xref: /linux/fs/xfs/xfs_discard.c (revision 2a52ca7c98960aafb0eca9ef96b2d0c932171357)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2010, 2023 Red Hat, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include "xfs_shared.h"
8 #include "xfs_format.h"
9 #include "xfs_log_format.h"
10 #include "xfs_trans_resv.h"
11 #include "xfs_trans.h"
12 #include "xfs_mount.h"
13 #include "xfs_btree.h"
14 #include "xfs_alloc_btree.h"
15 #include "xfs_alloc.h"
16 #include "xfs_discard.h"
17 #include "xfs_error.h"
18 #include "xfs_extent_busy.h"
19 #include "xfs_trace.h"
20 #include "xfs_log.h"
21 #include "xfs_ag.h"
22 #include "xfs_health.h"
23 
24 /*
25  * Notes on an efficient, low latency fstrim algorithm
26  *
27  * We need to walk the filesystem free space and issue discards on the free
28  * space that meet the search criteria (size and location). We cannot issue
29  * discards on extents that might be in use, or are so recently in use they are
30  * still marked as busy. To serialise against extent state changes whilst we are
31  * gathering extents to trim, we must hold the AGF lock to lock out other
32  * allocations and extent free operations that might change extent state.
33  *
34  * However, we cannot just hold the AGF for the entire AG free space walk whilst
35  * we issue discards on each free space that is found. Storage devices can have
36  * extremely slow discard implementations (e.g. ceph RBD) and so walking a
37  * couple of million free extents and issuing synchronous discards on each
38  * extent can take a *long* time. Whilst we are doing this walk, nothing else
39  * can access the AGF, and we can stall transactions and hence the log whilst
40  * modifications wait for the AGF lock to be released. This can lead hung tasks
41  * kicking the hung task timer and rebooting the system. This is bad.
42  *
43  * Hence we need to take a leaf from the bulkstat playbook. It takes the AGI
44  * lock, gathers a range of inode cluster buffers that are allocated, drops the
45  * AGI lock and then reads all the inode cluster buffers and processes them. It
46  * loops doing this, using a cursor to keep track of where it is up to in the AG
47  * for each iteration to restart the INOBT lookup from.
48  *
49  * We can't do this exactly with free space - once we drop the AGF lock, the
50  * state of the free extent is out of our control and we cannot run a discard
51  * safely on it in this situation. Unless, of course, we've marked the free
52  * extent as busy and undergoing a discard operation whilst we held the AGF
53  * locked.
54  *
55  * This is exactly how online discard works - free extents are marked busy when
56  * they are freed, and once the extent free has been committed to the journal,
57  * the busy extent record is marked as "undergoing discard" and the discard is
58  * then issued on the free extent. Once the discard completes, the busy extent
59  * record is removed and the extent is able to be allocated again.
60  *
61  * In the context of fstrim, if we find a free extent we need to discard, we
62  * don't have to discard it immediately. All we need to do it record that free
63  * extent as being busy and under discard, and all the allocation routines will
64  * now avoid trying to allocate it. Hence if we mark the extent as busy under
65  * the AGF lock, we can safely discard it without holding the AGF lock because
66  * nothing will attempt to allocate that free space until the discard completes.
67  *
68  * This also allows us to issue discards asynchronously like we do with online
69  * discard, and so for fast devices fstrim will run much faster as we can have
70  * multiple discard operations in flight at once, as well as pipeline the free
71  * extent search so that it overlaps in flight discard IO.
72  */
73 
74 struct workqueue_struct *xfs_discard_wq;
75 
76 static void
77 xfs_discard_endio_work(
78 	struct work_struct	*work)
79 {
80 	struct xfs_busy_extents	*extents =
81 		container_of(work, struct xfs_busy_extents, endio_work);
82 
83 	xfs_extent_busy_clear(extents->mount, &extents->extent_list, false);
84 	kfree(extents->owner);
85 }
86 
87 /*
88  * Queue up the actual completion to a thread to avoid IRQ-safe locking for
89  * pagb_lock.
90  */
91 static void
92 xfs_discard_endio(
93 	struct bio		*bio)
94 {
95 	struct xfs_busy_extents	*extents = bio->bi_private;
96 
97 	INIT_WORK(&extents->endio_work, xfs_discard_endio_work);
98 	queue_work(xfs_discard_wq, &extents->endio_work);
99 	bio_put(bio);
100 }
101 
102 /*
103  * Walk the discard list and issue discards on all the busy extents in the
104  * list. We plug and chain the bios so that we only need a single completion
105  * call to clear all the busy extents once the discards are complete.
106  */
107 int
108 xfs_discard_extents(
109 	struct xfs_mount	*mp,
110 	struct xfs_busy_extents	*extents)
111 {
112 	struct xfs_extent_busy	*busyp;
113 	struct bio		*bio = NULL;
114 	struct blk_plug		plug;
115 	int			error = 0;
116 
117 	blk_start_plug(&plug);
118 	list_for_each_entry(busyp, &extents->extent_list, list) {
119 		trace_xfs_discard_extent(mp, busyp->agno, busyp->bno,
120 					 busyp->length);
121 
122 		error = __blkdev_issue_discard(mp->m_ddev_targp->bt_bdev,
123 				XFS_AGB_TO_DADDR(mp, busyp->agno, busyp->bno),
124 				XFS_FSB_TO_BB(mp, busyp->length),
125 				GFP_KERNEL, &bio);
126 		if (error && error != -EOPNOTSUPP) {
127 			xfs_info(mp,
128 	 "discard failed for extent [0x%llx,%u], error %d",
129 				 (unsigned long long)busyp->bno,
130 				 busyp->length,
131 				 error);
132 			break;
133 		}
134 	}
135 
136 	if (bio) {
137 		bio->bi_private = extents;
138 		bio->bi_end_io = xfs_discard_endio;
139 		submit_bio(bio);
140 	} else {
141 		xfs_discard_endio_work(&extents->endio_work);
142 	}
143 	blk_finish_plug(&plug);
144 
145 	return error;
146 }
147 
148 struct xfs_trim_cur {
149 	xfs_agblock_t	start;
150 	xfs_extlen_t	count;
151 	xfs_agblock_t	end;
152 	xfs_extlen_t	minlen;
153 	bool		by_bno;
154 };
155 
156 static int
157 xfs_trim_gather_extents(
158 	struct xfs_perag	*pag,
159 	struct xfs_trim_cur	*tcur,
160 	struct xfs_busy_extents	*extents,
161 	uint64_t		*blocks_trimmed)
162 {
163 	struct xfs_mount	*mp = pag->pag_mount;
164 	struct xfs_trans	*tp;
165 	struct xfs_btree_cur	*cur;
166 	struct xfs_buf		*agbp;
167 	int			error;
168 	int			i;
169 	int			batch = 100;
170 
171 	/*
172 	 * Force out the log.  This means any transactions that might have freed
173 	 * space before we take the AGF buffer lock are now on disk, and the
174 	 * volatile disk cache is flushed.
175 	 */
176 	xfs_log_force(mp, XFS_LOG_SYNC);
177 
178 	error = xfs_trans_alloc_empty(mp, &tp);
179 	if (error)
180 		return error;
181 
182 	error = xfs_alloc_read_agf(pag, tp, 0, &agbp);
183 	if (error)
184 		goto out_trans_cancel;
185 
186 	if (tcur->by_bno) {
187 		/* sub-AG discard request always starts at tcur->start */
188 		cur = xfs_bnobt_init_cursor(mp, tp, agbp, pag);
189 		error = xfs_alloc_lookup_le(cur, tcur->start, 0, &i);
190 		if (!error && !i)
191 			error = xfs_alloc_lookup_ge(cur, tcur->start, 0, &i);
192 	} else if (tcur->start == 0) {
193 		/* first time through a by-len starts with max length */
194 		cur = xfs_cntbt_init_cursor(mp, tp, agbp, pag);
195 		error = xfs_alloc_lookup_ge(cur, 0, tcur->count, &i);
196 	} else {
197 		/* nth time through a by-len starts where we left off */
198 		cur = xfs_cntbt_init_cursor(mp, tp, agbp, pag);
199 		error = xfs_alloc_lookup_le(cur, tcur->start, tcur->count, &i);
200 	}
201 	if (error)
202 		goto out_del_cursor;
203 	if (i == 0) {
204 		/* nothing of that length left in the AG, we are done */
205 		tcur->count = 0;
206 		goto out_del_cursor;
207 	}
208 
209 	/*
210 	 * Loop until we are done with all extents that are large
211 	 * enough to be worth discarding or we hit batch limits.
212 	 */
213 	while (i) {
214 		xfs_agblock_t	fbno;
215 		xfs_extlen_t	flen;
216 
217 		error = xfs_alloc_get_rec(cur, &fbno, &flen, &i);
218 		if (error)
219 			break;
220 		if (XFS_IS_CORRUPT(mp, i != 1)) {
221 			xfs_btree_mark_sick(cur);
222 			error = -EFSCORRUPTED;
223 			break;
224 		}
225 
226 		if (--batch <= 0) {
227 			/*
228 			 * Update the cursor to point at this extent so we
229 			 * restart the next batch from this extent.
230 			 */
231 			tcur->start = fbno;
232 			tcur->count = flen;
233 			break;
234 		}
235 
236 		/*
237 		 * If the extent is entirely outside of the range we are
238 		 * supposed to skip it.  Do not bother to trim down partially
239 		 * overlapping ranges for now.
240 		 */
241 		if (fbno + flen < tcur->start) {
242 			trace_xfs_discard_exclude(mp, pag->pag_agno, fbno, flen);
243 			goto next_extent;
244 		}
245 		if (fbno > tcur->end) {
246 			trace_xfs_discard_exclude(mp, pag->pag_agno, fbno, flen);
247 			if (tcur->by_bno) {
248 				tcur->count = 0;
249 				break;
250 			}
251 			goto next_extent;
252 		}
253 
254 		/* Trim the extent returned to the range we want. */
255 		if (fbno < tcur->start) {
256 			flen -= tcur->start - fbno;
257 			fbno = tcur->start;
258 		}
259 		if (fbno + flen > tcur->end + 1)
260 			flen = tcur->end - fbno + 1;
261 
262 		/* Too small?  Give up. */
263 		if (flen < tcur->minlen) {
264 			trace_xfs_discard_toosmall(mp, pag->pag_agno, fbno, flen);
265 			if (tcur->by_bno)
266 				goto next_extent;
267 			tcur->count = 0;
268 			break;
269 		}
270 
271 		/*
272 		 * If any blocks in the range are still busy, skip the
273 		 * discard and try again the next time.
274 		 */
275 		if (xfs_extent_busy_search(mp, pag, fbno, flen)) {
276 			trace_xfs_discard_busy(mp, pag->pag_agno, fbno, flen);
277 			goto next_extent;
278 		}
279 
280 		xfs_extent_busy_insert_discard(pag, fbno, flen,
281 				&extents->extent_list);
282 		*blocks_trimmed += flen;
283 next_extent:
284 		if (tcur->by_bno)
285 			error = xfs_btree_increment(cur, 0, &i);
286 		else
287 			error = xfs_btree_decrement(cur, 0, &i);
288 		if (error)
289 			break;
290 
291 		/*
292 		 * If there's no more records in the tree, we are done. Set the
293 		 * cursor block count to 0 to indicate to the caller that there
294 		 * is no more extents to search.
295 		 */
296 		if (i == 0)
297 			tcur->count = 0;
298 	}
299 
300 	/*
301 	 * If there was an error, release all the gathered busy extents because
302 	 * we aren't going to issue a discard on them any more.
303 	 */
304 	if (error)
305 		xfs_extent_busy_clear(mp, &extents->extent_list, false);
306 out_del_cursor:
307 	xfs_btree_del_cursor(cur, error);
308 out_trans_cancel:
309 	xfs_trans_cancel(tp);
310 	return error;
311 }
312 
313 static bool
314 xfs_trim_should_stop(void)
315 {
316 	return fatal_signal_pending(current) || freezing(current);
317 }
318 
319 /*
320  * Iterate the free list gathering extents and discarding them. We need a cursor
321  * for the repeated iteration of gather/discard loop, so use the longest extent
322  * we found in the last batch as the key to start the next.
323  */
324 static int
325 xfs_trim_extents(
326 	struct xfs_perag	*pag,
327 	xfs_agblock_t		start,
328 	xfs_agblock_t		end,
329 	xfs_extlen_t		minlen,
330 	uint64_t		*blocks_trimmed)
331 {
332 	struct xfs_trim_cur	tcur = {
333 		.start		= start,
334 		.count		= pag->pagf_longest,
335 		.end		= end,
336 		.minlen		= minlen,
337 	};
338 	int			error = 0;
339 
340 	if (start != 0 || end != pag->block_count)
341 		tcur.by_bno = true;
342 
343 	do {
344 		struct xfs_busy_extents	*extents;
345 
346 		extents = kzalloc(sizeof(*extents), GFP_KERNEL);
347 		if (!extents) {
348 			error = -ENOMEM;
349 			break;
350 		}
351 
352 		extents->mount = pag->pag_mount;
353 		extents->owner = extents;
354 		INIT_LIST_HEAD(&extents->extent_list);
355 
356 		error = xfs_trim_gather_extents(pag, &tcur, extents,
357 				blocks_trimmed);
358 		if (error) {
359 			kfree(extents);
360 			break;
361 		}
362 
363 		/*
364 		 * We hand the extent list to the discard function here so the
365 		 * discarded extents can be removed from the busy extent list.
366 		 * This allows the discards to run asynchronously with gathering
367 		 * the next round of extents to discard.
368 		 *
369 		 * However, we must ensure that we do not reference the extent
370 		 * list  after this function call, as it may have been freed by
371 		 * the time control returns to us.
372 		 */
373 		error = xfs_discard_extents(pag->pag_mount, extents);
374 		if (error)
375 			break;
376 
377 		if (xfs_trim_should_stop())
378 			break;
379 
380 	} while (tcur.count != 0);
381 
382 	return error;
383 
384 }
385 
386 /*
387  * trim a range of the filesystem.
388  *
389  * Note: the parameters passed from userspace are byte ranges into the
390  * filesystem which does not match to the format we use for filesystem block
391  * addressing. FSB addressing is sparse (AGNO|AGBNO), while the incoming format
392  * is a linear address range. Hence we need to use DADDR based conversions and
393  * comparisons for determining the correct offset and regions to trim.
394  */
395 int
396 xfs_ioc_trim(
397 	struct xfs_mount		*mp,
398 	struct fstrim_range __user	*urange)
399 {
400 	struct xfs_perag	*pag;
401 	unsigned int		granularity =
402 		bdev_discard_granularity(mp->m_ddev_targp->bt_bdev);
403 	struct fstrim_range	range;
404 	xfs_daddr_t		start, end;
405 	xfs_extlen_t		minlen;
406 	xfs_agnumber_t		start_agno, end_agno;
407 	xfs_agblock_t		start_agbno, end_agbno;
408 	uint64_t		blocks_trimmed = 0;
409 	int			error, last_error = 0;
410 
411 	if (!capable(CAP_SYS_ADMIN))
412 		return -EPERM;
413 	if (!bdev_max_discard_sectors(mp->m_ddev_targp->bt_bdev))
414 		return -EOPNOTSUPP;
415 
416 	/*
417 	 * We haven't recovered the log, so we cannot use our bnobt-guided
418 	 * storage zapping commands.
419 	 */
420 	if (xfs_has_norecovery(mp))
421 		return -EROFS;
422 
423 	if (copy_from_user(&range, urange, sizeof(range)))
424 		return -EFAULT;
425 
426 	range.minlen = max_t(u64, granularity, range.minlen);
427 	minlen = XFS_B_TO_FSB(mp, range.minlen);
428 
429 	/*
430 	 * Truncating down the len isn't actually quite correct, but using
431 	 * BBTOB would mean we trivially get overflows for values
432 	 * of ULLONG_MAX or slightly lower.  And ULLONG_MAX is the default
433 	 * used by the fstrim application.  In the end it really doesn't
434 	 * matter as trimming blocks is an advisory interface.
435 	 */
436 	if (range.start >= XFS_FSB_TO_B(mp, mp->m_sb.sb_dblocks) ||
437 	    range.minlen > XFS_FSB_TO_B(mp, mp->m_ag_max_usable) ||
438 	    range.len < mp->m_sb.sb_blocksize)
439 		return -EINVAL;
440 
441 	start = BTOBB(range.start);
442 	end = min_t(xfs_daddr_t, start + BTOBBT(range.len),
443 		    XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) - 1;
444 
445 	start_agno = xfs_daddr_to_agno(mp, start);
446 	start_agbno = xfs_daddr_to_agbno(mp, start);
447 	end_agno = xfs_daddr_to_agno(mp, end);
448 	end_agbno = xfs_daddr_to_agbno(mp, end);
449 
450 	for_each_perag_range(mp, start_agno, end_agno, pag) {
451 		xfs_agblock_t	agend = pag->block_count;
452 
453 		if (start_agno == end_agno)
454 			agend = end_agbno;
455 		error = xfs_trim_extents(pag, start_agbno, agend, minlen,
456 				&blocks_trimmed);
457 		if (error)
458 			last_error = error;
459 
460 		if (xfs_trim_should_stop()) {
461 			xfs_perag_rele(pag);
462 			break;
463 		}
464 		start_agbno = 0;
465 	}
466 
467 	if (last_error)
468 		return last_error;
469 
470 	range.len = XFS_FSB_TO_B(mp, blocks_trimmed);
471 	if (copy_to_user(urange, &range, sizeof(range)))
472 		return -EFAULT;
473 	return 0;
474 }
475