xref: /linux/fs/xfs/xfs_buf_item_recover.c (revision 7f71507851fc7764b36a3221839607d3a45c2025)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_bit.h"
13 #include "xfs_mount.h"
14 #include "xfs_trans.h"
15 #include "xfs_buf_item.h"
16 #include "xfs_trans_priv.h"
17 #include "xfs_trace.h"
18 #include "xfs_log.h"
19 #include "xfs_log_priv.h"
20 #include "xfs_log_recover.h"
21 #include "xfs_error.h"
22 #include "xfs_inode.h"
23 #include "xfs_dir2.h"
24 #include "xfs_quota.h"
25 #include "xfs_alloc.h"
26 #include "xfs_ag.h"
27 #include "xfs_sb.h"
28 #include "xfs_rtgroup.h"
29 #include "xfs_rtbitmap.h"
30 
31 /*
32  * This is the number of entries in the l_buf_cancel_table used during
33  * recovery.
34  */
35 #define	XLOG_BC_TABLE_SIZE	64
36 
37 #define XLOG_BUF_CANCEL_BUCKET(log, blkno) \
38 	((log)->l_buf_cancel_table + ((uint64_t)blkno % XLOG_BC_TABLE_SIZE))
39 
40 /*
41  * This structure is used during recovery to record the buf log items which
42  * have been canceled and should not be replayed.
43  */
44 struct xfs_buf_cancel {
45 	xfs_daddr_t		bc_blkno;
46 	uint			bc_len;
47 	int			bc_refcount;
48 	struct list_head	bc_list;
49 };
50 
51 static struct xfs_buf_cancel *
52 xlog_find_buffer_cancelled(
53 	struct xlog		*log,
54 	xfs_daddr_t		blkno,
55 	uint			len)
56 {
57 	struct list_head	*bucket;
58 	struct xfs_buf_cancel	*bcp;
59 
60 	if (!log->l_buf_cancel_table)
61 		return NULL;
62 
63 	bucket = XLOG_BUF_CANCEL_BUCKET(log, blkno);
64 	list_for_each_entry(bcp, bucket, bc_list) {
65 		if (bcp->bc_blkno == blkno && bcp->bc_len == len)
66 			return bcp;
67 	}
68 
69 	return NULL;
70 }
71 
72 static bool
73 xlog_add_buffer_cancelled(
74 	struct xlog		*log,
75 	xfs_daddr_t		blkno,
76 	uint			len)
77 {
78 	struct xfs_buf_cancel	*bcp;
79 
80 	/*
81 	 * If we find an existing cancel record, this indicates that the buffer
82 	 * was cancelled multiple times.  To ensure that during pass 2 we keep
83 	 * the record in the table until we reach its last occurrence in the
84 	 * log, a reference count is kept to tell how many times we expect to
85 	 * see this record during the second pass.
86 	 */
87 	bcp = xlog_find_buffer_cancelled(log, blkno, len);
88 	if (bcp) {
89 		bcp->bc_refcount++;
90 		return false;
91 	}
92 
93 	bcp = kmalloc(sizeof(struct xfs_buf_cancel), GFP_KERNEL | __GFP_NOFAIL);
94 	bcp->bc_blkno = blkno;
95 	bcp->bc_len = len;
96 	bcp->bc_refcount = 1;
97 	list_add_tail(&bcp->bc_list, XLOG_BUF_CANCEL_BUCKET(log, blkno));
98 	return true;
99 }
100 
101 /*
102  * Check if there is and entry for blkno, len in the buffer cancel record table.
103  */
104 bool
105 xlog_is_buffer_cancelled(
106 	struct xlog		*log,
107 	xfs_daddr_t		blkno,
108 	uint			len)
109 {
110 	return xlog_find_buffer_cancelled(log, blkno, len) != NULL;
111 }
112 
113 /*
114  * Check if there is and entry for blkno, len in the buffer cancel record table,
115  * and decremented the reference count on it if there is one.
116  *
117  * Remove the cancel record once the refcount hits zero, so that if the same
118  * buffer is re-used again after its last cancellation we actually replay the
119  * changes made at that point.
120  */
121 static bool
122 xlog_put_buffer_cancelled(
123 	struct xlog		*log,
124 	xfs_daddr_t		blkno,
125 	uint			len)
126 {
127 	struct xfs_buf_cancel	*bcp;
128 
129 	bcp = xlog_find_buffer_cancelled(log, blkno, len);
130 	if (!bcp) {
131 		ASSERT(0);
132 		return false;
133 	}
134 
135 	if (--bcp->bc_refcount == 0) {
136 		list_del(&bcp->bc_list);
137 		kfree(bcp);
138 	}
139 	return true;
140 }
141 
142 /* log buffer item recovery */
143 
144 /*
145  * Sort buffer items for log recovery.  Most buffer items should end up on the
146  * buffer list and are recovered first, with the following exceptions:
147  *
148  * 1. XFS_BLF_CANCEL buffers must be processed last because some log items
149  *    might depend on the incor ecancellation record, and replaying a cancelled
150  *    buffer item can remove the incore record.
151  *
152  * 2. XFS_BLF_INODE_BUF buffers are handled after most regular items so that
153  *    we replay di_next_unlinked only after flushing the inode 'free' state
154  *    to the inode buffer.
155  *
156  * See xlog_recover_reorder_trans for more details.
157  */
158 STATIC enum xlog_recover_reorder
159 xlog_recover_buf_reorder(
160 	struct xlog_recover_item	*item)
161 {
162 	struct xfs_buf_log_format	*buf_f = item->ri_buf[0].i_addr;
163 
164 	if (buf_f->blf_flags & XFS_BLF_CANCEL)
165 		return XLOG_REORDER_CANCEL_LIST;
166 	if (buf_f->blf_flags & XFS_BLF_INODE_BUF)
167 		return XLOG_REORDER_INODE_BUFFER_LIST;
168 	return XLOG_REORDER_BUFFER_LIST;
169 }
170 
171 STATIC void
172 xlog_recover_buf_ra_pass2(
173 	struct xlog                     *log,
174 	struct xlog_recover_item        *item)
175 {
176 	struct xfs_buf_log_format	*buf_f = item->ri_buf[0].i_addr;
177 
178 	xlog_buf_readahead(log, buf_f->blf_blkno, buf_f->blf_len, NULL);
179 }
180 
181 /*
182  * Build up the table of buf cancel records so that we don't replay cancelled
183  * data in the second pass.
184  */
185 static int
186 xlog_recover_buf_commit_pass1(
187 	struct xlog			*log,
188 	struct xlog_recover_item	*item)
189 {
190 	struct xfs_buf_log_format	*bf = item->ri_buf[0].i_addr;
191 
192 	if (!xfs_buf_log_check_iovec(&item->ri_buf[0])) {
193 		xfs_err(log->l_mp, "bad buffer log item size (%d)",
194 				item->ri_buf[0].i_len);
195 		return -EFSCORRUPTED;
196 	}
197 
198 	if (!(bf->blf_flags & XFS_BLF_CANCEL))
199 		trace_xfs_log_recover_buf_not_cancel(log, bf);
200 	else if (xlog_add_buffer_cancelled(log, bf->blf_blkno, bf->blf_len))
201 		trace_xfs_log_recover_buf_cancel_add(log, bf);
202 	else
203 		trace_xfs_log_recover_buf_cancel_ref_inc(log, bf);
204 	return 0;
205 }
206 
207 /*
208  * Validate the recovered buffer is of the correct type and attach the
209  * appropriate buffer operations to them for writeback. Magic numbers are in a
210  * few places:
211  *	the first 16 bits of the buffer (inode buffer, dquot buffer),
212  *	the first 32 bits of the buffer (most blocks),
213  *	inside a struct xfs_da_blkinfo at the start of the buffer.
214  */
215 static void
216 xlog_recover_validate_buf_type(
217 	struct xfs_mount		*mp,
218 	struct xfs_buf			*bp,
219 	struct xfs_buf_log_format	*buf_f,
220 	xfs_lsn_t			current_lsn)
221 {
222 	struct xfs_da_blkinfo		*info = bp->b_addr;
223 	uint32_t			magic32;
224 	uint16_t			magic16;
225 	uint16_t			magicda;
226 	char				*warnmsg = NULL;
227 
228 	/*
229 	 * We can only do post recovery validation on items on CRC enabled
230 	 * fielsystems as we need to know when the buffer was written to be able
231 	 * to determine if we should have replayed the item. If we replay old
232 	 * metadata over a newer buffer, then it will enter a temporarily
233 	 * inconsistent state resulting in verification failures. Hence for now
234 	 * just avoid the verification stage for non-crc filesystems
235 	 */
236 	if (!xfs_has_crc(mp))
237 		return;
238 
239 	magic32 = be32_to_cpu(*(__be32 *)bp->b_addr);
240 	magic16 = be16_to_cpu(*(__be16*)bp->b_addr);
241 	magicda = be16_to_cpu(info->magic);
242 	switch (xfs_blft_from_flags(buf_f)) {
243 	case XFS_BLFT_BTREE_BUF:
244 		switch (magic32) {
245 		case XFS_ABTB_CRC_MAGIC:
246 		case XFS_ABTB_MAGIC:
247 			bp->b_ops = &xfs_bnobt_buf_ops;
248 			break;
249 		case XFS_ABTC_CRC_MAGIC:
250 		case XFS_ABTC_MAGIC:
251 			bp->b_ops = &xfs_cntbt_buf_ops;
252 			break;
253 		case XFS_IBT_CRC_MAGIC:
254 		case XFS_IBT_MAGIC:
255 			bp->b_ops = &xfs_inobt_buf_ops;
256 			break;
257 		case XFS_FIBT_CRC_MAGIC:
258 		case XFS_FIBT_MAGIC:
259 			bp->b_ops = &xfs_finobt_buf_ops;
260 			break;
261 		case XFS_BMAP_CRC_MAGIC:
262 		case XFS_BMAP_MAGIC:
263 			bp->b_ops = &xfs_bmbt_buf_ops;
264 			break;
265 		case XFS_RMAP_CRC_MAGIC:
266 			bp->b_ops = &xfs_rmapbt_buf_ops;
267 			break;
268 		case XFS_REFC_CRC_MAGIC:
269 			bp->b_ops = &xfs_refcountbt_buf_ops;
270 			break;
271 		default:
272 			warnmsg = "Bad btree block magic!";
273 			break;
274 		}
275 		break;
276 	case XFS_BLFT_AGF_BUF:
277 		if (magic32 != XFS_AGF_MAGIC) {
278 			warnmsg = "Bad AGF block magic!";
279 			break;
280 		}
281 		bp->b_ops = &xfs_agf_buf_ops;
282 		break;
283 	case XFS_BLFT_AGFL_BUF:
284 		if (magic32 != XFS_AGFL_MAGIC) {
285 			warnmsg = "Bad AGFL block magic!";
286 			break;
287 		}
288 		bp->b_ops = &xfs_agfl_buf_ops;
289 		break;
290 	case XFS_BLFT_AGI_BUF:
291 		if (magic32 != XFS_AGI_MAGIC) {
292 			warnmsg = "Bad AGI block magic!";
293 			break;
294 		}
295 		bp->b_ops = &xfs_agi_buf_ops;
296 		break;
297 	case XFS_BLFT_UDQUOT_BUF:
298 	case XFS_BLFT_PDQUOT_BUF:
299 	case XFS_BLFT_GDQUOT_BUF:
300 #ifdef CONFIG_XFS_QUOTA
301 		if (magic16 != XFS_DQUOT_MAGIC) {
302 			warnmsg = "Bad DQUOT block magic!";
303 			break;
304 		}
305 		bp->b_ops = &xfs_dquot_buf_ops;
306 #else
307 		xfs_alert(mp,
308 	"Trying to recover dquots without QUOTA support built in!");
309 		ASSERT(0);
310 #endif
311 		break;
312 	case XFS_BLFT_DINO_BUF:
313 		if (magic16 != XFS_DINODE_MAGIC) {
314 			warnmsg = "Bad INODE block magic!";
315 			break;
316 		}
317 		bp->b_ops = &xfs_inode_buf_ops;
318 		break;
319 	case XFS_BLFT_SYMLINK_BUF:
320 		if (magic32 != XFS_SYMLINK_MAGIC) {
321 			warnmsg = "Bad symlink block magic!";
322 			break;
323 		}
324 		bp->b_ops = &xfs_symlink_buf_ops;
325 		break;
326 	case XFS_BLFT_DIR_BLOCK_BUF:
327 		if (magic32 != XFS_DIR2_BLOCK_MAGIC &&
328 		    magic32 != XFS_DIR3_BLOCK_MAGIC) {
329 			warnmsg = "Bad dir block magic!";
330 			break;
331 		}
332 		bp->b_ops = &xfs_dir3_block_buf_ops;
333 		break;
334 	case XFS_BLFT_DIR_DATA_BUF:
335 		if (magic32 != XFS_DIR2_DATA_MAGIC &&
336 		    magic32 != XFS_DIR3_DATA_MAGIC) {
337 			warnmsg = "Bad dir data magic!";
338 			break;
339 		}
340 		bp->b_ops = &xfs_dir3_data_buf_ops;
341 		break;
342 	case XFS_BLFT_DIR_FREE_BUF:
343 		if (magic32 != XFS_DIR2_FREE_MAGIC &&
344 		    magic32 != XFS_DIR3_FREE_MAGIC) {
345 			warnmsg = "Bad dir3 free magic!";
346 			break;
347 		}
348 		bp->b_ops = &xfs_dir3_free_buf_ops;
349 		break;
350 	case XFS_BLFT_DIR_LEAF1_BUF:
351 		if (magicda != XFS_DIR2_LEAF1_MAGIC &&
352 		    magicda != XFS_DIR3_LEAF1_MAGIC) {
353 			warnmsg = "Bad dir leaf1 magic!";
354 			break;
355 		}
356 		bp->b_ops = &xfs_dir3_leaf1_buf_ops;
357 		break;
358 	case XFS_BLFT_DIR_LEAFN_BUF:
359 		if (magicda != XFS_DIR2_LEAFN_MAGIC &&
360 		    magicda != XFS_DIR3_LEAFN_MAGIC) {
361 			warnmsg = "Bad dir leafn magic!";
362 			break;
363 		}
364 		bp->b_ops = &xfs_dir3_leafn_buf_ops;
365 		break;
366 	case XFS_BLFT_DA_NODE_BUF:
367 		if (magicda != XFS_DA_NODE_MAGIC &&
368 		    magicda != XFS_DA3_NODE_MAGIC) {
369 			warnmsg = "Bad da node magic!";
370 			break;
371 		}
372 		bp->b_ops = &xfs_da3_node_buf_ops;
373 		break;
374 	case XFS_BLFT_ATTR_LEAF_BUF:
375 		if (magicda != XFS_ATTR_LEAF_MAGIC &&
376 		    magicda != XFS_ATTR3_LEAF_MAGIC) {
377 			warnmsg = "Bad attr leaf magic!";
378 			break;
379 		}
380 		bp->b_ops = &xfs_attr3_leaf_buf_ops;
381 		break;
382 	case XFS_BLFT_ATTR_RMT_BUF:
383 		if (magic32 != XFS_ATTR3_RMT_MAGIC) {
384 			warnmsg = "Bad attr remote magic!";
385 			break;
386 		}
387 		bp->b_ops = &xfs_attr3_rmt_buf_ops;
388 		break;
389 	case XFS_BLFT_SB_BUF:
390 		if (magic32 != XFS_SB_MAGIC) {
391 			warnmsg = "Bad SB block magic!";
392 			break;
393 		}
394 		bp->b_ops = &xfs_sb_buf_ops;
395 		break;
396 #ifdef CONFIG_XFS_RT
397 	case XFS_BLFT_RTBITMAP_BUF:
398 		if (xfs_has_rtgroups(mp) && magic32 != XFS_RTBITMAP_MAGIC) {
399 			warnmsg = "Bad rtbitmap magic!";
400 			break;
401 		}
402 		bp->b_ops = xfs_rtblock_ops(mp, XFS_RTGI_BITMAP);
403 		break;
404 	case XFS_BLFT_RTSUMMARY_BUF:
405 		if (xfs_has_rtgroups(mp) && magic32 != XFS_RTSUMMARY_MAGIC) {
406 			warnmsg = "Bad rtsummary magic!";
407 			break;
408 		}
409 		bp->b_ops = xfs_rtblock_ops(mp, XFS_RTGI_SUMMARY);
410 		break;
411 #endif /* CONFIG_XFS_RT */
412 	default:
413 		xfs_warn(mp, "Unknown buffer type %d!",
414 			 xfs_blft_from_flags(buf_f));
415 		break;
416 	}
417 
418 	/*
419 	 * Nothing else to do in the case of a NULL current LSN as this means
420 	 * the buffer is more recent than the change in the log and will be
421 	 * skipped.
422 	 */
423 	if (current_lsn == NULLCOMMITLSN)
424 		return;
425 
426 	if (warnmsg) {
427 		xfs_warn(mp, warnmsg);
428 		ASSERT(0);
429 	}
430 
431 	/*
432 	 * We must update the metadata LSN of the buffer as it is written out to
433 	 * ensure that older transactions never replay over this one and corrupt
434 	 * the buffer. This can occur if log recovery is interrupted at some
435 	 * point after the current transaction completes, at which point a
436 	 * subsequent mount starts recovery from the beginning.
437 	 *
438 	 * Write verifiers update the metadata LSN from log items attached to
439 	 * the buffer. Therefore, initialize a bli purely to carry the LSN to
440 	 * the verifier.
441 	 */
442 	if (bp->b_ops) {
443 		struct xfs_buf_log_item	*bip;
444 
445 		bp->b_flags |= _XBF_LOGRECOVERY;
446 		xfs_buf_item_init(bp, mp);
447 		bip = bp->b_log_item;
448 		bip->bli_item.li_lsn = current_lsn;
449 	}
450 }
451 
452 /*
453  * Perform a 'normal' buffer recovery.  Each logged region of the
454  * buffer should be copied over the corresponding region in the
455  * given buffer.  The bitmap in the buf log format structure indicates
456  * where to place the logged data.
457  */
458 STATIC void
459 xlog_recover_do_reg_buffer(
460 	struct xfs_mount		*mp,
461 	struct xlog_recover_item	*item,
462 	struct xfs_buf			*bp,
463 	struct xfs_buf_log_format	*buf_f,
464 	xfs_lsn_t			current_lsn)
465 {
466 	int			i;
467 	int			bit;
468 	int			nbits;
469 	xfs_failaddr_t		fa;
470 	const size_t		size_disk_dquot = sizeof(struct xfs_disk_dquot);
471 
472 	trace_xfs_log_recover_buf_reg_buf(mp->m_log, buf_f);
473 
474 	bit = 0;
475 	i = 1;  /* 0 is the buf format structure */
476 	while (1) {
477 		bit = xfs_next_bit(buf_f->blf_data_map,
478 				   buf_f->blf_map_size, bit);
479 		if (bit == -1)
480 			break;
481 		nbits = xfs_contig_bits(buf_f->blf_data_map,
482 					buf_f->blf_map_size, bit);
483 		ASSERT(nbits > 0);
484 		ASSERT(item->ri_buf[i].i_addr != NULL);
485 		ASSERT(item->ri_buf[i].i_len % XFS_BLF_CHUNK == 0);
486 		ASSERT(BBTOB(bp->b_length) >=
487 		       ((uint)bit << XFS_BLF_SHIFT) + (nbits << XFS_BLF_SHIFT));
488 
489 		/*
490 		 * The dirty regions logged in the buffer, even though
491 		 * contiguous, may span multiple chunks. This is because the
492 		 * dirty region may span a physical page boundary in a buffer
493 		 * and hence be split into two separate vectors for writing into
494 		 * the log. Hence we need to trim nbits back to the length of
495 		 * the current region being copied out of the log.
496 		 */
497 		if (item->ri_buf[i].i_len < (nbits << XFS_BLF_SHIFT))
498 			nbits = item->ri_buf[i].i_len >> XFS_BLF_SHIFT;
499 
500 		/*
501 		 * Do a sanity check if this is a dquot buffer. Just checking
502 		 * the first dquot in the buffer should do. XXXThis is
503 		 * probably a good thing to do for other buf types also.
504 		 */
505 		fa = NULL;
506 		if (buf_f->blf_flags &
507 		   (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
508 			if (item->ri_buf[i].i_addr == NULL) {
509 				xfs_alert(mp,
510 					"XFS: NULL dquot in %s.", __func__);
511 				goto next;
512 			}
513 			if (item->ri_buf[i].i_len < size_disk_dquot) {
514 				xfs_alert(mp,
515 					"XFS: dquot too small (%d) in %s.",
516 					item->ri_buf[i].i_len, __func__);
517 				goto next;
518 			}
519 			fa = xfs_dquot_verify(mp, item->ri_buf[i].i_addr, -1);
520 			if (fa) {
521 				xfs_alert(mp,
522 	"dquot corrupt at %pS trying to replay into block 0x%llx",
523 					fa, xfs_buf_daddr(bp));
524 				goto next;
525 			}
526 		}
527 
528 		memcpy(xfs_buf_offset(bp,
529 			(uint)bit << XFS_BLF_SHIFT),	/* dest */
530 			item->ri_buf[i].i_addr,		/* source */
531 			nbits<<XFS_BLF_SHIFT);		/* length */
532  next:
533 		i++;
534 		bit += nbits;
535 	}
536 
537 	/* Shouldn't be any more regions */
538 	ASSERT(i == item->ri_total);
539 
540 	xlog_recover_validate_buf_type(mp, bp, buf_f, current_lsn);
541 }
542 
543 /*
544  * Perform a dquot buffer recovery.
545  * Simple algorithm: if we have found a QUOTAOFF log item of the same type
546  * (ie. USR or GRP), then just toss this buffer away; don't recover it.
547  * Else, treat it as a regular buffer and do recovery.
548  *
549  * Return false if the buffer was tossed and true if we recovered the buffer to
550  * indicate to the caller if the buffer needs writing.
551  */
552 STATIC bool
553 xlog_recover_do_dquot_buffer(
554 	struct xfs_mount		*mp,
555 	struct xlog			*log,
556 	struct xlog_recover_item	*item,
557 	struct xfs_buf			*bp,
558 	struct xfs_buf_log_format	*buf_f)
559 {
560 	uint			type;
561 
562 	trace_xfs_log_recover_buf_dquot_buf(log, buf_f);
563 
564 	/*
565 	 * Filesystems are required to send in quota flags at mount time.
566 	 */
567 	if (!mp->m_qflags)
568 		return false;
569 
570 	type = 0;
571 	if (buf_f->blf_flags & XFS_BLF_UDQUOT_BUF)
572 		type |= XFS_DQTYPE_USER;
573 	if (buf_f->blf_flags & XFS_BLF_PDQUOT_BUF)
574 		type |= XFS_DQTYPE_PROJ;
575 	if (buf_f->blf_flags & XFS_BLF_GDQUOT_BUF)
576 		type |= XFS_DQTYPE_GROUP;
577 	/*
578 	 * This type of quotas was turned off, so ignore this buffer
579 	 */
580 	if (log->l_quotaoffs_flag & type)
581 		return false;
582 
583 	xlog_recover_do_reg_buffer(mp, item, bp, buf_f, NULLCOMMITLSN);
584 	return true;
585 }
586 
587 /*
588  * Perform recovery for a buffer full of inodes.  In these buffers, the only
589  * data which should be recovered is that which corresponds to the
590  * di_next_unlinked pointers in the on disk inode structures.  The rest of the
591  * data for the inodes is always logged through the inodes themselves rather
592  * than the inode buffer and is recovered in xlog_recover_inode_pass2().
593  *
594  * The only time when buffers full of inodes are fully recovered is when the
595  * buffer is full of newly allocated inodes.  In this case the buffer will
596  * not be marked as an inode buffer and so will be sent to
597  * xlog_recover_do_reg_buffer() below during recovery.
598  */
599 STATIC int
600 xlog_recover_do_inode_buffer(
601 	struct xfs_mount		*mp,
602 	struct xlog_recover_item	*item,
603 	struct xfs_buf			*bp,
604 	struct xfs_buf_log_format	*buf_f)
605 {
606 	int				i;
607 	int				item_index = 0;
608 	int				bit = 0;
609 	int				nbits = 0;
610 	int				reg_buf_offset = 0;
611 	int				reg_buf_bytes = 0;
612 	int				next_unlinked_offset;
613 	int				inodes_per_buf;
614 	xfs_agino_t			*logged_nextp;
615 	xfs_agino_t			*buffer_nextp;
616 
617 	trace_xfs_log_recover_buf_inode_buf(mp->m_log, buf_f);
618 
619 	/*
620 	 * Post recovery validation only works properly on CRC enabled
621 	 * filesystems.
622 	 */
623 	if (xfs_has_crc(mp))
624 		bp->b_ops = &xfs_inode_buf_ops;
625 
626 	inodes_per_buf = BBTOB(bp->b_length) >> mp->m_sb.sb_inodelog;
627 	for (i = 0; i < inodes_per_buf; i++) {
628 		next_unlinked_offset = (i * mp->m_sb.sb_inodesize) +
629 			offsetof(struct xfs_dinode, di_next_unlinked);
630 
631 		while (next_unlinked_offset >=
632 		       (reg_buf_offset + reg_buf_bytes)) {
633 			/*
634 			 * The next di_next_unlinked field is beyond
635 			 * the current logged region.  Find the next
636 			 * logged region that contains or is beyond
637 			 * the current di_next_unlinked field.
638 			 */
639 			bit += nbits;
640 			bit = xfs_next_bit(buf_f->blf_data_map,
641 					   buf_f->blf_map_size, bit);
642 
643 			/*
644 			 * If there are no more logged regions in the
645 			 * buffer, then we're done.
646 			 */
647 			if (bit == -1)
648 				return 0;
649 
650 			nbits = xfs_contig_bits(buf_f->blf_data_map,
651 						buf_f->blf_map_size, bit);
652 			ASSERT(nbits > 0);
653 			reg_buf_offset = bit << XFS_BLF_SHIFT;
654 			reg_buf_bytes = nbits << XFS_BLF_SHIFT;
655 			item_index++;
656 		}
657 
658 		/*
659 		 * If the current logged region starts after the current
660 		 * di_next_unlinked field, then move on to the next
661 		 * di_next_unlinked field.
662 		 */
663 		if (next_unlinked_offset < reg_buf_offset)
664 			continue;
665 
666 		ASSERT(item->ri_buf[item_index].i_addr != NULL);
667 		ASSERT((item->ri_buf[item_index].i_len % XFS_BLF_CHUNK) == 0);
668 		ASSERT((reg_buf_offset + reg_buf_bytes) <= BBTOB(bp->b_length));
669 
670 		/*
671 		 * The current logged region contains a copy of the
672 		 * current di_next_unlinked field.  Extract its value
673 		 * and copy it to the buffer copy.
674 		 */
675 		logged_nextp = item->ri_buf[item_index].i_addr +
676 				next_unlinked_offset - reg_buf_offset;
677 		if (XFS_IS_CORRUPT(mp, *logged_nextp == 0)) {
678 			xfs_alert(mp,
679 		"Bad inode buffer log record (ptr = "PTR_FMT", bp = "PTR_FMT"). "
680 		"Trying to replay bad (0) inode di_next_unlinked field.",
681 				item, bp);
682 			return -EFSCORRUPTED;
683 		}
684 
685 		buffer_nextp = xfs_buf_offset(bp, next_unlinked_offset);
686 		*buffer_nextp = *logged_nextp;
687 
688 		/*
689 		 * If necessary, recalculate the CRC in the on-disk inode. We
690 		 * have to leave the inode in a consistent state for whoever
691 		 * reads it next....
692 		 */
693 		xfs_dinode_calc_crc(mp,
694 				xfs_buf_offset(bp, i * mp->m_sb.sb_inodesize));
695 
696 	}
697 
698 	return 0;
699 }
700 
701 /*
702  * Update the in-memory superblock and perag structures from the primary SB
703  * buffer.
704  *
705  * This is required because transactions running after growfs may require the
706  * updated values to be set in a previous fully commit transaction.
707  */
708 static int
709 xlog_recover_do_primary_sb_buffer(
710 	struct xfs_mount		*mp,
711 	struct xlog_recover_item	*item,
712 	struct xfs_buf			*bp,
713 	struct xfs_buf_log_format	*buf_f,
714 	xfs_lsn_t			current_lsn)
715 {
716 	struct xfs_dsb			*dsb = bp->b_addr;
717 	xfs_agnumber_t			orig_agcount = mp->m_sb.sb_agcount;
718 	xfs_rgnumber_t			orig_rgcount = mp->m_sb.sb_rgcount;
719 	int				error;
720 
721 	xlog_recover_do_reg_buffer(mp, item, bp, buf_f, current_lsn);
722 
723 	if (orig_agcount == 0) {
724 		xfs_alert(mp, "Trying to grow file system without AGs");
725 		return -EFSCORRUPTED;
726 	}
727 
728 	/*
729 	 * Update the in-core super block from the freshly recovered on-disk one.
730 	 */
731 	xfs_sb_from_disk(&mp->m_sb, dsb);
732 
733 	if (mp->m_sb.sb_agcount < orig_agcount) {
734 		xfs_alert(mp, "Shrinking AG count in log recovery not supported");
735 		return -EFSCORRUPTED;
736 	}
737 	if (mp->m_sb.sb_rgcount < orig_rgcount) {
738 		xfs_warn(mp,
739  "Shrinking rtgroup count in log recovery not supported");
740 		return -EFSCORRUPTED;
741 	}
742 
743 	/*
744 	 * If the last AG was grown or shrunk, we also need to update the
745 	 * length in the in-core perag structure and values depending on it.
746 	 */
747 	error = xfs_update_last_ag_size(mp, orig_agcount);
748 	if (error)
749 		return error;
750 
751 	/*
752 	 * If the last rtgroup was grown or shrunk, we also need to update the
753 	 * length in the in-core rtgroup structure and values depending on it.
754 	 * Ignore this on any filesystem with zero rtgroups.
755 	 */
756 	if (orig_rgcount > 0) {
757 		error = xfs_update_last_rtgroup_size(mp, orig_rgcount);
758 		if (error)
759 			return error;
760 	}
761 
762 	/*
763 	 * Initialize the new perags, and also update various block and inode
764 	 * allocator setting based off the number of AGs or total blocks.
765 	 * Because of the latter this also needs to happen if the agcount did
766 	 * not change.
767 	 */
768 	error = xfs_initialize_perag(mp, orig_agcount, mp->m_sb.sb_agcount,
769 			mp->m_sb.sb_dblocks, &mp->m_maxagi);
770 	if (error) {
771 		xfs_warn(mp, "Failed recovery per-ag init: %d", error);
772 		return error;
773 	}
774 	mp->m_alloc_set_aside = xfs_alloc_set_aside(mp);
775 
776 	error = xfs_initialize_rtgroups(mp, orig_rgcount, mp->m_sb.sb_rgcount,
777 			mp->m_sb.sb_rextents);
778 	if (error) {
779 		xfs_warn(mp, "Failed recovery rtgroup init: %d", error);
780 		return error;
781 	}
782 	return 0;
783 }
784 
785 /*
786  * V5 filesystems know the age of the buffer on disk being recovered. We can
787  * have newer objects on disk than we are replaying, and so for these cases we
788  * don't want to replay the current change as that will make the buffer contents
789  * temporarily invalid on disk.
790  *
791  * The magic number might not match the buffer type we are going to recover
792  * (e.g. reallocated blocks), so we ignore the xfs_buf_log_format flags.  Hence
793  * extract the LSN of the existing object in the buffer based on it's current
794  * magic number.  If we don't recognise the magic number in the buffer, then
795  * return a LSN of -1 so that the caller knows it was an unrecognised block and
796  * so can recover the buffer.
797  *
798  * Note: we cannot rely solely on magic number matches to determine that the
799  * buffer has a valid LSN - we also need to verify that it belongs to this
800  * filesystem, so we need to extract the object's LSN and compare it to that
801  * which we read from the superblock. If the UUIDs don't match, then we've got a
802  * stale metadata block from an old filesystem instance that we need to recover
803  * over the top of.
804  */
805 static xfs_lsn_t
806 xlog_recover_get_buf_lsn(
807 	struct xfs_mount	*mp,
808 	struct xfs_buf		*bp,
809 	struct xfs_buf_log_format *buf_f)
810 {
811 	uint32_t		magic32;
812 	uint16_t		magic16;
813 	uint16_t		magicda;
814 	void			*blk = bp->b_addr;
815 	uuid_t			*uuid;
816 	xfs_lsn_t		lsn = -1;
817 	uint16_t		blft;
818 
819 	/* v4 filesystems always recover immediately */
820 	if (!xfs_has_crc(mp))
821 		goto recover_immediately;
822 
823 	/*
824 	 * realtime bitmap and summary file blocks do not have magic numbers or
825 	 * UUIDs, so we must recover them immediately.
826 	 */
827 	blft = xfs_blft_from_flags(buf_f);
828 	if (!xfs_has_rtgroups(mp) && (blft == XFS_BLFT_RTBITMAP_BUF ||
829 				      blft == XFS_BLFT_RTSUMMARY_BUF))
830 		goto recover_immediately;
831 
832 	magic32 = be32_to_cpu(*(__be32 *)blk);
833 	switch (magic32) {
834 	case XFS_RTSUMMARY_MAGIC:
835 	case XFS_RTBITMAP_MAGIC: {
836 		struct xfs_rtbuf_blkinfo	*hdr = blk;
837 
838 		lsn = be64_to_cpu(hdr->rt_lsn);
839 		uuid = &hdr->rt_uuid;
840 		break;
841 	}
842 	case XFS_ABTB_CRC_MAGIC:
843 	case XFS_ABTC_CRC_MAGIC:
844 	case XFS_ABTB_MAGIC:
845 	case XFS_ABTC_MAGIC:
846 	case XFS_RMAP_CRC_MAGIC:
847 	case XFS_REFC_CRC_MAGIC:
848 	case XFS_FIBT_CRC_MAGIC:
849 	case XFS_FIBT_MAGIC:
850 	case XFS_IBT_CRC_MAGIC:
851 	case XFS_IBT_MAGIC: {
852 		struct xfs_btree_block *btb = blk;
853 
854 		lsn = be64_to_cpu(btb->bb_u.s.bb_lsn);
855 		uuid = &btb->bb_u.s.bb_uuid;
856 		break;
857 	}
858 	case XFS_BMAP_CRC_MAGIC:
859 	case XFS_BMAP_MAGIC: {
860 		struct xfs_btree_block *btb = blk;
861 
862 		lsn = be64_to_cpu(btb->bb_u.l.bb_lsn);
863 		uuid = &btb->bb_u.l.bb_uuid;
864 		break;
865 	}
866 	case XFS_AGF_MAGIC:
867 		lsn = be64_to_cpu(((struct xfs_agf *)blk)->agf_lsn);
868 		uuid = &((struct xfs_agf *)blk)->agf_uuid;
869 		break;
870 	case XFS_AGFL_MAGIC:
871 		lsn = be64_to_cpu(((struct xfs_agfl *)blk)->agfl_lsn);
872 		uuid = &((struct xfs_agfl *)blk)->agfl_uuid;
873 		break;
874 	case XFS_AGI_MAGIC:
875 		lsn = be64_to_cpu(((struct xfs_agi *)blk)->agi_lsn);
876 		uuid = &((struct xfs_agi *)blk)->agi_uuid;
877 		break;
878 	case XFS_SYMLINK_MAGIC:
879 		lsn = be64_to_cpu(((struct xfs_dsymlink_hdr *)blk)->sl_lsn);
880 		uuid = &((struct xfs_dsymlink_hdr *)blk)->sl_uuid;
881 		break;
882 	case XFS_DIR3_BLOCK_MAGIC:
883 	case XFS_DIR3_DATA_MAGIC:
884 	case XFS_DIR3_FREE_MAGIC:
885 		lsn = be64_to_cpu(((struct xfs_dir3_blk_hdr *)blk)->lsn);
886 		uuid = &((struct xfs_dir3_blk_hdr *)blk)->uuid;
887 		break;
888 	case XFS_ATTR3_RMT_MAGIC:
889 		/*
890 		 * Remote attr blocks are written synchronously, rather than
891 		 * being logged. That means they do not contain a valid LSN
892 		 * (i.e. transactionally ordered) in them, and hence any time we
893 		 * see a buffer to replay over the top of a remote attribute
894 		 * block we should simply do so.
895 		 */
896 		goto recover_immediately;
897 	case XFS_SB_MAGIC:
898 		/*
899 		 * superblock uuids are magic. We may or may not have a
900 		 * sb_meta_uuid on disk, but it will be set in the in-core
901 		 * superblock. We set the uuid pointer for verification
902 		 * according to the superblock feature mask to ensure we check
903 		 * the relevant UUID in the superblock.
904 		 */
905 		lsn = be64_to_cpu(((struct xfs_dsb *)blk)->sb_lsn);
906 		if (xfs_has_metauuid(mp))
907 			uuid = &((struct xfs_dsb *)blk)->sb_meta_uuid;
908 		else
909 			uuid = &((struct xfs_dsb *)blk)->sb_uuid;
910 		break;
911 	default:
912 		break;
913 	}
914 
915 	if (lsn != (xfs_lsn_t)-1) {
916 		if (!uuid_equal(&mp->m_sb.sb_meta_uuid, uuid))
917 			goto recover_immediately;
918 		return lsn;
919 	}
920 
921 	magicda = be16_to_cpu(((struct xfs_da_blkinfo *)blk)->magic);
922 	switch (magicda) {
923 	case XFS_DIR3_LEAF1_MAGIC:
924 	case XFS_DIR3_LEAFN_MAGIC:
925 	case XFS_ATTR3_LEAF_MAGIC:
926 	case XFS_DA3_NODE_MAGIC:
927 		lsn = be64_to_cpu(((struct xfs_da3_blkinfo *)blk)->lsn);
928 		uuid = &((struct xfs_da3_blkinfo *)blk)->uuid;
929 		break;
930 	default:
931 		break;
932 	}
933 
934 	if (lsn != (xfs_lsn_t)-1) {
935 		if (!uuid_equal(&mp->m_sb.sb_meta_uuid, uuid))
936 			goto recover_immediately;
937 		return lsn;
938 	}
939 
940 	/*
941 	 * We do individual object checks on dquot and inode buffers as they
942 	 * have their own individual LSN records. Also, we could have a stale
943 	 * buffer here, so we have to at least recognise these buffer types.
944 	 *
945 	 * A notd complexity here is inode unlinked list processing - it logs
946 	 * the inode directly in the buffer, but we don't know which inodes have
947 	 * been modified, and there is no global buffer LSN. Hence we need to
948 	 * recover all inode buffer types immediately. This problem will be
949 	 * fixed by logical logging of the unlinked list modifications.
950 	 */
951 	magic16 = be16_to_cpu(*(__be16 *)blk);
952 	switch (magic16) {
953 	case XFS_DQUOT_MAGIC:
954 	case XFS_DINODE_MAGIC:
955 		goto recover_immediately;
956 	default:
957 		break;
958 	}
959 
960 	/* unknown buffer contents, recover immediately */
961 
962 recover_immediately:
963 	return (xfs_lsn_t)-1;
964 
965 }
966 
967 /*
968  * This routine replays a modification made to a buffer at runtime.
969  * There are actually two types of buffer, regular and inode, which
970  * are handled differently.  Inode buffers are handled differently
971  * in that we only recover a specific set of data from them, namely
972  * the inode di_next_unlinked fields.  This is because all other inode
973  * data is actually logged via inode records and any data we replay
974  * here which overlaps that may be stale.
975  *
976  * When meta-data buffers are freed at run time we log a buffer item
977  * with the XFS_BLF_CANCEL bit set to indicate that previous copies
978  * of the buffer in the log should not be replayed at recovery time.
979  * This is so that if the blocks covered by the buffer are reused for
980  * file data before we crash we don't end up replaying old, freed
981  * meta-data into a user's file.
982  *
983  * To handle the cancellation of buffer log items, we make two passes
984  * over the log during recovery.  During the first we build a table of
985  * those buffers which have been cancelled, and during the second we
986  * only replay those buffers which do not have corresponding cancel
987  * records in the table.  See xlog_recover_buf_pass[1,2] above
988  * for more details on the implementation of the table of cancel records.
989  */
990 STATIC int
991 xlog_recover_buf_commit_pass2(
992 	struct xlog			*log,
993 	struct list_head		*buffer_list,
994 	struct xlog_recover_item	*item,
995 	xfs_lsn_t			current_lsn)
996 {
997 	struct xfs_buf_log_format	*buf_f = item->ri_buf[0].i_addr;
998 	struct xfs_mount		*mp = log->l_mp;
999 	struct xfs_buf			*bp;
1000 	int				error;
1001 	uint				buf_flags;
1002 	xfs_lsn_t			lsn;
1003 
1004 	/*
1005 	 * In this pass we only want to recover all the buffers which have
1006 	 * not been cancelled and are not cancellation buffers themselves.
1007 	 */
1008 	if (buf_f->blf_flags & XFS_BLF_CANCEL) {
1009 		if (xlog_put_buffer_cancelled(log, buf_f->blf_blkno,
1010 				buf_f->blf_len))
1011 			goto cancelled;
1012 	} else {
1013 
1014 		if (xlog_is_buffer_cancelled(log, buf_f->blf_blkno,
1015 				buf_f->blf_len))
1016 			goto cancelled;
1017 	}
1018 
1019 	trace_xfs_log_recover_buf_recover(log, buf_f);
1020 
1021 	buf_flags = 0;
1022 	if (buf_f->blf_flags & XFS_BLF_INODE_BUF)
1023 		buf_flags |= XBF_UNMAPPED;
1024 
1025 	error = xfs_buf_read(mp->m_ddev_targp, buf_f->blf_blkno, buf_f->blf_len,
1026 			  buf_flags, &bp, NULL);
1027 	if (error)
1028 		return error;
1029 
1030 	/*
1031 	 * Recover the buffer only if we get an LSN from it and it's less than
1032 	 * the lsn of the transaction we are replaying.
1033 	 *
1034 	 * Note that we have to be extremely careful of readahead here.
1035 	 * Readahead does not attach verfiers to the buffers so if we don't
1036 	 * actually do any replay after readahead because of the LSN we found
1037 	 * in the buffer if more recent than that current transaction then we
1038 	 * need to attach the verifier directly. Failure to do so can lead to
1039 	 * future recovery actions (e.g. EFI and unlinked list recovery) can
1040 	 * operate on the buffers and they won't get the verifier attached. This
1041 	 * can lead to blocks on disk having the correct content but a stale
1042 	 * CRC.
1043 	 *
1044 	 * It is safe to assume these clean buffers are currently up to date.
1045 	 * If the buffer is dirtied by a later transaction being replayed, then
1046 	 * the verifier will be reset to match whatever recover turns that
1047 	 * buffer into.
1048 	 */
1049 	lsn = xlog_recover_get_buf_lsn(mp, bp, buf_f);
1050 	if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) {
1051 		trace_xfs_log_recover_buf_skip(log, buf_f);
1052 		xlog_recover_validate_buf_type(mp, bp, buf_f, NULLCOMMITLSN);
1053 
1054 		/*
1055 		 * We're skipping replay of this buffer log item due to the log
1056 		 * item LSN being behind the ondisk buffer.  Verify the buffer
1057 		 * contents since we aren't going to run the write verifier.
1058 		 */
1059 		if (bp->b_ops) {
1060 			bp->b_ops->verify_read(bp);
1061 			error = bp->b_error;
1062 		}
1063 		goto out_release;
1064 	}
1065 
1066 	if (buf_f->blf_flags & XFS_BLF_INODE_BUF) {
1067 		error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f);
1068 		if (error)
1069 			goto out_release;
1070 	} else if (buf_f->blf_flags &
1071 		  (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
1072 		bool	dirty;
1073 
1074 		dirty = xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f);
1075 		if (!dirty)
1076 			goto out_release;
1077 	} else if ((xfs_blft_from_flags(buf_f) & XFS_BLFT_SB_BUF) &&
1078 			xfs_buf_daddr(bp) == 0) {
1079 		error = xlog_recover_do_primary_sb_buffer(mp, item, bp, buf_f,
1080 				current_lsn);
1081 		if (error)
1082 			goto out_release;
1083 
1084 		/* Update the rt superblock if we have one. */
1085 		if (xfs_has_rtsb(mp) && mp->m_rtsb_bp) {
1086 			struct xfs_buf	*rtsb_bp = mp->m_rtsb_bp;
1087 
1088 			xfs_buf_lock(rtsb_bp);
1089 			xfs_buf_hold(rtsb_bp);
1090 			xfs_update_rtsb(rtsb_bp, bp);
1091 			rtsb_bp->b_flags |= _XBF_LOGRECOVERY;
1092 			xfs_buf_delwri_queue(rtsb_bp, buffer_list);
1093 			xfs_buf_relse(rtsb_bp);
1094 		}
1095 	} else {
1096 		xlog_recover_do_reg_buffer(mp, item, bp, buf_f, current_lsn);
1097 	}
1098 
1099 	/*
1100 	 * Perform delayed write on the buffer.  Asynchronous writes will be
1101 	 * slower when taking into account all the buffers to be flushed.
1102 	 *
1103 	 * Also make sure that only inode buffers with good sizes stay in
1104 	 * the buffer cache.  The kernel moves inodes in buffers of 1 block
1105 	 * or inode_cluster_size bytes, whichever is bigger.  The inode
1106 	 * buffers in the log can be a different size if the log was generated
1107 	 * by an older kernel using unclustered inode buffers or a newer kernel
1108 	 * running with a different inode cluster size.  Regardless, if
1109 	 * the inode buffer size isn't max(blocksize, inode_cluster_size)
1110 	 * for *our* value of inode_cluster_size, then we need to keep
1111 	 * the buffer out of the buffer cache so that the buffer won't
1112 	 * overlap with future reads of those inodes.
1113 	 */
1114 	if (XFS_DINODE_MAGIC ==
1115 	    be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) &&
1116 	    (BBTOB(bp->b_length) != M_IGEO(log->l_mp)->inode_cluster_size)) {
1117 		xfs_buf_stale(bp);
1118 		error = xfs_bwrite(bp);
1119 	} else {
1120 		ASSERT(bp->b_mount == mp);
1121 		bp->b_flags |= _XBF_LOGRECOVERY;
1122 		xfs_buf_delwri_queue(bp, buffer_list);
1123 	}
1124 
1125 out_release:
1126 	xfs_buf_relse(bp);
1127 	return error;
1128 cancelled:
1129 	trace_xfs_log_recover_buf_cancel(log, buf_f);
1130 	return 0;
1131 }
1132 
1133 const struct xlog_recover_item_ops xlog_buf_item_ops = {
1134 	.item_type		= XFS_LI_BUF,
1135 	.reorder		= xlog_recover_buf_reorder,
1136 	.ra_pass2		= xlog_recover_buf_ra_pass2,
1137 	.commit_pass1		= xlog_recover_buf_commit_pass1,
1138 	.commit_pass2		= xlog_recover_buf_commit_pass2,
1139 };
1140 
1141 #ifdef DEBUG
1142 void
1143 xlog_check_buf_cancel_table(
1144 	struct xlog	*log)
1145 {
1146 	int		i;
1147 
1148 	for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
1149 		ASSERT(list_empty(&log->l_buf_cancel_table[i]));
1150 }
1151 #endif
1152 
1153 int
1154 xlog_alloc_buf_cancel_table(
1155 	struct xlog	*log)
1156 {
1157 	void		*p;
1158 	int		i;
1159 
1160 	ASSERT(log->l_buf_cancel_table == NULL);
1161 
1162 	p = kmalloc_array(XLOG_BC_TABLE_SIZE, sizeof(struct list_head),
1163 			  GFP_KERNEL);
1164 	if (!p)
1165 		return -ENOMEM;
1166 
1167 	log->l_buf_cancel_table = p;
1168 	for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
1169 		INIT_LIST_HEAD(&log->l_buf_cancel_table[i]);
1170 
1171 	return 0;
1172 }
1173 
1174 void
1175 xlog_free_buf_cancel_table(
1176 	struct xlog	*log)
1177 {
1178 	int		i;
1179 
1180 	if (!log->l_buf_cancel_table)
1181 		return;
1182 
1183 	for (i = 0; i < XLOG_BC_TABLE_SIZE; i++) {
1184 		struct xfs_buf_cancel	*bc;
1185 
1186 		while ((bc = list_first_entry_or_null(
1187 				&log->l_buf_cancel_table[i],
1188 				struct xfs_buf_cancel, bc_list))) {
1189 			list_del(&bc->bc_list);
1190 			kfree(bc);
1191 		}
1192 	}
1193 
1194 	kfree(log->l_buf_cancel_table);
1195 	log->l_buf_cancel_table = NULL;
1196 }
1197