1 /* 2 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_fs.h" 20 #include "xfs_format.h" 21 #include "xfs_log_format.h" 22 #include "xfs_trans_resv.h" 23 #include "xfs_bit.h" 24 #include "xfs_sb.h" 25 #include "xfs_mount.h" 26 #include "xfs_trans.h" 27 #include "xfs_buf_item.h" 28 #include "xfs_trans_priv.h" 29 #include "xfs_error.h" 30 #include "xfs_trace.h" 31 #include "xfs_log.h" 32 33 34 kmem_zone_t *xfs_buf_item_zone; 35 36 static inline struct xfs_buf_log_item *BUF_ITEM(struct xfs_log_item *lip) 37 { 38 return container_of(lip, struct xfs_buf_log_item, bli_item); 39 } 40 41 STATIC void xfs_buf_do_callbacks(struct xfs_buf *bp); 42 43 static inline int 44 xfs_buf_log_format_size( 45 struct xfs_buf_log_format *blfp) 46 { 47 return offsetof(struct xfs_buf_log_format, blf_data_map) + 48 (blfp->blf_map_size * sizeof(blfp->blf_data_map[0])); 49 } 50 51 /* 52 * This returns the number of log iovecs needed to log the 53 * given buf log item. 54 * 55 * It calculates this as 1 iovec for the buf log format structure 56 * and 1 for each stretch of non-contiguous chunks to be logged. 57 * Contiguous chunks are logged in a single iovec. 58 * 59 * If the XFS_BLI_STALE flag has been set, then log nothing. 60 */ 61 STATIC void 62 xfs_buf_item_size_segment( 63 struct xfs_buf_log_item *bip, 64 struct xfs_buf_log_format *blfp, 65 int *nvecs, 66 int *nbytes) 67 { 68 struct xfs_buf *bp = bip->bli_buf; 69 int next_bit; 70 int last_bit; 71 72 last_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size, 0); 73 if (last_bit == -1) 74 return; 75 76 /* 77 * initial count for a dirty buffer is 2 vectors - the format structure 78 * and the first dirty region. 79 */ 80 *nvecs += 2; 81 *nbytes += xfs_buf_log_format_size(blfp) + XFS_BLF_CHUNK; 82 83 while (last_bit != -1) { 84 /* 85 * This takes the bit number to start looking from and 86 * returns the next set bit from there. It returns -1 87 * if there are no more bits set or the start bit is 88 * beyond the end of the bitmap. 89 */ 90 next_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size, 91 last_bit + 1); 92 /* 93 * If we run out of bits, leave the loop, 94 * else if we find a new set of bits bump the number of vecs, 95 * else keep scanning the current set of bits. 96 */ 97 if (next_bit == -1) { 98 break; 99 } else if (next_bit != last_bit + 1) { 100 last_bit = next_bit; 101 (*nvecs)++; 102 } else if (xfs_buf_offset(bp, next_bit * XFS_BLF_CHUNK) != 103 (xfs_buf_offset(bp, last_bit * XFS_BLF_CHUNK) + 104 XFS_BLF_CHUNK)) { 105 last_bit = next_bit; 106 (*nvecs)++; 107 } else { 108 last_bit++; 109 } 110 *nbytes += XFS_BLF_CHUNK; 111 } 112 } 113 114 /* 115 * This returns the number of log iovecs needed to log the given buf log item. 116 * 117 * It calculates this as 1 iovec for the buf log format structure and 1 for each 118 * stretch of non-contiguous chunks to be logged. Contiguous chunks are logged 119 * in a single iovec. 120 * 121 * Discontiguous buffers need a format structure per region that that is being 122 * logged. This makes the changes in the buffer appear to log recovery as though 123 * they came from separate buffers, just like would occur if multiple buffers 124 * were used instead of a single discontiguous buffer. This enables 125 * discontiguous buffers to be in-memory constructs, completely transparent to 126 * what ends up on disk. 127 * 128 * If the XFS_BLI_STALE flag has been set, then log nothing but the buf log 129 * format structures. 130 */ 131 STATIC void 132 xfs_buf_item_size( 133 struct xfs_log_item *lip, 134 int *nvecs, 135 int *nbytes) 136 { 137 struct xfs_buf_log_item *bip = BUF_ITEM(lip); 138 int i; 139 140 ASSERT(atomic_read(&bip->bli_refcount) > 0); 141 if (bip->bli_flags & XFS_BLI_STALE) { 142 /* 143 * The buffer is stale, so all we need to log 144 * is the buf log format structure with the 145 * cancel flag in it. 146 */ 147 trace_xfs_buf_item_size_stale(bip); 148 ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL); 149 *nvecs += bip->bli_format_count; 150 for (i = 0; i < bip->bli_format_count; i++) { 151 *nbytes += xfs_buf_log_format_size(&bip->bli_formats[i]); 152 } 153 return; 154 } 155 156 ASSERT(bip->bli_flags & XFS_BLI_LOGGED); 157 158 if (bip->bli_flags & XFS_BLI_ORDERED) { 159 /* 160 * The buffer has been logged just to order it. 161 * It is not being included in the transaction 162 * commit, so no vectors are used at all. 163 */ 164 trace_xfs_buf_item_size_ordered(bip); 165 *nvecs = XFS_LOG_VEC_ORDERED; 166 return; 167 } 168 169 /* 170 * the vector count is based on the number of buffer vectors we have 171 * dirty bits in. This will only be greater than one when we have a 172 * compound buffer with more than one segment dirty. Hence for compound 173 * buffers we need to track which segment the dirty bits correspond to, 174 * and when we move from one segment to the next increment the vector 175 * count for the extra buf log format structure that will need to be 176 * written. 177 */ 178 for (i = 0; i < bip->bli_format_count; i++) { 179 xfs_buf_item_size_segment(bip, &bip->bli_formats[i], 180 nvecs, nbytes); 181 } 182 trace_xfs_buf_item_size(bip); 183 } 184 185 static inline void 186 xfs_buf_item_copy_iovec( 187 struct xfs_log_vec *lv, 188 struct xfs_log_iovec **vecp, 189 struct xfs_buf *bp, 190 uint offset, 191 int first_bit, 192 uint nbits) 193 { 194 offset += first_bit * XFS_BLF_CHUNK; 195 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_BCHUNK, 196 xfs_buf_offset(bp, offset), 197 nbits * XFS_BLF_CHUNK); 198 } 199 200 static inline bool 201 xfs_buf_item_straddle( 202 struct xfs_buf *bp, 203 uint offset, 204 int next_bit, 205 int last_bit) 206 { 207 return xfs_buf_offset(bp, offset + (next_bit << XFS_BLF_SHIFT)) != 208 (xfs_buf_offset(bp, offset + (last_bit << XFS_BLF_SHIFT)) + 209 XFS_BLF_CHUNK); 210 } 211 212 static void 213 xfs_buf_item_format_segment( 214 struct xfs_buf_log_item *bip, 215 struct xfs_log_vec *lv, 216 struct xfs_log_iovec **vecp, 217 uint offset, 218 struct xfs_buf_log_format *blfp) 219 { 220 struct xfs_buf *bp = bip->bli_buf; 221 uint base_size; 222 int first_bit; 223 int last_bit; 224 int next_bit; 225 uint nbits; 226 227 /* copy the flags across from the base format item */ 228 blfp->blf_flags = bip->__bli_format.blf_flags; 229 230 /* 231 * Base size is the actual size of the ondisk structure - it reflects 232 * the actual size of the dirty bitmap rather than the size of the in 233 * memory structure. 234 */ 235 base_size = xfs_buf_log_format_size(blfp); 236 237 first_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size, 0); 238 if (!(bip->bli_flags & XFS_BLI_STALE) && first_bit == -1) { 239 /* 240 * If the map is not be dirty in the transaction, mark 241 * the size as zero and do not advance the vector pointer. 242 */ 243 return; 244 } 245 246 blfp = xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_BFORMAT, blfp, base_size); 247 blfp->blf_size = 1; 248 249 if (bip->bli_flags & XFS_BLI_STALE) { 250 /* 251 * The buffer is stale, so all we need to log 252 * is the buf log format structure with the 253 * cancel flag in it. 254 */ 255 trace_xfs_buf_item_format_stale(bip); 256 ASSERT(blfp->blf_flags & XFS_BLF_CANCEL); 257 return; 258 } 259 260 261 /* 262 * Fill in an iovec for each set of contiguous chunks. 263 */ 264 last_bit = first_bit; 265 nbits = 1; 266 for (;;) { 267 /* 268 * This takes the bit number to start looking from and 269 * returns the next set bit from there. It returns -1 270 * if there are no more bits set or the start bit is 271 * beyond the end of the bitmap. 272 */ 273 next_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size, 274 (uint)last_bit + 1); 275 /* 276 * If we run out of bits fill in the last iovec and get out of 277 * the loop. Else if we start a new set of bits then fill in 278 * the iovec for the series we were looking at and start 279 * counting the bits in the new one. Else we're still in the 280 * same set of bits so just keep counting and scanning. 281 */ 282 if (next_bit == -1) { 283 xfs_buf_item_copy_iovec(lv, vecp, bp, offset, 284 first_bit, nbits); 285 blfp->blf_size++; 286 break; 287 } else if (next_bit != last_bit + 1 || 288 xfs_buf_item_straddle(bp, offset, next_bit, last_bit)) { 289 xfs_buf_item_copy_iovec(lv, vecp, bp, offset, 290 first_bit, nbits); 291 blfp->blf_size++; 292 first_bit = next_bit; 293 last_bit = next_bit; 294 nbits = 1; 295 } else { 296 last_bit++; 297 nbits++; 298 } 299 } 300 } 301 302 /* 303 * This is called to fill in the vector of log iovecs for the 304 * given log buf item. It fills the first entry with a buf log 305 * format structure, and the rest point to contiguous chunks 306 * within the buffer. 307 */ 308 STATIC void 309 xfs_buf_item_format( 310 struct xfs_log_item *lip, 311 struct xfs_log_vec *lv) 312 { 313 struct xfs_buf_log_item *bip = BUF_ITEM(lip); 314 struct xfs_buf *bp = bip->bli_buf; 315 struct xfs_log_iovec *vecp = NULL; 316 uint offset = 0; 317 int i; 318 319 ASSERT(atomic_read(&bip->bli_refcount) > 0); 320 ASSERT((bip->bli_flags & XFS_BLI_LOGGED) || 321 (bip->bli_flags & XFS_BLI_STALE)); 322 ASSERT((bip->bli_flags & XFS_BLI_STALE) || 323 (xfs_blft_from_flags(&bip->__bli_format) > XFS_BLFT_UNKNOWN_BUF 324 && xfs_blft_from_flags(&bip->__bli_format) < XFS_BLFT_MAX_BUF)); 325 326 327 /* 328 * If it is an inode buffer, transfer the in-memory state to the 329 * format flags and clear the in-memory state. 330 * 331 * For buffer based inode allocation, we do not transfer 332 * this state if the inode buffer allocation has not yet been committed 333 * to the log as setting the XFS_BLI_INODE_BUF flag will prevent 334 * correct replay of the inode allocation. 335 * 336 * For icreate item based inode allocation, the buffers aren't written 337 * to the journal during allocation, and hence we should always tag the 338 * buffer as an inode buffer so that the correct unlinked list replay 339 * occurs during recovery. 340 */ 341 if (bip->bli_flags & XFS_BLI_INODE_BUF) { 342 if (xfs_sb_version_hascrc(&lip->li_mountp->m_sb) || 343 !((bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF) && 344 xfs_log_item_in_current_chkpt(lip))) 345 bip->__bli_format.blf_flags |= XFS_BLF_INODE_BUF; 346 bip->bli_flags &= ~XFS_BLI_INODE_BUF; 347 } 348 349 if ((bip->bli_flags & (XFS_BLI_ORDERED|XFS_BLI_STALE)) == 350 XFS_BLI_ORDERED) { 351 /* 352 * The buffer has been logged just to order it. It is not being 353 * included in the transaction commit, so don't format it. 354 */ 355 trace_xfs_buf_item_format_ordered(bip); 356 return; 357 } 358 359 for (i = 0; i < bip->bli_format_count; i++) { 360 xfs_buf_item_format_segment(bip, lv, &vecp, offset, 361 &bip->bli_formats[i]); 362 offset += bp->b_maps[i].bm_len; 363 } 364 365 /* 366 * Check to make sure everything is consistent. 367 */ 368 trace_xfs_buf_item_format(bip); 369 } 370 371 /* 372 * This is called to pin the buffer associated with the buf log item in memory 373 * so it cannot be written out. 374 * 375 * We also always take a reference to the buffer log item here so that the bli 376 * is held while the item is pinned in memory. This means that we can 377 * unconditionally drop the reference count a transaction holds when the 378 * transaction is completed. 379 */ 380 STATIC void 381 xfs_buf_item_pin( 382 struct xfs_log_item *lip) 383 { 384 struct xfs_buf_log_item *bip = BUF_ITEM(lip); 385 386 ASSERT(atomic_read(&bip->bli_refcount) > 0); 387 ASSERT((bip->bli_flags & XFS_BLI_LOGGED) || 388 (bip->bli_flags & XFS_BLI_ORDERED) || 389 (bip->bli_flags & XFS_BLI_STALE)); 390 391 trace_xfs_buf_item_pin(bip); 392 393 atomic_inc(&bip->bli_refcount); 394 atomic_inc(&bip->bli_buf->b_pin_count); 395 } 396 397 /* 398 * This is called to unpin the buffer associated with the buf log 399 * item which was previously pinned with a call to xfs_buf_item_pin(). 400 * 401 * Also drop the reference to the buf item for the current transaction. 402 * If the XFS_BLI_STALE flag is set and we are the last reference, 403 * then free up the buf log item and unlock the buffer. 404 * 405 * If the remove flag is set we are called from uncommit in the 406 * forced-shutdown path. If that is true and the reference count on 407 * the log item is going to drop to zero we need to free the item's 408 * descriptor in the transaction. 409 */ 410 STATIC void 411 xfs_buf_item_unpin( 412 struct xfs_log_item *lip, 413 int remove) 414 { 415 struct xfs_buf_log_item *bip = BUF_ITEM(lip); 416 xfs_buf_t *bp = bip->bli_buf; 417 struct xfs_ail *ailp = lip->li_ailp; 418 int stale = bip->bli_flags & XFS_BLI_STALE; 419 int freed; 420 421 ASSERT(bp->b_fspriv == bip); 422 ASSERT(atomic_read(&bip->bli_refcount) > 0); 423 424 trace_xfs_buf_item_unpin(bip); 425 426 freed = atomic_dec_and_test(&bip->bli_refcount); 427 428 if (atomic_dec_and_test(&bp->b_pin_count)) 429 wake_up_all(&bp->b_waiters); 430 431 if (freed && stale) { 432 ASSERT(bip->bli_flags & XFS_BLI_STALE); 433 ASSERT(xfs_buf_islocked(bp)); 434 ASSERT(XFS_BUF_ISSTALE(bp)); 435 ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL); 436 437 trace_xfs_buf_item_unpin_stale(bip); 438 439 if (remove) { 440 /* 441 * If we are in a transaction context, we have to 442 * remove the log item from the transaction as we are 443 * about to release our reference to the buffer. If we 444 * don't, the unlock that occurs later in 445 * xfs_trans_uncommit() will try to reference the 446 * buffer which we no longer have a hold on. 447 */ 448 if (lip->li_desc) 449 xfs_trans_del_item(lip); 450 451 /* 452 * Since the transaction no longer refers to the buffer, 453 * the buffer should no longer refer to the transaction. 454 */ 455 bp->b_transp = NULL; 456 } 457 458 /* 459 * If we get called here because of an IO error, we may 460 * or may not have the item on the AIL. xfs_trans_ail_delete() 461 * will take care of that situation. 462 * xfs_trans_ail_delete() drops the AIL lock. 463 */ 464 if (bip->bli_flags & XFS_BLI_STALE_INODE) { 465 xfs_buf_do_callbacks(bp); 466 bp->b_fspriv = NULL; 467 bp->b_iodone = NULL; 468 } else { 469 spin_lock(&ailp->xa_lock); 470 xfs_trans_ail_delete(ailp, lip, SHUTDOWN_LOG_IO_ERROR); 471 xfs_buf_item_relse(bp); 472 ASSERT(bp->b_fspriv == NULL); 473 } 474 xfs_buf_relse(bp); 475 } else if (freed && remove) { 476 /* 477 * There are currently two references to the buffer - the active 478 * LRU reference and the buf log item. What we are about to do 479 * here - simulate a failed IO completion - requires 3 480 * references. 481 * 482 * The LRU reference is removed by the xfs_buf_stale() call. The 483 * buf item reference is removed by the xfs_buf_iodone() 484 * callback that is run by xfs_buf_do_callbacks() during ioend 485 * processing (via the bp->b_iodone callback), and then finally 486 * the ioend processing will drop the IO reference if the buffer 487 * is marked XBF_ASYNC. 488 * 489 * Hence we need to take an additional reference here so that IO 490 * completion processing doesn't free the buffer prematurely. 491 */ 492 xfs_buf_lock(bp); 493 xfs_buf_hold(bp); 494 bp->b_flags |= XBF_ASYNC; 495 xfs_buf_ioerror(bp, -EIO); 496 XFS_BUF_UNDONE(bp); 497 xfs_buf_stale(bp); 498 xfs_buf_ioend(bp); 499 } 500 } 501 502 /* 503 * Buffer IO error rate limiting. Limit it to no more than 10 messages per 30 504 * seconds so as to not spam logs too much on repeated detection of the same 505 * buffer being bad.. 506 */ 507 508 static DEFINE_RATELIMIT_STATE(xfs_buf_write_fail_rl_state, 30 * HZ, 10); 509 510 STATIC uint 511 xfs_buf_item_push( 512 struct xfs_log_item *lip, 513 struct list_head *buffer_list) 514 { 515 struct xfs_buf_log_item *bip = BUF_ITEM(lip); 516 struct xfs_buf *bp = bip->bli_buf; 517 uint rval = XFS_ITEM_SUCCESS; 518 519 if (xfs_buf_ispinned(bp)) 520 return XFS_ITEM_PINNED; 521 if (!xfs_buf_trylock(bp)) { 522 /* 523 * If we have just raced with a buffer being pinned and it has 524 * been marked stale, we could end up stalling until someone else 525 * issues a log force to unpin the stale buffer. Check for the 526 * race condition here so xfsaild recognizes the buffer is pinned 527 * and queues a log force to move it along. 528 */ 529 if (xfs_buf_ispinned(bp)) 530 return XFS_ITEM_PINNED; 531 return XFS_ITEM_LOCKED; 532 } 533 534 ASSERT(!(bip->bli_flags & XFS_BLI_STALE)); 535 536 trace_xfs_buf_item_push(bip); 537 538 /* has a previous flush failed due to IO errors? */ 539 if ((bp->b_flags & XBF_WRITE_FAIL) && 540 ___ratelimit(&xfs_buf_write_fail_rl_state, "XFS: Failing async write")) { 541 xfs_warn(bp->b_target->bt_mount, 542 "Failing async write on buffer block 0x%llx. Retrying async write.", 543 (long long)bp->b_bn); 544 } 545 546 if (!xfs_buf_delwri_queue(bp, buffer_list)) 547 rval = XFS_ITEM_FLUSHING; 548 xfs_buf_unlock(bp); 549 return rval; 550 } 551 552 /* 553 * Release the buffer associated with the buf log item. If there is no dirty 554 * logged data associated with the buffer recorded in the buf log item, then 555 * free the buf log item and remove the reference to it in the buffer. 556 * 557 * This call ignores the recursion count. It is only called when the buffer 558 * should REALLY be unlocked, regardless of the recursion count. 559 * 560 * We unconditionally drop the transaction's reference to the log item. If the 561 * item was logged, then another reference was taken when it was pinned, so we 562 * can safely drop the transaction reference now. This also allows us to avoid 563 * potential races with the unpin code freeing the bli by not referencing the 564 * bli after we've dropped the reference count. 565 * 566 * If the XFS_BLI_HOLD flag is set in the buf log item, then free the log item 567 * if necessary but do not unlock the buffer. This is for support of 568 * xfs_trans_bhold(). Make sure the XFS_BLI_HOLD field is cleared if we don't 569 * free the item. 570 */ 571 STATIC void 572 xfs_buf_item_unlock( 573 struct xfs_log_item *lip) 574 { 575 struct xfs_buf_log_item *bip = BUF_ITEM(lip); 576 struct xfs_buf *bp = bip->bli_buf; 577 bool clean; 578 bool aborted; 579 int flags; 580 581 /* Clear the buffer's association with this transaction. */ 582 bp->b_transp = NULL; 583 584 /* 585 * If this is a transaction abort, don't return early. Instead, allow 586 * the brelse to happen. Normally it would be done for stale 587 * (cancelled) buffers at unpin time, but we'll never go through the 588 * pin/unpin cycle if we abort inside commit. 589 */ 590 aborted = (lip->li_flags & XFS_LI_ABORTED) ? true : false; 591 /* 592 * Before possibly freeing the buf item, copy the per-transaction state 593 * so we can reference it safely later after clearing it from the 594 * buffer log item. 595 */ 596 flags = bip->bli_flags; 597 bip->bli_flags &= ~(XFS_BLI_LOGGED | XFS_BLI_HOLD | XFS_BLI_ORDERED); 598 599 /* 600 * If the buf item is marked stale, then don't do anything. We'll 601 * unlock the buffer and free the buf item when the buffer is unpinned 602 * for the last time. 603 */ 604 if (flags & XFS_BLI_STALE) { 605 trace_xfs_buf_item_unlock_stale(bip); 606 ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL); 607 if (!aborted) { 608 atomic_dec(&bip->bli_refcount); 609 return; 610 } 611 } 612 613 trace_xfs_buf_item_unlock(bip); 614 615 /* 616 * If the buf item isn't tracking any data, free it, otherwise drop the 617 * reference we hold to it. If we are aborting the transaction, this may 618 * be the only reference to the buf item, so we free it anyway 619 * regardless of whether it is dirty or not. A dirty abort implies a 620 * shutdown, anyway. 621 * 622 * Ordered buffers are dirty but may have no recorded changes, so ensure 623 * we only release clean items here. 624 */ 625 clean = (flags & XFS_BLI_DIRTY) ? false : true; 626 if (clean) { 627 int i; 628 for (i = 0; i < bip->bli_format_count; i++) { 629 if (!xfs_bitmap_empty(bip->bli_formats[i].blf_data_map, 630 bip->bli_formats[i].blf_map_size)) { 631 clean = false; 632 break; 633 } 634 } 635 } 636 637 /* 638 * Clean buffers, by definition, cannot be in the AIL. However, aborted 639 * buffers may be dirty and hence in the AIL. Therefore if we are 640 * aborting a buffer and we've just taken the last refernce away, we 641 * have to check if it is in the AIL before freeing it. We need to free 642 * it in this case, because an aborted transaction has already shut the 643 * filesystem down and this is the last chance we will have to do so. 644 */ 645 if (atomic_dec_and_test(&bip->bli_refcount)) { 646 if (clean) 647 xfs_buf_item_relse(bp); 648 else if (aborted) { 649 ASSERT(XFS_FORCED_SHUTDOWN(lip->li_mountp)); 650 xfs_trans_ail_remove(lip, SHUTDOWN_LOG_IO_ERROR); 651 xfs_buf_item_relse(bp); 652 } 653 } 654 655 if (!(flags & XFS_BLI_HOLD)) 656 xfs_buf_relse(bp); 657 } 658 659 /* 660 * This is called to find out where the oldest active copy of the 661 * buf log item in the on disk log resides now that the last log 662 * write of it completed at the given lsn. 663 * We always re-log all the dirty data in a buffer, so usually the 664 * latest copy in the on disk log is the only one that matters. For 665 * those cases we simply return the given lsn. 666 * 667 * The one exception to this is for buffers full of newly allocated 668 * inodes. These buffers are only relogged with the XFS_BLI_INODE_BUF 669 * flag set, indicating that only the di_next_unlinked fields from the 670 * inodes in the buffers will be replayed during recovery. If the 671 * original newly allocated inode images have not yet been flushed 672 * when the buffer is so relogged, then we need to make sure that we 673 * keep the old images in the 'active' portion of the log. We do this 674 * by returning the original lsn of that transaction here rather than 675 * the current one. 676 */ 677 STATIC xfs_lsn_t 678 xfs_buf_item_committed( 679 struct xfs_log_item *lip, 680 xfs_lsn_t lsn) 681 { 682 struct xfs_buf_log_item *bip = BUF_ITEM(lip); 683 684 trace_xfs_buf_item_committed(bip); 685 686 if ((bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF) && lip->li_lsn != 0) 687 return lip->li_lsn; 688 return lsn; 689 } 690 691 STATIC void 692 xfs_buf_item_committing( 693 struct xfs_log_item *lip, 694 xfs_lsn_t commit_lsn) 695 { 696 } 697 698 /* 699 * This is the ops vector shared by all buf log items. 700 */ 701 static const struct xfs_item_ops xfs_buf_item_ops = { 702 .iop_size = xfs_buf_item_size, 703 .iop_format = xfs_buf_item_format, 704 .iop_pin = xfs_buf_item_pin, 705 .iop_unpin = xfs_buf_item_unpin, 706 .iop_unlock = xfs_buf_item_unlock, 707 .iop_committed = xfs_buf_item_committed, 708 .iop_push = xfs_buf_item_push, 709 .iop_committing = xfs_buf_item_committing 710 }; 711 712 STATIC int 713 xfs_buf_item_get_format( 714 struct xfs_buf_log_item *bip, 715 int count) 716 { 717 ASSERT(bip->bli_formats == NULL); 718 bip->bli_format_count = count; 719 720 if (count == 1) { 721 bip->bli_formats = &bip->__bli_format; 722 return 0; 723 } 724 725 bip->bli_formats = kmem_zalloc(count * sizeof(struct xfs_buf_log_format), 726 KM_SLEEP); 727 if (!bip->bli_formats) 728 return -ENOMEM; 729 return 0; 730 } 731 732 STATIC void 733 xfs_buf_item_free_format( 734 struct xfs_buf_log_item *bip) 735 { 736 if (bip->bli_formats != &bip->__bli_format) { 737 kmem_free(bip->bli_formats); 738 bip->bli_formats = NULL; 739 } 740 } 741 742 /* 743 * Allocate a new buf log item to go with the given buffer. 744 * Set the buffer's b_fsprivate field to point to the new 745 * buf log item. If there are other item's attached to the 746 * buffer (see xfs_buf_attach_iodone() below), then put the 747 * buf log item at the front. 748 */ 749 int 750 xfs_buf_item_init( 751 struct xfs_buf *bp, 752 struct xfs_mount *mp) 753 { 754 struct xfs_log_item *lip = bp->b_fspriv; 755 struct xfs_buf_log_item *bip; 756 int chunks; 757 int map_size; 758 int error; 759 int i; 760 761 /* 762 * Check to see if there is already a buf log item for 763 * this buffer. If there is, it is guaranteed to be 764 * the first. If we do already have one, there is 765 * nothing to do here so return. 766 */ 767 ASSERT(bp->b_target->bt_mount == mp); 768 if (lip != NULL && lip->li_type == XFS_LI_BUF) 769 return 0; 770 771 bip = kmem_zone_zalloc(xfs_buf_item_zone, KM_SLEEP); 772 xfs_log_item_init(mp, &bip->bli_item, XFS_LI_BUF, &xfs_buf_item_ops); 773 bip->bli_buf = bp; 774 775 /* 776 * chunks is the number of XFS_BLF_CHUNK size pieces the buffer 777 * can be divided into. Make sure not to truncate any pieces. 778 * map_size is the size of the bitmap needed to describe the 779 * chunks of the buffer. 780 * 781 * Discontiguous buffer support follows the layout of the underlying 782 * buffer. This makes the implementation as simple as possible. 783 */ 784 error = xfs_buf_item_get_format(bip, bp->b_map_count); 785 ASSERT(error == 0); 786 if (error) { /* to stop gcc throwing set-but-unused warnings */ 787 kmem_zone_free(xfs_buf_item_zone, bip); 788 return error; 789 } 790 791 792 for (i = 0; i < bip->bli_format_count; i++) { 793 chunks = DIV_ROUND_UP(BBTOB(bp->b_maps[i].bm_len), 794 XFS_BLF_CHUNK); 795 map_size = DIV_ROUND_UP(chunks, NBWORD); 796 797 bip->bli_formats[i].blf_type = XFS_LI_BUF; 798 bip->bli_formats[i].blf_blkno = bp->b_maps[i].bm_bn; 799 bip->bli_formats[i].blf_len = bp->b_maps[i].bm_len; 800 bip->bli_formats[i].blf_map_size = map_size; 801 } 802 803 /* 804 * Put the buf item into the list of items attached to the 805 * buffer at the front. 806 */ 807 if (bp->b_fspriv) 808 bip->bli_item.li_bio_list = bp->b_fspriv; 809 bp->b_fspriv = bip; 810 xfs_buf_hold(bp); 811 return 0; 812 } 813 814 815 /* 816 * Mark bytes first through last inclusive as dirty in the buf 817 * item's bitmap. 818 */ 819 static void 820 xfs_buf_item_log_segment( 821 uint first, 822 uint last, 823 uint *map) 824 { 825 uint first_bit; 826 uint last_bit; 827 uint bits_to_set; 828 uint bits_set; 829 uint word_num; 830 uint *wordp; 831 uint bit; 832 uint end_bit; 833 uint mask; 834 835 /* 836 * Convert byte offsets to bit numbers. 837 */ 838 first_bit = first >> XFS_BLF_SHIFT; 839 last_bit = last >> XFS_BLF_SHIFT; 840 841 /* 842 * Calculate the total number of bits to be set. 843 */ 844 bits_to_set = last_bit - first_bit + 1; 845 846 /* 847 * Get a pointer to the first word in the bitmap 848 * to set a bit in. 849 */ 850 word_num = first_bit >> BIT_TO_WORD_SHIFT; 851 wordp = &map[word_num]; 852 853 /* 854 * Calculate the starting bit in the first word. 855 */ 856 bit = first_bit & (uint)(NBWORD - 1); 857 858 /* 859 * First set any bits in the first word of our range. 860 * If it starts at bit 0 of the word, it will be 861 * set below rather than here. That is what the variable 862 * bit tells us. The variable bits_set tracks the number 863 * of bits that have been set so far. End_bit is the number 864 * of the last bit to be set in this word plus one. 865 */ 866 if (bit) { 867 end_bit = MIN(bit + bits_to_set, (uint)NBWORD); 868 mask = ((1 << (end_bit - bit)) - 1) << bit; 869 *wordp |= mask; 870 wordp++; 871 bits_set = end_bit - bit; 872 } else { 873 bits_set = 0; 874 } 875 876 /* 877 * Now set bits a whole word at a time that are between 878 * first_bit and last_bit. 879 */ 880 while ((bits_to_set - bits_set) >= NBWORD) { 881 *wordp |= 0xffffffff; 882 bits_set += NBWORD; 883 wordp++; 884 } 885 886 /* 887 * Finally, set any bits left to be set in one last partial word. 888 */ 889 end_bit = bits_to_set - bits_set; 890 if (end_bit) { 891 mask = (1 << end_bit) - 1; 892 *wordp |= mask; 893 } 894 } 895 896 /* 897 * Mark bytes first through last inclusive as dirty in the buf 898 * item's bitmap. 899 */ 900 void 901 xfs_buf_item_log( 902 xfs_buf_log_item_t *bip, 903 uint first, 904 uint last) 905 { 906 int i; 907 uint start; 908 uint end; 909 struct xfs_buf *bp = bip->bli_buf; 910 911 /* 912 * walk each buffer segment and mark them dirty appropriately. 913 */ 914 start = 0; 915 for (i = 0; i < bip->bli_format_count; i++) { 916 if (start > last) 917 break; 918 end = start + BBTOB(bp->b_maps[i].bm_len); 919 if (first > end) { 920 start += BBTOB(bp->b_maps[i].bm_len); 921 continue; 922 } 923 if (first < start) 924 first = start; 925 if (end > last) 926 end = last; 927 928 xfs_buf_item_log_segment(first, end, 929 &bip->bli_formats[i].blf_data_map[0]); 930 931 start += bp->b_maps[i].bm_len; 932 } 933 } 934 935 936 /* 937 * Return 1 if the buffer has been logged or ordered in a transaction (at any 938 * point, not just the current transaction) and 0 if not. 939 */ 940 uint 941 xfs_buf_item_dirty( 942 xfs_buf_log_item_t *bip) 943 { 944 return (bip->bli_flags & XFS_BLI_DIRTY); 945 } 946 947 STATIC void 948 xfs_buf_item_free( 949 xfs_buf_log_item_t *bip) 950 { 951 xfs_buf_item_free_format(bip); 952 kmem_zone_free(xfs_buf_item_zone, bip); 953 } 954 955 /* 956 * This is called when the buf log item is no longer needed. It should 957 * free the buf log item associated with the given buffer and clear 958 * the buffer's pointer to the buf log item. If there are no more 959 * items in the list, clear the b_iodone field of the buffer (see 960 * xfs_buf_attach_iodone() below). 961 */ 962 void 963 xfs_buf_item_relse( 964 xfs_buf_t *bp) 965 { 966 xfs_buf_log_item_t *bip = bp->b_fspriv; 967 968 trace_xfs_buf_item_relse(bp, _RET_IP_); 969 ASSERT(!(bip->bli_item.li_flags & XFS_LI_IN_AIL)); 970 971 bp->b_fspriv = bip->bli_item.li_bio_list; 972 if (bp->b_fspriv == NULL) 973 bp->b_iodone = NULL; 974 975 xfs_buf_rele(bp); 976 xfs_buf_item_free(bip); 977 } 978 979 980 /* 981 * Add the given log item with its callback to the list of callbacks 982 * to be called when the buffer's I/O completes. If it is not set 983 * already, set the buffer's b_iodone() routine to be 984 * xfs_buf_iodone_callbacks() and link the log item into the list of 985 * items rooted at b_fsprivate. Items are always added as the second 986 * entry in the list if there is a first, because the buf item code 987 * assumes that the buf log item is first. 988 */ 989 void 990 xfs_buf_attach_iodone( 991 xfs_buf_t *bp, 992 void (*cb)(xfs_buf_t *, xfs_log_item_t *), 993 xfs_log_item_t *lip) 994 { 995 xfs_log_item_t *head_lip; 996 997 ASSERT(xfs_buf_islocked(bp)); 998 999 lip->li_cb = cb; 1000 head_lip = bp->b_fspriv; 1001 if (head_lip) { 1002 lip->li_bio_list = head_lip->li_bio_list; 1003 head_lip->li_bio_list = lip; 1004 } else { 1005 bp->b_fspriv = lip; 1006 } 1007 1008 ASSERT(bp->b_iodone == NULL || 1009 bp->b_iodone == xfs_buf_iodone_callbacks); 1010 bp->b_iodone = xfs_buf_iodone_callbacks; 1011 } 1012 1013 /* 1014 * We can have many callbacks on a buffer. Running the callbacks individually 1015 * can cause a lot of contention on the AIL lock, so we allow for a single 1016 * callback to be able to scan the remaining lip->li_bio_list for other items 1017 * of the same type and callback to be processed in the first call. 1018 * 1019 * As a result, the loop walking the callback list below will also modify the 1020 * list. it removes the first item from the list and then runs the callback. 1021 * The loop then restarts from the new head of the list. This allows the 1022 * callback to scan and modify the list attached to the buffer and we don't 1023 * have to care about maintaining a next item pointer. 1024 */ 1025 STATIC void 1026 xfs_buf_do_callbacks( 1027 struct xfs_buf *bp) 1028 { 1029 struct xfs_log_item *lip; 1030 1031 while ((lip = bp->b_fspriv) != NULL) { 1032 bp->b_fspriv = lip->li_bio_list; 1033 ASSERT(lip->li_cb != NULL); 1034 /* 1035 * Clear the next pointer so we don't have any 1036 * confusion if the item is added to another buf. 1037 * Don't touch the log item after calling its 1038 * callback, because it could have freed itself. 1039 */ 1040 lip->li_bio_list = NULL; 1041 lip->li_cb(bp, lip); 1042 } 1043 } 1044 1045 /* 1046 * This is the iodone() function for buffers which have had callbacks 1047 * attached to them by xfs_buf_attach_iodone(). It should remove each 1048 * log item from the buffer's list and call the callback of each in turn. 1049 * When done, the buffer's fsprivate field is set to NULL and the buffer 1050 * is unlocked with a call to iodone(). 1051 */ 1052 void 1053 xfs_buf_iodone_callbacks( 1054 struct xfs_buf *bp) 1055 { 1056 struct xfs_log_item *lip = bp->b_fspriv; 1057 struct xfs_mount *mp = lip->li_mountp; 1058 static ulong lasttime; 1059 static xfs_buftarg_t *lasttarg; 1060 1061 if (likely(!bp->b_error)) 1062 goto do_callbacks; 1063 1064 /* 1065 * If we've already decided to shutdown the filesystem because of 1066 * I/O errors, there's no point in giving this a retry. 1067 */ 1068 if (XFS_FORCED_SHUTDOWN(mp)) { 1069 xfs_buf_stale(bp); 1070 XFS_BUF_DONE(bp); 1071 trace_xfs_buf_item_iodone(bp, _RET_IP_); 1072 goto do_callbacks; 1073 } 1074 1075 if (bp->b_target != lasttarg || 1076 time_after(jiffies, (lasttime + 5*HZ))) { 1077 lasttime = jiffies; 1078 xfs_buf_ioerror_alert(bp, __func__); 1079 } 1080 lasttarg = bp->b_target; 1081 1082 /* 1083 * If the write was asynchronous then no one will be looking for the 1084 * error. Clear the error state and write the buffer out again. 1085 * 1086 * XXX: This helps against transient write errors, but we need to find 1087 * a way to shut the filesystem down if the writes keep failing. 1088 * 1089 * In practice we'll shut the filesystem down soon as non-transient 1090 * errors tend to affect the whole device and a failing log write 1091 * will make us give up. But we really ought to do better here. 1092 */ 1093 if (XFS_BUF_ISASYNC(bp)) { 1094 ASSERT(bp->b_iodone != NULL); 1095 1096 trace_xfs_buf_item_iodone_async(bp, _RET_IP_); 1097 1098 xfs_buf_ioerror(bp, 0); /* errno of 0 unsets the flag */ 1099 1100 if (!(bp->b_flags & (XBF_STALE|XBF_WRITE_FAIL))) { 1101 bp->b_flags |= XBF_WRITE | XBF_ASYNC | 1102 XBF_DONE | XBF_WRITE_FAIL; 1103 xfs_buf_submit(bp); 1104 } else { 1105 xfs_buf_relse(bp); 1106 } 1107 1108 return; 1109 } 1110 1111 /* 1112 * If the write of the buffer was synchronous, we want to make 1113 * sure to return the error to the caller of xfs_bwrite(). 1114 */ 1115 xfs_buf_stale(bp); 1116 XFS_BUF_DONE(bp); 1117 1118 trace_xfs_buf_error_relse(bp, _RET_IP_); 1119 1120 do_callbacks: 1121 xfs_buf_do_callbacks(bp); 1122 bp->b_fspriv = NULL; 1123 bp->b_iodone = NULL; 1124 xfs_buf_ioend(bp); 1125 } 1126 1127 /* 1128 * This is the iodone() function for buffers which have been 1129 * logged. It is called when they are eventually flushed out. 1130 * It should remove the buf item from the AIL, and free the buf item. 1131 * It is called by xfs_buf_iodone_callbacks() above which will take 1132 * care of cleaning up the buffer itself. 1133 */ 1134 void 1135 xfs_buf_iodone( 1136 struct xfs_buf *bp, 1137 struct xfs_log_item *lip) 1138 { 1139 struct xfs_ail *ailp = lip->li_ailp; 1140 1141 ASSERT(BUF_ITEM(lip)->bli_buf == bp); 1142 1143 xfs_buf_rele(bp); 1144 1145 /* 1146 * If we are forcibly shutting down, this may well be 1147 * off the AIL already. That's because we simulate the 1148 * log-committed callbacks to unpin these buffers. Or we may never 1149 * have put this item on AIL because of the transaction was 1150 * aborted forcibly. xfs_trans_ail_delete() takes care of these. 1151 * 1152 * Either way, AIL is useless if we're forcing a shutdown. 1153 */ 1154 spin_lock(&ailp->xa_lock); 1155 xfs_trans_ail_delete(ailp, lip, SHUTDOWN_CORRUPT_INCORE); 1156 xfs_buf_item_free(BUF_ITEM(lip)); 1157 } 1158