1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_bit.h" 13 #include "xfs_mount.h" 14 #include "xfs_trans.h" 15 #include "xfs_trans_priv.h" 16 #include "xfs_buf_item.h" 17 #include "xfs_inode.h" 18 #include "xfs_inode_item.h" 19 #include "xfs_quota.h" 20 #include "xfs_dquot_item.h" 21 #include "xfs_dquot.h" 22 #include "xfs_trace.h" 23 #include "xfs_log.h" 24 #include "xfs_log_priv.h" 25 #include "xfs_error.h" 26 27 28 struct kmem_cache *xfs_buf_item_cache; 29 30 static inline struct xfs_buf_log_item *BUF_ITEM(struct xfs_log_item *lip) 31 { 32 return container_of(lip, struct xfs_buf_log_item, bli_item); 33 } 34 35 /* Is this log iovec plausibly large enough to contain the buffer log format? */ 36 bool 37 xfs_buf_log_check_iovec( 38 struct xfs_log_iovec *iovec) 39 { 40 struct xfs_buf_log_format *blfp = iovec->i_addr; 41 char *bmp_end; 42 char *item_end; 43 44 if (offsetof(struct xfs_buf_log_format, blf_data_map) > iovec->i_len) 45 return false; 46 47 item_end = (char *)iovec->i_addr + iovec->i_len; 48 bmp_end = (char *)&blfp->blf_data_map[blfp->blf_map_size]; 49 return bmp_end <= item_end; 50 } 51 52 static inline int 53 xfs_buf_log_format_size( 54 struct xfs_buf_log_format *blfp) 55 { 56 return offsetof(struct xfs_buf_log_format, blf_data_map) + 57 (blfp->blf_map_size * sizeof(blfp->blf_data_map[0])); 58 } 59 60 static inline bool 61 xfs_buf_item_straddle( 62 struct xfs_buf *bp, 63 uint offset, 64 int first_bit, 65 int nbits) 66 { 67 void *first, *last; 68 69 first = xfs_buf_offset(bp, offset + (first_bit << XFS_BLF_SHIFT)); 70 last = xfs_buf_offset(bp, 71 offset + ((first_bit + nbits) << XFS_BLF_SHIFT)); 72 73 if (last - first != nbits * XFS_BLF_CHUNK) 74 return true; 75 return false; 76 } 77 78 /* 79 * Return the number of log iovecs and space needed to log the given buf log 80 * item segment. 81 * 82 * It calculates this as 1 iovec for the buf log format structure and 1 for each 83 * stretch of non-contiguous chunks to be logged. Contiguous chunks are logged 84 * in a single iovec. 85 */ 86 STATIC void 87 xfs_buf_item_size_segment( 88 struct xfs_buf_log_item *bip, 89 struct xfs_buf_log_format *blfp, 90 uint offset, 91 int *nvecs, 92 int *nbytes) 93 { 94 struct xfs_buf *bp = bip->bli_buf; 95 int first_bit; 96 int nbits; 97 int next_bit; 98 int last_bit; 99 100 first_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size, 0); 101 if (first_bit == -1) 102 return; 103 104 (*nvecs)++; 105 *nbytes += xfs_buf_log_format_size(blfp); 106 107 do { 108 nbits = xfs_contig_bits(blfp->blf_data_map, 109 blfp->blf_map_size, first_bit); 110 ASSERT(nbits > 0); 111 112 /* 113 * Straddling a page is rare because we don't log contiguous 114 * chunks of unmapped buffers anywhere. 115 */ 116 if (nbits > 1 && 117 xfs_buf_item_straddle(bp, offset, first_bit, nbits)) 118 goto slow_scan; 119 120 (*nvecs)++; 121 *nbytes += nbits * XFS_BLF_CHUNK; 122 123 /* 124 * This takes the bit number to start looking from and 125 * returns the next set bit from there. It returns -1 126 * if there are no more bits set or the start bit is 127 * beyond the end of the bitmap. 128 */ 129 first_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size, 130 (uint)first_bit + nbits + 1); 131 } while (first_bit != -1); 132 133 return; 134 135 slow_scan: 136 /* Count the first bit we jumped out of the above loop from */ 137 (*nvecs)++; 138 *nbytes += XFS_BLF_CHUNK; 139 last_bit = first_bit; 140 while (last_bit != -1) { 141 /* 142 * This takes the bit number to start looking from and 143 * returns the next set bit from there. It returns -1 144 * if there are no more bits set or the start bit is 145 * beyond the end of the bitmap. 146 */ 147 next_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size, 148 last_bit + 1); 149 /* 150 * If we run out of bits, leave the loop, 151 * else if we find a new set of bits bump the number of vecs, 152 * else keep scanning the current set of bits. 153 */ 154 if (next_bit == -1) { 155 break; 156 } else if (next_bit != last_bit + 1 || 157 xfs_buf_item_straddle(bp, offset, first_bit, nbits)) { 158 last_bit = next_bit; 159 first_bit = next_bit; 160 (*nvecs)++; 161 nbits = 1; 162 } else { 163 last_bit++; 164 nbits++; 165 } 166 *nbytes += XFS_BLF_CHUNK; 167 } 168 } 169 170 /* 171 * Return the number of log iovecs and space needed to log the given buf log 172 * item. 173 * 174 * Discontiguous buffers need a format structure per region that is being 175 * logged. This makes the changes in the buffer appear to log recovery as though 176 * they came from separate buffers, just like would occur if multiple buffers 177 * were used instead of a single discontiguous buffer. This enables 178 * discontiguous buffers to be in-memory constructs, completely transparent to 179 * what ends up on disk. 180 * 181 * If the XFS_BLI_STALE flag has been set, then log nothing but the buf log 182 * format structures. If the item has previously been logged and has dirty 183 * regions, we do not relog them in stale buffers. This has the effect of 184 * reducing the size of the relogged item by the amount of dirty data tracked 185 * by the log item. This can result in the committing transaction reducing the 186 * amount of space being consumed by the CIL. 187 */ 188 STATIC void 189 xfs_buf_item_size( 190 struct xfs_log_item *lip, 191 int *nvecs, 192 int *nbytes) 193 { 194 struct xfs_buf_log_item *bip = BUF_ITEM(lip); 195 struct xfs_buf *bp = bip->bli_buf; 196 int i; 197 int bytes; 198 uint offset = 0; 199 200 ASSERT(atomic_read(&bip->bli_refcount) > 0); 201 if (bip->bli_flags & XFS_BLI_STALE) { 202 /* 203 * The buffer is stale, so all we need to log is the buf log 204 * format structure with the cancel flag in it as we are never 205 * going to replay the changes tracked in the log item. 206 */ 207 trace_xfs_buf_item_size_stale(bip); 208 ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL); 209 *nvecs += bip->bli_format_count; 210 for (i = 0; i < bip->bli_format_count; i++) { 211 *nbytes += xfs_buf_log_format_size(&bip->bli_formats[i]); 212 } 213 return; 214 } 215 216 ASSERT(bip->bli_flags & XFS_BLI_LOGGED); 217 218 if (bip->bli_flags & XFS_BLI_ORDERED) { 219 /* 220 * The buffer has been logged just to order it. It is not being 221 * included in the transaction commit, so no vectors are used at 222 * all. 223 */ 224 trace_xfs_buf_item_size_ordered(bip); 225 *nvecs = XFS_LOG_VEC_ORDERED; 226 return; 227 } 228 229 /* 230 * The vector count is based on the number of buffer vectors we have 231 * dirty bits in. This will only be greater than one when we have a 232 * compound buffer with more than one segment dirty. Hence for compound 233 * buffers we need to track which segment the dirty bits correspond to, 234 * and when we move from one segment to the next increment the vector 235 * count for the extra buf log format structure that will need to be 236 * written. 237 */ 238 bytes = 0; 239 for (i = 0; i < bip->bli_format_count; i++) { 240 xfs_buf_item_size_segment(bip, &bip->bli_formats[i], offset, 241 nvecs, &bytes); 242 offset += BBTOB(bp->b_maps[i].bm_len); 243 } 244 245 /* 246 * Round up the buffer size required to minimise the number of memory 247 * allocations that need to be done as this item grows when relogged by 248 * repeated modifications. 249 */ 250 *nbytes = round_up(bytes, 512); 251 trace_xfs_buf_item_size(bip); 252 } 253 254 static inline void 255 xfs_buf_item_copy_iovec( 256 struct xfs_log_vec *lv, 257 struct xfs_log_iovec **vecp, 258 struct xfs_buf *bp, 259 uint offset, 260 int first_bit, 261 uint nbits) 262 { 263 offset += first_bit * XFS_BLF_CHUNK; 264 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_BCHUNK, 265 xfs_buf_offset(bp, offset), 266 nbits * XFS_BLF_CHUNK); 267 } 268 269 static void 270 xfs_buf_item_format_segment( 271 struct xfs_buf_log_item *bip, 272 struct xfs_log_vec *lv, 273 struct xfs_log_iovec **vecp, 274 uint offset, 275 struct xfs_buf_log_format *blfp) 276 { 277 struct xfs_buf *bp = bip->bli_buf; 278 uint base_size; 279 int first_bit; 280 int last_bit; 281 int next_bit; 282 uint nbits; 283 284 /* copy the flags across from the base format item */ 285 blfp->blf_flags = bip->__bli_format.blf_flags; 286 287 /* 288 * Base size is the actual size of the ondisk structure - it reflects 289 * the actual size of the dirty bitmap rather than the size of the in 290 * memory structure. 291 */ 292 base_size = xfs_buf_log_format_size(blfp); 293 294 first_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size, 0); 295 if (!(bip->bli_flags & XFS_BLI_STALE) && first_bit == -1) { 296 /* 297 * If the map is not be dirty in the transaction, mark 298 * the size as zero and do not advance the vector pointer. 299 */ 300 return; 301 } 302 303 blfp = xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_BFORMAT, blfp, base_size); 304 blfp->blf_size = 1; 305 306 if (bip->bli_flags & XFS_BLI_STALE) { 307 /* 308 * The buffer is stale, so all we need to log 309 * is the buf log format structure with the 310 * cancel flag in it. 311 */ 312 trace_xfs_buf_item_format_stale(bip); 313 ASSERT(blfp->blf_flags & XFS_BLF_CANCEL); 314 return; 315 } 316 317 318 /* 319 * Fill in an iovec for each set of contiguous chunks. 320 */ 321 do { 322 ASSERT(first_bit >= 0); 323 nbits = xfs_contig_bits(blfp->blf_data_map, 324 blfp->blf_map_size, first_bit); 325 ASSERT(nbits > 0); 326 327 /* 328 * Straddling a page is rare because we don't log contiguous 329 * chunks of unmapped buffers anywhere. 330 */ 331 if (nbits > 1 && 332 xfs_buf_item_straddle(bp, offset, first_bit, nbits)) 333 goto slow_scan; 334 335 xfs_buf_item_copy_iovec(lv, vecp, bp, offset, 336 first_bit, nbits); 337 blfp->blf_size++; 338 339 /* 340 * This takes the bit number to start looking from and 341 * returns the next set bit from there. It returns -1 342 * if there are no more bits set or the start bit is 343 * beyond the end of the bitmap. 344 */ 345 first_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size, 346 (uint)first_bit + nbits + 1); 347 } while (first_bit != -1); 348 349 return; 350 351 slow_scan: 352 ASSERT(bp->b_addr == NULL); 353 last_bit = first_bit; 354 nbits = 1; 355 for (;;) { 356 /* 357 * This takes the bit number to start looking from and 358 * returns the next set bit from there. It returns -1 359 * if there are no more bits set or the start bit is 360 * beyond the end of the bitmap. 361 */ 362 next_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size, 363 (uint)last_bit + 1); 364 /* 365 * If we run out of bits fill in the last iovec and get out of 366 * the loop. Else if we start a new set of bits then fill in 367 * the iovec for the series we were looking at and start 368 * counting the bits in the new one. Else we're still in the 369 * same set of bits so just keep counting and scanning. 370 */ 371 if (next_bit == -1) { 372 xfs_buf_item_copy_iovec(lv, vecp, bp, offset, 373 first_bit, nbits); 374 blfp->blf_size++; 375 break; 376 } else if (next_bit != last_bit + 1 || 377 xfs_buf_item_straddle(bp, offset, first_bit, nbits)) { 378 xfs_buf_item_copy_iovec(lv, vecp, bp, offset, 379 first_bit, nbits); 380 blfp->blf_size++; 381 first_bit = next_bit; 382 last_bit = next_bit; 383 nbits = 1; 384 } else { 385 last_bit++; 386 nbits++; 387 } 388 } 389 } 390 391 /* 392 * This is called to fill in the vector of log iovecs for the 393 * given log buf item. It fills the first entry with a buf log 394 * format structure, and the rest point to contiguous chunks 395 * within the buffer. 396 */ 397 STATIC void 398 xfs_buf_item_format( 399 struct xfs_log_item *lip, 400 struct xfs_log_vec *lv) 401 { 402 struct xfs_buf_log_item *bip = BUF_ITEM(lip); 403 struct xfs_buf *bp = bip->bli_buf; 404 struct xfs_log_iovec *vecp = NULL; 405 uint offset = 0; 406 int i; 407 408 ASSERT(atomic_read(&bip->bli_refcount) > 0); 409 ASSERT((bip->bli_flags & XFS_BLI_LOGGED) || 410 (bip->bli_flags & XFS_BLI_STALE)); 411 ASSERT((bip->bli_flags & XFS_BLI_STALE) || 412 (xfs_blft_from_flags(&bip->__bli_format) > XFS_BLFT_UNKNOWN_BUF 413 && xfs_blft_from_flags(&bip->__bli_format) < XFS_BLFT_MAX_BUF)); 414 ASSERT(!(bip->bli_flags & XFS_BLI_ORDERED) || 415 (bip->bli_flags & XFS_BLI_STALE)); 416 417 418 /* 419 * If it is an inode buffer, transfer the in-memory state to the 420 * format flags and clear the in-memory state. 421 * 422 * For buffer based inode allocation, we do not transfer 423 * this state if the inode buffer allocation has not yet been committed 424 * to the log as setting the XFS_BLI_INODE_BUF flag will prevent 425 * correct replay of the inode allocation. 426 * 427 * For icreate item based inode allocation, the buffers aren't written 428 * to the journal during allocation, and hence we should always tag the 429 * buffer as an inode buffer so that the correct unlinked list replay 430 * occurs during recovery. 431 */ 432 if (bip->bli_flags & XFS_BLI_INODE_BUF) { 433 if (xfs_has_v3inodes(lip->li_log->l_mp) || 434 !((bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF) && 435 xfs_log_item_in_current_chkpt(lip))) 436 bip->__bli_format.blf_flags |= XFS_BLF_INODE_BUF; 437 bip->bli_flags &= ~XFS_BLI_INODE_BUF; 438 } 439 440 for (i = 0; i < bip->bli_format_count; i++) { 441 xfs_buf_item_format_segment(bip, lv, &vecp, offset, 442 &bip->bli_formats[i]); 443 offset += BBTOB(bp->b_maps[i].bm_len); 444 } 445 446 /* 447 * Check to make sure everything is consistent. 448 */ 449 trace_xfs_buf_item_format(bip); 450 } 451 452 /* 453 * This is called to pin the buffer associated with the buf log item in memory 454 * so it cannot be written out. 455 * 456 * We take a reference to the buffer log item here so that the BLI life cycle 457 * extends at least until the buffer is unpinned via xfs_buf_item_unpin() and 458 * inserted into the AIL. 459 * 460 * We also need to take a reference to the buffer itself as the BLI unpin 461 * processing requires accessing the buffer after the BLI has dropped the final 462 * BLI reference. See xfs_buf_item_unpin() for an explanation. 463 * If unpins race to drop the final BLI reference and only the 464 * BLI owns a reference to the buffer, then the loser of the race can have the 465 * buffer fgreed from under it (e.g. on shutdown). Taking a buffer reference per 466 * pin count ensures the life cycle of the buffer extends for as 467 * long as we hold the buffer pin reference in xfs_buf_item_unpin(). 468 */ 469 STATIC void 470 xfs_buf_item_pin( 471 struct xfs_log_item *lip) 472 { 473 struct xfs_buf_log_item *bip = BUF_ITEM(lip); 474 475 ASSERT(atomic_read(&bip->bli_refcount) > 0); 476 ASSERT((bip->bli_flags & XFS_BLI_LOGGED) || 477 (bip->bli_flags & XFS_BLI_ORDERED) || 478 (bip->bli_flags & XFS_BLI_STALE)); 479 480 trace_xfs_buf_item_pin(bip); 481 482 xfs_buf_hold(bip->bli_buf); 483 atomic_inc(&bip->bli_refcount); 484 atomic_inc(&bip->bli_buf->b_pin_count); 485 } 486 487 /* 488 * This is called to unpin the buffer associated with the buf log item which was 489 * previously pinned with a call to xfs_buf_item_pin(). We enter this function 490 * with a buffer pin count, a buffer reference and a BLI reference. 491 * 492 * We must drop the BLI reference before we unpin the buffer because the AIL 493 * doesn't acquire a BLI reference whenever it accesses it. Therefore if the 494 * refcount drops to zero, the bli could still be AIL resident and the buffer 495 * submitted for I/O at any point before we return. This can result in IO 496 * completion freeing the buffer while we are still trying to access it here. 497 * This race condition can also occur in shutdown situations where we abort and 498 * unpin buffers from contexts other that journal IO completion. 499 * 500 * Hence we have to hold a buffer reference per pin count to ensure that the 501 * buffer cannot be freed until we have finished processing the unpin operation. 502 * The reference is taken in xfs_buf_item_pin(), and we must hold it until we 503 * are done processing the buffer state. In the case of an abort (remove = 504 * true) then we re-use the current pin reference as the IO reference we hand 505 * off to IO failure handling. 506 */ 507 STATIC void 508 xfs_buf_item_unpin( 509 struct xfs_log_item *lip, 510 int remove) 511 { 512 struct xfs_buf_log_item *bip = BUF_ITEM(lip); 513 struct xfs_buf *bp = bip->bli_buf; 514 int stale = bip->bli_flags & XFS_BLI_STALE; 515 int freed; 516 517 ASSERT(bp->b_log_item == bip); 518 ASSERT(atomic_read(&bip->bli_refcount) > 0); 519 520 trace_xfs_buf_item_unpin(bip); 521 522 freed = atomic_dec_and_test(&bip->bli_refcount); 523 if (atomic_dec_and_test(&bp->b_pin_count)) 524 wake_up_all(&bp->b_waiters); 525 526 /* 527 * Nothing to do but drop the buffer pin reference if the BLI is 528 * still active. 529 */ 530 if (!freed) { 531 xfs_buf_rele(bp); 532 return; 533 } 534 535 if (stale) { 536 ASSERT(bip->bli_flags & XFS_BLI_STALE); 537 ASSERT(xfs_buf_islocked(bp)); 538 ASSERT(bp->b_flags & XBF_STALE); 539 ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL); 540 ASSERT(list_empty(&lip->li_trans)); 541 ASSERT(!bp->b_transp); 542 543 trace_xfs_buf_item_unpin_stale(bip); 544 545 /* 546 * The buffer has been locked and referenced since it was marked 547 * stale so we own both lock and reference exclusively here. We 548 * do not need the pin reference any more, so drop it now so 549 * that we only have one reference to drop once item completion 550 * processing is complete. 551 */ 552 xfs_buf_rele(bp); 553 554 /* 555 * If we get called here because of an IO error, we may or may 556 * not have the item on the AIL. xfs_trans_ail_delete() will 557 * take care of that situation. xfs_trans_ail_delete() drops 558 * the AIL lock. 559 */ 560 if (bip->bli_flags & XFS_BLI_STALE_INODE) { 561 xfs_buf_item_done(bp); 562 xfs_buf_inode_iodone(bp); 563 ASSERT(list_empty(&bp->b_li_list)); 564 } else { 565 xfs_trans_ail_delete(lip, SHUTDOWN_LOG_IO_ERROR); 566 xfs_buf_item_relse(bp); 567 ASSERT(bp->b_log_item == NULL); 568 } 569 xfs_buf_relse(bp); 570 return; 571 } 572 573 if (remove) { 574 /* 575 * We need to simulate an async IO failures here to ensure that 576 * the correct error completion is run on this buffer. This 577 * requires a reference to the buffer and for the buffer to be 578 * locked. We can safely pass ownership of the pin reference to 579 * the IO to ensure that nothing can free the buffer while we 580 * wait for the lock and then run the IO failure completion. 581 */ 582 xfs_buf_lock(bp); 583 bp->b_flags |= XBF_ASYNC; 584 xfs_buf_ioend_fail(bp); 585 return; 586 } 587 588 /* 589 * BLI has no more active references - it will be moved to the AIL to 590 * manage the remaining BLI/buffer life cycle. There is nothing left for 591 * us to do here so drop the pin reference to the buffer. 592 */ 593 xfs_buf_rele(bp); 594 } 595 596 STATIC uint 597 xfs_buf_item_push( 598 struct xfs_log_item *lip, 599 struct list_head *buffer_list) 600 { 601 struct xfs_buf_log_item *bip = BUF_ITEM(lip); 602 struct xfs_buf *bp = bip->bli_buf; 603 uint rval = XFS_ITEM_SUCCESS; 604 605 if (xfs_buf_ispinned(bp)) 606 return XFS_ITEM_PINNED; 607 if (!xfs_buf_trylock(bp)) { 608 /* 609 * If we have just raced with a buffer being pinned and it has 610 * been marked stale, we could end up stalling until someone else 611 * issues a log force to unpin the stale buffer. Check for the 612 * race condition here so xfsaild recognizes the buffer is pinned 613 * and queues a log force to move it along. 614 */ 615 if (xfs_buf_ispinned(bp)) 616 return XFS_ITEM_PINNED; 617 return XFS_ITEM_LOCKED; 618 } 619 620 ASSERT(!(bip->bli_flags & XFS_BLI_STALE)); 621 622 trace_xfs_buf_item_push(bip); 623 624 /* has a previous flush failed due to IO errors? */ 625 if (bp->b_flags & XBF_WRITE_FAIL) { 626 xfs_buf_alert_ratelimited(bp, "XFS: Failing async write", 627 "Failing async write on buffer block 0x%llx. Retrying async write.", 628 (long long)xfs_buf_daddr(bp)); 629 } 630 631 if (!xfs_buf_delwri_queue(bp, buffer_list)) 632 rval = XFS_ITEM_FLUSHING; 633 xfs_buf_unlock(bp); 634 return rval; 635 } 636 637 /* 638 * Drop the buffer log item refcount and take appropriate action. This helper 639 * determines whether the bli must be freed or not, since a decrement to zero 640 * does not necessarily mean the bli is unused. 641 * 642 * Return true if the bli is freed, false otherwise. 643 */ 644 bool 645 xfs_buf_item_put( 646 struct xfs_buf_log_item *bip) 647 { 648 struct xfs_log_item *lip = &bip->bli_item; 649 bool aborted; 650 bool dirty; 651 652 /* drop the bli ref and return if it wasn't the last one */ 653 if (!atomic_dec_and_test(&bip->bli_refcount)) 654 return false; 655 656 /* 657 * We dropped the last ref and must free the item if clean or aborted. 658 * If the bli is dirty and non-aborted, the buffer was clean in the 659 * transaction but still awaiting writeback from previous changes. In 660 * that case, the bli is freed on buffer writeback completion. 661 */ 662 aborted = test_bit(XFS_LI_ABORTED, &lip->li_flags) || 663 xlog_is_shutdown(lip->li_log); 664 dirty = bip->bli_flags & XFS_BLI_DIRTY; 665 if (dirty && !aborted) 666 return false; 667 668 /* 669 * The bli is aborted or clean. An aborted item may be in the AIL 670 * regardless of dirty state. For example, consider an aborted 671 * transaction that invalidated a dirty bli and cleared the dirty 672 * state. 673 */ 674 if (aborted) 675 xfs_trans_ail_delete(lip, 0); 676 xfs_buf_item_relse(bip->bli_buf); 677 return true; 678 } 679 680 /* 681 * Release the buffer associated with the buf log item. If there is no dirty 682 * logged data associated with the buffer recorded in the buf log item, then 683 * free the buf log item and remove the reference to it in the buffer. 684 * 685 * This call ignores the recursion count. It is only called when the buffer 686 * should REALLY be unlocked, regardless of the recursion count. 687 * 688 * We unconditionally drop the transaction's reference to the log item. If the 689 * item was logged, then another reference was taken when it was pinned, so we 690 * can safely drop the transaction reference now. This also allows us to avoid 691 * potential races with the unpin code freeing the bli by not referencing the 692 * bli after we've dropped the reference count. 693 * 694 * If the XFS_BLI_HOLD flag is set in the buf log item, then free the log item 695 * if necessary but do not unlock the buffer. This is for support of 696 * xfs_trans_bhold(). Make sure the XFS_BLI_HOLD field is cleared if we don't 697 * free the item. 698 */ 699 STATIC void 700 xfs_buf_item_release( 701 struct xfs_log_item *lip) 702 { 703 struct xfs_buf_log_item *bip = BUF_ITEM(lip); 704 struct xfs_buf *bp = bip->bli_buf; 705 bool released; 706 bool hold = bip->bli_flags & XFS_BLI_HOLD; 707 bool stale = bip->bli_flags & XFS_BLI_STALE; 708 #if defined(DEBUG) || defined(XFS_WARN) 709 bool ordered = bip->bli_flags & XFS_BLI_ORDERED; 710 bool dirty = bip->bli_flags & XFS_BLI_DIRTY; 711 bool aborted = test_bit(XFS_LI_ABORTED, 712 &lip->li_flags); 713 #endif 714 715 trace_xfs_buf_item_release(bip); 716 717 /* 718 * The bli dirty state should match whether the blf has logged segments 719 * except for ordered buffers, where only the bli should be dirty. 720 */ 721 ASSERT((!ordered && dirty == xfs_buf_item_dirty_format(bip)) || 722 (ordered && dirty && !xfs_buf_item_dirty_format(bip))); 723 ASSERT(!stale || (bip->__bli_format.blf_flags & XFS_BLF_CANCEL)); 724 725 /* 726 * Clear the buffer's association with this transaction and 727 * per-transaction state from the bli, which has been copied above. 728 */ 729 bp->b_transp = NULL; 730 bip->bli_flags &= ~(XFS_BLI_LOGGED | XFS_BLI_HOLD | XFS_BLI_ORDERED); 731 732 /* 733 * Unref the item and unlock the buffer unless held or stale. Stale 734 * buffers remain locked until final unpin unless the bli is freed by 735 * the unref call. The latter implies shutdown because buffer 736 * invalidation dirties the bli and transaction. 737 */ 738 released = xfs_buf_item_put(bip); 739 if (hold || (stale && !released)) 740 return; 741 ASSERT(!stale || aborted); 742 xfs_buf_relse(bp); 743 } 744 745 STATIC void 746 xfs_buf_item_committing( 747 struct xfs_log_item *lip, 748 xfs_csn_t seq) 749 { 750 return xfs_buf_item_release(lip); 751 } 752 753 /* 754 * This is called to find out where the oldest active copy of the 755 * buf log item in the on disk log resides now that the last log 756 * write of it completed at the given lsn. 757 * We always re-log all the dirty data in a buffer, so usually the 758 * latest copy in the on disk log is the only one that matters. For 759 * those cases we simply return the given lsn. 760 * 761 * The one exception to this is for buffers full of newly allocated 762 * inodes. These buffers are only relogged with the XFS_BLI_INODE_BUF 763 * flag set, indicating that only the di_next_unlinked fields from the 764 * inodes in the buffers will be replayed during recovery. If the 765 * original newly allocated inode images have not yet been flushed 766 * when the buffer is so relogged, then we need to make sure that we 767 * keep the old images in the 'active' portion of the log. We do this 768 * by returning the original lsn of that transaction here rather than 769 * the current one. 770 */ 771 STATIC xfs_lsn_t 772 xfs_buf_item_committed( 773 struct xfs_log_item *lip, 774 xfs_lsn_t lsn) 775 { 776 struct xfs_buf_log_item *bip = BUF_ITEM(lip); 777 778 trace_xfs_buf_item_committed(bip); 779 780 if ((bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF) && lip->li_lsn != 0) 781 return lip->li_lsn; 782 return lsn; 783 } 784 785 #ifdef DEBUG_EXPENSIVE 786 static int 787 xfs_buf_item_precommit( 788 struct xfs_trans *tp, 789 struct xfs_log_item *lip) 790 { 791 struct xfs_buf_log_item *bip = BUF_ITEM(lip); 792 struct xfs_buf *bp = bip->bli_buf; 793 struct xfs_mount *mp = bp->b_mount; 794 xfs_failaddr_t fa; 795 796 if (!bp->b_ops || !bp->b_ops->verify_struct) 797 return 0; 798 if (bip->bli_flags & XFS_BLI_STALE) 799 return 0; 800 801 fa = bp->b_ops->verify_struct(bp); 802 if (fa) { 803 xfs_buf_verifier_error(bp, -EFSCORRUPTED, bp->b_ops->name, 804 bp->b_addr, BBTOB(bp->b_length), fa); 805 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); 806 ASSERT(fa == NULL); 807 } 808 809 return 0; 810 } 811 #else 812 # define xfs_buf_item_precommit NULL 813 #endif 814 815 static const struct xfs_item_ops xfs_buf_item_ops = { 816 .iop_size = xfs_buf_item_size, 817 .iop_precommit = xfs_buf_item_precommit, 818 .iop_format = xfs_buf_item_format, 819 .iop_pin = xfs_buf_item_pin, 820 .iop_unpin = xfs_buf_item_unpin, 821 .iop_release = xfs_buf_item_release, 822 .iop_committing = xfs_buf_item_committing, 823 .iop_committed = xfs_buf_item_committed, 824 .iop_push = xfs_buf_item_push, 825 }; 826 827 STATIC void 828 xfs_buf_item_get_format( 829 struct xfs_buf_log_item *bip, 830 int count) 831 { 832 ASSERT(bip->bli_formats == NULL); 833 bip->bli_format_count = count; 834 835 if (count == 1) { 836 bip->bli_formats = &bip->__bli_format; 837 return; 838 } 839 840 bip->bli_formats = kzalloc(count * sizeof(struct xfs_buf_log_format), 841 GFP_KERNEL | __GFP_NOFAIL); 842 } 843 844 STATIC void 845 xfs_buf_item_free_format( 846 struct xfs_buf_log_item *bip) 847 { 848 if (bip->bli_formats != &bip->__bli_format) { 849 kfree(bip->bli_formats); 850 bip->bli_formats = NULL; 851 } 852 } 853 854 /* 855 * Allocate a new buf log item to go with the given buffer. 856 * Set the buffer's b_log_item field to point to the new 857 * buf log item. 858 */ 859 int 860 xfs_buf_item_init( 861 struct xfs_buf *bp, 862 struct xfs_mount *mp) 863 { 864 struct xfs_buf_log_item *bip = bp->b_log_item; 865 int chunks; 866 int map_size; 867 int i; 868 869 /* 870 * Check to see if there is already a buf log item for 871 * this buffer. If we do already have one, there is 872 * nothing to do here so return. 873 */ 874 ASSERT(bp->b_mount == mp); 875 if (bip) { 876 ASSERT(bip->bli_item.li_type == XFS_LI_BUF); 877 ASSERT(!bp->b_transp); 878 ASSERT(bip->bli_buf == bp); 879 return 0; 880 } 881 882 bip = kmem_cache_zalloc(xfs_buf_item_cache, GFP_KERNEL | __GFP_NOFAIL); 883 xfs_log_item_init(mp, &bip->bli_item, XFS_LI_BUF, &xfs_buf_item_ops); 884 bip->bli_buf = bp; 885 886 /* 887 * chunks is the number of XFS_BLF_CHUNK size pieces the buffer 888 * can be divided into. Make sure not to truncate any pieces. 889 * map_size is the size of the bitmap needed to describe the 890 * chunks of the buffer. 891 * 892 * Discontiguous buffer support follows the layout of the underlying 893 * buffer. This makes the implementation as simple as possible. 894 */ 895 xfs_buf_item_get_format(bip, bp->b_map_count); 896 897 for (i = 0; i < bip->bli_format_count; i++) { 898 chunks = DIV_ROUND_UP(BBTOB(bp->b_maps[i].bm_len), 899 XFS_BLF_CHUNK); 900 map_size = DIV_ROUND_UP(chunks, NBWORD); 901 902 if (map_size > XFS_BLF_DATAMAP_SIZE) { 903 kmem_cache_free(xfs_buf_item_cache, bip); 904 xfs_err(mp, 905 "buffer item dirty bitmap (%u uints) too small to reflect %u bytes!", 906 map_size, 907 BBTOB(bp->b_maps[i].bm_len)); 908 return -EFSCORRUPTED; 909 } 910 911 bip->bli_formats[i].blf_type = XFS_LI_BUF; 912 bip->bli_formats[i].blf_blkno = bp->b_maps[i].bm_bn; 913 bip->bli_formats[i].blf_len = bp->b_maps[i].bm_len; 914 bip->bli_formats[i].blf_map_size = map_size; 915 } 916 917 bp->b_log_item = bip; 918 xfs_buf_hold(bp); 919 return 0; 920 } 921 922 923 /* 924 * Mark bytes first through last inclusive as dirty in the buf 925 * item's bitmap. 926 */ 927 static void 928 xfs_buf_item_log_segment( 929 uint first, 930 uint last, 931 uint *map) 932 { 933 uint first_bit; 934 uint last_bit; 935 uint bits_to_set; 936 uint bits_set; 937 uint word_num; 938 uint *wordp; 939 uint bit; 940 uint end_bit; 941 uint mask; 942 943 ASSERT(first < XFS_BLF_DATAMAP_SIZE * XFS_BLF_CHUNK * NBWORD); 944 ASSERT(last < XFS_BLF_DATAMAP_SIZE * XFS_BLF_CHUNK * NBWORD); 945 946 /* 947 * Convert byte offsets to bit numbers. 948 */ 949 first_bit = first >> XFS_BLF_SHIFT; 950 last_bit = last >> XFS_BLF_SHIFT; 951 952 /* 953 * Calculate the total number of bits to be set. 954 */ 955 bits_to_set = last_bit - first_bit + 1; 956 957 /* 958 * Get a pointer to the first word in the bitmap 959 * to set a bit in. 960 */ 961 word_num = first_bit >> BIT_TO_WORD_SHIFT; 962 wordp = &map[word_num]; 963 964 /* 965 * Calculate the starting bit in the first word. 966 */ 967 bit = first_bit & (uint)(NBWORD - 1); 968 969 /* 970 * First set any bits in the first word of our range. 971 * If it starts at bit 0 of the word, it will be 972 * set below rather than here. That is what the variable 973 * bit tells us. The variable bits_set tracks the number 974 * of bits that have been set so far. End_bit is the number 975 * of the last bit to be set in this word plus one. 976 */ 977 if (bit) { 978 end_bit = min(bit + bits_to_set, (uint)NBWORD); 979 mask = ((1U << (end_bit - bit)) - 1) << bit; 980 *wordp |= mask; 981 wordp++; 982 bits_set = end_bit - bit; 983 } else { 984 bits_set = 0; 985 } 986 987 /* 988 * Now set bits a whole word at a time that are between 989 * first_bit and last_bit. 990 */ 991 while ((bits_to_set - bits_set) >= NBWORD) { 992 *wordp = 0xffffffff; 993 bits_set += NBWORD; 994 wordp++; 995 } 996 997 /* 998 * Finally, set any bits left to be set in one last partial word. 999 */ 1000 end_bit = bits_to_set - bits_set; 1001 if (end_bit) { 1002 mask = (1U << end_bit) - 1; 1003 *wordp |= mask; 1004 } 1005 } 1006 1007 /* 1008 * Mark bytes first through last inclusive as dirty in the buf 1009 * item's bitmap. 1010 */ 1011 void 1012 xfs_buf_item_log( 1013 struct xfs_buf_log_item *bip, 1014 uint first, 1015 uint last) 1016 { 1017 int i; 1018 uint start; 1019 uint end; 1020 struct xfs_buf *bp = bip->bli_buf; 1021 1022 /* 1023 * walk each buffer segment and mark them dirty appropriately. 1024 */ 1025 start = 0; 1026 for (i = 0; i < bip->bli_format_count; i++) { 1027 if (start > last) 1028 break; 1029 end = start + BBTOB(bp->b_maps[i].bm_len) - 1; 1030 1031 /* skip to the map that includes the first byte to log */ 1032 if (first > end) { 1033 start += BBTOB(bp->b_maps[i].bm_len); 1034 continue; 1035 } 1036 1037 /* 1038 * Trim the range to this segment and mark it in the bitmap. 1039 * Note that we must convert buffer offsets to segment relative 1040 * offsets (e.g., the first byte of each segment is byte 0 of 1041 * that segment). 1042 */ 1043 if (first < start) 1044 first = start; 1045 if (end > last) 1046 end = last; 1047 xfs_buf_item_log_segment(first - start, end - start, 1048 &bip->bli_formats[i].blf_data_map[0]); 1049 1050 start += BBTOB(bp->b_maps[i].bm_len); 1051 } 1052 } 1053 1054 1055 /* 1056 * Return true if the buffer has any ranges logged/dirtied by a transaction, 1057 * false otherwise. 1058 */ 1059 bool 1060 xfs_buf_item_dirty_format( 1061 struct xfs_buf_log_item *bip) 1062 { 1063 int i; 1064 1065 for (i = 0; i < bip->bli_format_count; i++) { 1066 if (!xfs_bitmap_empty(bip->bli_formats[i].blf_data_map, 1067 bip->bli_formats[i].blf_map_size)) 1068 return true; 1069 } 1070 1071 return false; 1072 } 1073 1074 STATIC void 1075 xfs_buf_item_free( 1076 struct xfs_buf_log_item *bip) 1077 { 1078 xfs_buf_item_free_format(bip); 1079 kvfree(bip->bli_item.li_lv_shadow); 1080 kmem_cache_free(xfs_buf_item_cache, bip); 1081 } 1082 1083 /* 1084 * xfs_buf_item_relse() is called when the buf log item is no longer needed. 1085 */ 1086 void 1087 xfs_buf_item_relse( 1088 struct xfs_buf *bp) 1089 { 1090 struct xfs_buf_log_item *bip = bp->b_log_item; 1091 1092 trace_xfs_buf_item_relse(bp, _RET_IP_); 1093 ASSERT(!test_bit(XFS_LI_IN_AIL, &bip->bli_item.li_flags)); 1094 1095 if (atomic_read(&bip->bli_refcount)) 1096 return; 1097 bp->b_log_item = NULL; 1098 xfs_buf_rele(bp); 1099 xfs_buf_item_free(bip); 1100 } 1101 1102 void 1103 xfs_buf_item_done( 1104 struct xfs_buf *bp) 1105 { 1106 /* 1107 * If we are forcibly shutting down, this may well be off the AIL 1108 * already. That's because we simulate the log-committed callbacks to 1109 * unpin these buffers. Or we may never have put this item on AIL 1110 * because of the transaction was aborted forcibly. 1111 * xfs_trans_ail_delete() takes care of these. 1112 * 1113 * Either way, AIL is useless if we're forcing a shutdown. 1114 * 1115 * Note that log recovery writes might have buffer items that are not on 1116 * the AIL even when the file system is not shut down. 1117 */ 1118 xfs_trans_ail_delete(&bp->b_log_item->bli_item, 1119 (bp->b_flags & _XBF_LOGRECOVERY) ? 0 : 1120 SHUTDOWN_CORRUPT_INCORE); 1121 xfs_buf_item_relse(bp); 1122 } 1123