xref: /linux/fs/xfs/xfs_buf_item.c (revision df561f6688fef775baa341a0f5d960becd248b11)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_bit.h"
13 #include "xfs_mount.h"
14 #include "xfs_trans.h"
15 #include "xfs_trans_priv.h"
16 #include "xfs_buf_item.h"
17 #include "xfs_inode.h"
18 #include "xfs_inode_item.h"
19 #include "xfs_quota.h"
20 #include "xfs_dquot_item.h"
21 #include "xfs_dquot.h"
22 #include "xfs_trace.h"
23 #include "xfs_log.h"
24 
25 
26 kmem_zone_t	*xfs_buf_item_zone;
27 
28 static inline struct xfs_buf_log_item *BUF_ITEM(struct xfs_log_item *lip)
29 {
30 	return container_of(lip, struct xfs_buf_log_item, bli_item);
31 }
32 
33 static void xfs_buf_item_done(struct xfs_buf *bp);
34 
35 /* Is this log iovec plausibly large enough to contain the buffer log format? */
36 bool
37 xfs_buf_log_check_iovec(
38 	struct xfs_log_iovec		*iovec)
39 {
40 	struct xfs_buf_log_format	*blfp = iovec->i_addr;
41 	char				*bmp_end;
42 	char				*item_end;
43 
44 	if (offsetof(struct xfs_buf_log_format, blf_data_map) > iovec->i_len)
45 		return false;
46 
47 	item_end = (char *)iovec->i_addr + iovec->i_len;
48 	bmp_end = (char *)&blfp->blf_data_map[blfp->blf_map_size];
49 	return bmp_end <= item_end;
50 }
51 
52 static inline int
53 xfs_buf_log_format_size(
54 	struct xfs_buf_log_format *blfp)
55 {
56 	return offsetof(struct xfs_buf_log_format, blf_data_map) +
57 			(blfp->blf_map_size * sizeof(blfp->blf_data_map[0]));
58 }
59 
60 /*
61  * This returns the number of log iovecs needed to log the
62  * given buf log item.
63  *
64  * It calculates this as 1 iovec for the buf log format structure
65  * and 1 for each stretch of non-contiguous chunks to be logged.
66  * Contiguous chunks are logged in a single iovec.
67  *
68  * If the XFS_BLI_STALE flag has been set, then log nothing.
69  */
70 STATIC void
71 xfs_buf_item_size_segment(
72 	struct xfs_buf_log_item		*bip,
73 	struct xfs_buf_log_format	*blfp,
74 	int				*nvecs,
75 	int				*nbytes)
76 {
77 	struct xfs_buf			*bp = bip->bli_buf;
78 	int				next_bit;
79 	int				last_bit;
80 
81 	last_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size, 0);
82 	if (last_bit == -1)
83 		return;
84 
85 	/*
86 	 * initial count for a dirty buffer is 2 vectors - the format structure
87 	 * and the first dirty region.
88 	 */
89 	*nvecs += 2;
90 	*nbytes += xfs_buf_log_format_size(blfp) + XFS_BLF_CHUNK;
91 
92 	while (last_bit != -1) {
93 		/*
94 		 * This takes the bit number to start looking from and
95 		 * returns the next set bit from there.  It returns -1
96 		 * if there are no more bits set or the start bit is
97 		 * beyond the end of the bitmap.
98 		 */
99 		next_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size,
100 					last_bit + 1);
101 		/*
102 		 * If we run out of bits, leave the loop,
103 		 * else if we find a new set of bits bump the number of vecs,
104 		 * else keep scanning the current set of bits.
105 		 */
106 		if (next_bit == -1) {
107 			break;
108 		} else if (next_bit != last_bit + 1) {
109 			last_bit = next_bit;
110 			(*nvecs)++;
111 		} else if (xfs_buf_offset(bp, next_bit * XFS_BLF_CHUNK) !=
112 			   (xfs_buf_offset(bp, last_bit * XFS_BLF_CHUNK) +
113 			    XFS_BLF_CHUNK)) {
114 			last_bit = next_bit;
115 			(*nvecs)++;
116 		} else {
117 			last_bit++;
118 		}
119 		*nbytes += XFS_BLF_CHUNK;
120 	}
121 }
122 
123 /*
124  * This returns the number of log iovecs needed to log the given buf log item.
125  *
126  * It calculates this as 1 iovec for the buf log format structure and 1 for each
127  * stretch of non-contiguous chunks to be logged.  Contiguous chunks are logged
128  * in a single iovec.
129  *
130  * Discontiguous buffers need a format structure per region that is being
131  * logged. This makes the changes in the buffer appear to log recovery as though
132  * they came from separate buffers, just like would occur if multiple buffers
133  * were used instead of a single discontiguous buffer. This enables
134  * discontiguous buffers to be in-memory constructs, completely transparent to
135  * what ends up on disk.
136  *
137  * If the XFS_BLI_STALE flag has been set, then log nothing but the buf log
138  * format structures.
139  */
140 STATIC void
141 xfs_buf_item_size(
142 	struct xfs_log_item	*lip,
143 	int			*nvecs,
144 	int			*nbytes)
145 {
146 	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
147 	int			i;
148 
149 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
150 	if (bip->bli_flags & XFS_BLI_STALE) {
151 		/*
152 		 * The buffer is stale, so all we need to log
153 		 * is the buf log format structure with the
154 		 * cancel flag in it.
155 		 */
156 		trace_xfs_buf_item_size_stale(bip);
157 		ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL);
158 		*nvecs += bip->bli_format_count;
159 		for (i = 0; i < bip->bli_format_count; i++) {
160 			*nbytes += xfs_buf_log_format_size(&bip->bli_formats[i]);
161 		}
162 		return;
163 	}
164 
165 	ASSERT(bip->bli_flags & XFS_BLI_LOGGED);
166 
167 	if (bip->bli_flags & XFS_BLI_ORDERED) {
168 		/*
169 		 * The buffer has been logged just to order it.
170 		 * It is not being included in the transaction
171 		 * commit, so no vectors are used at all.
172 		 */
173 		trace_xfs_buf_item_size_ordered(bip);
174 		*nvecs = XFS_LOG_VEC_ORDERED;
175 		return;
176 	}
177 
178 	/*
179 	 * the vector count is based on the number of buffer vectors we have
180 	 * dirty bits in. This will only be greater than one when we have a
181 	 * compound buffer with more than one segment dirty. Hence for compound
182 	 * buffers we need to track which segment the dirty bits correspond to,
183 	 * and when we move from one segment to the next increment the vector
184 	 * count for the extra buf log format structure that will need to be
185 	 * written.
186 	 */
187 	for (i = 0; i < bip->bli_format_count; i++) {
188 		xfs_buf_item_size_segment(bip, &bip->bli_formats[i],
189 					  nvecs, nbytes);
190 	}
191 	trace_xfs_buf_item_size(bip);
192 }
193 
194 static inline void
195 xfs_buf_item_copy_iovec(
196 	struct xfs_log_vec	*lv,
197 	struct xfs_log_iovec	**vecp,
198 	struct xfs_buf		*bp,
199 	uint			offset,
200 	int			first_bit,
201 	uint			nbits)
202 {
203 	offset += first_bit * XFS_BLF_CHUNK;
204 	xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_BCHUNK,
205 			xfs_buf_offset(bp, offset),
206 			nbits * XFS_BLF_CHUNK);
207 }
208 
209 static inline bool
210 xfs_buf_item_straddle(
211 	struct xfs_buf		*bp,
212 	uint			offset,
213 	int			next_bit,
214 	int			last_bit)
215 {
216 	return xfs_buf_offset(bp, offset + (next_bit << XFS_BLF_SHIFT)) !=
217 		(xfs_buf_offset(bp, offset + (last_bit << XFS_BLF_SHIFT)) +
218 		 XFS_BLF_CHUNK);
219 }
220 
221 static void
222 xfs_buf_item_format_segment(
223 	struct xfs_buf_log_item	*bip,
224 	struct xfs_log_vec	*lv,
225 	struct xfs_log_iovec	**vecp,
226 	uint			offset,
227 	struct xfs_buf_log_format *blfp)
228 {
229 	struct xfs_buf		*bp = bip->bli_buf;
230 	uint			base_size;
231 	int			first_bit;
232 	int			last_bit;
233 	int			next_bit;
234 	uint			nbits;
235 
236 	/* copy the flags across from the base format item */
237 	blfp->blf_flags = bip->__bli_format.blf_flags;
238 
239 	/*
240 	 * Base size is the actual size of the ondisk structure - it reflects
241 	 * the actual size of the dirty bitmap rather than the size of the in
242 	 * memory structure.
243 	 */
244 	base_size = xfs_buf_log_format_size(blfp);
245 
246 	first_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size, 0);
247 	if (!(bip->bli_flags & XFS_BLI_STALE) && first_bit == -1) {
248 		/*
249 		 * If the map is not be dirty in the transaction, mark
250 		 * the size as zero and do not advance the vector pointer.
251 		 */
252 		return;
253 	}
254 
255 	blfp = xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_BFORMAT, blfp, base_size);
256 	blfp->blf_size = 1;
257 
258 	if (bip->bli_flags & XFS_BLI_STALE) {
259 		/*
260 		 * The buffer is stale, so all we need to log
261 		 * is the buf log format structure with the
262 		 * cancel flag in it.
263 		 */
264 		trace_xfs_buf_item_format_stale(bip);
265 		ASSERT(blfp->blf_flags & XFS_BLF_CANCEL);
266 		return;
267 	}
268 
269 
270 	/*
271 	 * Fill in an iovec for each set of contiguous chunks.
272 	 */
273 	last_bit = first_bit;
274 	nbits = 1;
275 	for (;;) {
276 		/*
277 		 * This takes the bit number to start looking from and
278 		 * returns the next set bit from there.  It returns -1
279 		 * if there are no more bits set or the start bit is
280 		 * beyond the end of the bitmap.
281 		 */
282 		next_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size,
283 					(uint)last_bit + 1);
284 		/*
285 		 * If we run out of bits fill in the last iovec and get out of
286 		 * the loop.  Else if we start a new set of bits then fill in
287 		 * the iovec for the series we were looking at and start
288 		 * counting the bits in the new one.  Else we're still in the
289 		 * same set of bits so just keep counting and scanning.
290 		 */
291 		if (next_bit == -1) {
292 			xfs_buf_item_copy_iovec(lv, vecp, bp, offset,
293 						first_bit, nbits);
294 			blfp->blf_size++;
295 			break;
296 		} else if (next_bit != last_bit + 1 ||
297 		           xfs_buf_item_straddle(bp, offset, next_bit, last_bit)) {
298 			xfs_buf_item_copy_iovec(lv, vecp, bp, offset,
299 						first_bit, nbits);
300 			blfp->blf_size++;
301 			first_bit = next_bit;
302 			last_bit = next_bit;
303 			nbits = 1;
304 		} else {
305 			last_bit++;
306 			nbits++;
307 		}
308 	}
309 }
310 
311 /*
312  * This is called to fill in the vector of log iovecs for the
313  * given log buf item.  It fills the first entry with a buf log
314  * format structure, and the rest point to contiguous chunks
315  * within the buffer.
316  */
317 STATIC void
318 xfs_buf_item_format(
319 	struct xfs_log_item	*lip,
320 	struct xfs_log_vec	*lv)
321 {
322 	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
323 	struct xfs_buf		*bp = bip->bli_buf;
324 	struct xfs_log_iovec	*vecp = NULL;
325 	uint			offset = 0;
326 	int			i;
327 
328 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
329 	ASSERT((bip->bli_flags & XFS_BLI_LOGGED) ||
330 	       (bip->bli_flags & XFS_BLI_STALE));
331 	ASSERT((bip->bli_flags & XFS_BLI_STALE) ||
332 	       (xfs_blft_from_flags(&bip->__bli_format) > XFS_BLFT_UNKNOWN_BUF
333 	        && xfs_blft_from_flags(&bip->__bli_format) < XFS_BLFT_MAX_BUF));
334 	ASSERT(!(bip->bli_flags & XFS_BLI_ORDERED) ||
335 	       (bip->bli_flags & XFS_BLI_STALE));
336 
337 
338 	/*
339 	 * If it is an inode buffer, transfer the in-memory state to the
340 	 * format flags and clear the in-memory state.
341 	 *
342 	 * For buffer based inode allocation, we do not transfer
343 	 * this state if the inode buffer allocation has not yet been committed
344 	 * to the log as setting the XFS_BLI_INODE_BUF flag will prevent
345 	 * correct replay of the inode allocation.
346 	 *
347 	 * For icreate item based inode allocation, the buffers aren't written
348 	 * to the journal during allocation, and hence we should always tag the
349 	 * buffer as an inode buffer so that the correct unlinked list replay
350 	 * occurs during recovery.
351 	 */
352 	if (bip->bli_flags & XFS_BLI_INODE_BUF) {
353 		if (xfs_sb_version_has_v3inode(&lip->li_mountp->m_sb) ||
354 		    !((bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF) &&
355 		      xfs_log_item_in_current_chkpt(lip)))
356 			bip->__bli_format.blf_flags |= XFS_BLF_INODE_BUF;
357 		bip->bli_flags &= ~XFS_BLI_INODE_BUF;
358 	}
359 
360 	for (i = 0; i < bip->bli_format_count; i++) {
361 		xfs_buf_item_format_segment(bip, lv, &vecp, offset,
362 					    &bip->bli_formats[i]);
363 		offset += BBTOB(bp->b_maps[i].bm_len);
364 	}
365 
366 	/*
367 	 * Check to make sure everything is consistent.
368 	 */
369 	trace_xfs_buf_item_format(bip);
370 }
371 
372 /*
373  * This is called to pin the buffer associated with the buf log item in memory
374  * so it cannot be written out.
375  *
376  * We also always take a reference to the buffer log item here so that the bli
377  * is held while the item is pinned in memory. This means that we can
378  * unconditionally drop the reference count a transaction holds when the
379  * transaction is completed.
380  */
381 STATIC void
382 xfs_buf_item_pin(
383 	struct xfs_log_item	*lip)
384 {
385 	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
386 
387 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
388 	ASSERT((bip->bli_flags & XFS_BLI_LOGGED) ||
389 	       (bip->bli_flags & XFS_BLI_ORDERED) ||
390 	       (bip->bli_flags & XFS_BLI_STALE));
391 
392 	trace_xfs_buf_item_pin(bip);
393 
394 	atomic_inc(&bip->bli_refcount);
395 	atomic_inc(&bip->bli_buf->b_pin_count);
396 }
397 
398 /*
399  * This is called to unpin the buffer associated with the buf log
400  * item which was previously pinned with a call to xfs_buf_item_pin().
401  *
402  * Also drop the reference to the buf item for the current transaction.
403  * If the XFS_BLI_STALE flag is set and we are the last reference,
404  * then free up the buf log item and unlock the buffer.
405  *
406  * If the remove flag is set we are called from uncommit in the
407  * forced-shutdown path.  If that is true and the reference count on
408  * the log item is going to drop to zero we need to free the item's
409  * descriptor in the transaction.
410  */
411 STATIC void
412 xfs_buf_item_unpin(
413 	struct xfs_log_item	*lip,
414 	int			remove)
415 {
416 	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
417 	xfs_buf_t		*bp = bip->bli_buf;
418 	int			stale = bip->bli_flags & XFS_BLI_STALE;
419 	int			freed;
420 
421 	ASSERT(bp->b_log_item == bip);
422 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
423 
424 	trace_xfs_buf_item_unpin(bip);
425 
426 	freed = atomic_dec_and_test(&bip->bli_refcount);
427 
428 	if (atomic_dec_and_test(&bp->b_pin_count))
429 		wake_up_all(&bp->b_waiters);
430 
431 	if (freed && stale) {
432 		ASSERT(bip->bli_flags & XFS_BLI_STALE);
433 		ASSERT(xfs_buf_islocked(bp));
434 		ASSERT(bp->b_flags & XBF_STALE);
435 		ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL);
436 
437 		trace_xfs_buf_item_unpin_stale(bip);
438 
439 		if (remove) {
440 			/*
441 			 * If we are in a transaction context, we have to
442 			 * remove the log item from the transaction as we are
443 			 * about to release our reference to the buffer.  If we
444 			 * don't, the unlock that occurs later in
445 			 * xfs_trans_uncommit() will try to reference the
446 			 * buffer which we no longer have a hold on.
447 			 */
448 			if (!list_empty(&lip->li_trans))
449 				xfs_trans_del_item(lip);
450 
451 			/*
452 			 * Since the transaction no longer refers to the buffer,
453 			 * the buffer should no longer refer to the transaction.
454 			 */
455 			bp->b_transp = NULL;
456 		}
457 
458 		/*
459 		 * If we get called here because of an IO error, we may or may
460 		 * not have the item on the AIL. xfs_trans_ail_delete() will
461 		 * take care of that situation. xfs_trans_ail_delete() drops
462 		 * the AIL lock.
463 		 */
464 		if (bip->bli_flags & XFS_BLI_STALE_INODE) {
465 			xfs_buf_item_done(bp);
466 			xfs_iflush_done(bp);
467 			ASSERT(list_empty(&bp->b_li_list));
468 		} else {
469 			xfs_trans_ail_delete(lip, SHUTDOWN_LOG_IO_ERROR);
470 			xfs_buf_item_relse(bp);
471 			ASSERT(bp->b_log_item == NULL);
472 		}
473 		xfs_buf_relse(bp);
474 	} else if (freed && remove) {
475 		/*
476 		 * The buffer must be locked and held by the caller to simulate
477 		 * an async I/O failure.
478 		 */
479 		xfs_buf_lock(bp);
480 		xfs_buf_hold(bp);
481 		bp->b_flags |= XBF_ASYNC;
482 		xfs_buf_ioend_fail(bp);
483 	}
484 }
485 
486 STATIC uint
487 xfs_buf_item_push(
488 	struct xfs_log_item	*lip,
489 	struct list_head	*buffer_list)
490 {
491 	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
492 	struct xfs_buf		*bp = bip->bli_buf;
493 	uint			rval = XFS_ITEM_SUCCESS;
494 
495 	if (xfs_buf_ispinned(bp))
496 		return XFS_ITEM_PINNED;
497 	if (!xfs_buf_trylock(bp)) {
498 		/*
499 		 * If we have just raced with a buffer being pinned and it has
500 		 * been marked stale, we could end up stalling until someone else
501 		 * issues a log force to unpin the stale buffer. Check for the
502 		 * race condition here so xfsaild recognizes the buffer is pinned
503 		 * and queues a log force to move it along.
504 		 */
505 		if (xfs_buf_ispinned(bp))
506 			return XFS_ITEM_PINNED;
507 		return XFS_ITEM_LOCKED;
508 	}
509 
510 	ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
511 
512 	trace_xfs_buf_item_push(bip);
513 
514 	/* has a previous flush failed due to IO errors? */
515 	if (bp->b_flags & XBF_WRITE_FAIL) {
516 		xfs_buf_alert_ratelimited(bp, "XFS: Failing async write",
517 	    "Failing async write on buffer block 0x%llx. Retrying async write.",
518 					  (long long)bp->b_bn);
519 	}
520 
521 	if (!xfs_buf_delwri_queue(bp, buffer_list))
522 		rval = XFS_ITEM_FLUSHING;
523 	xfs_buf_unlock(bp);
524 	return rval;
525 }
526 
527 /*
528  * Drop the buffer log item refcount and take appropriate action. This helper
529  * determines whether the bli must be freed or not, since a decrement to zero
530  * does not necessarily mean the bli is unused.
531  *
532  * Return true if the bli is freed, false otherwise.
533  */
534 bool
535 xfs_buf_item_put(
536 	struct xfs_buf_log_item	*bip)
537 {
538 	struct xfs_log_item	*lip = &bip->bli_item;
539 	bool			aborted;
540 	bool			dirty;
541 
542 	/* drop the bli ref and return if it wasn't the last one */
543 	if (!atomic_dec_and_test(&bip->bli_refcount))
544 		return false;
545 
546 	/*
547 	 * We dropped the last ref and must free the item if clean or aborted.
548 	 * If the bli is dirty and non-aborted, the buffer was clean in the
549 	 * transaction but still awaiting writeback from previous changes. In
550 	 * that case, the bli is freed on buffer writeback completion.
551 	 */
552 	aborted = test_bit(XFS_LI_ABORTED, &lip->li_flags) ||
553 		  XFS_FORCED_SHUTDOWN(lip->li_mountp);
554 	dirty = bip->bli_flags & XFS_BLI_DIRTY;
555 	if (dirty && !aborted)
556 		return false;
557 
558 	/*
559 	 * The bli is aborted or clean. An aborted item may be in the AIL
560 	 * regardless of dirty state.  For example, consider an aborted
561 	 * transaction that invalidated a dirty bli and cleared the dirty
562 	 * state.
563 	 */
564 	if (aborted)
565 		xfs_trans_ail_delete(lip, 0);
566 	xfs_buf_item_relse(bip->bli_buf);
567 	return true;
568 }
569 
570 /*
571  * Release the buffer associated with the buf log item.  If there is no dirty
572  * logged data associated with the buffer recorded in the buf log item, then
573  * free the buf log item and remove the reference to it in the buffer.
574  *
575  * This call ignores the recursion count.  It is only called when the buffer
576  * should REALLY be unlocked, regardless of the recursion count.
577  *
578  * We unconditionally drop the transaction's reference to the log item. If the
579  * item was logged, then another reference was taken when it was pinned, so we
580  * can safely drop the transaction reference now.  This also allows us to avoid
581  * potential races with the unpin code freeing the bli by not referencing the
582  * bli after we've dropped the reference count.
583  *
584  * If the XFS_BLI_HOLD flag is set in the buf log item, then free the log item
585  * if necessary but do not unlock the buffer.  This is for support of
586  * xfs_trans_bhold(). Make sure the XFS_BLI_HOLD field is cleared if we don't
587  * free the item.
588  */
589 STATIC void
590 xfs_buf_item_release(
591 	struct xfs_log_item	*lip)
592 {
593 	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
594 	struct xfs_buf		*bp = bip->bli_buf;
595 	bool			released;
596 	bool			hold = bip->bli_flags & XFS_BLI_HOLD;
597 	bool			stale = bip->bli_flags & XFS_BLI_STALE;
598 #if defined(DEBUG) || defined(XFS_WARN)
599 	bool			ordered = bip->bli_flags & XFS_BLI_ORDERED;
600 	bool			dirty = bip->bli_flags & XFS_BLI_DIRTY;
601 	bool			aborted = test_bit(XFS_LI_ABORTED,
602 						   &lip->li_flags);
603 #endif
604 
605 	trace_xfs_buf_item_release(bip);
606 
607 	/*
608 	 * The bli dirty state should match whether the blf has logged segments
609 	 * except for ordered buffers, where only the bli should be dirty.
610 	 */
611 	ASSERT((!ordered && dirty == xfs_buf_item_dirty_format(bip)) ||
612 	       (ordered && dirty && !xfs_buf_item_dirty_format(bip)));
613 	ASSERT(!stale || (bip->__bli_format.blf_flags & XFS_BLF_CANCEL));
614 
615 	/*
616 	 * Clear the buffer's association with this transaction and
617 	 * per-transaction state from the bli, which has been copied above.
618 	 */
619 	bp->b_transp = NULL;
620 	bip->bli_flags &= ~(XFS_BLI_LOGGED | XFS_BLI_HOLD | XFS_BLI_ORDERED);
621 
622 	/*
623 	 * Unref the item and unlock the buffer unless held or stale. Stale
624 	 * buffers remain locked until final unpin unless the bli is freed by
625 	 * the unref call. The latter implies shutdown because buffer
626 	 * invalidation dirties the bli and transaction.
627 	 */
628 	released = xfs_buf_item_put(bip);
629 	if (hold || (stale && !released))
630 		return;
631 	ASSERT(!stale || aborted);
632 	xfs_buf_relse(bp);
633 }
634 
635 STATIC void
636 xfs_buf_item_committing(
637 	struct xfs_log_item	*lip,
638 	xfs_lsn_t		commit_lsn)
639 {
640 	return xfs_buf_item_release(lip);
641 }
642 
643 /*
644  * This is called to find out where the oldest active copy of the
645  * buf log item in the on disk log resides now that the last log
646  * write of it completed at the given lsn.
647  * We always re-log all the dirty data in a buffer, so usually the
648  * latest copy in the on disk log is the only one that matters.  For
649  * those cases we simply return the given lsn.
650  *
651  * The one exception to this is for buffers full of newly allocated
652  * inodes.  These buffers are only relogged with the XFS_BLI_INODE_BUF
653  * flag set, indicating that only the di_next_unlinked fields from the
654  * inodes in the buffers will be replayed during recovery.  If the
655  * original newly allocated inode images have not yet been flushed
656  * when the buffer is so relogged, then we need to make sure that we
657  * keep the old images in the 'active' portion of the log.  We do this
658  * by returning the original lsn of that transaction here rather than
659  * the current one.
660  */
661 STATIC xfs_lsn_t
662 xfs_buf_item_committed(
663 	struct xfs_log_item	*lip,
664 	xfs_lsn_t		lsn)
665 {
666 	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
667 
668 	trace_xfs_buf_item_committed(bip);
669 
670 	if ((bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF) && lip->li_lsn != 0)
671 		return lip->li_lsn;
672 	return lsn;
673 }
674 
675 static const struct xfs_item_ops xfs_buf_item_ops = {
676 	.iop_size	= xfs_buf_item_size,
677 	.iop_format	= xfs_buf_item_format,
678 	.iop_pin	= xfs_buf_item_pin,
679 	.iop_unpin	= xfs_buf_item_unpin,
680 	.iop_release	= xfs_buf_item_release,
681 	.iop_committing	= xfs_buf_item_committing,
682 	.iop_committed	= xfs_buf_item_committed,
683 	.iop_push	= xfs_buf_item_push,
684 };
685 
686 STATIC void
687 xfs_buf_item_get_format(
688 	struct xfs_buf_log_item	*bip,
689 	int			count)
690 {
691 	ASSERT(bip->bli_formats == NULL);
692 	bip->bli_format_count = count;
693 
694 	if (count == 1) {
695 		bip->bli_formats = &bip->__bli_format;
696 		return;
697 	}
698 
699 	bip->bli_formats = kmem_zalloc(count * sizeof(struct xfs_buf_log_format),
700 				0);
701 }
702 
703 STATIC void
704 xfs_buf_item_free_format(
705 	struct xfs_buf_log_item	*bip)
706 {
707 	if (bip->bli_formats != &bip->__bli_format) {
708 		kmem_free(bip->bli_formats);
709 		bip->bli_formats = NULL;
710 	}
711 }
712 
713 /*
714  * Allocate a new buf log item to go with the given buffer.
715  * Set the buffer's b_log_item field to point to the new
716  * buf log item.
717  */
718 int
719 xfs_buf_item_init(
720 	struct xfs_buf	*bp,
721 	struct xfs_mount *mp)
722 {
723 	struct xfs_buf_log_item	*bip = bp->b_log_item;
724 	int			chunks;
725 	int			map_size;
726 	int			i;
727 
728 	/*
729 	 * Check to see if there is already a buf log item for
730 	 * this buffer. If we do already have one, there is
731 	 * nothing to do here so return.
732 	 */
733 	ASSERT(bp->b_mount == mp);
734 	if (bip) {
735 		ASSERT(bip->bli_item.li_type == XFS_LI_BUF);
736 		ASSERT(!bp->b_transp);
737 		ASSERT(bip->bli_buf == bp);
738 		return 0;
739 	}
740 
741 	bip = kmem_cache_zalloc(xfs_buf_item_zone, GFP_KERNEL | __GFP_NOFAIL);
742 	xfs_log_item_init(mp, &bip->bli_item, XFS_LI_BUF, &xfs_buf_item_ops);
743 	bip->bli_buf = bp;
744 
745 	/*
746 	 * chunks is the number of XFS_BLF_CHUNK size pieces the buffer
747 	 * can be divided into. Make sure not to truncate any pieces.
748 	 * map_size is the size of the bitmap needed to describe the
749 	 * chunks of the buffer.
750 	 *
751 	 * Discontiguous buffer support follows the layout of the underlying
752 	 * buffer. This makes the implementation as simple as possible.
753 	 */
754 	xfs_buf_item_get_format(bip, bp->b_map_count);
755 
756 	for (i = 0; i < bip->bli_format_count; i++) {
757 		chunks = DIV_ROUND_UP(BBTOB(bp->b_maps[i].bm_len),
758 				      XFS_BLF_CHUNK);
759 		map_size = DIV_ROUND_UP(chunks, NBWORD);
760 
761 		if (map_size > XFS_BLF_DATAMAP_SIZE) {
762 			kmem_cache_free(xfs_buf_item_zone, bip);
763 			xfs_err(mp,
764 	"buffer item dirty bitmap (%u uints) too small to reflect %u bytes!",
765 					map_size,
766 					BBTOB(bp->b_maps[i].bm_len));
767 			return -EFSCORRUPTED;
768 		}
769 
770 		bip->bli_formats[i].blf_type = XFS_LI_BUF;
771 		bip->bli_formats[i].blf_blkno = bp->b_maps[i].bm_bn;
772 		bip->bli_formats[i].blf_len = bp->b_maps[i].bm_len;
773 		bip->bli_formats[i].blf_map_size = map_size;
774 	}
775 
776 	bp->b_log_item = bip;
777 	xfs_buf_hold(bp);
778 	return 0;
779 }
780 
781 
782 /*
783  * Mark bytes first through last inclusive as dirty in the buf
784  * item's bitmap.
785  */
786 static void
787 xfs_buf_item_log_segment(
788 	uint			first,
789 	uint			last,
790 	uint			*map)
791 {
792 	uint		first_bit;
793 	uint		last_bit;
794 	uint		bits_to_set;
795 	uint		bits_set;
796 	uint		word_num;
797 	uint		*wordp;
798 	uint		bit;
799 	uint		end_bit;
800 	uint		mask;
801 
802 	ASSERT(first < XFS_BLF_DATAMAP_SIZE * XFS_BLF_CHUNK * NBWORD);
803 	ASSERT(last < XFS_BLF_DATAMAP_SIZE * XFS_BLF_CHUNK * NBWORD);
804 
805 	/*
806 	 * Convert byte offsets to bit numbers.
807 	 */
808 	first_bit = first >> XFS_BLF_SHIFT;
809 	last_bit = last >> XFS_BLF_SHIFT;
810 
811 	/*
812 	 * Calculate the total number of bits to be set.
813 	 */
814 	bits_to_set = last_bit - first_bit + 1;
815 
816 	/*
817 	 * Get a pointer to the first word in the bitmap
818 	 * to set a bit in.
819 	 */
820 	word_num = first_bit >> BIT_TO_WORD_SHIFT;
821 	wordp = &map[word_num];
822 
823 	/*
824 	 * Calculate the starting bit in the first word.
825 	 */
826 	bit = first_bit & (uint)(NBWORD - 1);
827 
828 	/*
829 	 * First set any bits in the first word of our range.
830 	 * If it starts at bit 0 of the word, it will be
831 	 * set below rather than here.  That is what the variable
832 	 * bit tells us. The variable bits_set tracks the number
833 	 * of bits that have been set so far.  End_bit is the number
834 	 * of the last bit to be set in this word plus one.
835 	 */
836 	if (bit) {
837 		end_bit = min(bit + bits_to_set, (uint)NBWORD);
838 		mask = ((1U << (end_bit - bit)) - 1) << bit;
839 		*wordp |= mask;
840 		wordp++;
841 		bits_set = end_bit - bit;
842 	} else {
843 		bits_set = 0;
844 	}
845 
846 	/*
847 	 * Now set bits a whole word at a time that are between
848 	 * first_bit and last_bit.
849 	 */
850 	while ((bits_to_set - bits_set) >= NBWORD) {
851 		*wordp = 0xffffffff;
852 		bits_set += NBWORD;
853 		wordp++;
854 	}
855 
856 	/*
857 	 * Finally, set any bits left to be set in one last partial word.
858 	 */
859 	end_bit = bits_to_set - bits_set;
860 	if (end_bit) {
861 		mask = (1U << end_bit) - 1;
862 		*wordp |= mask;
863 	}
864 }
865 
866 /*
867  * Mark bytes first through last inclusive as dirty in the buf
868  * item's bitmap.
869  */
870 void
871 xfs_buf_item_log(
872 	struct xfs_buf_log_item	*bip,
873 	uint			first,
874 	uint			last)
875 {
876 	int			i;
877 	uint			start;
878 	uint			end;
879 	struct xfs_buf		*bp = bip->bli_buf;
880 
881 	/*
882 	 * walk each buffer segment and mark them dirty appropriately.
883 	 */
884 	start = 0;
885 	for (i = 0; i < bip->bli_format_count; i++) {
886 		if (start > last)
887 			break;
888 		end = start + BBTOB(bp->b_maps[i].bm_len) - 1;
889 
890 		/* skip to the map that includes the first byte to log */
891 		if (first > end) {
892 			start += BBTOB(bp->b_maps[i].bm_len);
893 			continue;
894 		}
895 
896 		/*
897 		 * Trim the range to this segment and mark it in the bitmap.
898 		 * Note that we must convert buffer offsets to segment relative
899 		 * offsets (e.g., the first byte of each segment is byte 0 of
900 		 * that segment).
901 		 */
902 		if (first < start)
903 			first = start;
904 		if (end > last)
905 			end = last;
906 		xfs_buf_item_log_segment(first - start, end - start,
907 					 &bip->bli_formats[i].blf_data_map[0]);
908 
909 		start += BBTOB(bp->b_maps[i].bm_len);
910 	}
911 }
912 
913 
914 /*
915  * Return true if the buffer has any ranges logged/dirtied by a transaction,
916  * false otherwise.
917  */
918 bool
919 xfs_buf_item_dirty_format(
920 	struct xfs_buf_log_item	*bip)
921 {
922 	int			i;
923 
924 	for (i = 0; i < bip->bli_format_count; i++) {
925 		if (!xfs_bitmap_empty(bip->bli_formats[i].blf_data_map,
926 			     bip->bli_formats[i].blf_map_size))
927 			return true;
928 	}
929 
930 	return false;
931 }
932 
933 STATIC void
934 xfs_buf_item_free(
935 	struct xfs_buf_log_item	*bip)
936 {
937 	xfs_buf_item_free_format(bip);
938 	kmem_free(bip->bli_item.li_lv_shadow);
939 	kmem_cache_free(xfs_buf_item_zone, bip);
940 }
941 
942 /*
943  * xfs_buf_item_relse() is called when the buf log item is no longer needed.
944  */
945 void
946 xfs_buf_item_relse(
947 	xfs_buf_t	*bp)
948 {
949 	struct xfs_buf_log_item	*bip = bp->b_log_item;
950 
951 	trace_xfs_buf_item_relse(bp, _RET_IP_);
952 	ASSERT(!test_bit(XFS_LI_IN_AIL, &bip->bli_item.li_flags));
953 
954 	bp->b_log_item = NULL;
955 	xfs_buf_rele(bp);
956 	xfs_buf_item_free(bip);
957 }
958 
959 /*
960  * Decide if we're going to retry the write after a failure, and prepare
961  * the buffer for retrying the write.
962  */
963 static bool
964 xfs_buf_ioerror_fail_without_retry(
965 	struct xfs_buf		*bp)
966 {
967 	struct xfs_mount	*mp = bp->b_mount;
968 	static ulong		lasttime;
969 	static xfs_buftarg_t	*lasttarg;
970 
971 	/*
972 	 * If we've already decided to shutdown the filesystem because of
973 	 * I/O errors, there's no point in giving this a retry.
974 	 */
975 	if (XFS_FORCED_SHUTDOWN(mp))
976 		return true;
977 
978 	if (bp->b_target != lasttarg ||
979 	    time_after(jiffies, (lasttime + 5*HZ))) {
980 		lasttime = jiffies;
981 		xfs_buf_ioerror_alert(bp, __this_address);
982 	}
983 	lasttarg = bp->b_target;
984 
985 	/* synchronous writes will have callers process the error */
986 	if (!(bp->b_flags & XBF_ASYNC))
987 		return true;
988 	return false;
989 }
990 
991 static bool
992 xfs_buf_ioerror_retry(
993 	struct xfs_buf		*bp,
994 	struct xfs_error_cfg	*cfg)
995 {
996 	if ((bp->b_flags & (XBF_STALE | XBF_WRITE_FAIL)) &&
997 	    bp->b_last_error == bp->b_error)
998 		return false;
999 
1000 	bp->b_flags |= (XBF_WRITE | XBF_DONE | XBF_WRITE_FAIL);
1001 	bp->b_last_error = bp->b_error;
1002 	if (cfg->retry_timeout != XFS_ERR_RETRY_FOREVER &&
1003 	    !bp->b_first_retry_time)
1004 		bp->b_first_retry_time = jiffies;
1005 	return true;
1006 }
1007 
1008 /*
1009  * Account for this latest trip around the retry handler, and decide if
1010  * we've failed enough times to constitute a permanent failure.
1011  */
1012 static bool
1013 xfs_buf_ioerror_permanent(
1014 	struct xfs_buf		*bp,
1015 	struct xfs_error_cfg	*cfg)
1016 {
1017 	struct xfs_mount	*mp = bp->b_mount;
1018 
1019 	if (cfg->max_retries != XFS_ERR_RETRY_FOREVER &&
1020 	    ++bp->b_retries > cfg->max_retries)
1021 		return true;
1022 	if (cfg->retry_timeout != XFS_ERR_RETRY_FOREVER &&
1023 	    time_after(jiffies, cfg->retry_timeout + bp->b_first_retry_time))
1024 		return true;
1025 
1026 	/* At unmount we may treat errors differently */
1027 	if ((mp->m_flags & XFS_MOUNT_UNMOUNTING) && mp->m_fail_unmount)
1028 		return true;
1029 
1030 	return false;
1031 }
1032 
1033 /*
1034  * On a sync write or shutdown we just want to stale the buffer and let the
1035  * caller handle the error in bp->b_error appropriately.
1036  *
1037  * If the write was asynchronous then no one will be looking for the error.  If
1038  * this is the first failure of this type, clear the error state and write the
1039  * buffer out again. This means we always retry an async write failure at least
1040  * once, but we also need to set the buffer up to behave correctly now for
1041  * repeated failures.
1042  *
1043  * If we get repeated async write failures, then we take action according to the
1044  * error configuration we have been set up to use.
1045  *
1046  * Multi-state return value:
1047  *
1048  * XBF_IOERROR_FINISH: clear IO error retry state and run callback completions
1049  * XBF_IOERROR_DONE: resubmitted immediately, do not run any completions
1050  * XBF_IOERROR_FAIL: transient error, run failure callback completions and then
1051  *    release the buffer
1052  */
1053 enum {
1054 	XBF_IOERROR_FINISH,
1055 	XBF_IOERROR_DONE,
1056 	XBF_IOERROR_FAIL,
1057 };
1058 
1059 static int
1060 xfs_buf_iodone_error(
1061 	struct xfs_buf		*bp)
1062 {
1063 	struct xfs_mount	*mp = bp->b_mount;
1064 	struct xfs_error_cfg	*cfg;
1065 
1066 	if (xfs_buf_ioerror_fail_without_retry(bp))
1067 		goto out_stale;
1068 
1069 	trace_xfs_buf_item_iodone_async(bp, _RET_IP_);
1070 
1071 	cfg = xfs_error_get_cfg(mp, XFS_ERR_METADATA, bp->b_error);
1072 	if (xfs_buf_ioerror_retry(bp, cfg)) {
1073 		xfs_buf_ioerror(bp, 0);
1074 		xfs_buf_submit(bp);
1075 		return XBF_IOERROR_DONE;
1076 	}
1077 
1078 	/*
1079 	 * Permanent error - we need to trigger a shutdown if we haven't already
1080 	 * to indicate that inconsistency will result from this action.
1081 	 */
1082 	if (xfs_buf_ioerror_permanent(bp, cfg)) {
1083 		xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1084 		goto out_stale;
1085 	}
1086 
1087 	/* Still considered a transient error. Caller will schedule retries. */
1088 	return XBF_IOERROR_FAIL;
1089 
1090 out_stale:
1091 	xfs_buf_stale(bp);
1092 	bp->b_flags |= XBF_DONE;
1093 	trace_xfs_buf_error_relse(bp, _RET_IP_);
1094 	return XBF_IOERROR_FINISH;
1095 }
1096 
1097 static void
1098 xfs_buf_item_done(
1099 	struct xfs_buf		*bp)
1100 {
1101 	struct xfs_buf_log_item	*bip = bp->b_log_item;
1102 
1103 	if (!bip)
1104 		return;
1105 
1106 	/*
1107 	 * If we are forcibly shutting down, this may well be off the AIL
1108 	 * already. That's because we simulate the log-committed callbacks to
1109 	 * unpin these buffers. Or we may never have put this item on AIL
1110 	 * because of the transaction was aborted forcibly.
1111 	 * xfs_trans_ail_delete() takes care of these.
1112 	 *
1113 	 * Either way, AIL is useless if we're forcing a shutdown.
1114 	 */
1115 	xfs_trans_ail_delete(&bip->bli_item, SHUTDOWN_CORRUPT_INCORE);
1116 	bp->b_log_item = NULL;
1117 	xfs_buf_item_free(bip);
1118 	xfs_buf_rele(bp);
1119 }
1120 
1121 static inline void
1122 xfs_buf_clear_ioerror_retry_state(
1123 	struct xfs_buf		*bp)
1124 {
1125 	bp->b_last_error = 0;
1126 	bp->b_retries = 0;
1127 	bp->b_first_retry_time = 0;
1128 }
1129 
1130 /*
1131  * Inode buffer iodone callback function.
1132  */
1133 void
1134 xfs_buf_inode_iodone(
1135 	struct xfs_buf		*bp)
1136 {
1137 	if (bp->b_error) {
1138 		struct xfs_log_item *lip;
1139 		int ret = xfs_buf_iodone_error(bp);
1140 
1141 		if (ret == XBF_IOERROR_FINISH)
1142 			goto finish_iodone;
1143 		if (ret == XBF_IOERROR_DONE)
1144 			return;
1145 		ASSERT(ret == XBF_IOERROR_FAIL);
1146 		list_for_each_entry(lip, &bp->b_li_list, li_bio_list) {
1147 			set_bit(XFS_LI_FAILED, &lip->li_flags);
1148 		}
1149 		xfs_buf_ioerror(bp, 0);
1150 		xfs_buf_relse(bp);
1151 		return;
1152 	}
1153 
1154 finish_iodone:
1155 	xfs_buf_clear_ioerror_retry_state(bp);
1156 	xfs_buf_item_done(bp);
1157 	xfs_iflush_done(bp);
1158 	xfs_buf_ioend_finish(bp);
1159 }
1160 
1161 /*
1162  * Dquot buffer iodone callback function.
1163  */
1164 void
1165 xfs_buf_dquot_iodone(
1166 	struct xfs_buf		*bp)
1167 {
1168 	if (bp->b_error) {
1169 		struct xfs_log_item *lip;
1170 		int ret = xfs_buf_iodone_error(bp);
1171 
1172 		if (ret == XBF_IOERROR_FINISH)
1173 			goto finish_iodone;
1174 		if (ret == XBF_IOERROR_DONE)
1175 			return;
1176 		ASSERT(ret == XBF_IOERROR_FAIL);
1177 		spin_lock(&bp->b_mount->m_ail->ail_lock);
1178 		list_for_each_entry(lip, &bp->b_li_list, li_bio_list) {
1179 			xfs_set_li_failed(lip, bp);
1180 		}
1181 		spin_unlock(&bp->b_mount->m_ail->ail_lock);
1182 		xfs_buf_ioerror(bp, 0);
1183 		xfs_buf_relse(bp);
1184 		return;
1185 	}
1186 
1187 finish_iodone:
1188 	xfs_buf_clear_ioerror_retry_state(bp);
1189 	/* a newly allocated dquot buffer might have a log item attached */
1190 	xfs_buf_item_done(bp);
1191 	xfs_dquot_done(bp);
1192 	xfs_buf_ioend_finish(bp);
1193 }
1194 
1195 /*
1196  * Dirty buffer iodone callback function.
1197  *
1198  * Note that for things like remote attribute buffers, there may not be a buffer
1199  * log item here, so processing the buffer log item must remain be optional.
1200  */
1201 void
1202 xfs_buf_iodone(
1203 	struct xfs_buf		*bp)
1204 {
1205 	if (bp->b_error) {
1206 		int ret = xfs_buf_iodone_error(bp);
1207 
1208 		if (ret == XBF_IOERROR_FINISH)
1209 			goto finish_iodone;
1210 		if (ret == XBF_IOERROR_DONE)
1211 			return;
1212 		ASSERT(ret == XBF_IOERROR_FAIL);
1213 		ASSERT(list_empty(&bp->b_li_list));
1214 		xfs_buf_ioerror(bp, 0);
1215 		xfs_buf_relse(bp);
1216 		return;
1217 	}
1218 
1219 finish_iodone:
1220 	xfs_buf_clear_ioerror_retry_state(bp);
1221 	xfs_buf_item_done(bp);
1222 	xfs_buf_ioend_finish(bp);
1223 }
1224