xref: /linux/fs/xfs/xfs_discard.c (revision 7f4f3b14e8079ecde096bd734af10e30d40c27b7)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2010, 2023 Red Hat, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include "xfs_shared.h"
8 #include "xfs_format.h"
9 #include "xfs_log_format.h"
10 #include "xfs_trans_resv.h"
11 #include "xfs_trans.h"
12 #include "xfs_mount.h"
13 #include "xfs_btree.h"
14 #include "xfs_alloc_btree.h"
15 #include "xfs_alloc.h"
16 #include "xfs_discard.h"
17 #include "xfs_error.h"
18 #include "xfs_extent_busy.h"
19 #include "xfs_trace.h"
20 #include "xfs_log.h"
21 #include "xfs_ag.h"
22 #include "xfs_health.h"
23 #include "xfs_rtbitmap.h"
24 #include "xfs_rtgroup.h"
25 
26 /*
27  * Notes on an efficient, low latency fstrim algorithm
28  *
29  * We need to walk the filesystem free space and issue discards on the free
30  * space that meet the search criteria (size and location). We cannot issue
31  * discards on extents that might be in use, or are so recently in use they are
32  * still marked as busy. To serialise against extent state changes whilst we are
33  * gathering extents to trim, we must hold the AGF lock to lock out other
34  * allocations and extent free operations that might change extent state.
35  *
36  * However, we cannot just hold the AGF for the entire AG free space walk whilst
37  * we issue discards on each free space that is found. Storage devices can have
38  * extremely slow discard implementations (e.g. ceph RBD) and so walking a
39  * couple of million free extents and issuing synchronous discards on each
40  * extent can take a *long* time. Whilst we are doing this walk, nothing else
41  * can access the AGF, and we can stall transactions and hence the log whilst
42  * modifications wait for the AGF lock to be released. This can lead hung tasks
43  * kicking the hung task timer and rebooting the system. This is bad.
44  *
45  * Hence we need to take a leaf from the bulkstat playbook. It takes the AGI
46  * lock, gathers a range of inode cluster buffers that are allocated, drops the
47  * AGI lock and then reads all the inode cluster buffers and processes them. It
48  * loops doing this, using a cursor to keep track of where it is up to in the AG
49  * for each iteration to restart the INOBT lookup from.
50  *
51  * We can't do this exactly with free space - once we drop the AGF lock, the
52  * state of the free extent is out of our control and we cannot run a discard
53  * safely on it in this situation. Unless, of course, we've marked the free
54  * extent as busy and undergoing a discard operation whilst we held the AGF
55  * locked.
56  *
57  * This is exactly how online discard works - free extents are marked busy when
58  * they are freed, and once the extent free has been committed to the journal,
59  * the busy extent record is marked as "undergoing discard" and the discard is
60  * then issued on the free extent. Once the discard completes, the busy extent
61  * record is removed and the extent is able to be allocated again.
62  *
63  * In the context of fstrim, if we find a free extent we need to discard, we
64  * don't have to discard it immediately. All we need to do it record that free
65  * extent as being busy and under discard, and all the allocation routines will
66  * now avoid trying to allocate it. Hence if we mark the extent as busy under
67  * the AGF lock, we can safely discard it without holding the AGF lock because
68  * nothing will attempt to allocate that free space until the discard completes.
69  *
70  * This also allows us to issue discards asynchronously like we do with online
71  * discard, and so for fast devices fstrim will run much faster as we can have
72  * multiple discard operations in flight at once, as well as pipeline the free
73  * extent search so that it overlaps in flight discard IO.
74  */
75 
76 #define XFS_DISCARD_MAX_EXAMINE	(100)
77 
78 struct workqueue_struct *xfs_discard_wq;
79 
80 static void
81 xfs_discard_endio_work(
82 	struct work_struct	*work)
83 {
84 	struct xfs_busy_extents	*extents =
85 		container_of(work, struct xfs_busy_extents, endio_work);
86 
87 	xfs_extent_busy_clear(&extents->extent_list, false);
88 	kfree(extents->owner);
89 }
90 
91 /*
92  * Queue up the actual completion to a thread to avoid IRQ-safe locking for
93  * pagb_lock.
94  */
95 static void
96 xfs_discard_endio(
97 	struct bio		*bio)
98 {
99 	struct xfs_busy_extents	*extents = bio->bi_private;
100 
101 	INIT_WORK(&extents->endio_work, xfs_discard_endio_work);
102 	queue_work(xfs_discard_wq, &extents->endio_work);
103 	bio_put(bio);
104 }
105 
106 static inline struct block_device *
107 xfs_group_bdev(
108 	const struct xfs_group	*xg)
109 {
110 	struct xfs_mount	*mp = xg->xg_mount;
111 
112 	switch (xg->xg_type) {
113 	case XG_TYPE_AG:
114 		return mp->m_ddev_targp->bt_bdev;
115 	case XG_TYPE_RTG:
116 		return mp->m_rtdev_targp->bt_bdev;
117 	default:
118 		ASSERT(0);
119 		break;
120 	}
121 	return NULL;
122 }
123 
124 /*
125  * Walk the discard list and issue discards on all the busy extents in the
126  * list. We plug and chain the bios so that we only need a single completion
127  * call to clear all the busy extents once the discards are complete.
128  */
129 int
130 xfs_discard_extents(
131 	struct xfs_mount	*mp,
132 	struct xfs_busy_extents	*extents)
133 {
134 	struct xfs_extent_busy	*busyp;
135 	struct bio		*bio = NULL;
136 	struct blk_plug		plug;
137 	int			error = 0;
138 
139 	blk_start_plug(&plug);
140 	list_for_each_entry(busyp, &extents->extent_list, list) {
141 		trace_xfs_discard_extent(busyp->group, busyp->bno,
142 				busyp->length);
143 
144 		error = __blkdev_issue_discard(xfs_group_bdev(busyp->group),
145 				xfs_gbno_to_daddr(busyp->group, busyp->bno),
146 				XFS_FSB_TO_BB(mp, busyp->length),
147 				GFP_KERNEL, &bio);
148 		if (error && error != -EOPNOTSUPP) {
149 			xfs_info(mp,
150 	 "discard failed for extent [0x%llx,%u], error %d",
151 				 (unsigned long long)busyp->bno,
152 				 busyp->length,
153 				 error);
154 			break;
155 		}
156 	}
157 
158 	if (bio) {
159 		bio->bi_private = extents;
160 		bio->bi_end_io = xfs_discard_endio;
161 		submit_bio(bio);
162 	} else {
163 		xfs_discard_endio_work(&extents->endio_work);
164 	}
165 	blk_finish_plug(&plug);
166 
167 	return error;
168 }
169 
170 struct xfs_trim_cur {
171 	xfs_agblock_t	start;
172 	xfs_extlen_t	count;
173 	xfs_agblock_t	end;
174 	xfs_extlen_t	minlen;
175 	bool		by_bno;
176 };
177 
178 static int
179 xfs_trim_gather_extents(
180 	struct xfs_perag	*pag,
181 	struct xfs_trim_cur	*tcur,
182 	struct xfs_busy_extents	*extents)
183 {
184 	struct xfs_mount	*mp = pag_mount(pag);
185 	struct xfs_trans	*tp;
186 	struct xfs_btree_cur	*cur;
187 	struct xfs_buf		*agbp;
188 	int			error;
189 	int			i;
190 	int			batch = XFS_DISCARD_MAX_EXAMINE;
191 
192 	/*
193 	 * Force out the log.  This means any transactions that might have freed
194 	 * space before we take the AGF buffer lock are now on disk, and the
195 	 * volatile disk cache is flushed.
196 	 */
197 	xfs_log_force(mp, XFS_LOG_SYNC);
198 
199 	error = xfs_trans_alloc_empty(mp, &tp);
200 	if (error)
201 		return error;
202 
203 	error = xfs_alloc_read_agf(pag, tp, 0, &agbp);
204 	if (error)
205 		goto out_trans_cancel;
206 
207 	if (tcur->by_bno) {
208 		/* sub-AG discard request always starts at tcur->start */
209 		cur = xfs_bnobt_init_cursor(mp, tp, agbp, pag);
210 		error = xfs_alloc_lookup_le(cur, tcur->start, 0, &i);
211 		if (!error && !i)
212 			error = xfs_alloc_lookup_ge(cur, tcur->start, 0, &i);
213 	} else if (tcur->start == 0) {
214 		/* first time through a by-len starts with max length */
215 		cur = xfs_cntbt_init_cursor(mp, tp, agbp, pag);
216 		error = xfs_alloc_lookup_ge(cur, 0, tcur->count, &i);
217 	} else {
218 		/* nth time through a by-len starts where we left off */
219 		cur = xfs_cntbt_init_cursor(mp, tp, agbp, pag);
220 		error = xfs_alloc_lookup_le(cur, tcur->start, tcur->count, &i);
221 	}
222 	if (error)
223 		goto out_del_cursor;
224 	if (i == 0) {
225 		/* nothing of that length left in the AG, we are done */
226 		tcur->count = 0;
227 		goto out_del_cursor;
228 	}
229 
230 	/*
231 	 * Loop until we are done with all extents that are large
232 	 * enough to be worth discarding or we hit batch limits.
233 	 */
234 	while (i) {
235 		xfs_agblock_t	fbno;
236 		xfs_extlen_t	flen;
237 
238 		error = xfs_alloc_get_rec(cur, &fbno, &flen, &i);
239 		if (error)
240 			break;
241 		if (XFS_IS_CORRUPT(mp, i != 1)) {
242 			xfs_btree_mark_sick(cur);
243 			error = -EFSCORRUPTED;
244 			break;
245 		}
246 
247 		if (--batch <= 0) {
248 			/*
249 			 * Update the cursor to point at this extent so we
250 			 * restart the next batch from this extent.
251 			 */
252 			tcur->start = fbno;
253 			tcur->count = flen;
254 			break;
255 		}
256 
257 		/*
258 		 * If the extent is entirely outside of the range we are
259 		 * supposed to skip it.  Do not bother to trim down partially
260 		 * overlapping ranges for now.
261 		 */
262 		if (fbno + flen < tcur->start) {
263 			trace_xfs_discard_exclude(pag_group(pag), fbno, flen);
264 			goto next_extent;
265 		}
266 		if (fbno > tcur->end) {
267 			trace_xfs_discard_exclude(pag_group(pag), fbno, flen);
268 			if (tcur->by_bno) {
269 				tcur->count = 0;
270 				break;
271 			}
272 			goto next_extent;
273 		}
274 
275 		/* Trim the extent returned to the range we want. */
276 		if (fbno < tcur->start) {
277 			flen -= tcur->start - fbno;
278 			fbno = tcur->start;
279 		}
280 		if (fbno + flen > tcur->end + 1)
281 			flen = tcur->end - fbno + 1;
282 
283 		/* Too small?  Give up. */
284 		if (flen < tcur->minlen) {
285 			trace_xfs_discard_toosmall(pag_group(pag), fbno, flen);
286 			if (tcur->by_bno)
287 				goto next_extent;
288 			tcur->count = 0;
289 			break;
290 		}
291 
292 		/*
293 		 * If any blocks in the range are still busy, skip the
294 		 * discard and try again the next time.
295 		 */
296 		if (xfs_extent_busy_search(pag_group(pag), fbno, flen)) {
297 			trace_xfs_discard_busy(pag_group(pag), fbno, flen);
298 			goto next_extent;
299 		}
300 
301 		xfs_extent_busy_insert_discard(pag_group(pag), fbno, flen,
302 				&extents->extent_list);
303 next_extent:
304 		if (tcur->by_bno)
305 			error = xfs_btree_increment(cur, 0, &i);
306 		else
307 			error = xfs_btree_decrement(cur, 0, &i);
308 		if (error)
309 			break;
310 
311 		/*
312 		 * If there's no more records in the tree, we are done. Set the
313 		 * cursor block count to 0 to indicate to the caller that there
314 		 * is no more extents to search.
315 		 */
316 		if (i == 0)
317 			tcur->count = 0;
318 	}
319 
320 	/*
321 	 * If there was an error, release all the gathered busy extents because
322 	 * we aren't going to issue a discard on them any more.
323 	 */
324 	if (error)
325 		xfs_extent_busy_clear(&extents->extent_list, false);
326 out_del_cursor:
327 	xfs_btree_del_cursor(cur, error);
328 out_trans_cancel:
329 	xfs_trans_cancel(tp);
330 	return error;
331 }
332 
333 static bool
334 xfs_trim_should_stop(void)
335 {
336 	return fatal_signal_pending(current) || freezing(current);
337 }
338 
339 /*
340  * Iterate the free list gathering extents and discarding them. We need a cursor
341  * for the repeated iteration of gather/discard loop, so use the longest extent
342  * we found in the last batch as the key to start the next.
343  */
344 static int
345 xfs_trim_perag_extents(
346 	struct xfs_perag	*pag,
347 	xfs_agblock_t		start,
348 	xfs_agblock_t		end,
349 	xfs_extlen_t		minlen)
350 {
351 	struct xfs_trim_cur	tcur = {
352 		.start		= start,
353 		.count		= pag->pagf_longest,
354 		.end		= end,
355 		.minlen		= minlen,
356 	};
357 	int			error = 0;
358 
359 	if (start != 0 || end != pag_group(pag)->xg_block_count)
360 		tcur.by_bno = true;
361 
362 	do {
363 		struct xfs_busy_extents	*extents;
364 
365 		extents = kzalloc(sizeof(*extents), GFP_KERNEL);
366 		if (!extents) {
367 			error = -ENOMEM;
368 			break;
369 		}
370 
371 		extents->owner = extents;
372 		INIT_LIST_HEAD(&extents->extent_list);
373 
374 		error = xfs_trim_gather_extents(pag, &tcur, extents);
375 		if (error) {
376 			kfree(extents);
377 			break;
378 		}
379 
380 		/*
381 		 * We hand the extent list to the discard function here so the
382 		 * discarded extents can be removed from the busy extent list.
383 		 * This allows the discards to run asynchronously with gathering
384 		 * the next round of extents to discard.
385 		 *
386 		 * However, we must ensure that we do not reference the extent
387 		 * list  after this function call, as it may have been freed by
388 		 * the time control returns to us.
389 		 */
390 		error = xfs_discard_extents(pag_mount(pag), extents);
391 		if (error)
392 			break;
393 
394 		if (xfs_trim_should_stop())
395 			break;
396 
397 	} while (tcur.count != 0);
398 
399 	return error;
400 
401 }
402 
403 static int
404 xfs_trim_datadev_extents(
405 	struct xfs_mount	*mp,
406 	xfs_daddr_t		start,
407 	xfs_daddr_t		end,
408 	xfs_extlen_t		minlen)
409 {
410 	xfs_agnumber_t		start_agno, end_agno;
411 	xfs_agblock_t		start_agbno, end_agbno;
412 	struct xfs_perag	*pag = NULL;
413 	xfs_daddr_t		ddev_end;
414 	int			last_error = 0, error;
415 
416 	ddev_end = min_t(xfs_daddr_t, end,
417 			 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks) - 1);
418 
419 	start_agno = xfs_daddr_to_agno(mp, start);
420 	start_agbno = xfs_daddr_to_agbno(mp, start);
421 	end_agno = xfs_daddr_to_agno(mp, ddev_end);
422 	end_agbno = xfs_daddr_to_agbno(mp, ddev_end);
423 
424 	while ((pag = xfs_perag_next_range(mp, pag, start_agno, end_agno))) {
425 		xfs_agblock_t	agend = pag_group(pag)->xg_block_count;
426 
427 		if (pag_agno(pag) == end_agno)
428 			agend = end_agbno;
429 		error = xfs_trim_perag_extents(pag, start_agbno, agend, minlen);
430 		if (error)
431 			last_error = error;
432 
433 		if (xfs_trim_should_stop()) {
434 			xfs_perag_rele(pag);
435 			break;
436 		}
437 		start_agbno = 0;
438 	}
439 
440 	return last_error;
441 }
442 
443 #ifdef CONFIG_XFS_RT
444 struct xfs_trim_rtdev {
445 	/* list of rt extents to free */
446 	struct list_head	extent_list;
447 
448 	/* minimum length that caller allows us to trim */
449 	xfs_rtblock_t		minlen_fsb;
450 
451 	/* restart point for the rtbitmap walk */
452 	xfs_rtxnum_t		restart_rtx;
453 
454 	/* stopping point for the current rtbitmap walk */
455 	xfs_rtxnum_t		stop_rtx;
456 };
457 
458 struct xfs_rtx_busy {
459 	struct list_head	list;
460 	xfs_rtblock_t		bno;
461 	xfs_rtblock_t		length;
462 };
463 
464 static void
465 xfs_discard_free_rtdev_extents(
466 	struct xfs_trim_rtdev	*tr)
467 {
468 	struct xfs_rtx_busy	*busyp, *n;
469 
470 	list_for_each_entry_safe(busyp, n, &tr->extent_list, list) {
471 		list_del_init(&busyp->list);
472 		kfree(busyp);
473 	}
474 }
475 
476 /*
477  * Walk the discard list and issue discards on all the busy extents in the
478  * list. We plug and chain the bios so that we only need a single completion
479  * call to clear all the busy extents once the discards are complete.
480  */
481 static int
482 xfs_discard_rtdev_extents(
483 	struct xfs_mount	*mp,
484 	struct xfs_trim_rtdev	*tr)
485 {
486 	struct block_device	*bdev = mp->m_rtdev_targp->bt_bdev;
487 	struct xfs_rtx_busy	*busyp;
488 	struct bio		*bio = NULL;
489 	struct blk_plug		plug;
490 	xfs_rtblock_t		start = NULLRTBLOCK, length = 0;
491 	int			error = 0;
492 
493 	blk_start_plug(&plug);
494 	list_for_each_entry(busyp, &tr->extent_list, list) {
495 		if (start == NULLRTBLOCK)
496 			start = busyp->bno;
497 		length += busyp->length;
498 
499 		trace_xfs_discard_rtextent(mp, busyp->bno, busyp->length);
500 
501 		error = __blkdev_issue_discard(bdev,
502 				xfs_rtb_to_daddr(mp, busyp->bno),
503 				XFS_FSB_TO_BB(mp, busyp->length),
504 				GFP_NOFS, &bio);
505 		if (error)
506 			break;
507 	}
508 	xfs_discard_free_rtdev_extents(tr);
509 
510 	if (bio) {
511 		error = submit_bio_wait(bio);
512 		if (error == -EOPNOTSUPP)
513 			error = 0;
514 		if (error)
515 			xfs_info(mp,
516 	 "discard failed for rtextent [0x%llx,%llu], error %d",
517 				 (unsigned long long)start,
518 				 (unsigned long long)length,
519 				 error);
520 		bio_put(bio);
521 	}
522 	blk_finish_plug(&plug);
523 
524 	return error;
525 }
526 
527 static int
528 xfs_trim_gather_rtextent(
529 	struct xfs_rtgroup		*rtg,
530 	struct xfs_trans		*tp,
531 	const struct xfs_rtalloc_rec	*rec,
532 	void				*priv)
533 {
534 	struct xfs_trim_rtdev		*tr = priv;
535 	struct xfs_rtx_busy		*busyp;
536 	xfs_rtblock_t			rbno, rlen;
537 
538 	if (rec->ar_startext > tr->stop_rtx) {
539 		/*
540 		 * If we've scanned a large number of rtbitmap blocks, update
541 		 * the cursor to point at this extent so we restart the next
542 		 * batch from this extent.
543 		 */
544 		tr->restart_rtx = rec->ar_startext;
545 		return -ECANCELED;
546 	}
547 
548 	rbno = xfs_rtx_to_rtb(rtg, rec->ar_startext);
549 	rlen = xfs_rtbxlen_to_blen(rtg_mount(rtg), rec->ar_extcount);
550 
551 	/* Ignore too small. */
552 	if (rlen < tr->minlen_fsb) {
553 		trace_xfs_discard_rttoosmall(rtg_mount(rtg), rbno, rlen);
554 		return 0;
555 	}
556 
557 	busyp = kzalloc(sizeof(struct xfs_rtx_busy), GFP_KERNEL);
558 	if (!busyp)
559 		return -ENOMEM;
560 
561 	busyp->bno = rbno;
562 	busyp->length = rlen;
563 	INIT_LIST_HEAD(&busyp->list);
564 	list_add_tail(&busyp->list, &tr->extent_list);
565 
566 	tr->restart_rtx = rec->ar_startext + rec->ar_extcount;
567 	return 0;
568 }
569 
570 /* Trim extents on an !rtgroups realtime device */
571 static int
572 xfs_trim_rtextents(
573 	struct xfs_rtgroup	*rtg,
574 	xfs_rtxnum_t		low,
575 	xfs_rtxnum_t		high,
576 	xfs_daddr_t		minlen)
577 {
578 	struct xfs_mount	*mp = rtg_mount(rtg);
579 	struct xfs_trim_rtdev	tr = {
580 		.minlen_fsb	= XFS_BB_TO_FSB(mp, minlen),
581 		.extent_list	= LIST_HEAD_INIT(tr.extent_list),
582 	};
583 	struct xfs_trans	*tp;
584 	int			error;
585 
586 	error = xfs_trans_alloc_empty(mp, &tp);
587 	if (error)
588 		return error;
589 
590 	/*
591 	 * Walk the free ranges between low and high.  The query_range function
592 	 * trims the extents returned.
593 	 */
594 	do {
595 		tr.stop_rtx = low + xfs_rtbitmap_rtx_per_rbmblock(mp);
596 		xfs_rtgroup_lock(rtg, XFS_RTGLOCK_BITMAP_SHARED);
597 		error = xfs_rtalloc_query_range(rtg, tp, low, high,
598 				xfs_trim_gather_rtextent, &tr);
599 
600 		if (error == -ECANCELED)
601 			error = 0;
602 		if (error) {
603 			xfs_rtgroup_unlock(rtg, XFS_RTGLOCK_BITMAP_SHARED);
604 			xfs_discard_free_rtdev_extents(&tr);
605 			break;
606 		}
607 
608 		if (list_empty(&tr.extent_list)) {
609 			xfs_rtgroup_unlock(rtg, XFS_RTGLOCK_BITMAP_SHARED);
610 			break;
611 		}
612 
613 		error = xfs_discard_rtdev_extents(mp, &tr);
614 		xfs_rtgroup_unlock(rtg, XFS_RTGLOCK_BITMAP_SHARED);
615 		if (error)
616 			break;
617 
618 		low = tr.restart_rtx;
619 	} while (!xfs_trim_should_stop() && low <= high);
620 
621 	xfs_trans_cancel(tp);
622 	return error;
623 }
624 
625 struct xfs_trim_rtgroup {
626 	/* list of rtgroup extents to free */
627 	struct xfs_busy_extents	*extents;
628 
629 	/* minimum length that caller allows us to trim */
630 	xfs_rtblock_t		minlen_fsb;
631 
632 	/* restart point for the rtbitmap walk */
633 	xfs_rtxnum_t		restart_rtx;
634 
635 	/* number of extents to examine before stopping to issue discard ios */
636 	int			batch;
637 
638 	/* number of extents queued for discard */
639 	int			queued;
640 };
641 
642 static int
643 xfs_trim_gather_rtgroup_extent(
644 	struct xfs_rtgroup		*rtg,
645 	struct xfs_trans		*tp,
646 	const struct xfs_rtalloc_rec	*rec,
647 	void				*priv)
648 {
649 	struct xfs_trim_rtgroup		*tr = priv;
650 	xfs_rgblock_t			rgbno;
651 	xfs_extlen_t			len;
652 
653 	if (--tr->batch <= 0) {
654 		/*
655 		 * If we've checked a large number of extents, update the
656 		 * cursor to point at this extent so we restart the next batch
657 		 * from this extent.
658 		 */
659 		tr->restart_rtx = rec->ar_startext;
660 		return -ECANCELED;
661 	}
662 
663 	rgbno = xfs_rtx_to_rgbno(rtg, rec->ar_startext);
664 	len = xfs_rtxlen_to_extlen(rtg_mount(rtg), rec->ar_extcount);
665 
666 	/* Ignore too small. */
667 	if (len < tr->minlen_fsb) {
668 		trace_xfs_discard_toosmall(rtg_group(rtg), rgbno, len);
669 		return 0;
670 	}
671 
672 	/*
673 	 * If any blocks in the range are still busy, skip the discard and try
674 	 * again the next time.
675 	 */
676 	if (xfs_extent_busy_search(rtg_group(rtg), rgbno, len)) {
677 		trace_xfs_discard_busy(rtg_group(rtg), rgbno, len);
678 		return 0;
679 	}
680 
681 	xfs_extent_busy_insert_discard(rtg_group(rtg), rgbno, len,
682 			&tr->extents->extent_list);
683 
684 	tr->queued++;
685 	tr->restart_rtx = rec->ar_startext + rec->ar_extcount;
686 	return 0;
687 }
688 
689 /* Trim extents in this rtgroup using the busy extent machinery. */
690 static int
691 xfs_trim_rtgroup_extents(
692 	struct xfs_rtgroup	*rtg,
693 	xfs_rtxnum_t		low,
694 	xfs_rtxnum_t		high,
695 	xfs_daddr_t		minlen)
696 {
697 	struct xfs_mount	*mp = rtg_mount(rtg);
698 	struct xfs_trim_rtgroup	tr = {
699 		.minlen_fsb	= XFS_BB_TO_FSB(mp, minlen),
700 	};
701 	struct xfs_trans	*tp;
702 	int			error;
703 
704 	error = xfs_trans_alloc_empty(mp, &tp);
705 	if (error)
706 		return error;
707 
708 	/*
709 	 * Walk the free ranges between low and high.  The query_range function
710 	 * trims the extents returned.
711 	 */
712 	do {
713 		tr.extents = kzalloc(sizeof(*tr.extents), GFP_KERNEL);
714 		if (!tr.extents) {
715 			error = -ENOMEM;
716 			break;
717 		}
718 
719 		tr.queued = 0;
720 		tr.batch = XFS_DISCARD_MAX_EXAMINE;
721 		tr.extents->owner = tr.extents;
722 		INIT_LIST_HEAD(&tr.extents->extent_list);
723 
724 		xfs_rtgroup_lock(rtg, XFS_RTGLOCK_BITMAP_SHARED);
725 		error = xfs_rtalloc_query_range(rtg, tp, low, high,
726 				xfs_trim_gather_rtgroup_extent, &tr);
727 		xfs_rtgroup_unlock(rtg, XFS_RTGLOCK_BITMAP_SHARED);
728 		if (error == -ECANCELED)
729 			error = 0;
730 		if (error) {
731 			kfree(tr.extents);
732 			break;
733 		}
734 
735 		if (!tr.queued)
736 			break;
737 
738 		/*
739 		 * We hand the extent list to the discard function here so the
740 		 * discarded extents can be removed from the busy extent list.
741 		 * This allows the discards to run asynchronously with
742 		 * gathering the next round of extents to discard.
743 		 *
744 		 * However, we must ensure that we do not reference the extent
745 		 * list  after this function call, as it may have been freed by
746 		 * the time control returns to us.
747 		 */
748 		error = xfs_discard_extents(rtg_mount(rtg), tr.extents);
749 		if (error)
750 			break;
751 
752 		low = tr.restart_rtx;
753 	} while (!xfs_trim_should_stop() && low <= high);
754 
755 	xfs_trans_cancel(tp);
756 	return error;
757 }
758 
759 static int
760 xfs_trim_rtdev_extents(
761 	struct xfs_mount	*mp,
762 	xfs_daddr_t		start,
763 	xfs_daddr_t		end,
764 	xfs_daddr_t		minlen)
765 {
766 	xfs_rtblock_t		start_rtbno, end_rtbno;
767 	xfs_rtxnum_t		start_rtx, end_rtx;
768 	xfs_rgnumber_t		start_rgno, end_rgno;
769 	xfs_daddr_t		daddr_offset;
770 	int			last_error = 0, error;
771 	struct xfs_rtgroup	*rtg = NULL;
772 
773 	/* Shift the start and end downwards to match the rt device. */
774 	daddr_offset = XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
775 	if (start > daddr_offset)
776 		start -= daddr_offset;
777 	else
778 		start = 0;
779 	start_rtbno = xfs_daddr_to_rtb(mp, start);
780 	start_rtx = xfs_rtb_to_rtx(mp, start_rtbno);
781 	start_rgno = xfs_rtb_to_rgno(mp, start_rtbno);
782 
783 	if (end <= daddr_offset)
784 		return 0;
785 	else
786 		end -= daddr_offset;
787 	end_rtbno = xfs_daddr_to_rtb(mp, end);
788 	end_rtx = xfs_rtb_to_rtx(mp, end_rtbno + mp->m_sb.sb_rextsize - 1);
789 	end_rgno = xfs_rtb_to_rgno(mp, end_rtbno);
790 
791 	while ((rtg = xfs_rtgroup_next_range(mp, rtg, start_rgno, end_rgno))) {
792 		xfs_rtxnum_t	rtg_end = rtg->rtg_extents;
793 
794 		if (rtg_rgno(rtg) == end_rgno)
795 			rtg_end = min(rtg_end, end_rtx);
796 
797 		if (xfs_has_rtgroups(mp))
798 			error = xfs_trim_rtgroup_extents(rtg, start_rtx,
799 					rtg_end, minlen);
800 		else
801 			error = xfs_trim_rtextents(rtg, start_rtx, rtg_end,
802 					minlen);
803 		if (error)
804 			last_error = error;
805 
806 		if (xfs_trim_should_stop()) {
807 			xfs_rtgroup_rele(rtg);
808 			break;
809 		}
810 		start_rtx = 0;
811 	}
812 
813 	return last_error;
814 }
815 #else
816 # define xfs_trim_rtdev_extents(...)	(-EOPNOTSUPP)
817 #endif /* CONFIG_XFS_RT */
818 
819 /*
820  * trim a range of the filesystem.
821  *
822  * Note: the parameters passed from userspace are byte ranges into the
823  * filesystem which does not match to the format we use for filesystem block
824  * addressing. FSB addressing is sparse (AGNO|AGBNO), while the incoming format
825  * is a linear address range. Hence we need to use DADDR based conversions and
826  * comparisons for determining the correct offset and regions to trim.
827  *
828  * The realtime device is mapped into the FITRIM "address space" immediately
829  * after the data device.
830  */
831 int
832 xfs_ioc_trim(
833 	struct xfs_mount		*mp,
834 	struct fstrim_range __user	*urange)
835 {
836 	unsigned int		granularity =
837 		bdev_discard_granularity(mp->m_ddev_targp->bt_bdev);
838 	struct block_device	*rt_bdev = NULL;
839 	struct fstrim_range	range;
840 	xfs_daddr_t		start, end;
841 	xfs_extlen_t		minlen;
842 	xfs_rfsblock_t		max_blocks;
843 	int			error, last_error = 0;
844 
845 	if (!capable(CAP_SYS_ADMIN))
846 		return -EPERM;
847 	if (mp->m_rtdev_targp &&
848 	    bdev_max_discard_sectors(mp->m_rtdev_targp->bt_bdev))
849 		rt_bdev = mp->m_rtdev_targp->bt_bdev;
850 	if (!bdev_max_discard_sectors(mp->m_ddev_targp->bt_bdev) && !rt_bdev)
851 		return -EOPNOTSUPP;
852 
853 	if (rt_bdev)
854 		granularity = max(granularity,
855 				  bdev_discard_granularity(rt_bdev));
856 
857 	/*
858 	 * We haven't recovered the log, so we cannot use our bnobt-guided
859 	 * storage zapping commands.
860 	 */
861 	if (xfs_has_norecovery(mp))
862 		return -EROFS;
863 
864 	if (copy_from_user(&range, urange, sizeof(range)))
865 		return -EFAULT;
866 
867 	range.minlen = max_t(u64, granularity, range.minlen);
868 	minlen = XFS_B_TO_FSB(mp, range.minlen);
869 
870 	/*
871 	 * Truncating down the len isn't actually quite correct, but using
872 	 * BBTOB would mean we trivially get overflows for values
873 	 * of ULLONG_MAX or slightly lower.  And ULLONG_MAX is the default
874 	 * used by the fstrim application.  In the end it really doesn't
875 	 * matter as trimming blocks is an advisory interface.
876 	 */
877 	max_blocks = mp->m_sb.sb_dblocks + mp->m_sb.sb_rblocks;
878 	if (range.start >= XFS_FSB_TO_B(mp, max_blocks) ||
879 	    range.minlen > XFS_FSB_TO_B(mp, mp->m_ag_max_usable) ||
880 	    range.len < mp->m_sb.sb_blocksize)
881 		return -EINVAL;
882 
883 	start = BTOBB(range.start);
884 	end = start + BTOBBT(range.len) - 1;
885 
886 	if (bdev_max_discard_sectors(mp->m_ddev_targp->bt_bdev)) {
887 		error = xfs_trim_datadev_extents(mp, start, end, minlen);
888 		if (error)
889 			last_error = error;
890 	}
891 
892 	if (rt_bdev && !xfs_trim_should_stop()) {
893 		error = xfs_trim_rtdev_extents(mp, start, end, minlen);
894 		if (error)
895 			last_error = error;
896 	}
897 
898 	if (last_error)
899 		return last_error;
900 
901 	range.len = min_t(unsigned long long, range.len,
902 			  XFS_FSB_TO_B(mp, max_blocks) - range.start);
903 	if (copy_to_user(urange, &range, sizeof(range)))
904 		return -EFAULT;
905 	return 0;
906 }
907