1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_bit.h" 13 #include "xfs_mount.h" 14 #include "xfs_trans.h" 15 #include "xfs_trans_priv.h" 16 #include "xfs_buf_item.h" 17 #include "xfs_inode.h" 18 #include "xfs_inode_item.h" 19 #include "xfs_quota.h" 20 #include "xfs_dquot_item.h" 21 #include "xfs_dquot.h" 22 #include "xfs_trace.h" 23 #include "xfs_log.h" 24 25 26 kmem_zone_t *xfs_buf_item_zone; 27 28 static inline struct xfs_buf_log_item *BUF_ITEM(struct xfs_log_item *lip) 29 { 30 return container_of(lip, struct xfs_buf_log_item, bli_item); 31 } 32 33 /* Is this log iovec plausibly large enough to contain the buffer log format? */ 34 bool 35 xfs_buf_log_check_iovec( 36 struct xfs_log_iovec *iovec) 37 { 38 struct xfs_buf_log_format *blfp = iovec->i_addr; 39 char *bmp_end; 40 char *item_end; 41 42 if (offsetof(struct xfs_buf_log_format, blf_data_map) > iovec->i_len) 43 return false; 44 45 item_end = (char *)iovec->i_addr + iovec->i_len; 46 bmp_end = (char *)&blfp->blf_data_map[blfp->blf_map_size]; 47 return bmp_end <= item_end; 48 } 49 50 static inline int 51 xfs_buf_log_format_size( 52 struct xfs_buf_log_format *blfp) 53 { 54 return offsetof(struct xfs_buf_log_format, blf_data_map) + 55 (blfp->blf_map_size * sizeof(blfp->blf_data_map[0])); 56 } 57 58 static inline bool 59 xfs_buf_item_straddle( 60 struct xfs_buf *bp, 61 uint offset, 62 int first_bit, 63 int nbits) 64 { 65 void *first, *last; 66 67 first = xfs_buf_offset(bp, offset + (first_bit << XFS_BLF_SHIFT)); 68 last = xfs_buf_offset(bp, 69 offset + ((first_bit + nbits) << XFS_BLF_SHIFT)); 70 71 if (last - first != nbits * XFS_BLF_CHUNK) 72 return true; 73 return false; 74 } 75 76 /* 77 * This returns the number of log iovecs needed to log the 78 * given buf log item. 79 * 80 * It calculates this as 1 iovec for the buf log format structure 81 * and 1 for each stretch of non-contiguous chunks to be logged. 82 * Contiguous chunks are logged in a single iovec. 83 * 84 * If the XFS_BLI_STALE flag has been set, then log nothing. 85 */ 86 STATIC void 87 xfs_buf_item_size_segment( 88 struct xfs_buf_log_item *bip, 89 struct xfs_buf_log_format *blfp, 90 uint offset, 91 int *nvecs, 92 int *nbytes) 93 { 94 struct xfs_buf *bp = bip->bli_buf; 95 int first_bit; 96 int nbits; 97 int next_bit; 98 int last_bit; 99 100 first_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size, 0); 101 if (first_bit == -1) 102 return; 103 104 (*nvecs)++; 105 *nbytes += xfs_buf_log_format_size(blfp); 106 107 do { 108 nbits = xfs_contig_bits(blfp->blf_data_map, 109 blfp->blf_map_size, first_bit); 110 ASSERT(nbits > 0); 111 112 /* 113 * Straddling a page is rare because we don't log contiguous 114 * chunks of unmapped buffers anywhere. 115 */ 116 if (nbits > 1 && 117 xfs_buf_item_straddle(bp, offset, first_bit, nbits)) 118 goto slow_scan; 119 120 (*nvecs)++; 121 *nbytes += nbits * XFS_BLF_CHUNK; 122 123 /* 124 * This takes the bit number to start looking from and 125 * returns the next set bit from there. It returns -1 126 * if there are no more bits set or the start bit is 127 * beyond the end of the bitmap. 128 */ 129 first_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size, 130 (uint)first_bit + nbits + 1); 131 } while (first_bit != -1); 132 133 return; 134 135 slow_scan: 136 /* Count the first bit we jumped out of the above loop from */ 137 (*nvecs)++; 138 *nbytes += XFS_BLF_CHUNK; 139 last_bit = first_bit; 140 while (last_bit != -1) { 141 /* 142 * This takes the bit number to start looking from and 143 * returns the next set bit from there. It returns -1 144 * if there are no more bits set or the start bit is 145 * beyond the end of the bitmap. 146 */ 147 next_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size, 148 last_bit + 1); 149 /* 150 * If we run out of bits, leave the loop, 151 * else if we find a new set of bits bump the number of vecs, 152 * else keep scanning the current set of bits. 153 */ 154 if (next_bit == -1) { 155 break; 156 } else if (next_bit != last_bit + 1 || 157 xfs_buf_item_straddle(bp, offset, first_bit, nbits)) { 158 last_bit = next_bit; 159 first_bit = next_bit; 160 (*nvecs)++; 161 nbits = 1; 162 } else { 163 last_bit++; 164 nbits++; 165 } 166 *nbytes += XFS_BLF_CHUNK; 167 } 168 } 169 170 /* 171 * This returns the number of log iovecs needed to log the given buf log item. 172 * 173 * It calculates this as 1 iovec for the buf log format structure and 1 for each 174 * stretch of non-contiguous chunks to be logged. Contiguous chunks are logged 175 * in a single iovec. 176 * 177 * Discontiguous buffers need a format structure per region that is being 178 * logged. This makes the changes in the buffer appear to log recovery as though 179 * they came from separate buffers, just like would occur if multiple buffers 180 * were used instead of a single discontiguous buffer. This enables 181 * discontiguous buffers to be in-memory constructs, completely transparent to 182 * what ends up on disk. 183 * 184 * If the XFS_BLI_STALE flag has been set, then log nothing but the buf log 185 * format structures. 186 */ 187 STATIC void 188 xfs_buf_item_size( 189 struct xfs_log_item *lip, 190 int *nvecs, 191 int *nbytes) 192 { 193 struct xfs_buf_log_item *bip = BUF_ITEM(lip); 194 struct xfs_buf *bp = bip->bli_buf; 195 int i; 196 int bytes; 197 uint offset = 0; 198 199 ASSERT(atomic_read(&bip->bli_refcount) > 0); 200 if (bip->bli_flags & XFS_BLI_STALE) { 201 /* 202 * The buffer is stale, so all we need to log 203 * is the buf log format structure with the 204 * cancel flag in it. 205 */ 206 trace_xfs_buf_item_size_stale(bip); 207 ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL); 208 *nvecs += bip->bli_format_count; 209 for (i = 0; i < bip->bli_format_count; i++) { 210 *nbytes += xfs_buf_log_format_size(&bip->bli_formats[i]); 211 } 212 return; 213 } 214 215 ASSERT(bip->bli_flags & XFS_BLI_LOGGED); 216 217 if (bip->bli_flags & XFS_BLI_ORDERED) { 218 /* 219 * The buffer has been logged just to order it. 220 * It is not being included in the transaction 221 * commit, so no vectors are used at all. 222 */ 223 trace_xfs_buf_item_size_ordered(bip); 224 *nvecs = XFS_LOG_VEC_ORDERED; 225 return; 226 } 227 228 /* 229 * The vector count is based on the number of buffer vectors we have 230 * dirty bits in. This will only be greater than one when we have a 231 * compound buffer with more than one segment dirty. Hence for compound 232 * buffers we need to track which segment the dirty bits correspond to, 233 * and when we move from one segment to the next increment the vector 234 * count for the extra buf log format structure that will need to be 235 * written. 236 */ 237 bytes = 0; 238 for (i = 0; i < bip->bli_format_count; i++) { 239 xfs_buf_item_size_segment(bip, &bip->bli_formats[i], offset, 240 nvecs, &bytes); 241 offset += BBTOB(bp->b_maps[i].bm_len); 242 } 243 244 /* 245 * Round up the buffer size required to minimise the number of memory 246 * allocations that need to be done as this item grows when relogged by 247 * repeated modifications. 248 */ 249 *nbytes = round_up(bytes, 512); 250 trace_xfs_buf_item_size(bip); 251 } 252 253 static inline void 254 xfs_buf_item_copy_iovec( 255 struct xfs_log_vec *lv, 256 struct xfs_log_iovec **vecp, 257 struct xfs_buf *bp, 258 uint offset, 259 int first_bit, 260 uint nbits) 261 { 262 offset += first_bit * XFS_BLF_CHUNK; 263 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_BCHUNK, 264 xfs_buf_offset(bp, offset), 265 nbits * XFS_BLF_CHUNK); 266 } 267 268 static void 269 xfs_buf_item_format_segment( 270 struct xfs_buf_log_item *bip, 271 struct xfs_log_vec *lv, 272 struct xfs_log_iovec **vecp, 273 uint offset, 274 struct xfs_buf_log_format *blfp) 275 { 276 struct xfs_buf *bp = bip->bli_buf; 277 uint base_size; 278 int first_bit; 279 int last_bit; 280 int next_bit; 281 uint nbits; 282 283 /* copy the flags across from the base format item */ 284 blfp->blf_flags = bip->__bli_format.blf_flags; 285 286 /* 287 * Base size is the actual size of the ondisk structure - it reflects 288 * the actual size of the dirty bitmap rather than the size of the in 289 * memory structure. 290 */ 291 base_size = xfs_buf_log_format_size(blfp); 292 293 first_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size, 0); 294 if (!(bip->bli_flags & XFS_BLI_STALE) && first_bit == -1) { 295 /* 296 * If the map is not be dirty in the transaction, mark 297 * the size as zero and do not advance the vector pointer. 298 */ 299 return; 300 } 301 302 blfp = xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_BFORMAT, blfp, base_size); 303 blfp->blf_size = 1; 304 305 if (bip->bli_flags & XFS_BLI_STALE) { 306 /* 307 * The buffer is stale, so all we need to log 308 * is the buf log format structure with the 309 * cancel flag in it. 310 */ 311 trace_xfs_buf_item_format_stale(bip); 312 ASSERT(blfp->blf_flags & XFS_BLF_CANCEL); 313 return; 314 } 315 316 317 /* 318 * Fill in an iovec for each set of contiguous chunks. 319 */ 320 do { 321 ASSERT(first_bit >= 0); 322 nbits = xfs_contig_bits(blfp->blf_data_map, 323 blfp->blf_map_size, first_bit); 324 ASSERT(nbits > 0); 325 326 /* 327 * Straddling a page is rare because we don't log contiguous 328 * chunks of unmapped buffers anywhere. 329 */ 330 if (nbits > 1 && 331 xfs_buf_item_straddle(bp, offset, first_bit, nbits)) 332 goto slow_scan; 333 334 xfs_buf_item_copy_iovec(lv, vecp, bp, offset, 335 first_bit, nbits); 336 blfp->blf_size++; 337 338 /* 339 * This takes the bit number to start looking from and 340 * returns the next set bit from there. It returns -1 341 * if there are no more bits set or the start bit is 342 * beyond the end of the bitmap. 343 */ 344 first_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size, 345 (uint)first_bit + nbits + 1); 346 } while (first_bit != -1); 347 348 return; 349 350 slow_scan: 351 ASSERT(bp->b_addr == NULL); 352 last_bit = first_bit; 353 nbits = 1; 354 for (;;) { 355 /* 356 * This takes the bit number to start looking from and 357 * returns the next set bit from there. It returns -1 358 * if there are no more bits set or the start bit is 359 * beyond the end of the bitmap. 360 */ 361 next_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size, 362 (uint)last_bit + 1); 363 /* 364 * If we run out of bits fill in the last iovec and get out of 365 * the loop. Else if we start a new set of bits then fill in 366 * the iovec for the series we were looking at and start 367 * counting the bits in the new one. Else we're still in the 368 * same set of bits so just keep counting and scanning. 369 */ 370 if (next_bit == -1) { 371 xfs_buf_item_copy_iovec(lv, vecp, bp, offset, 372 first_bit, nbits); 373 blfp->blf_size++; 374 break; 375 } else if (next_bit != last_bit + 1 || 376 xfs_buf_item_straddle(bp, offset, first_bit, nbits)) { 377 xfs_buf_item_copy_iovec(lv, vecp, bp, offset, 378 first_bit, nbits); 379 blfp->blf_size++; 380 first_bit = next_bit; 381 last_bit = next_bit; 382 nbits = 1; 383 } else { 384 last_bit++; 385 nbits++; 386 } 387 } 388 } 389 390 /* 391 * This is called to fill in the vector of log iovecs for the 392 * given log buf item. It fills the first entry with a buf log 393 * format structure, and the rest point to contiguous chunks 394 * within the buffer. 395 */ 396 STATIC void 397 xfs_buf_item_format( 398 struct xfs_log_item *lip, 399 struct xfs_log_vec *lv) 400 { 401 struct xfs_buf_log_item *bip = BUF_ITEM(lip); 402 struct xfs_buf *bp = bip->bli_buf; 403 struct xfs_log_iovec *vecp = NULL; 404 uint offset = 0; 405 int i; 406 407 ASSERT(atomic_read(&bip->bli_refcount) > 0); 408 ASSERT((bip->bli_flags & XFS_BLI_LOGGED) || 409 (bip->bli_flags & XFS_BLI_STALE)); 410 ASSERT((bip->bli_flags & XFS_BLI_STALE) || 411 (xfs_blft_from_flags(&bip->__bli_format) > XFS_BLFT_UNKNOWN_BUF 412 && xfs_blft_from_flags(&bip->__bli_format) < XFS_BLFT_MAX_BUF)); 413 ASSERT(!(bip->bli_flags & XFS_BLI_ORDERED) || 414 (bip->bli_flags & XFS_BLI_STALE)); 415 416 417 /* 418 * If it is an inode buffer, transfer the in-memory state to the 419 * format flags and clear the in-memory state. 420 * 421 * For buffer based inode allocation, we do not transfer 422 * this state if the inode buffer allocation has not yet been committed 423 * to the log as setting the XFS_BLI_INODE_BUF flag will prevent 424 * correct replay of the inode allocation. 425 * 426 * For icreate item based inode allocation, the buffers aren't written 427 * to the journal during allocation, and hence we should always tag the 428 * buffer as an inode buffer so that the correct unlinked list replay 429 * occurs during recovery. 430 */ 431 if (bip->bli_flags & XFS_BLI_INODE_BUF) { 432 if (xfs_sb_version_has_v3inode(&lip->li_mountp->m_sb) || 433 !((bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF) && 434 xfs_log_item_in_current_chkpt(lip))) 435 bip->__bli_format.blf_flags |= XFS_BLF_INODE_BUF; 436 bip->bli_flags &= ~XFS_BLI_INODE_BUF; 437 } 438 439 for (i = 0; i < bip->bli_format_count; i++) { 440 xfs_buf_item_format_segment(bip, lv, &vecp, offset, 441 &bip->bli_formats[i]); 442 offset += BBTOB(bp->b_maps[i].bm_len); 443 } 444 445 /* 446 * Check to make sure everything is consistent. 447 */ 448 trace_xfs_buf_item_format(bip); 449 } 450 451 /* 452 * This is called to pin the buffer associated with the buf log item in memory 453 * so it cannot be written out. 454 * 455 * We also always take a reference to the buffer log item here so that the bli 456 * is held while the item is pinned in memory. This means that we can 457 * unconditionally drop the reference count a transaction holds when the 458 * transaction is completed. 459 */ 460 STATIC void 461 xfs_buf_item_pin( 462 struct xfs_log_item *lip) 463 { 464 struct xfs_buf_log_item *bip = BUF_ITEM(lip); 465 466 ASSERT(atomic_read(&bip->bli_refcount) > 0); 467 ASSERT((bip->bli_flags & XFS_BLI_LOGGED) || 468 (bip->bli_flags & XFS_BLI_ORDERED) || 469 (bip->bli_flags & XFS_BLI_STALE)); 470 471 trace_xfs_buf_item_pin(bip); 472 473 atomic_inc(&bip->bli_refcount); 474 atomic_inc(&bip->bli_buf->b_pin_count); 475 } 476 477 /* 478 * This is called to unpin the buffer associated with the buf log 479 * item which was previously pinned with a call to xfs_buf_item_pin(). 480 * 481 * Also drop the reference to the buf item for the current transaction. 482 * If the XFS_BLI_STALE flag is set and we are the last reference, 483 * then free up the buf log item and unlock the buffer. 484 * 485 * If the remove flag is set we are called from uncommit in the 486 * forced-shutdown path. If that is true and the reference count on 487 * the log item is going to drop to zero we need to free the item's 488 * descriptor in the transaction. 489 */ 490 STATIC void 491 xfs_buf_item_unpin( 492 struct xfs_log_item *lip, 493 int remove) 494 { 495 struct xfs_buf_log_item *bip = BUF_ITEM(lip); 496 struct xfs_buf *bp = bip->bli_buf; 497 int stale = bip->bli_flags & XFS_BLI_STALE; 498 int freed; 499 500 ASSERT(bp->b_log_item == bip); 501 ASSERT(atomic_read(&bip->bli_refcount) > 0); 502 503 trace_xfs_buf_item_unpin(bip); 504 505 freed = atomic_dec_and_test(&bip->bli_refcount); 506 507 if (atomic_dec_and_test(&bp->b_pin_count)) 508 wake_up_all(&bp->b_waiters); 509 510 if (freed && stale) { 511 ASSERT(bip->bli_flags & XFS_BLI_STALE); 512 ASSERT(xfs_buf_islocked(bp)); 513 ASSERT(bp->b_flags & XBF_STALE); 514 ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL); 515 516 trace_xfs_buf_item_unpin_stale(bip); 517 518 if (remove) { 519 /* 520 * If we are in a transaction context, we have to 521 * remove the log item from the transaction as we are 522 * about to release our reference to the buffer. If we 523 * don't, the unlock that occurs later in 524 * xfs_trans_uncommit() will try to reference the 525 * buffer which we no longer have a hold on. 526 */ 527 if (!list_empty(&lip->li_trans)) 528 xfs_trans_del_item(lip); 529 530 /* 531 * Since the transaction no longer refers to the buffer, 532 * the buffer should no longer refer to the transaction. 533 */ 534 bp->b_transp = NULL; 535 } 536 537 /* 538 * If we get called here because of an IO error, we may or may 539 * not have the item on the AIL. xfs_trans_ail_delete() will 540 * take care of that situation. xfs_trans_ail_delete() drops 541 * the AIL lock. 542 */ 543 if (bip->bli_flags & XFS_BLI_STALE_INODE) { 544 xfs_buf_item_done(bp); 545 xfs_buf_inode_iodone(bp); 546 ASSERT(list_empty(&bp->b_li_list)); 547 } else { 548 xfs_trans_ail_delete(lip, SHUTDOWN_LOG_IO_ERROR); 549 xfs_buf_item_relse(bp); 550 ASSERT(bp->b_log_item == NULL); 551 } 552 xfs_buf_relse(bp); 553 } else if (freed && remove) { 554 /* 555 * The buffer must be locked and held by the caller to simulate 556 * an async I/O failure. 557 */ 558 xfs_buf_lock(bp); 559 xfs_buf_hold(bp); 560 bp->b_flags |= XBF_ASYNC; 561 xfs_buf_ioend_fail(bp); 562 } 563 } 564 565 STATIC uint 566 xfs_buf_item_push( 567 struct xfs_log_item *lip, 568 struct list_head *buffer_list) 569 { 570 struct xfs_buf_log_item *bip = BUF_ITEM(lip); 571 struct xfs_buf *bp = bip->bli_buf; 572 uint rval = XFS_ITEM_SUCCESS; 573 574 if (xfs_buf_ispinned(bp)) 575 return XFS_ITEM_PINNED; 576 if (!xfs_buf_trylock(bp)) { 577 /* 578 * If we have just raced with a buffer being pinned and it has 579 * been marked stale, we could end up stalling until someone else 580 * issues a log force to unpin the stale buffer. Check for the 581 * race condition here so xfsaild recognizes the buffer is pinned 582 * and queues a log force to move it along. 583 */ 584 if (xfs_buf_ispinned(bp)) 585 return XFS_ITEM_PINNED; 586 return XFS_ITEM_LOCKED; 587 } 588 589 ASSERT(!(bip->bli_flags & XFS_BLI_STALE)); 590 591 trace_xfs_buf_item_push(bip); 592 593 /* has a previous flush failed due to IO errors? */ 594 if (bp->b_flags & XBF_WRITE_FAIL) { 595 xfs_buf_alert_ratelimited(bp, "XFS: Failing async write", 596 "Failing async write on buffer block 0x%llx. Retrying async write.", 597 (long long)bp->b_bn); 598 } 599 600 if (!xfs_buf_delwri_queue(bp, buffer_list)) 601 rval = XFS_ITEM_FLUSHING; 602 xfs_buf_unlock(bp); 603 return rval; 604 } 605 606 /* 607 * Drop the buffer log item refcount and take appropriate action. This helper 608 * determines whether the bli must be freed or not, since a decrement to zero 609 * does not necessarily mean the bli is unused. 610 * 611 * Return true if the bli is freed, false otherwise. 612 */ 613 bool 614 xfs_buf_item_put( 615 struct xfs_buf_log_item *bip) 616 { 617 struct xfs_log_item *lip = &bip->bli_item; 618 bool aborted; 619 bool dirty; 620 621 /* drop the bli ref and return if it wasn't the last one */ 622 if (!atomic_dec_and_test(&bip->bli_refcount)) 623 return false; 624 625 /* 626 * We dropped the last ref and must free the item if clean or aborted. 627 * If the bli is dirty and non-aborted, the buffer was clean in the 628 * transaction but still awaiting writeback from previous changes. In 629 * that case, the bli is freed on buffer writeback completion. 630 */ 631 aborted = test_bit(XFS_LI_ABORTED, &lip->li_flags) || 632 XFS_FORCED_SHUTDOWN(lip->li_mountp); 633 dirty = bip->bli_flags & XFS_BLI_DIRTY; 634 if (dirty && !aborted) 635 return false; 636 637 /* 638 * The bli is aborted or clean. An aborted item may be in the AIL 639 * regardless of dirty state. For example, consider an aborted 640 * transaction that invalidated a dirty bli and cleared the dirty 641 * state. 642 */ 643 if (aborted) 644 xfs_trans_ail_delete(lip, 0); 645 xfs_buf_item_relse(bip->bli_buf); 646 return true; 647 } 648 649 /* 650 * Release the buffer associated with the buf log item. If there is no dirty 651 * logged data associated with the buffer recorded in the buf log item, then 652 * free the buf log item and remove the reference to it in the buffer. 653 * 654 * This call ignores the recursion count. It is only called when the buffer 655 * should REALLY be unlocked, regardless of the recursion count. 656 * 657 * We unconditionally drop the transaction's reference to the log item. If the 658 * item was logged, then another reference was taken when it was pinned, so we 659 * can safely drop the transaction reference now. This also allows us to avoid 660 * potential races with the unpin code freeing the bli by not referencing the 661 * bli after we've dropped the reference count. 662 * 663 * If the XFS_BLI_HOLD flag is set in the buf log item, then free the log item 664 * if necessary but do not unlock the buffer. This is for support of 665 * xfs_trans_bhold(). Make sure the XFS_BLI_HOLD field is cleared if we don't 666 * free the item. 667 */ 668 STATIC void 669 xfs_buf_item_release( 670 struct xfs_log_item *lip) 671 { 672 struct xfs_buf_log_item *bip = BUF_ITEM(lip); 673 struct xfs_buf *bp = bip->bli_buf; 674 bool released; 675 bool hold = bip->bli_flags & XFS_BLI_HOLD; 676 bool stale = bip->bli_flags & XFS_BLI_STALE; 677 #if defined(DEBUG) || defined(XFS_WARN) 678 bool ordered = bip->bli_flags & XFS_BLI_ORDERED; 679 bool dirty = bip->bli_flags & XFS_BLI_DIRTY; 680 bool aborted = test_bit(XFS_LI_ABORTED, 681 &lip->li_flags); 682 #endif 683 684 trace_xfs_buf_item_release(bip); 685 686 /* 687 * The bli dirty state should match whether the blf has logged segments 688 * except for ordered buffers, where only the bli should be dirty. 689 */ 690 ASSERT((!ordered && dirty == xfs_buf_item_dirty_format(bip)) || 691 (ordered && dirty && !xfs_buf_item_dirty_format(bip))); 692 ASSERT(!stale || (bip->__bli_format.blf_flags & XFS_BLF_CANCEL)); 693 694 /* 695 * Clear the buffer's association with this transaction and 696 * per-transaction state from the bli, which has been copied above. 697 */ 698 bp->b_transp = NULL; 699 bip->bli_flags &= ~(XFS_BLI_LOGGED | XFS_BLI_HOLD | XFS_BLI_ORDERED); 700 701 /* 702 * Unref the item and unlock the buffer unless held or stale. Stale 703 * buffers remain locked until final unpin unless the bli is freed by 704 * the unref call. The latter implies shutdown because buffer 705 * invalidation dirties the bli and transaction. 706 */ 707 released = xfs_buf_item_put(bip); 708 if (hold || (stale && !released)) 709 return; 710 ASSERT(!stale || aborted); 711 xfs_buf_relse(bp); 712 } 713 714 STATIC void 715 xfs_buf_item_committing( 716 struct xfs_log_item *lip, 717 xfs_lsn_t commit_lsn) 718 { 719 return xfs_buf_item_release(lip); 720 } 721 722 /* 723 * This is called to find out where the oldest active copy of the 724 * buf log item in the on disk log resides now that the last log 725 * write of it completed at the given lsn. 726 * We always re-log all the dirty data in a buffer, so usually the 727 * latest copy in the on disk log is the only one that matters. For 728 * those cases we simply return the given lsn. 729 * 730 * The one exception to this is for buffers full of newly allocated 731 * inodes. These buffers are only relogged with the XFS_BLI_INODE_BUF 732 * flag set, indicating that only the di_next_unlinked fields from the 733 * inodes in the buffers will be replayed during recovery. If the 734 * original newly allocated inode images have not yet been flushed 735 * when the buffer is so relogged, then we need to make sure that we 736 * keep the old images in the 'active' portion of the log. We do this 737 * by returning the original lsn of that transaction here rather than 738 * the current one. 739 */ 740 STATIC xfs_lsn_t 741 xfs_buf_item_committed( 742 struct xfs_log_item *lip, 743 xfs_lsn_t lsn) 744 { 745 struct xfs_buf_log_item *bip = BUF_ITEM(lip); 746 747 trace_xfs_buf_item_committed(bip); 748 749 if ((bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF) && lip->li_lsn != 0) 750 return lip->li_lsn; 751 return lsn; 752 } 753 754 static const struct xfs_item_ops xfs_buf_item_ops = { 755 .iop_size = xfs_buf_item_size, 756 .iop_format = xfs_buf_item_format, 757 .iop_pin = xfs_buf_item_pin, 758 .iop_unpin = xfs_buf_item_unpin, 759 .iop_release = xfs_buf_item_release, 760 .iop_committing = xfs_buf_item_committing, 761 .iop_committed = xfs_buf_item_committed, 762 .iop_push = xfs_buf_item_push, 763 }; 764 765 STATIC void 766 xfs_buf_item_get_format( 767 struct xfs_buf_log_item *bip, 768 int count) 769 { 770 ASSERT(bip->bli_formats == NULL); 771 bip->bli_format_count = count; 772 773 if (count == 1) { 774 bip->bli_formats = &bip->__bli_format; 775 return; 776 } 777 778 bip->bli_formats = kmem_zalloc(count * sizeof(struct xfs_buf_log_format), 779 0); 780 } 781 782 STATIC void 783 xfs_buf_item_free_format( 784 struct xfs_buf_log_item *bip) 785 { 786 if (bip->bli_formats != &bip->__bli_format) { 787 kmem_free(bip->bli_formats); 788 bip->bli_formats = NULL; 789 } 790 } 791 792 /* 793 * Allocate a new buf log item to go with the given buffer. 794 * Set the buffer's b_log_item field to point to the new 795 * buf log item. 796 */ 797 int 798 xfs_buf_item_init( 799 struct xfs_buf *bp, 800 struct xfs_mount *mp) 801 { 802 struct xfs_buf_log_item *bip = bp->b_log_item; 803 int chunks; 804 int map_size; 805 int i; 806 807 /* 808 * Check to see if there is already a buf log item for 809 * this buffer. If we do already have one, there is 810 * nothing to do here so return. 811 */ 812 ASSERT(bp->b_mount == mp); 813 if (bip) { 814 ASSERT(bip->bli_item.li_type == XFS_LI_BUF); 815 ASSERT(!bp->b_transp); 816 ASSERT(bip->bli_buf == bp); 817 return 0; 818 } 819 820 bip = kmem_cache_zalloc(xfs_buf_item_zone, GFP_KERNEL | __GFP_NOFAIL); 821 xfs_log_item_init(mp, &bip->bli_item, XFS_LI_BUF, &xfs_buf_item_ops); 822 bip->bli_buf = bp; 823 824 /* 825 * chunks is the number of XFS_BLF_CHUNK size pieces the buffer 826 * can be divided into. Make sure not to truncate any pieces. 827 * map_size is the size of the bitmap needed to describe the 828 * chunks of the buffer. 829 * 830 * Discontiguous buffer support follows the layout of the underlying 831 * buffer. This makes the implementation as simple as possible. 832 */ 833 xfs_buf_item_get_format(bip, bp->b_map_count); 834 835 for (i = 0; i < bip->bli_format_count; i++) { 836 chunks = DIV_ROUND_UP(BBTOB(bp->b_maps[i].bm_len), 837 XFS_BLF_CHUNK); 838 map_size = DIV_ROUND_UP(chunks, NBWORD); 839 840 if (map_size > XFS_BLF_DATAMAP_SIZE) { 841 kmem_cache_free(xfs_buf_item_zone, bip); 842 xfs_err(mp, 843 "buffer item dirty bitmap (%u uints) too small to reflect %u bytes!", 844 map_size, 845 BBTOB(bp->b_maps[i].bm_len)); 846 return -EFSCORRUPTED; 847 } 848 849 bip->bli_formats[i].blf_type = XFS_LI_BUF; 850 bip->bli_formats[i].blf_blkno = bp->b_maps[i].bm_bn; 851 bip->bli_formats[i].blf_len = bp->b_maps[i].bm_len; 852 bip->bli_formats[i].blf_map_size = map_size; 853 } 854 855 bp->b_log_item = bip; 856 xfs_buf_hold(bp); 857 return 0; 858 } 859 860 861 /* 862 * Mark bytes first through last inclusive as dirty in the buf 863 * item's bitmap. 864 */ 865 static void 866 xfs_buf_item_log_segment( 867 uint first, 868 uint last, 869 uint *map) 870 { 871 uint first_bit; 872 uint last_bit; 873 uint bits_to_set; 874 uint bits_set; 875 uint word_num; 876 uint *wordp; 877 uint bit; 878 uint end_bit; 879 uint mask; 880 881 ASSERT(first < XFS_BLF_DATAMAP_SIZE * XFS_BLF_CHUNK * NBWORD); 882 ASSERT(last < XFS_BLF_DATAMAP_SIZE * XFS_BLF_CHUNK * NBWORD); 883 884 /* 885 * Convert byte offsets to bit numbers. 886 */ 887 first_bit = first >> XFS_BLF_SHIFT; 888 last_bit = last >> XFS_BLF_SHIFT; 889 890 /* 891 * Calculate the total number of bits to be set. 892 */ 893 bits_to_set = last_bit - first_bit + 1; 894 895 /* 896 * Get a pointer to the first word in the bitmap 897 * to set a bit in. 898 */ 899 word_num = first_bit >> BIT_TO_WORD_SHIFT; 900 wordp = &map[word_num]; 901 902 /* 903 * Calculate the starting bit in the first word. 904 */ 905 bit = first_bit & (uint)(NBWORD - 1); 906 907 /* 908 * First set any bits in the first word of our range. 909 * If it starts at bit 0 of the word, it will be 910 * set below rather than here. That is what the variable 911 * bit tells us. The variable bits_set tracks the number 912 * of bits that have been set so far. End_bit is the number 913 * of the last bit to be set in this word plus one. 914 */ 915 if (bit) { 916 end_bit = min(bit + bits_to_set, (uint)NBWORD); 917 mask = ((1U << (end_bit - bit)) - 1) << bit; 918 *wordp |= mask; 919 wordp++; 920 bits_set = end_bit - bit; 921 } else { 922 bits_set = 0; 923 } 924 925 /* 926 * Now set bits a whole word at a time that are between 927 * first_bit and last_bit. 928 */ 929 while ((bits_to_set - bits_set) >= NBWORD) { 930 *wordp = 0xffffffff; 931 bits_set += NBWORD; 932 wordp++; 933 } 934 935 /* 936 * Finally, set any bits left to be set in one last partial word. 937 */ 938 end_bit = bits_to_set - bits_set; 939 if (end_bit) { 940 mask = (1U << end_bit) - 1; 941 *wordp |= mask; 942 } 943 } 944 945 /* 946 * Mark bytes first through last inclusive as dirty in the buf 947 * item's bitmap. 948 */ 949 void 950 xfs_buf_item_log( 951 struct xfs_buf_log_item *bip, 952 uint first, 953 uint last) 954 { 955 int i; 956 uint start; 957 uint end; 958 struct xfs_buf *bp = bip->bli_buf; 959 960 /* 961 * walk each buffer segment and mark them dirty appropriately. 962 */ 963 start = 0; 964 for (i = 0; i < bip->bli_format_count; i++) { 965 if (start > last) 966 break; 967 end = start + BBTOB(bp->b_maps[i].bm_len) - 1; 968 969 /* skip to the map that includes the first byte to log */ 970 if (first > end) { 971 start += BBTOB(bp->b_maps[i].bm_len); 972 continue; 973 } 974 975 /* 976 * Trim the range to this segment and mark it in the bitmap. 977 * Note that we must convert buffer offsets to segment relative 978 * offsets (e.g., the first byte of each segment is byte 0 of 979 * that segment). 980 */ 981 if (first < start) 982 first = start; 983 if (end > last) 984 end = last; 985 xfs_buf_item_log_segment(first - start, end - start, 986 &bip->bli_formats[i].blf_data_map[0]); 987 988 start += BBTOB(bp->b_maps[i].bm_len); 989 } 990 } 991 992 993 /* 994 * Return true if the buffer has any ranges logged/dirtied by a transaction, 995 * false otherwise. 996 */ 997 bool 998 xfs_buf_item_dirty_format( 999 struct xfs_buf_log_item *bip) 1000 { 1001 int i; 1002 1003 for (i = 0; i < bip->bli_format_count; i++) { 1004 if (!xfs_bitmap_empty(bip->bli_formats[i].blf_data_map, 1005 bip->bli_formats[i].blf_map_size)) 1006 return true; 1007 } 1008 1009 return false; 1010 } 1011 1012 STATIC void 1013 xfs_buf_item_free( 1014 struct xfs_buf_log_item *bip) 1015 { 1016 xfs_buf_item_free_format(bip); 1017 kmem_free(bip->bli_item.li_lv_shadow); 1018 kmem_cache_free(xfs_buf_item_zone, bip); 1019 } 1020 1021 /* 1022 * xfs_buf_item_relse() is called when the buf log item is no longer needed. 1023 */ 1024 void 1025 xfs_buf_item_relse( 1026 struct xfs_buf *bp) 1027 { 1028 struct xfs_buf_log_item *bip = bp->b_log_item; 1029 1030 trace_xfs_buf_item_relse(bp, _RET_IP_); 1031 ASSERT(!test_bit(XFS_LI_IN_AIL, &bip->bli_item.li_flags)); 1032 1033 bp->b_log_item = NULL; 1034 xfs_buf_rele(bp); 1035 xfs_buf_item_free(bip); 1036 } 1037 1038 void 1039 xfs_buf_item_done( 1040 struct xfs_buf *bp) 1041 { 1042 /* 1043 * If we are forcibly shutting down, this may well be off the AIL 1044 * already. That's because we simulate the log-committed callbacks to 1045 * unpin these buffers. Or we may never have put this item on AIL 1046 * because of the transaction was aborted forcibly. 1047 * xfs_trans_ail_delete() takes care of these. 1048 * 1049 * Either way, AIL is useless if we're forcing a shutdown. 1050 * 1051 * Note that log recovery writes might have buffer items that are not on 1052 * the AIL even when the file system is not shut down. 1053 */ 1054 xfs_trans_ail_delete(&bp->b_log_item->bli_item, 1055 (bp->b_flags & _XBF_LOGRECOVERY) ? 0 : 1056 SHUTDOWN_CORRUPT_INCORE); 1057 xfs_buf_item_relse(bp); 1058 } 1059