xref: /linux/fs/xfs/xfs_discard.c (revision add452d09a38c7a7c44aea55c1015392cebf9fa7)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2010, 2023 Red Hat, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include "xfs_shared.h"
8 #include "xfs_format.h"
9 #include "xfs_log_format.h"
10 #include "xfs_trans_resv.h"
11 #include "xfs_trans.h"
12 #include "xfs_mount.h"
13 #include "xfs_btree.h"
14 #include "xfs_alloc_btree.h"
15 #include "xfs_alloc.h"
16 #include "xfs_discard.h"
17 #include "xfs_error.h"
18 #include "xfs_extent_busy.h"
19 #include "xfs_trace.h"
20 #include "xfs_log.h"
21 #include "xfs_ag.h"
22 #include "xfs_health.h"
23 #include "xfs_rtbitmap.h"
24 
25 /*
26  * Notes on an efficient, low latency fstrim algorithm
27  *
28  * We need to walk the filesystem free space and issue discards on the free
29  * space that meet the search criteria (size and location). We cannot issue
30  * discards on extents that might be in use, or are so recently in use they are
31  * still marked as busy. To serialise against extent state changes whilst we are
32  * gathering extents to trim, we must hold the AGF lock to lock out other
33  * allocations and extent free operations that might change extent state.
34  *
35  * However, we cannot just hold the AGF for the entire AG free space walk whilst
36  * we issue discards on each free space that is found. Storage devices can have
37  * extremely slow discard implementations (e.g. ceph RBD) and so walking a
38  * couple of million free extents and issuing synchronous discards on each
39  * extent can take a *long* time. Whilst we are doing this walk, nothing else
40  * can access the AGF, and we can stall transactions and hence the log whilst
41  * modifications wait for the AGF lock to be released. This can lead hung tasks
42  * kicking the hung task timer and rebooting the system. This is bad.
43  *
44  * Hence we need to take a leaf from the bulkstat playbook. It takes the AGI
45  * lock, gathers a range of inode cluster buffers that are allocated, drops the
46  * AGI lock and then reads all the inode cluster buffers and processes them. It
47  * loops doing this, using a cursor to keep track of where it is up to in the AG
48  * for each iteration to restart the INOBT lookup from.
49  *
50  * We can't do this exactly with free space - once we drop the AGF lock, the
51  * state of the free extent is out of our control and we cannot run a discard
52  * safely on it in this situation. Unless, of course, we've marked the free
53  * extent as busy and undergoing a discard operation whilst we held the AGF
54  * locked.
55  *
56  * This is exactly how online discard works - free extents are marked busy when
57  * they are freed, and once the extent free has been committed to the journal,
58  * the busy extent record is marked as "undergoing discard" and the discard is
59  * then issued on the free extent. Once the discard completes, the busy extent
60  * record is removed and the extent is able to be allocated again.
61  *
62  * In the context of fstrim, if we find a free extent we need to discard, we
63  * don't have to discard it immediately. All we need to do it record that free
64  * extent as being busy and under discard, and all the allocation routines will
65  * now avoid trying to allocate it. Hence if we mark the extent as busy under
66  * the AGF lock, we can safely discard it without holding the AGF lock because
67  * nothing will attempt to allocate that free space until the discard completes.
68  *
69  * This also allows us to issue discards asynchronously like we do with online
70  * discard, and so for fast devices fstrim will run much faster as we can have
71  * multiple discard operations in flight at once, as well as pipeline the free
72  * extent search so that it overlaps in flight discard IO.
73  */
74 
75 struct workqueue_struct *xfs_discard_wq;
76 
77 static void
78 xfs_discard_endio_work(
79 	struct work_struct	*work)
80 {
81 	struct xfs_busy_extents	*extents =
82 		container_of(work, struct xfs_busy_extents, endio_work);
83 
84 	xfs_extent_busy_clear(extents->mount, &extents->extent_list, false);
85 	kfree(extents->owner);
86 }
87 
88 /*
89  * Queue up the actual completion to a thread to avoid IRQ-safe locking for
90  * pagb_lock.
91  */
92 static void
93 xfs_discard_endio(
94 	struct bio		*bio)
95 {
96 	struct xfs_busy_extents	*extents = bio->bi_private;
97 
98 	INIT_WORK(&extents->endio_work, xfs_discard_endio_work);
99 	queue_work(xfs_discard_wq, &extents->endio_work);
100 	bio_put(bio);
101 }
102 
103 /*
104  * Walk the discard list and issue discards on all the busy extents in the
105  * list. We plug and chain the bios so that we only need a single completion
106  * call to clear all the busy extents once the discards are complete.
107  */
108 int
109 xfs_discard_extents(
110 	struct xfs_mount	*mp,
111 	struct xfs_busy_extents	*extents)
112 {
113 	struct xfs_extent_busy	*busyp;
114 	struct bio		*bio = NULL;
115 	struct blk_plug		plug;
116 	int			error = 0;
117 
118 	blk_start_plug(&plug);
119 	list_for_each_entry(busyp, &extents->extent_list, list) {
120 		trace_xfs_discard_extent(mp, busyp->agno, busyp->bno,
121 					 busyp->length);
122 
123 		error = __blkdev_issue_discard(mp->m_ddev_targp->bt_bdev,
124 				XFS_AGB_TO_DADDR(mp, busyp->agno, busyp->bno),
125 				XFS_FSB_TO_BB(mp, busyp->length),
126 				GFP_KERNEL, &bio);
127 		if (error && error != -EOPNOTSUPP) {
128 			xfs_info(mp,
129 	 "discard failed for extent [0x%llx,%u], error %d",
130 				 (unsigned long long)busyp->bno,
131 				 busyp->length,
132 				 error);
133 			break;
134 		}
135 	}
136 
137 	if (bio) {
138 		bio->bi_private = extents;
139 		bio->bi_end_io = xfs_discard_endio;
140 		submit_bio(bio);
141 	} else {
142 		xfs_discard_endio_work(&extents->endio_work);
143 	}
144 	blk_finish_plug(&plug);
145 
146 	return error;
147 }
148 
149 struct xfs_trim_cur {
150 	xfs_agblock_t	start;
151 	xfs_extlen_t	count;
152 	xfs_agblock_t	end;
153 	xfs_extlen_t	minlen;
154 	bool		by_bno;
155 };
156 
157 static int
158 xfs_trim_gather_extents(
159 	struct xfs_perag	*pag,
160 	struct xfs_trim_cur	*tcur,
161 	struct xfs_busy_extents	*extents)
162 {
163 	struct xfs_mount	*mp = pag->pag_mount;
164 	struct xfs_trans	*tp;
165 	struct xfs_btree_cur	*cur;
166 	struct xfs_buf		*agbp;
167 	int			error;
168 	int			i;
169 	int			batch = 100;
170 
171 	/*
172 	 * Force out the log.  This means any transactions that might have freed
173 	 * space before we take the AGF buffer lock are now on disk, and the
174 	 * volatile disk cache is flushed.
175 	 */
176 	xfs_log_force(mp, XFS_LOG_SYNC);
177 
178 	error = xfs_trans_alloc_empty(mp, &tp);
179 	if (error)
180 		return error;
181 
182 	error = xfs_alloc_read_agf(pag, tp, 0, &agbp);
183 	if (error)
184 		goto out_trans_cancel;
185 
186 	if (tcur->by_bno) {
187 		/* sub-AG discard request always starts at tcur->start */
188 		cur = xfs_bnobt_init_cursor(mp, tp, agbp, pag);
189 		error = xfs_alloc_lookup_le(cur, tcur->start, 0, &i);
190 		if (!error && !i)
191 			error = xfs_alloc_lookup_ge(cur, tcur->start, 0, &i);
192 	} else if (tcur->start == 0) {
193 		/* first time through a by-len starts with max length */
194 		cur = xfs_cntbt_init_cursor(mp, tp, agbp, pag);
195 		error = xfs_alloc_lookup_ge(cur, 0, tcur->count, &i);
196 	} else {
197 		/* nth time through a by-len starts where we left off */
198 		cur = xfs_cntbt_init_cursor(mp, tp, agbp, pag);
199 		error = xfs_alloc_lookup_le(cur, tcur->start, tcur->count, &i);
200 	}
201 	if (error)
202 		goto out_del_cursor;
203 	if (i == 0) {
204 		/* nothing of that length left in the AG, we are done */
205 		tcur->count = 0;
206 		goto out_del_cursor;
207 	}
208 
209 	/*
210 	 * Loop until we are done with all extents that are large
211 	 * enough to be worth discarding or we hit batch limits.
212 	 */
213 	while (i) {
214 		xfs_agblock_t	fbno;
215 		xfs_extlen_t	flen;
216 
217 		error = xfs_alloc_get_rec(cur, &fbno, &flen, &i);
218 		if (error)
219 			break;
220 		if (XFS_IS_CORRUPT(mp, i != 1)) {
221 			xfs_btree_mark_sick(cur);
222 			error = -EFSCORRUPTED;
223 			break;
224 		}
225 
226 		if (--batch <= 0) {
227 			/*
228 			 * Update the cursor to point at this extent so we
229 			 * restart the next batch from this extent.
230 			 */
231 			tcur->start = fbno;
232 			tcur->count = flen;
233 			break;
234 		}
235 
236 		/*
237 		 * If the extent is entirely outside of the range we are
238 		 * supposed to skip it.  Do not bother to trim down partially
239 		 * overlapping ranges for now.
240 		 */
241 		if (fbno + flen < tcur->start) {
242 			trace_xfs_discard_exclude(mp, pag->pag_agno, fbno, flen);
243 			goto next_extent;
244 		}
245 		if (fbno > tcur->end) {
246 			trace_xfs_discard_exclude(mp, pag->pag_agno, fbno, flen);
247 			if (tcur->by_bno) {
248 				tcur->count = 0;
249 				break;
250 			}
251 			goto next_extent;
252 		}
253 
254 		/* Trim the extent returned to the range we want. */
255 		if (fbno < tcur->start) {
256 			flen -= tcur->start - fbno;
257 			fbno = tcur->start;
258 		}
259 		if (fbno + flen > tcur->end + 1)
260 			flen = tcur->end - fbno + 1;
261 
262 		/* Too small?  Give up. */
263 		if (flen < tcur->minlen) {
264 			trace_xfs_discard_toosmall(mp, pag->pag_agno, fbno, flen);
265 			if (tcur->by_bno)
266 				goto next_extent;
267 			tcur->count = 0;
268 			break;
269 		}
270 
271 		/*
272 		 * If any blocks in the range are still busy, skip the
273 		 * discard and try again the next time.
274 		 */
275 		if (xfs_extent_busy_search(mp, pag, fbno, flen)) {
276 			trace_xfs_discard_busy(mp, pag->pag_agno, fbno, flen);
277 			goto next_extent;
278 		}
279 
280 		xfs_extent_busy_insert_discard(pag, fbno, flen,
281 				&extents->extent_list);
282 next_extent:
283 		if (tcur->by_bno)
284 			error = xfs_btree_increment(cur, 0, &i);
285 		else
286 			error = xfs_btree_decrement(cur, 0, &i);
287 		if (error)
288 			break;
289 
290 		/*
291 		 * If there's no more records in the tree, we are done. Set the
292 		 * cursor block count to 0 to indicate to the caller that there
293 		 * is no more extents to search.
294 		 */
295 		if (i == 0)
296 			tcur->count = 0;
297 	}
298 
299 	/*
300 	 * If there was an error, release all the gathered busy extents because
301 	 * we aren't going to issue a discard on them any more.
302 	 */
303 	if (error)
304 		xfs_extent_busy_clear(mp, &extents->extent_list, false);
305 out_del_cursor:
306 	xfs_btree_del_cursor(cur, error);
307 out_trans_cancel:
308 	xfs_trans_cancel(tp);
309 	return error;
310 }
311 
312 static bool
313 xfs_trim_should_stop(void)
314 {
315 	return fatal_signal_pending(current) || freezing(current);
316 }
317 
318 /*
319  * Iterate the free list gathering extents and discarding them. We need a cursor
320  * for the repeated iteration of gather/discard loop, so use the longest extent
321  * we found in the last batch as the key to start the next.
322  */
323 static int
324 xfs_trim_perag_extents(
325 	struct xfs_perag	*pag,
326 	xfs_agblock_t		start,
327 	xfs_agblock_t		end,
328 	xfs_extlen_t		minlen)
329 {
330 	struct xfs_trim_cur	tcur = {
331 		.start		= start,
332 		.count		= pag->pagf_longest,
333 		.end		= end,
334 		.minlen		= minlen,
335 	};
336 	int			error = 0;
337 
338 	if (start != 0 || end != pag->block_count)
339 		tcur.by_bno = true;
340 
341 	do {
342 		struct xfs_busy_extents	*extents;
343 
344 		extents = kzalloc(sizeof(*extents), GFP_KERNEL);
345 		if (!extents) {
346 			error = -ENOMEM;
347 			break;
348 		}
349 
350 		extents->mount = pag->pag_mount;
351 		extents->owner = extents;
352 		INIT_LIST_HEAD(&extents->extent_list);
353 
354 		error = xfs_trim_gather_extents(pag, &tcur, extents);
355 		if (error) {
356 			kfree(extents);
357 			break;
358 		}
359 
360 		/*
361 		 * We hand the extent list to the discard function here so the
362 		 * discarded extents can be removed from the busy extent list.
363 		 * This allows the discards to run asynchronously with gathering
364 		 * the next round of extents to discard.
365 		 *
366 		 * However, we must ensure that we do not reference the extent
367 		 * list  after this function call, as it may have been freed by
368 		 * the time control returns to us.
369 		 */
370 		error = xfs_discard_extents(pag->pag_mount, extents);
371 		if (error)
372 			break;
373 
374 		if (xfs_trim_should_stop())
375 			break;
376 
377 	} while (tcur.count != 0);
378 
379 	return error;
380 
381 }
382 
383 static int
384 xfs_trim_datadev_extents(
385 	struct xfs_mount	*mp,
386 	xfs_daddr_t		start,
387 	xfs_daddr_t		end,
388 	xfs_extlen_t		minlen)
389 {
390 	xfs_agnumber_t		start_agno, end_agno;
391 	xfs_agblock_t		start_agbno, end_agbno;
392 	xfs_daddr_t		ddev_end;
393 	struct xfs_perag	*pag;
394 	int			last_error = 0, error;
395 
396 	ddev_end = min_t(xfs_daddr_t, end,
397 			 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks) - 1);
398 
399 	start_agno = xfs_daddr_to_agno(mp, start);
400 	start_agbno = xfs_daddr_to_agbno(mp, start);
401 	end_agno = xfs_daddr_to_agno(mp, ddev_end);
402 	end_agbno = xfs_daddr_to_agbno(mp, ddev_end);
403 
404 	for_each_perag_range(mp, start_agno, end_agno, pag) {
405 		xfs_agblock_t	agend = pag->block_count;
406 
407 		if (start_agno == end_agno)
408 			agend = end_agbno;
409 		error = xfs_trim_perag_extents(pag, start_agbno, agend, minlen);
410 		if (error)
411 			last_error = error;
412 
413 		if (xfs_trim_should_stop()) {
414 			xfs_perag_rele(pag);
415 			break;
416 		}
417 		start_agbno = 0;
418 	}
419 
420 	return last_error;
421 }
422 
423 #ifdef CONFIG_XFS_RT
424 struct xfs_trim_rtdev {
425 	/* list of rt extents to free */
426 	struct list_head	extent_list;
427 
428 	/* minimum length that caller allows us to trim */
429 	xfs_rtblock_t		minlen_fsb;
430 
431 	/* restart point for the rtbitmap walk */
432 	xfs_rtxnum_t		restart_rtx;
433 
434 	/* stopping point for the current rtbitmap walk */
435 	xfs_rtxnum_t		stop_rtx;
436 };
437 
438 struct xfs_rtx_busy {
439 	struct list_head	list;
440 	xfs_rtblock_t		bno;
441 	xfs_rtblock_t		length;
442 };
443 
444 static void
445 xfs_discard_free_rtdev_extents(
446 	struct xfs_trim_rtdev	*tr)
447 {
448 	struct xfs_rtx_busy	*busyp, *n;
449 
450 	list_for_each_entry_safe(busyp, n, &tr->extent_list, list) {
451 		list_del_init(&busyp->list);
452 		kfree(busyp);
453 	}
454 }
455 
456 /*
457  * Walk the discard list and issue discards on all the busy extents in the
458  * list. We plug and chain the bios so that we only need a single completion
459  * call to clear all the busy extents once the discards are complete.
460  */
461 static int
462 xfs_discard_rtdev_extents(
463 	struct xfs_mount	*mp,
464 	struct xfs_trim_rtdev	*tr)
465 {
466 	struct block_device	*bdev = mp->m_rtdev_targp->bt_bdev;
467 	struct xfs_rtx_busy	*busyp;
468 	struct bio		*bio = NULL;
469 	struct blk_plug		plug;
470 	xfs_rtblock_t		start = NULLRTBLOCK, length = 0;
471 	int			error = 0;
472 
473 	blk_start_plug(&plug);
474 	list_for_each_entry(busyp, &tr->extent_list, list) {
475 		if (start == NULLRTBLOCK)
476 			start = busyp->bno;
477 		length += busyp->length;
478 
479 		trace_xfs_discard_rtextent(mp, busyp->bno, busyp->length);
480 
481 		error = __blkdev_issue_discard(bdev,
482 				XFS_FSB_TO_BB(mp, busyp->bno),
483 				XFS_FSB_TO_BB(mp, busyp->length),
484 				GFP_NOFS, &bio);
485 		if (error)
486 			break;
487 	}
488 	xfs_discard_free_rtdev_extents(tr);
489 
490 	if (bio) {
491 		error = submit_bio_wait(bio);
492 		if (error == -EOPNOTSUPP)
493 			error = 0;
494 		if (error)
495 			xfs_info(mp,
496 	 "discard failed for rtextent [0x%llx,%llu], error %d",
497 				 (unsigned long long)start,
498 				 (unsigned long long)length,
499 				 error);
500 		bio_put(bio);
501 	}
502 	blk_finish_plug(&plug);
503 
504 	return error;
505 }
506 
507 static int
508 xfs_trim_gather_rtextent(
509 	struct xfs_mount		*mp,
510 	struct xfs_trans		*tp,
511 	const struct xfs_rtalloc_rec	*rec,
512 	void				*priv)
513 {
514 	struct xfs_trim_rtdev		*tr = priv;
515 	struct xfs_rtx_busy		*busyp;
516 	xfs_rtblock_t			rbno, rlen;
517 
518 	if (rec->ar_startext > tr->stop_rtx) {
519 		/*
520 		 * If we've scanned a large number of rtbitmap blocks, update
521 		 * the cursor to point at this extent so we restart the next
522 		 * batch from this extent.
523 		 */
524 		tr->restart_rtx = rec->ar_startext;
525 		return -ECANCELED;
526 	}
527 
528 	rbno = xfs_rtx_to_rtb(mp, rec->ar_startext);
529 	rlen = xfs_rtx_to_rtb(mp, rec->ar_extcount);
530 
531 	/* Ignore too small. */
532 	if (rlen < tr->minlen_fsb) {
533 		trace_xfs_discard_rttoosmall(mp, rbno, rlen);
534 		return 0;
535 	}
536 
537 	busyp = kzalloc(sizeof(struct xfs_rtx_busy), GFP_KERNEL);
538 	if (!busyp)
539 		return -ENOMEM;
540 
541 	busyp->bno = rbno;
542 	busyp->length = rlen;
543 	INIT_LIST_HEAD(&busyp->list);
544 	list_add_tail(&busyp->list, &tr->extent_list);
545 
546 	tr->restart_rtx = rec->ar_startext + rec->ar_extcount;
547 	return 0;
548 }
549 
550 static int
551 xfs_trim_rtdev_extents(
552 	struct xfs_mount	*mp,
553 	xfs_daddr_t		start,
554 	xfs_daddr_t		end,
555 	xfs_daddr_t		minlen)
556 {
557 	struct xfs_trim_rtdev	tr = {
558 		.minlen_fsb	= XFS_BB_TO_FSB(mp, minlen),
559 	};
560 	xfs_rtxnum_t		low, high;
561 	struct xfs_trans	*tp;
562 	xfs_daddr_t		rtdev_daddr;
563 	int			error;
564 
565 	INIT_LIST_HEAD(&tr.extent_list);
566 
567 	/* Shift the start and end downwards to match the rt device. */
568 	rtdev_daddr = XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
569 	if (start > rtdev_daddr)
570 		start -= rtdev_daddr;
571 	else
572 		start = 0;
573 
574 	if (end <= rtdev_daddr)
575 		return 0;
576 	end -= rtdev_daddr;
577 
578 	error = xfs_trans_alloc_empty(mp, &tp);
579 	if (error)
580 		return error;
581 
582 	end = min_t(xfs_daddr_t, end,
583 			XFS_FSB_TO_BB(mp, mp->m_sb.sb_rblocks) - 1);
584 
585 	/* Convert the rt blocks to rt extents */
586 	low = xfs_rtb_to_rtxup(mp, XFS_BB_TO_FSB(mp, start));
587 	high = xfs_rtb_to_rtx(mp, XFS_BB_TO_FSBT(mp, end));
588 
589 	/*
590 	 * Walk the free ranges between low and high.  The query_range function
591 	 * trims the extents returned.
592 	 */
593 	do {
594 		tr.stop_rtx = low + (mp->m_sb.sb_blocksize * NBBY);
595 		xfs_rtbitmap_lock_shared(mp, XFS_RBMLOCK_BITMAP);
596 		error = xfs_rtalloc_query_range(mp, tp, low, high,
597 				xfs_trim_gather_rtextent, &tr);
598 
599 		if (error == -ECANCELED)
600 			error = 0;
601 		if (error) {
602 			xfs_rtbitmap_unlock_shared(mp, XFS_RBMLOCK_BITMAP);
603 			xfs_discard_free_rtdev_extents(&tr);
604 			break;
605 		}
606 
607 		if (list_empty(&tr.extent_list)) {
608 			xfs_rtbitmap_unlock_shared(mp, XFS_RBMLOCK_BITMAP);
609 			break;
610 		}
611 
612 		error = xfs_discard_rtdev_extents(mp, &tr);
613 		xfs_rtbitmap_unlock_shared(mp, XFS_RBMLOCK_BITMAP);
614 		if (error)
615 			break;
616 
617 		low = tr.restart_rtx;
618 	} while (!xfs_trim_should_stop() && low <= high);
619 
620 	xfs_trans_cancel(tp);
621 	return error;
622 }
623 #else
624 # define xfs_trim_rtdev_extents(...)	(-EOPNOTSUPP)
625 #endif /* CONFIG_XFS_RT */
626 
627 /*
628  * trim a range of the filesystem.
629  *
630  * Note: the parameters passed from userspace are byte ranges into the
631  * filesystem which does not match to the format we use for filesystem block
632  * addressing. FSB addressing is sparse (AGNO|AGBNO), while the incoming format
633  * is a linear address range. Hence we need to use DADDR based conversions and
634  * comparisons for determining the correct offset and regions to trim.
635  *
636  * The realtime device is mapped into the FITRIM "address space" immediately
637  * after the data device.
638  */
639 int
640 xfs_ioc_trim(
641 	struct xfs_mount		*mp,
642 	struct fstrim_range __user	*urange)
643 {
644 	unsigned int		granularity =
645 		bdev_discard_granularity(mp->m_ddev_targp->bt_bdev);
646 	struct block_device	*rt_bdev = NULL;
647 	struct fstrim_range	range;
648 	xfs_daddr_t		start, end;
649 	xfs_extlen_t		minlen;
650 	xfs_rfsblock_t		max_blocks;
651 	int			error, last_error = 0;
652 
653 	if (!capable(CAP_SYS_ADMIN))
654 		return -EPERM;
655 	if (mp->m_rtdev_targp &&
656 	    bdev_max_discard_sectors(mp->m_rtdev_targp->bt_bdev))
657 		rt_bdev = mp->m_rtdev_targp->bt_bdev;
658 	if (!bdev_max_discard_sectors(mp->m_ddev_targp->bt_bdev) && !rt_bdev)
659 		return -EOPNOTSUPP;
660 
661 	if (rt_bdev)
662 		granularity = max(granularity,
663 				  bdev_discard_granularity(rt_bdev));
664 
665 	/*
666 	 * We haven't recovered the log, so we cannot use our bnobt-guided
667 	 * storage zapping commands.
668 	 */
669 	if (xfs_has_norecovery(mp))
670 		return -EROFS;
671 
672 	if (copy_from_user(&range, urange, sizeof(range)))
673 		return -EFAULT;
674 
675 	range.minlen = max_t(u64, granularity, range.minlen);
676 	minlen = XFS_B_TO_FSB(mp, range.minlen);
677 
678 	/*
679 	 * Truncating down the len isn't actually quite correct, but using
680 	 * BBTOB would mean we trivially get overflows for values
681 	 * of ULLONG_MAX or slightly lower.  And ULLONG_MAX is the default
682 	 * used by the fstrim application.  In the end it really doesn't
683 	 * matter as trimming blocks is an advisory interface.
684 	 */
685 	max_blocks = mp->m_sb.sb_dblocks + mp->m_sb.sb_rblocks;
686 	if (range.start >= XFS_FSB_TO_B(mp, max_blocks) ||
687 	    range.minlen > XFS_FSB_TO_B(mp, mp->m_ag_max_usable) ||
688 	    range.len < mp->m_sb.sb_blocksize)
689 		return -EINVAL;
690 
691 	start = BTOBB(range.start);
692 	end = start + BTOBBT(range.len) - 1;
693 
694 	if (bdev_max_discard_sectors(mp->m_ddev_targp->bt_bdev)) {
695 		error = xfs_trim_datadev_extents(mp, start, end, minlen);
696 		if (error)
697 			last_error = error;
698 	}
699 
700 	if (rt_bdev && !xfs_trim_should_stop()) {
701 		error = xfs_trim_rtdev_extents(mp, start, end, minlen);
702 		if (error)
703 			last_error = error;
704 	}
705 
706 	if (last_error)
707 		return last_error;
708 
709 	range.len = min_t(unsigned long long, range.len,
710 			  XFS_FSB_TO_B(mp, max_blocks) - range.start);
711 	if (copy_to_user(urange, &range, sizeof(range)))
712 		return -EFAULT;
713 	return 0;
714 }
715