) 74 { 75 struct xfs_efi_log_item *efip = EFI_ITEM(lip); 76 77 *nvecs += 1; 78 *nbytes += xfs_efi_log_format_sizeof(efip->efi_format.efi_nextents); 79 } 80 81 /* 82 * This is called to fill in the vector of log iovecs for the 83 * given efi log item. We use only 1 iovec, and we point that 84 * at the efi_log_format structure embedded in the efi item. 85 * It is at this point that we assert that all of the extent 86 * slots in the efi item have been filled. 87 */ 88 STATIC void 89 xfs_efi_item_format( 90 struct xfs_log_item *lip, 91 struct xfs_log_vec *lv) 92 { 93 struct xfs_efi_log_item *efip = EFI_ITEM(lip); 94 struct xfs_log_iovec *vecp = NULL; 95 96 ASSERT(atomic_read(&efip->efi_next_extent) == 97 efip->efi_format.efi_nextents); 98 99 efip->efi_format.efi_type = XFS_LI_EFI; 100 efip->efi_format.efi_size = 1; 101 102 xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_EFI_FORMAT, 103 &efip->efi_format, 104 xfs_efi_log_format_sizeof(efip->efi_format.efi_nextents)); 105 } 106 107 108 /* 109 * The unpin operation is the last place an EFI is manipulated in the log. It is 110 * either inserted in the AIL or aborted in the event of a log I/O error. In 111 * either case, the EFI transaction has been successfully committed to make it 112 * this far. Therefore, we expect whoever committed the EFI to either construct 113 * and commit the EFD or drop the EFD's reference in the event of error. Simply 114 * drop the log's EFI reference now that the log is done with it. 115 */ 116 STATIC void 117 xfs_efi_item_unpin( 118 struct xfs_log_item *lip, 119 int remove) 120 { 121 struct xfs_efi_log_item *efip = EFI_ITEM(lip); 122 xfs_efi_release(efip); 123 } 124 125 /* 126 * The EFI has been either committed or aborted if the transaction has been 127 * cancelled. If the transaction was cancelled, an EFD isn't going to be 128 * constructed and thus we free the EFI here directly. 129 */ 130 STATIC void 131 xfs_efi_item_release( 132 struct xfs_log_item *lip) 133 { 134 xfs_efi_release(EFI_ITEM(lip)); 135 } 136 137 /* 138 * Allocate and initialize an efi item with the given number of extents. 139 */ 140 STATIC struct xfs_efi_log_item * 141 xfs_efi_init( 142 struct xfs_mount *mp, 143 uint nextents) 144 145 { 146 struct xfs_efi_log_item *efip; 147 148 ASSERT(nextents > 0); 149 if (nextents > XFS_EFI_MAX_FAST_EXTENTS) { 150 efip = kzalloc(xfs_efi_log_item_sizeof(nextents), 151 GFP_KERNEL | __GFP_NOFAIL); 152 } else { 153 efip = kmem_cache_zalloc(xfs_efi_cache, 154 GFP_KERNEL | __GFP_NOFAIL); 155 } 156 157 xfs_log_item_init(mp, &efip->efi_item, XFS_LI_EFI, &xfs_efi_item_ops); 158 efip->efi_format.efi_nextents = nextents; 159 efip->efi_format.efi_id = (uintptr_t)(void *)efip; 160 atomic_set(&efip->efi_next_extent, 0); 161 atomic_set(&efip->efi_refcount, 2); 162 163 return efip; 164 } 165 166 /* 167 * Copy an EFI format buffer from the given buf, and into the destination 168 * EFI format structure. 169 * The given buffer can be in 32 bit or 64 bit form (which has different padding), 170 * one of which will be the native format for this kernel. 171 * It will handle the conversion of formats if necessary. 172 */ 173 STATIC int 174 xfs_efi_copy_format(xfs_log_iovec_t *buf, xfs_efi_log_format_t *dst_efi_fmt) 175 { 176 xfs_efi_log_format_t *src_efi_fmt = buf->i_addr; 177 uint i; 178 uint len = xfs_efi_log_format_sizeof(src_efi_fmt->efi_nextents); 179 uint len32 = xfs_efi_log_format32_sizeof(src_efi_fmt->efi_nextents); 180 uint len64 = xfs_efi_log_format64_sizeof(src_efi_fmt->efi_nextents); 181 182 if (buf->i_len == len) { 183 memcpy(dst_efi_fmt, src_efi_fmt, 184 offsetof(struct xfs_efi_log_format, efi_extents)); 185 for (i = 0; i < src_efi_fmt->efi_nextents; i++) 186 memcpy(&dst_efi_fmt->efi_extents[i], 187 &src_efi_fmt->efi_extents[i], 188 sizeof(struct xfs_extent)); 189 return 0; 190 } else if (buf->i_len == len32) { 191 xfs_efi_log_format_32_t *src_efi_fmt_32 = buf->i_addr; 192 193 dst_efi_fmt->efi_type = src_efi_fmt_32->efi_type; 194 dst_efi_fmt->efi_size = src_efi_fmt_32->efi_size; 195 dst_efi_fmt->efi_nextents = src_efi_fmt_32->efi_nextents; 196 dst_efi_fmt->efi_id = src_efi_fmt_32->efi_id; 197 for (i = 0; i < dst_efi_fmt->efi_nextents; i++) { 198 dst_efi_fmt->efi_extents[i].ext_start = 199 src_efi_fmt_32->efi_extents[i].ext_start; 200 dst_efi_fmt->efi_extents[i].ext_len = 201 src_efi_fmt_32->efi_extents[i].ext_len; 202 } 203 return 0; 204 } else if (buf->i_len == len64) { 205 xfs_efi_log_format_64_t *src_efi_fmt_64 = buf->i_addr; 206 207 dst_efi_fmt->efi_type = src_efi_fmt_64->efi_type; 208 dst_efi_fmt->efi_size = src_efi_fmt_64->efi_size; 209 dst_efi_fmt->efi_nextents = src_efi_fmt_64->efi_nextents; 210 dst_efi_fmt->efi_id = src_efi_fmt_64->efi_id; 211 for (i = 0; i < dst_efi_fmt->efi_nextents; i++) { 212 dst_efi_fmt->efi_extents[i].ext_start = 213 src_efi_fmt_64->efi_extents[i].ext_start; 214 dst_efi_fmt->efi_extents[i].ext_len = 215 src_efi_fmt_64->efi_extents[i].ext_len; 216 } 217 return 0; 218 } 219 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, NULL, buf->i_addr, 220 buf->i_len); 221 return -EFSCORRUPTED; 222 } 223 224 static inline struct xfs_efd_log_item *EFD_ITEM(struct xfs_log_item *lip) 225 { 226 return container_of(lip, struct xfs_efd_log_item, efd_item); 227 } 228 229 STATIC void 230 xfs_efd_item_free(struct xfs_efd_log_item *efdp) 231 { 232 kmem_free(efdp->efd_item.li_lv_shadow); 233 if (efdp->efd_format.efd_nextents > XFS_EFD_MAX_FAST_EXTENTS) 234 kmem_free(efdp); 235 else 236 kmem_cache_free(xfs_efd_cache, efdp); 237 } 238 239 STATIC void 240 xfs_efd_item_size( 241 struct xfs_log_item *lip, 242 int *nvecs, 243 int *nbytes) 244 { 245 struct xfs_efd_log_item *efdp = EFD_ITEM(lip); 246 247 *nvecs += 1; 248 *nbytes += xfs_efd_log_format_sizeof(efdp->efd_format.efd_nextents); 249 } 250 251 /* 252 * This is called to fill in the vector of log iovecs for the 253 * given efd log item. We use only 1 iovec, and we point that 254 * at the efd_log_format structure embedded in the efd item. 255 * It is at this point that we assert that all of the extent 256 * slots in the efd item have been filled. 257 */ 258 STATIC void 259 xfs_efd_item_format( 260 struct xfs_log_item *lip, 261 struct xfs_log_vec *lv) 262 { 263 struct xfs_efd_log_item *efdp = EFD_ITEM(lip); 264 struct xfs_log_iovec *vecp = NULL; 265 266 ASSERT(efdp->efd_next_extent == efdp->efd_format.efd_nextents); 267 268 efdp->efd_format.efd_type = XFS_LI_EFD; 269 efdp->efd_format.efd_size = 1; 270 271 xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_EFD_FORMAT, 272 &efdp->efd_format, 273 xfs_efd_log_format_sizeof(efdp->efd_format.efd_nextents)); 274 } 275 276 /* 277 * The EFD is either committed or aborted if the transaction is cancelled. If 278 * the transaction is cancelled, drop our reference to the EFI and free the EFD. 279 */ 280 STATIC void 281 xfs_efd_item_release( 282 struct xfs_log_item *lip) 283 { 284 struct xfs_efd_log_item *efdp = EFD_ITEM(lip); 285 286 xfs_efi_release(efdp->efd_efip); 287 xfs_efd_item_free(efdp); 288 } 289 290 static struct xfs_log_item * 291 xfs_efd_item_intent( 292 struct xfs_log_item *lip) 293 { 294 return &EFD_ITEM(lip)->efd_efip->efi_item; 295 } 296 297 static const struct xfs_item_ops xfs_efd_item_ops = { 298 .flags = XFS_ITEM_RELEASE_WHEN_COMMITTED | 299 XFS_ITEM_INTENT_DONE, 300 .iop_size = xfs_efd_item_size, 301 .iop_format = xfs_efd_item_format, 302 .iop_release = xfs_efd_item_release, 303 .iop_intent = xfs_efd_item_intent, 304 }; 305 306 /* 307 * Allocate an "extent free done" log item that will hold nextents worth of 308 * extents. The caller must use all nextents extents, because we are not 309 * flexible about this at all. 310 */ 311 static struct xfs_efd_log_item * 312 xfs_trans_get_efd( 313 struct xfs_trans *tp, 314 struct xfs_efi_log_item *efip, 315 unsigned int nextents) 316 { 317 struct xfs_efd_log_item *efdp; 318 319 ASSERT(nextents > 0); 320 321 if (nextents > XFS_EFD_MAX_FAST_EXTENTS) { 322 efdp = kzalloc(xfs_efd_log_item_sizeof(nextents), 323 GFP_KERNEL | __GFP_NOFAIL); 324 } else { 325 efdp = kmem_cache_zalloc(xfs_efd_cache, 326 GFP_KERNEL | __GFP_NOFAIL); 327 } 328 329 xfs_log_item_init(tp->t_mountp, &efdp->efd_item, XFS_LI_EFD, 330 &xfs_efd_item_ops); 331 efdp->efd_efip = efip; 332 efdp->efd_format.efd_nextents = nextents; 333 efdp->efd_format.efd_efi_id = efip->efi_format.efi_id; 334 335 xfs_trans_add_item(tp, &efdp->efd_item); 336 return efdp; 337 } 338 339 /* 340 * Free an extent and log it to the EFD. Note that the transaction is marked 341 * dirty regardless of whether the extent free succeeds or fails to support the 342 * EFI/EFD lifecycle rules. 343 */ 344 static int 345 xfs_trans_free_extent( 346 struct xfs_trans *tp, 347 struct xfs_efd_log_item *efdp, 348 struct xfs_extent_free_item *xefi) 349 { 350 struct xfs_owner_info oinfo = { }; 351 struct xfs_mount *mp = tp->t_mountp; 352 struct xfs_extent *extp; 353 uint next_extent; 354 xfs_agnumber_t agno = XFS_FSB_TO_AGNO(mp, 355 xefi->xefi_startblock); 356 xfs_agblock_t agbno = XFS_FSB_TO_AGBNO(mp, 357 xefi->xefi_startblock); 358 int error; 359 360 oinfo.oi_owner = xefi->xefi_owner; 361 if (xefi->xefi_flags & XFS_EFI_ATTR_FORK) 362 oinfo.oi_flags |= XFS_OWNER_INFO_ATTR_FORK; 363 if (xefi->xefi_flags & XFS_EFI_BMBT_BLOCK) 364 oinfo.oi_flags |= XFS_OWNER_INFO_BMBT_BLOCK; 365 366 trace_xfs_bmap_free_deferred(tp->t_mountp, agno, 0, agbno, 367 xefi->xefi_blockcount); 368 369 error = __xfs_free_extent(tp, xefi->xefi_startblock, 370 xefi->xefi_blockcount, &oinfo, XFS_AG_RESV_NONE, 371 xefi->xefi_flags & XFS_EFI_SKIP_DISCARD); 372 /* 373 * Mark the transaction dirty, even on error. This ensures the 374 * transaction is aborted, which: 375 * 376 * 1.) releases the EFI and frees the EFD 377 * 2.) shuts down the filesystem 378 */ 379 tp->t_flags |= XFS_TRANS_DIRTY | XFS_TRANS_HAS_INTENT_DONE; 380 set_bit(XFS_LI_DIRTY, &efdp->efd_item.li_flags); 381 382 next_extent = efdp->efd_next_extent; 383 ASSERT(next_extent < efdp->efd_format.efd_nextents); 384 extp = &(efdp->efd_format.efd_extents[next_extent]); 385 extp->ext_start = xefi->xefi_startblock; 386 extp->ext_len = xefi->xefi_blockcount; 387 efdp->efd_next_extent++; 388 389 return error; 390 } 391 392 /* Sort bmap items by AG. */ 393 static int 394 xfs_extent_free_diff_items( 395 void *priv, 396 const struct list_head *a, 397 const struct list_head *b) 398 { 399 struct xfs_mount *mp = priv; 400 struct xfs_extent_free_item *ra; 401 struct xfs_extent_free_item *rb; 402 403 ra = container_of(a, struct xfs_extent_free_item, xefi_list); 404 rb = container_of(b, struct xfs_extent_free_item, xefi_list); 405 return XFS_FSB_TO_AGNO(mp, ra->xefi_startblock) - 406 XFS_FSB_TO_AGNO(mp, rb->xefi_startblock); 407 } 408 409 /* Log a free extent to the intent item. */ 410 STATIC void 411 xfs_extent_free_log_item( 412 struct xfs_trans *tp, 413 struct xfs_efi_log_item *efip, 414 struct xfs_extent_free_item *xefi) 415 { 416 uint next_extent; 417 struct xfs_extent *extp; 418 419 tp->t_flags |= XFS_TRANS_DIRTY; 420 set_bit(XFS_LI_DIRTY, &efip->efi_item.li_flags); 421 422 /* 423 * atomic_inc_return gives us the value after the increment; 424 * we want to use it as an array index so we need to subtract 1 from 425 * it. 426 */ 427 next_extent = atomic_inc_return(&efip->efi_next_extent) - 1; 428 ASSERT(next_extent < efip->efi_format.efi_nextents); 429 extp = &efip->efi_format.efi_extents[next_extent]; 430 extp->ext_start = xefi->xefi_startblock; 431 extp->ext_len = xefi->xefi_blockcount; 432 } 433 434 static struct xfs_log_item * 435 xfs_extent_free_create_intent( 436 struct xfs_trans *tp, 437 struct list_head *items, 438 unsigned int count, 439 bool sort) 440 { 441 struct xfs_mount *mp = tp->t_mountp; 442 struct xfs_efi_log_item *efip = xfs_efi_init(mp, count); 443 struct xfs_extent_free_item *xefi; 444 445 ASSERT(count > 0); 446 447 xfs_trans_add_item(tp, &efip->efi_item); 448 if (sort) 449 list_sort(mp, items, xfs_extent_free_diff_items); 450 list_for_each_entry(xefi, items, xefi_list) 451 xfs_extent_free_log_item(tp, efip, xefi); 452 return &efip->efi_item; 453 } 454 455 /* Get an EFD so we can process all the free extents. */ 456 static struct xfs_log_item * 457 xfs_extent_free_create_done( 458 struct xfs_trans *tp, 459 struct xfs_log_item *intent, 460 unsigned int count) 461 { 462 return &xfs_trans_get_efd(tp, EFI_ITEM(intent), count)->efd_item; 463 } 464 465 /* Process a free extent. */ 466 STATIC int 467 xfs_extent_free_finish_item( 468 struct xfs_trans *tp, 469 struct xfs_log_item *done, 470 struct list_head *item, 471 struct xfs_btree_cur **state) 472 { 473 struct xfs_extent_free_item *xefi; 474 int error; 475 476 xefi = container_of(item, struct xfs_extent_free_item, xefi_list); 477 478 error = xfs_trans_free_extent(tp, EFD_ITEM(done), xefi); 479 kmem_cache_free(xfs_extfree_item_cache, xefi); 480 return error; 481 } 482 483 /* Abort all pending EFIs. */ 484 STATIC void 485 xfs_extent_free_abort_intent( 486 struct xfs_log_item *intent) 487 { 488 xfs_efi_release(EFI_ITEM(intent)); 489 } 490 491 /* Cancel a free extent. */ 492 STATIC void 493 xfs_extent_free_cancel_item( 494 struct list_head *item) 495 { 496 struct xfs_extent_free_item *xefi; 497 498 xefi = container_of(item, struct xfs_extent_free_item, xefi_list); 499 kmem_cache_free(xfs_extfree_item_cache, xefi); 500 } 501 502 const struct xfs_defer_op_type xfs_extent_free_defer_type = { 503 .max_items = XFS_EFI_MAX_FAST_EXTENTS, 504 .create_intent = xfs_extent_free_create_intent, 505 .abort_intent = xfs_extent_free_abort_intent, 506 .create_done = xfs_extent_free_create_done, 507 .finish_item = xfs_extent_free_finish_item, 508 .cancel_item = xfs_extent_free_cancel_item, 509 }; 510 511 /* 512 * AGFL blocks are accounted differently in the reserve pools and are not 513 * inserted into the busy extent list. 514 */ 515 STATIC int 516 xfs_agfl_free_finish_item( 517 struct xfs_trans *tp, 518 struct xfs_log_item *done, 519 struct list_head *item, 520 struct xfs_btree_cur **state) 521 { 522 struct xfs_owner_info oinfo = { }; 523 struct xfs_mount *mp = tp->t_mountp; 524 struct xfs_efd_log_item *efdp = EFD_ITEM(done); 525 struct xfs_extent_free_item *xefi; 526 struct xfs_extent *extp; 527 struct xfs_buf *agbp; 528 int error; 529 xfs_agnumber_t agno; 530 xfs_agblock_t agbno; 531 uint next_extent; 532 struct xfs_perag *pag; 533 534 xefi = container_of(item, struct xfs_extent_free_item, xefi_list); 535 ASSERT(xefi->xefi_blockcount == 1); 536 agno = XFS_FSB_TO_AGNO(mp, xefi->xefi_startblock); 537 agbno = XFS_FSB_TO_AGBNO(mp, xefi->xefi_startblock); 538 oinfo.oi_owner = xefi->xefi_owner; 539 540 trace_xfs_agfl_free_deferred(mp, agno, 0, agbno, xefi->xefi_blockcount); 541 542 pag = xfs_perag_get(mp, agno); 543 error = xfs_alloc_read_agf(pag, tp, 0, &agbp); 544 if (!error) 545 error = xfs_free_agfl_block(tp, agno, agbno, agbp, &oinfo); 546 xfs_perag_put(pag); 547 548 /* 549 * Mark the transaction dirty, even on error. This ensures the 550 * transaction is aborted, which: 551 * 552 * 1.) releases the EFI and frees the EFD 553 * 2.) shuts down the filesystem 554 */ 555 tp->t_flags |= XFS_TRANS_DIRTY; 556 set_bit(XFS_LI_DIRTY, &efdp->efd_item.li_flags); 557 558 next_extent = efdp->efd_next_extent; 559 ASSERT(next_extent < efdp->efd_format.efd_nextents); 560 extp = &(efdp->efd_format.efd_extents[next_extent]); 561 extp->ext_start = xefi->xefi_startblock; 562 extp->ext_len = xefi->xefi_blockcount; 563 efdp->efd_next_extent++; 564 565 kmem_cache_free(xfs_extfree_item_cache, xefi); 566 return error; 567 } 568 569 /* sub-type with special handling for AGFL deferred frees */ 570 const struct xfs_defer_op_type xfs_agfl_free_defer_type = { 571 .max_items = XFS_EFI_MAX_FAST_EXTENTS, 572 .create_intent = xfs_extent_free_create_intent, 573 .abort_intent = xfs_extent_free_abort_intent, 574 .create_done = xfs_extent_free_create_done, 575 .finish_item = xfs_agfl_free_finish_item, 576 .cancel_item = xfs_extent_free_cancel_item, 577 }; 578 579 /* Is this recovered EFI ok? */ 580 static inline bool 581 xfs_efi_validate_ext( 582 struct xfs_mount *mp, 583 struct xfs_extent *extp) 584 { 585 return xfs_verify_fsbext(mp, extp->ext_start, extp->ext_len); 586 } 587 588 /* 589 * Process an extent free intent item that was recovered from 590 * the log. We need to free the extents that it describes. 591 */ 592 STATIC int 593 xfs_efi_item_recover( 594 struct xfs_log_item *lip, 595 struct list_head *capture_list) 596 { 597 struct xfs_efi_log_item *efip = EFI_ITEM(lip); 598 struct xfs_mount *mp = lip->li_log->l_mp; 599 struct xfs_efd_log_item *efdp; 600 struct xfs_trans *tp; 601 int i; 602 int error = 0; 603 604 /* 605 * First check the validity of the extents described by the 606 * EFI. If any are bad, then assume that all are bad and 607 * just toss the EFI. 608 */ 609 for (i = 0; i < efip->efi_format.efi_nextents; i++) { 610 if (!xfs_efi_validate_ext(mp, 611 &efip->efi_format.efi_extents[i])) { 612 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp, 613 &efip->efi_format, 614 sizeof(efip->efi_format)); 615 return -EFSCORRUPTED; 616 } 617 } 618 619 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp); 620 if (error) 621 return error; 622 efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents); 623 624 for (i = 0; i < efip->efi_format.efi_nextents; i++) { 625 struct xfs_extent_free_item fake = { 626 .xefi_owner = XFS_RMAP_OWN_UNKNOWN, 627 }; 628 struct xfs_extent *extp; 629 630 extp = &efip->efi_format.efi_extents[i]; 631 632 fake.xefi_startblock = extp->ext_start; 633 fake.xefi_blockcount = extp->ext_len; 634 635 error = xfs_trans_free_extent(tp, efdp, &fake); 636 if (error == -EFSCORRUPTED) 637 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp, 638 extp, sizeof(*extp)); 639 if (error) 640 goto abort_error; 641 642 } 643 644 return xfs_defer_ops_capture_and_commit(tp, capture_list); 645 646 abort_error: 647 xfs_trans_cancel(tp); 648 return error; 649 } 650 651 STATIC bool 652 xfs_efi_item_match( 653 struct xfs_log_item *lip, 654 uint64_t intent_id) 655 { 656 return EFI_ITEM(lip)->efi_format.efi_id == intent_id; 657 } 658 659 /* Relog an intent item to push the log tail forward. */ 660 static struct xfs_log_item * 661 xfs_efi_item_relog( 662 struct xfs_log_item *intent, 663 struct xfs_trans *tp) 664 { 665 struct xfs_efd_log_item *efdp; 666 struct xfs_efi_log_item *efip; 667 struct xfs_extent *extp; 668 unsigned int count; 669 670 count = EFI_ITEM(intent)->efi_format.efi_nextents; 671 extp = EFI_ITEM(intent)->efi_format.efi_extents; 672 673 tp->t_flags |= XFS_TRANS_DIRTY; 674 efdp = xfs_trans_get_efd(tp, EFI_ITEM(intent), count); 675 efdp->efd_next_extent = count; 676 memcpy(efdp->efd_format.efd_extents, extp, count * sizeof(*extp)); 677 set_bit(XFS_LI_DIRTY, &efdp->efd_item.li_flags); 678 679 efip = xfs_efi_init(tp->t_mountp, count); 680 memcpy(efip->efi_format.efi_extents, extp, count * sizeof(*extp)); 681 atomic_set(&efip->efi_next_extent, count); 682 xfs_trans_add_item(tp, &efip->efi_item); 683 set_bit(XFS_LI_DIRTY, &efip->efi_item.li_flags); 684 return &efip->efi_item; 685 } 686 687 static const struct xfs_item_ops xfs_efi_item_ops = { 688 .flags = XFS_ITEM_INTENT, 689 .iop_size = xfs_efi_item_size, 690 .iop_format = xfs_efi_item_format, 691 .iop_unpin = xfs_efi_item_unpin, 692 .iop_release = xfs_efi_item_release, 693 .iop_recover = xfs_efi_item_recover, 694 .iop_match = xfs_efi_item_match, 695 .iop_relog = xfs_efi_item_relog, 696 }; 697 698 /* 699 * This routine is called to create an in-core extent free intent 700 * item from the efi format structure which was logged on disk. 701 * It allocates an in-core efi, copies the extents from the format 702 * structure into it, and adds the efi to the AIL with the given 703 * LSN. 704 */ 705 STATIC int 706 xlog_recover_efi_commit_pass2( 707 struct xlog *log, 708 struct list_head *buffer_list, 709 struct xlog_recover_item *item, 710 xfs_lsn_t lsn) 711 { 712 struct xfs_mount *mp = log->l_mp; 713 struct xfs_efi_log_item *efip; 714 struct xfs_efi_log_format *efi_formatp; 715 int error; 716 717 efi_formatp = item->ri_buf[0].i_addr; 718 719 if (item->ri_buf[0].i_len < xfs_efi_log_format_sizeof(0)) { 720 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp, 721 item->ri_buf[0].i_addr, item->ri_buf[0].i_len); 722 return -EFSCORRUPTED; 723 } 724 725 efip = xfs_efi_init(mp, efi_formatp->efi_nextents); 726 error = xfs_efi_copy_format(&item->ri_buf[0], &efip->efi_format); 727 if (error) { 728 xfs_efi_item_free(efip); 729 return error; 730 } 731 atomic_set(&efip->efi_next_extent, efi_formatp->efi_nextents); 732 /* 733 * Insert the intent into the AIL directly and drop one reference so 734 * that finishing or canceling the work will drop the other. 735 */ 736 xfs_trans_ail_insert(log->l_ailp, &efip->efi_item, lsn); 737 xfs_efi_release(efip); 738 return 0; 739 } 740 741 const struct xlog_recover_item_ops xlog_efi_item_ops = { 742 .item_type = XFS_LI_EFI, 743 .commit_pass2 = xlog_recover_efi_commit_pass2, 744 }; 745 746 /* 747 * This routine is called when an EFD format structure is found in a committed 748 * transaction in the log. Its purpose is to cancel the corresponding EFI if it 749 * was still in the log. To do this it searches the AIL for the EFI with an id 750 * equal to that in the EFD format structure. If we find it we drop the EFD 751 * reference, which removes the EFI from the AIL and frees it. 752 */ 753 STATIC int 754 xlog_recover_efd_commit_pass2( 755 struct xlog *log, 756 struct list_head *buffer_list, 757 struct xlog_recover_item *item, 758 xfs_lsn_t lsn) 759 { 760 struct xfs_efd_log_format *efd_formatp; 761 int buflen = item->ri_buf[0].i_len; 762 763 efd_formatp = item->ri_buf[0].i_addr; 764 765 if (buflen < sizeof(struct xfs_efd_log_format)) { 766 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, log->l_mp, 767 efd_formatp, buflen); 768 return -EFSCORRUPTED; 769 } 770 771 if (item->ri_buf[0].i_len != xfs_efd_log_format32_sizeof( 772 efd_formatp->efd_nextents) && 773 item->ri_buf[0].i_len != xfs_efd_log_format64_sizeof( 774 efd_formatp->efd_nextents)) { 775 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, log->l_mp, 776 efd_formatp, buflen); 777 return -EFSCORRUPTED; 778 } 779 780 xlog_recover_release_intent(log, XFS_LI_EFI, efd_formatp->efd_efi_id); 781 return 0; 782 } 783 784 const struct xlog_recover_item_ops xlog_efd_item_ops = { 785 .item_type = XFS_LI_EFD, 786 .commit_pass2 = xlog_recover_efd_commit_pass2, 787 }; 788