xref: /linux/fs/xfs/xfs_buf_item.c (revision 4e0ae876f77bc01a7e77724dea57b4b82bd53244)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_format.h"
9 #include "xfs_log_format.h"
10 #include "xfs_trans_resv.h"
11 #include "xfs_bit.h"
12 #include "xfs_sb.h"
13 #include "xfs_mount.h"
14 #include "xfs_trans.h"
15 #include "xfs_buf_item.h"
16 #include "xfs_trans_priv.h"
17 #include "xfs_error.h"
18 #include "xfs_trace.h"
19 #include "xfs_log.h"
20 #include "xfs_inode.h"
21 
22 
23 kmem_zone_t	*xfs_buf_item_zone;
24 
25 static inline struct xfs_buf_log_item *BUF_ITEM(struct xfs_log_item *lip)
26 {
27 	return container_of(lip, struct xfs_buf_log_item, bli_item);
28 }
29 
30 STATIC void	xfs_buf_do_callbacks(struct xfs_buf *bp);
31 
32 static inline int
33 xfs_buf_log_format_size(
34 	struct xfs_buf_log_format *blfp)
35 {
36 	return offsetof(struct xfs_buf_log_format, blf_data_map) +
37 			(blfp->blf_map_size * sizeof(blfp->blf_data_map[0]));
38 }
39 
40 /*
41  * This returns the number of log iovecs needed to log the
42  * given buf log item.
43  *
44  * It calculates this as 1 iovec for the buf log format structure
45  * and 1 for each stretch of non-contiguous chunks to be logged.
46  * Contiguous chunks are logged in a single iovec.
47  *
48  * If the XFS_BLI_STALE flag has been set, then log nothing.
49  */
50 STATIC void
51 xfs_buf_item_size_segment(
52 	struct xfs_buf_log_item		*bip,
53 	struct xfs_buf_log_format	*blfp,
54 	int				*nvecs,
55 	int				*nbytes)
56 {
57 	struct xfs_buf			*bp = bip->bli_buf;
58 	int				next_bit;
59 	int				last_bit;
60 
61 	last_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size, 0);
62 	if (last_bit == -1)
63 		return;
64 
65 	/*
66 	 * initial count for a dirty buffer is 2 vectors - the format structure
67 	 * and the first dirty region.
68 	 */
69 	*nvecs += 2;
70 	*nbytes += xfs_buf_log_format_size(blfp) + XFS_BLF_CHUNK;
71 
72 	while (last_bit != -1) {
73 		/*
74 		 * This takes the bit number to start looking from and
75 		 * returns the next set bit from there.  It returns -1
76 		 * if there are no more bits set or the start bit is
77 		 * beyond the end of the bitmap.
78 		 */
79 		next_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size,
80 					last_bit + 1);
81 		/*
82 		 * If we run out of bits, leave the loop,
83 		 * else if we find a new set of bits bump the number of vecs,
84 		 * else keep scanning the current set of bits.
85 		 */
86 		if (next_bit == -1) {
87 			break;
88 		} else if (next_bit != last_bit + 1) {
89 			last_bit = next_bit;
90 			(*nvecs)++;
91 		} else if (xfs_buf_offset(bp, next_bit * XFS_BLF_CHUNK) !=
92 			   (xfs_buf_offset(bp, last_bit * XFS_BLF_CHUNK) +
93 			    XFS_BLF_CHUNK)) {
94 			last_bit = next_bit;
95 			(*nvecs)++;
96 		} else {
97 			last_bit++;
98 		}
99 		*nbytes += XFS_BLF_CHUNK;
100 	}
101 }
102 
103 /*
104  * This returns the number of log iovecs needed to log the given buf log item.
105  *
106  * It calculates this as 1 iovec for the buf log format structure and 1 for each
107  * stretch of non-contiguous chunks to be logged.  Contiguous chunks are logged
108  * in a single iovec.
109  *
110  * Discontiguous buffers need a format structure per region that that is being
111  * logged. This makes the changes in the buffer appear to log recovery as though
112  * they came from separate buffers, just like would occur if multiple buffers
113  * were used instead of a single discontiguous buffer. This enables
114  * discontiguous buffers to be in-memory constructs, completely transparent to
115  * what ends up on disk.
116  *
117  * If the XFS_BLI_STALE flag has been set, then log nothing but the buf log
118  * format structures.
119  */
120 STATIC void
121 xfs_buf_item_size(
122 	struct xfs_log_item	*lip,
123 	int			*nvecs,
124 	int			*nbytes)
125 {
126 	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
127 	int			i;
128 
129 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
130 	if (bip->bli_flags & XFS_BLI_STALE) {
131 		/*
132 		 * The buffer is stale, so all we need to log
133 		 * is the buf log format structure with the
134 		 * cancel flag in it.
135 		 */
136 		trace_xfs_buf_item_size_stale(bip);
137 		ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL);
138 		*nvecs += bip->bli_format_count;
139 		for (i = 0; i < bip->bli_format_count; i++) {
140 			*nbytes += xfs_buf_log_format_size(&bip->bli_formats[i]);
141 		}
142 		return;
143 	}
144 
145 	ASSERT(bip->bli_flags & XFS_BLI_LOGGED);
146 
147 	if (bip->bli_flags & XFS_BLI_ORDERED) {
148 		/*
149 		 * The buffer has been logged just to order it.
150 		 * It is not being included in the transaction
151 		 * commit, so no vectors are used at all.
152 		 */
153 		trace_xfs_buf_item_size_ordered(bip);
154 		*nvecs = XFS_LOG_VEC_ORDERED;
155 		return;
156 	}
157 
158 	/*
159 	 * the vector count is based on the number of buffer vectors we have
160 	 * dirty bits in. This will only be greater than one when we have a
161 	 * compound buffer with more than one segment dirty. Hence for compound
162 	 * buffers we need to track which segment the dirty bits correspond to,
163 	 * and when we move from one segment to the next increment the vector
164 	 * count for the extra buf log format structure that will need to be
165 	 * written.
166 	 */
167 	for (i = 0; i < bip->bli_format_count; i++) {
168 		xfs_buf_item_size_segment(bip, &bip->bli_formats[i],
169 					  nvecs, nbytes);
170 	}
171 	trace_xfs_buf_item_size(bip);
172 }
173 
174 static inline void
175 xfs_buf_item_copy_iovec(
176 	struct xfs_log_vec	*lv,
177 	struct xfs_log_iovec	**vecp,
178 	struct xfs_buf		*bp,
179 	uint			offset,
180 	int			first_bit,
181 	uint			nbits)
182 {
183 	offset += first_bit * XFS_BLF_CHUNK;
184 	xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_BCHUNK,
185 			xfs_buf_offset(bp, offset),
186 			nbits * XFS_BLF_CHUNK);
187 }
188 
189 static inline bool
190 xfs_buf_item_straddle(
191 	struct xfs_buf		*bp,
192 	uint			offset,
193 	int			next_bit,
194 	int			last_bit)
195 {
196 	return xfs_buf_offset(bp, offset + (next_bit << XFS_BLF_SHIFT)) !=
197 		(xfs_buf_offset(bp, offset + (last_bit << XFS_BLF_SHIFT)) +
198 		 XFS_BLF_CHUNK);
199 }
200 
201 static void
202 xfs_buf_item_format_segment(
203 	struct xfs_buf_log_item	*bip,
204 	struct xfs_log_vec	*lv,
205 	struct xfs_log_iovec	**vecp,
206 	uint			offset,
207 	struct xfs_buf_log_format *blfp)
208 {
209 	struct xfs_buf		*bp = bip->bli_buf;
210 	uint			base_size;
211 	int			first_bit;
212 	int			last_bit;
213 	int			next_bit;
214 	uint			nbits;
215 
216 	/* copy the flags across from the base format item */
217 	blfp->blf_flags = bip->__bli_format.blf_flags;
218 
219 	/*
220 	 * Base size is the actual size of the ondisk structure - it reflects
221 	 * the actual size of the dirty bitmap rather than the size of the in
222 	 * memory structure.
223 	 */
224 	base_size = xfs_buf_log_format_size(blfp);
225 
226 	first_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size, 0);
227 	if (!(bip->bli_flags & XFS_BLI_STALE) && first_bit == -1) {
228 		/*
229 		 * If the map is not be dirty in the transaction, mark
230 		 * the size as zero and do not advance the vector pointer.
231 		 */
232 		return;
233 	}
234 
235 	blfp = xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_BFORMAT, blfp, base_size);
236 	blfp->blf_size = 1;
237 
238 	if (bip->bli_flags & XFS_BLI_STALE) {
239 		/*
240 		 * The buffer is stale, so all we need to log
241 		 * is the buf log format structure with the
242 		 * cancel flag in it.
243 		 */
244 		trace_xfs_buf_item_format_stale(bip);
245 		ASSERT(blfp->blf_flags & XFS_BLF_CANCEL);
246 		return;
247 	}
248 
249 
250 	/*
251 	 * Fill in an iovec for each set of contiguous chunks.
252 	 */
253 	last_bit = first_bit;
254 	nbits = 1;
255 	for (;;) {
256 		/*
257 		 * This takes the bit number to start looking from and
258 		 * returns the next set bit from there.  It returns -1
259 		 * if there are no more bits set or the start bit is
260 		 * beyond the end of the bitmap.
261 		 */
262 		next_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size,
263 					(uint)last_bit + 1);
264 		/*
265 		 * If we run out of bits fill in the last iovec and get out of
266 		 * the loop.  Else if we start a new set of bits then fill in
267 		 * the iovec for the series we were looking at and start
268 		 * counting the bits in the new one.  Else we're still in the
269 		 * same set of bits so just keep counting and scanning.
270 		 */
271 		if (next_bit == -1) {
272 			xfs_buf_item_copy_iovec(lv, vecp, bp, offset,
273 						first_bit, nbits);
274 			blfp->blf_size++;
275 			break;
276 		} else if (next_bit != last_bit + 1 ||
277 		           xfs_buf_item_straddle(bp, offset, next_bit, last_bit)) {
278 			xfs_buf_item_copy_iovec(lv, vecp, bp, offset,
279 						first_bit, nbits);
280 			blfp->blf_size++;
281 			first_bit = next_bit;
282 			last_bit = next_bit;
283 			nbits = 1;
284 		} else {
285 			last_bit++;
286 			nbits++;
287 		}
288 	}
289 }
290 
291 /*
292  * This is called to fill in the vector of log iovecs for the
293  * given log buf item.  It fills the first entry with a buf log
294  * format structure, and the rest point to contiguous chunks
295  * within the buffer.
296  */
297 STATIC void
298 xfs_buf_item_format(
299 	struct xfs_log_item	*lip,
300 	struct xfs_log_vec	*lv)
301 {
302 	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
303 	struct xfs_buf		*bp = bip->bli_buf;
304 	struct xfs_log_iovec	*vecp = NULL;
305 	uint			offset = 0;
306 	int			i;
307 
308 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
309 	ASSERT((bip->bli_flags & XFS_BLI_LOGGED) ||
310 	       (bip->bli_flags & XFS_BLI_STALE));
311 	ASSERT((bip->bli_flags & XFS_BLI_STALE) ||
312 	       (xfs_blft_from_flags(&bip->__bli_format) > XFS_BLFT_UNKNOWN_BUF
313 	        && xfs_blft_from_flags(&bip->__bli_format) < XFS_BLFT_MAX_BUF));
314 	ASSERT(!(bip->bli_flags & XFS_BLI_ORDERED) ||
315 	       (bip->bli_flags & XFS_BLI_STALE));
316 
317 
318 	/*
319 	 * If it is an inode buffer, transfer the in-memory state to the
320 	 * format flags and clear the in-memory state.
321 	 *
322 	 * For buffer based inode allocation, we do not transfer
323 	 * this state if the inode buffer allocation has not yet been committed
324 	 * to the log as setting the XFS_BLI_INODE_BUF flag will prevent
325 	 * correct replay of the inode allocation.
326 	 *
327 	 * For icreate item based inode allocation, the buffers aren't written
328 	 * to the journal during allocation, and hence we should always tag the
329 	 * buffer as an inode buffer so that the correct unlinked list replay
330 	 * occurs during recovery.
331 	 */
332 	if (bip->bli_flags & XFS_BLI_INODE_BUF) {
333 		if (xfs_sb_version_hascrc(&lip->li_mountp->m_sb) ||
334 		    !((bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF) &&
335 		      xfs_log_item_in_current_chkpt(lip)))
336 			bip->__bli_format.blf_flags |= XFS_BLF_INODE_BUF;
337 		bip->bli_flags &= ~XFS_BLI_INODE_BUF;
338 	}
339 
340 	for (i = 0; i < bip->bli_format_count; i++) {
341 		xfs_buf_item_format_segment(bip, lv, &vecp, offset,
342 					    &bip->bli_formats[i]);
343 		offset += BBTOB(bp->b_maps[i].bm_len);
344 	}
345 
346 	/*
347 	 * Check to make sure everything is consistent.
348 	 */
349 	trace_xfs_buf_item_format(bip);
350 }
351 
352 /*
353  * This is called to pin the buffer associated with the buf log item in memory
354  * so it cannot be written out.
355  *
356  * We also always take a reference to the buffer log item here so that the bli
357  * is held while the item is pinned in memory. This means that we can
358  * unconditionally drop the reference count a transaction holds when the
359  * transaction is completed.
360  */
361 STATIC void
362 xfs_buf_item_pin(
363 	struct xfs_log_item	*lip)
364 {
365 	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
366 
367 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
368 	ASSERT((bip->bli_flags & XFS_BLI_LOGGED) ||
369 	       (bip->bli_flags & XFS_BLI_ORDERED) ||
370 	       (bip->bli_flags & XFS_BLI_STALE));
371 
372 	trace_xfs_buf_item_pin(bip);
373 
374 	atomic_inc(&bip->bli_refcount);
375 	atomic_inc(&bip->bli_buf->b_pin_count);
376 }
377 
378 /*
379  * This is called to unpin the buffer associated with the buf log
380  * item which was previously pinned with a call to xfs_buf_item_pin().
381  *
382  * Also drop the reference to the buf item for the current transaction.
383  * If the XFS_BLI_STALE flag is set and we are the last reference,
384  * then free up the buf log item and unlock the buffer.
385  *
386  * If the remove flag is set we are called from uncommit in the
387  * forced-shutdown path.  If that is true and the reference count on
388  * the log item is going to drop to zero we need to free the item's
389  * descriptor in the transaction.
390  */
391 STATIC void
392 xfs_buf_item_unpin(
393 	struct xfs_log_item	*lip,
394 	int			remove)
395 {
396 	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
397 	xfs_buf_t		*bp = bip->bli_buf;
398 	struct xfs_ail		*ailp = lip->li_ailp;
399 	int			stale = bip->bli_flags & XFS_BLI_STALE;
400 	int			freed;
401 
402 	ASSERT(bp->b_log_item == bip);
403 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
404 
405 	trace_xfs_buf_item_unpin(bip);
406 
407 	freed = atomic_dec_and_test(&bip->bli_refcount);
408 
409 	if (atomic_dec_and_test(&bp->b_pin_count))
410 		wake_up_all(&bp->b_waiters);
411 
412 	if (freed && stale) {
413 		ASSERT(bip->bli_flags & XFS_BLI_STALE);
414 		ASSERT(xfs_buf_islocked(bp));
415 		ASSERT(bp->b_flags & XBF_STALE);
416 		ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL);
417 
418 		trace_xfs_buf_item_unpin_stale(bip);
419 
420 		if (remove) {
421 			/*
422 			 * If we are in a transaction context, we have to
423 			 * remove the log item from the transaction as we are
424 			 * about to release our reference to the buffer.  If we
425 			 * don't, the unlock that occurs later in
426 			 * xfs_trans_uncommit() will try to reference the
427 			 * buffer which we no longer have a hold on.
428 			 */
429 			if (!list_empty(&lip->li_trans))
430 				xfs_trans_del_item(lip);
431 
432 			/*
433 			 * Since the transaction no longer refers to the buffer,
434 			 * the buffer should no longer refer to the transaction.
435 			 */
436 			bp->b_transp = NULL;
437 		}
438 
439 		/*
440 		 * If we get called here because of an IO error, we may
441 		 * or may not have the item on the AIL. xfs_trans_ail_delete()
442 		 * will take care of that situation.
443 		 * xfs_trans_ail_delete() drops the AIL lock.
444 		 */
445 		if (bip->bli_flags & XFS_BLI_STALE_INODE) {
446 			xfs_buf_do_callbacks(bp);
447 			bp->b_log_item = NULL;
448 			list_del_init(&bp->b_li_list);
449 			bp->b_iodone = NULL;
450 		} else {
451 			spin_lock(&ailp->ail_lock);
452 			xfs_trans_ail_delete(ailp, lip, SHUTDOWN_LOG_IO_ERROR);
453 			xfs_buf_item_relse(bp);
454 			ASSERT(bp->b_log_item == NULL);
455 		}
456 		xfs_buf_relse(bp);
457 	} else if (freed && remove) {
458 		/*
459 		 * There are currently two references to the buffer - the active
460 		 * LRU reference and the buf log item. What we are about to do
461 		 * here - simulate a failed IO completion - requires 3
462 		 * references.
463 		 *
464 		 * The LRU reference is removed by the xfs_buf_stale() call. The
465 		 * buf item reference is removed by the xfs_buf_iodone()
466 		 * callback that is run by xfs_buf_do_callbacks() during ioend
467 		 * processing (via the bp->b_iodone callback), and then finally
468 		 * the ioend processing will drop the IO reference if the buffer
469 		 * is marked XBF_ASYNC.
470 		 *
471 		 * Hence we need to take an additional reference here so that IO
472 		 * completion processing doesn't free the buffer prematurely.
473 		 */
474 		xfs_buf_lock(bp);
475 		xfs_buf_hold(bp);
476 		bp->b_flags |= XBF_ASYNC;
477 		xfs_buf_ioerror(bp, -EIO);
478 		bp->b_flags &= ~XBF_DONE;
479 		xfs_buf_stale(bp);
480 		xfs_buf_ioend(bp);
481 	}
482 }
483 
484 /*
485  * Buffer IO error rate limiting. Limit it to no more than 10 messages per 30
486  * seconds so as to not spam logs too much on repeated detection of the same
487  * buffer being bad..
488  */
489 
490 static DEFINE_RATELIMIT_STATE(xfs_buf_write_fail_rl_state, 30 * HZ, 10);
491 
492 STATIC uint
493 xfs_buf_item_push(
494 	struct xfs_log_item	*lip,
495 	struct list_head	*buffer_list)
496 {
497 	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
498 	struct xfs_buf		*bp = bip->bli_buf;
499 	uint			rval = XFS_ITEM_SUCCESS;
500 
501 	if (xfs_buf_ispinned(bp))
502 		return XFS_ITEM_PINNED;
503 	if (!xfs_buf_trylock(bp)) {
504 		/*
505 		 * If we have just raced with a buffer being pinned and it has
506 		 * been marked stale, we could end up stalling until someone else
507 		 * issues a log force to unpin the stale buffer. Check for the
508 		 * race condition here so xfsaild recognizes the buffer is pinned
509 		 * and queues a log force to move it along.
510 		 */
511 		if (xfs_buf_ispinned(bp))
512 			return XFS_ITEM_PINNED;
513 		return XFS_ITEM_LOCKED;
514 	}
515 
516 	ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
517 
518 	trace_xfs_buf_item_push(bip);
519 
520 	/* has a previous flush failed due to IO errors? */
521 	if ((bp->b_flags & XBF_WRITE_FAIL) &&
522 	    ___ratelimit(&xfs_buf_write_fail_rl_state, "XFS: Failing async write")) {
523 		xfs_warn(bp->b_target->bt_mount,
524 "Failing async write on buffer block 0x%llx. Retrying async write.",
525 			 (long long)bp->b_bn);
526 	}
527 
528 	if (!xfs_buf_delwri_queue(bp, buffer_list))
529 		rval = XFS_ITEM_FLUSHING;
530 	xfs_buf_unlock(bp);
531 	return rval;
532 }
533 
534 /*
535  * Drop the buffer log item refcount and take appropriate action. This helper
536  * determines whether the bli must be freed or not, since a decrement to zero
537  * does not necessarily mean the bli is unused.
538  *
539  * Return true if the bli is freed, false otherwise.
540  */
541 bool
542 xfs_buf_item_put(
543 	struct xfs_buf_log_item	*bip)
544 {
545 	struct xfs_log_item	*lip = &bip->bli_item;
546 	bool			aborted;
547 	bool			dirty;
548 
549 	/* drop the bli ref and return if it wasn't the last one */
550 	if (!atomic_dec_and_test(&bip->bli_refcount))
551 		return false;
552 
553 	/*
554 	 * We dropped the last ref and must free the item if clean or aborted.
555 	 * If the bli is dirty and non-aborted, the buffer was clean in the
556 	 * transaction but still awaiting writeback from previous changes. In
557 	 * that case, the bli is freed on buffer writeback completion.
558 	 */
559 	aborted = test_bit(XFS_LI_ABORTED, &lip->li_flags) ||
560 		  XFS_FORCED_SHUTDOWN(lip->li_mountp);
561 	dirty = bip->bli_flags & XFS_BLI_DIRTY;
562 	if (dirty && !aborted)
563 		return false;
564 
565 	/*
566 	 * The bli is aborted or clean. An aborted item may be in the AIL
567 	 * regardless of dirty state.  For example, consider an aborted
568 	 * transaction that invalidated a dirty bli and cleared the dirty
569 	 * state.
570 	 */
571 	if (aborted)
572 		xfs_trans_ail_remove(lip, SHUTDOWN_LOG_IO_ERROR);
573 	xfs_buf_item_relse(bip->bli_buf);
574 	return true;
575 }
576 
577 /*
578  * Release the buffer associated with the buf log item.  If there is no dirty
579  * logged data associated with the buffer recorded in the buf log item, then
580  * free the buf log item and remove the reference to it in the buffer.
581  *
582  * This call ignores the recursion count.  It is only called when the buffer
583  * should REALLY be unlocked, regardless of the recursion count.
584  *
585  * We unconditionally drop the transaction's reference to the log item. If the
586  * item was logged, then another reference was taken when it was pinned, so we
587  * can safely drop the transaction reference now.  This also allows us to avoid
588  * potential races with the unpin code freeing the bli by not referencing the
589  * bli after we've dropped the reference count.
590  *
591  * If the XFS_BLI_HOLD flag is set in the buf log item, then free the log item
592  * if necessary but do not unlock the buffer.  This is for support of
593  * xfs_trans_bhold(). Make sure the XFS_BLI_HOLD field is cleared if we don't
594  * free the item.
595  */
596 STATIC void
597 xfs_buf_item_unlock(
598 	struct xfs_log_item	*lip)
599 {
600 	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
601 	struct xfs_buf		*bp = bip->bli_buf;
602 	bool			released;
603 	bool			hold = bip->bli_flags & XFS_BLI_HOLD;
604 	bool			stale = bip->bli_flags & XFS_BLI_STALE;
605 #if defined(DEBUG) || defined(XFS_WARN)
606 	bool			ordered = bip->bli_flags & XFS_BLI_ORDERED;
607 	bool			dirty = bip->bli_flags & XFS_BLI_DIRTY;
608 #endif
609 
610 	trace_xfs_buf_item_unlock(bip);
611 
612 	/*
613 	 * The bli dirty state should match whether the blf has logged segments
614 	 * except for ordered buffers, where only the bli should be dirty.
615 	 */
616 	ASSERT((!ordered && dirty == xfs_buf_item_dirty_format(bip)) ||
617 	       (ordered && dirty && !xfs_buf_item_dirty_format(bip)));
618 	ASSERT(!stale || (bip->__bli_format.blf_flags & XFS_BLF_CANCEL));
619 
620 	/*
621 	 * Clear the buffer's association with this transaction and
622 	 * per-transaction state from the bli, which has been copied above.
623 	 */
624 	bp->b_transp = NULL;
625 	bip->bli_flags &= ~(XFS_BLI_LOGGED | XFS_BLI_HOLD | XFS_BLI_ORDERED);
626 
627 	/*
628 	 * Unref the item and unlock the buffer unless held or stale. Stale
629 	 * buffers remain locked until final unpin unless the bli is freed by
630 	 * the unref call. The latter implies shutdown because buffer
631 	 * invalidation dirties the bli and transaction.
632 	 */
633 	released = xfs_buf_item_put(bip);
634 	if (hold || (stale && !released))
635 		return;
636 	ASSERT(!stale || test_bit(XFS_LI_ABORTED, &lip->li_flags));
637 	xfs_buf_relse(bp);
638 }
639 
640 /*
641  * This is called to find out where the oldest active copy of the
642  * buf log item in the on disk log resides now that the last log
643  * write of it completed at the given lsn.
644  * We always re-log all the dirty data in a buffer, so usually the
645  * latest copy in the on disk log is the only one that matters.  For
646  * those cases we simply return the given lsn.
647  *
648  * The one exception to this is for buffers full of newly allocated
649  * inodes.  These buffers are only relogged with the XFS_BLI_INODE_BUF
650  * flag set, indicating that only the di_next_unlinked fields from the
651  * inodes in the buffers will be replayed during recovery.  If the
652  * original newly allocated inode images have not yet been flushed
653  * when the buffer is so relogged, then we need to make sure that we
654  * keep the old images in the 'active' portion of the log.  We do this
655  * by returning the original lsn of that transaction here rather than
656  * the current one.
657  */
658 STATIC xfs_lsn_t
659 xfs_buf_item_committed(
660 	struct xfs_log_item	*lip,
661 	xfs_lsn_t		lsn)
662 {
663 	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
664 
665 	trace_xfs_buf_item_committed(bip);
666 
667 	if ((bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF) && lip->li_lsn != 0)
668 		return lip->li_lsn;
669 	return lsn;
670 }
671 
672 STATIC void
673 xfs_buf_item_committing(
674 	struct xfs_log_item	*lip,
675 	xfs_lsn_t		commit_lsn)
676 {
677 }
678 
679 /*
680  * This is the ops vector shared by all buf log items.
681  */
682 static const struct xfs_item_ops xfs_buf_item_ops = {
683 	.iop_size	= xfs_buf_item_size,
684 	.iop_format	= xfs_buf_item_format,
685 	.iop_pin	= xfs_buf_item_pin,
686 	.iop_unpin	= xfs_buf_item_unpin,
687 	.iop_unlock	= xfs_buf_item_unlock,
688 	.iop_committed	= xfs_buf_item_committed,
689 	.iop_push	= xfs_buf_item_push,
690 	.iop_committing = xfs_buf_item_committing
691 };
692 
693 STATIC int
694 xfs_buf_item_get_format(
695 	struct xfs_buf_log_item	*bip,
696 	int			count)
697 {
698 	ASSERT(bip->bli_formats == NULL);
699 	bip->bli_format_count = count;
700 
701 	if (count == 1) {
702 		bip->bli_formats = &bip->__bli_format;
703 		return 0;
704 	}
705 
706 	bip->bli_formats = kmem_zalloc(count * sizeof(struct xfs_buf_log_format),
707 				KM_SLEEP);
708 	if (!bip->bli_formats)
709 		return -ENOMEM;
710 	return 0;
711 }
712 
713 STATIC void
714 xfs_buf_item_free_format(
715 	struct xfs_buf_log_item	*bip)
716 {
717 	if (bip->bli_formats != &bip->__bli_format) {
718 		kmem_free(bip->bli_formats);
719 		bip->bli_formats = NULL;
720 	}
721 }
722 
723 /*
724  * Allocate a new buf log item to go with the given buffer.
725  * Set the buffer's b_log_item field to point to the new
726  * buf log item.
727  */
728 int
729 xfs_buf_item_init(
730 	struct xfs_buf	*bp,
731 	struct xfs_mount *mp)
732 {
733 	struct xfs_buf_log_item	*bip = bp->b_log_item;
734 	int			chunks;
735 	int			map_size;
736 	int			error;
737 	int			i;
738 
739 	/*
740 	 * Check to see if there is already a buf log item for
741 	 * this buffer. If we do already have one, there is
742 	 * nothing to do here so return.
743 	 */
744 	ASSERT(bp->b_target->bt_mount == mp);
745 	if (bip) {
746 		ASSERT(bip->bli_item.li_type == XFS_LI_BUF);
747 		ASSERT(!bp->b_transp);
748 		ASSERT(bip->bli_buf == bp);
749 		return 0;
750 	}
751 
752 	bip = kmem_zone_zalloc(xfs_buf_item_zone, KM_SLEEP);
753 	xfs_log_item_init(mp, &bip->bli_item, XFS_LI_BUF, &xfs_buf_item_ops);
754 	bip->bli_buf = bp;
755 
756 	/*
757 	 * chunks is the number of XFS_BLF_CHUNK size pieces the buffer
758 	 * can be divided into. Make sure not to truncate any pieces.
759 	 * map_size is the size of the bitmap needed to describe the
760 	 * chunks of the buffer.
761 	 *
762 	 * Discontiguous buffer support follows the layout of the underlying
763 	 * buffer. This makes the implementation as simple as possible.
764 	 */
765 	error = xfs_buf_item_get_format(bip, bp->b_map_count);
766 	ASSERT(error == 0);
767 	if (error) {	/* to stop gcc throwing set-but-unused warnings */
768 		kmem_zone_free(xfs_buf_item_zone, bip);
769 		return error;
770 	}
771 
772 
773 	for (i = 0; i < bip->bli_format_count; i++) {
774 		chunks = DIV_ROUND_UP(BBTOB(bp->b_maps[i].bm_len),
775 				      XFS_BLF_CHUNK);
776 		map_size = DIV_ROUND_UP(chunks, NBWORD);
777 
778 		bip->bli_formats[i].blf_type = XFS_LI_BUF;
779 		bip->bli_formats[i].blf_blkno = bp->b_maps[i].bm_bn;
780 		bip->bli_formats[i].blf_len = bp->b_maps[i].bm_len;
781 		bip->bli_formats[i].blf_map_size = map_size;
782 	}
783 
784 	bp->b_log_item = bip;
785 	xfs_buf_hold(bp);
786 	return 0;
787 }
788 
789 
790 /*
791  * Mark bytes first through last inclusive as dirty in the buf
792  * item's bitmap.
793  */
794 static void
795 xfs_buf_item_log_segment(
796 	uint			first,
797 	uint			last,
798 	uint			*map)
799 {
800 	uint		first_bit;
801 	uint		last_bit;
802 	uint		bits_to_set;
803 	uint		bits_set;
804 	uint		word_num;
805 	uint		*wordp;
806 	uint		bit;
807 	uint		end_bit;
808 	uint		mask;
809 
810 	/*
811 	 * Convert byte offsets to bit numbers.
812 	 */
813 	first_bit = first >> XFS_BLF_SHIFT;
814 	last_bit = last >> XFS_BLF_SHIFT;
815 
816 	/*
817 	 * Calculate the total number of bits to be set.
818 	 */
819 	bits_to_set = last_bit - first_bit + 1;
820 
821 	/*
822 	 * Get a pointer to the first word in the bitmap
823 	 * to set a bit in.
824 	 */
825 	word_num = first_bit >> BIT_TO_WORD_SHIFT;
826 	wordp = &map[word_num];
827 
828 	/*
829 	 * Calculate the starting bit in the first word.
830 	 */
831 	bit = first_bit & (uint)(NBWORD - 1);
832 
833 	/*
834 	 * First set any bits in the first word of our range.
835 	 * If it starts at bit 0 of the word, it will be
836 	 * set below rather than here.  That is what the variable
837 	 * bit tells us. The variable bits_set tracks the number
838 	 * of bits that have been set so far.  End_bit is the number
839 	 * of the last bit to be set in this word plus one.
840 	 */
841 	if (bit) {
842 		end_bit = min(bit + bits_to_set, (uint)NBWORD);
843 		mask = ((1U << (end_bit - bit)) - 1) << bit;
844 		*wordp |= mask;
845 		wordp++;
846 		bits_set = end_bit - bit;
847 	} else {
848 		bits_set = 0;
849 	}
850 
851 	/*
852 	 * Now set bits a whole word at a time that are between
853 	 * first_bit and last_bit.
854 	 */
855 	while ((bits_to_set - bits_set) >= NBWORD) {
856 		*wordp |= 0xffffffff;
857 		bits_set += NBWORD;
858 		wordp++;
859 	}
860 
861 	/*
862 	 * Finally, set any bits left to be set in one last partial word.
863 	 */
864 	end_bit = bits_to_set - bits_set;
865 	if (end_bit) {
866 		mask = (1U << end_bit) - 1;
867 		*wordp |= mask;
868 	}
869 }
870 
871 /*
872  * Mark bytes first through last inclusive as dirty in the buf
873  * item's bitmap.
874  */
875 void
876 xfs_buf_item_log(
877 	struct xfs_buf_log_item	*bip,
878 	uint			first,
879 	uint			last)
880 {
881 	int			i;
882 	uint			start;
883 	uint			end;
884 	struct xfs_buf		*bp = bip->bli_buf;
885 
886 	/*
887 	 * walk each buffer segment and mark them dirty appropriately.
888 	 */
889 	start = 0;
890 	for (i = 0; i < bip->bli_format_count; i++) {
891 		if (start > last)
892 			break;
893 		end = start + BBTOB(bp->b_maps[i].bm_len) - 1;
894 
895 		/* skip to the map that includes the first byte to log */
896 		if (first > end) {
897 			start += BBTOB(bp->b_maps[i].bm_len);
898 			continue;
899 		}
900 
901 		/*
902 		 * Trim the range to this segment and mark it in the bitmap.
903 		 * Note that we must convert buffer offsets to segment relative
904 		 * offsets (e.g., the first byte of each segment is byte 0 of
905 		 * that segment).
906 		 */
907 		if (first < start)
908 			first = start;
909 		if (end > last)
910 			end = last;
911 		xfs_buf_item_log_segment(first - start, end - start,
912 					 &bip->bli_formats[i].blf_data_map[0]);
913 
914 		start += BBTOB(bp->b_maps[i].bm_len);
915 	}
916 }
917 
918 
919 /*
920  * Return true if the buffer has any ranges logged/dirtied by a transaction,
921  * false otherwise.
922  */
923 bool
924 xfs_buf_item_dirty_format(
925 	struct xfs_buf_log_item	*bip)
926 {
927 	int			i;
928 
929 	for (i = 0; i < bip->bli_format_count; i++) {
930 		if (!xfs_bitmap_empty(bip->bli_formats[i].blf_data_map,
931 			     bip->bli_formats[i].blf_map_size))
932 			return true;
933 	}
934 
935 	return false;
936 }
937 
938 STATIC void
939 xfs_buf_item_free(
940 	struct xfs_buf_log_item	*bip)
941 {
942 	xfs_buf_item_free_format(bip);
943 	kmem_free(bip->bli_item.li_lv_shadow);
944 	kmem_zone_free(xfs_buf_item_zone, bip);
945 }
946 
947 /*
948  * This is called when the buf log item is no longer needed.  It should
949  * free the buf log item associated with the given buffer and clear
950  * the buffer's pointer to the buf log item.  If there are no more
951  * items in the list, clear the b_iodone field of the buffer (see
952  * xfs_buf_attach_iodone() below).
953  */
954 void
955 xfs_buf_item_relse(
956 	xfs_buf_t	*bp)
957 {
958 	struct xfs_buf_log_item	*bip = bp->b_log_item;
959 
960 	trace_xfs_buf_item_relse(bp, _RET_IP_);
961 	ASSERT(!(bip->bli_item.li_flags & XFS_LI_IN_AIL));
962 
963 	bp->b_log_item = NULL;
964 	if (list_empty(&bp->b_li_list))
965 		bp->b_iodone = NULL;
966 
967 	xfs_buf_rele(bp);
968 	xfs_buf_item_free(bip);
969 }
970 
971 
972 /*
973  * Add the given log item with its callback to the list of callbacks
974  * to be called when the buffer's I/O completes.  If it is not set
975  * already, set the buffer's b_iodone() routine to be
976  * xfs_buf_iodone_callbacks() and link the log item into the list of
977  * items rooted at b_li_list.
978  */
979 void
980 xfs_buf_attach_iodone(
981 	xfs_buf_t	*bp,
982 	void		(*cb)(xfs_buf_t *, xfs_log_item_t *),
983 	xfs_log_item_t	*lip)
984 {
985 	ASSERT(xfs_buf_islocked(bp));
986 
987 	lip->li_cb = cb;
988 	list_add_tail(&lip->li_bio_list, &bp->b_li_list);
989 
990 	ASSERT(bp->b_iodone == NULL ||
991 	       bp->b_iodone == xfs_buf_iodone_callbacks);
992 	bp->b_iodone = xfs_buf_iodone_callbacks;
993 }
994 
995 /*
996  * We can have many callbacks on a buffer. Running the callbacks individually
997  * can cause a lot of contention on the AIL lock, so we allow for a single
998  * callback to be able to scan the remaining items in bp->b_li_list for other
999  * items of the same type and callback to be processed in the first call.
1000  *
1001  * As a result, the loop walking the callback list below will also modify the
1002  * list. it removes the first item from the list and then runs the callback.
1003  * The loop then restarts from the new first item int the list. This allows the
1004  * callback to scan and modify the list attached to the buffer and we don't
1005  * have to care about maintaining a next item pointer.
1006  */
1007 STATIC void
1008 xfs_buf_do_callbacks(
1009 	struct xfs_buf		*bp)
1010 {
1011 	struct xfs_buf_log_item *blip = bp->b_log_item;
1012 	struct xfs_log_item	*lip;
1013 
1014 	/* If there is a buf_log_item attached, run its callback */
1015 	if (blip) {
1016 		lip = &blip->bli_item;
1017 		lip->li_cb(bp, lip);
1018 	}
1019 
1020 	while (!list_empty(&bp->b_li_list)) {
1021 		lip = list_first_entry(&bp->b_li_list, struct xfs_log_item,
1022 				       li_bio_list);
1023 
1024 		/*
1025 		 * Remove the item from the list, so we don't have any
1026 		 * confusion if the item is added to another buf.
1027 		 * Don't touch the log item after calling its
1028 		 * callback, because it could have freed itself.
1029 		 */
1030 		list_del_init(&lip->li_bio_list);
1031 		lip->li_cb(bp, lip);
1032 	}
1033 }
1034 
1035 /*
1036  * Invoke the error state callback for each log item affected by the failed I/O.
1037  *
1038  * If a metadata buffer write fails with a non-permanent error, the buffer is
1039  * eventually resubmitted and so the completion callbacks are not run. The error
1040  * state may need to be propagated to the log items attached to the buffer,
1041  * however, so the next AIL push of the item knows hot to handle it correctly.
1042  */
1043 STATIC void
1044 xfs_buf_do_callbacks_fail(
1045 	struct xfs_buf		*bp)
1046 {
1047 	struct xfs_log_item	*lip;
1048 	struct xfs_ail		*ailp;
1049 
1050 	/*
1051 	 * Buffer log item errors are handled directly by xfs_buf_item_push()
1052 	 * and xfs_buf_iodone_callback_error, and they have no IO error
1053 	 * callbacks. Check only for items in b_li_list.
1054 	 */
1055 	if (list_empty(&bp->b_li_list))
1056 		return;
1057 
1058 	lip = list_first_entry(&bp->b_li_list, struct xfs_log_item,
1059 			li_bio_list);
1060 	ailp = lip->li_ailp;
1061 	spin_lock(&ailp->ail_lock);
1062 	list_for_each_entry(lip, &bp->b_li_list, li_bio_list) {
1063 		if (lip->li_ops->iop_error)
1064 			lip->li_ops->iop_error(lip, bp);
1065 	}
1066 	spin_unlock(&ailp->ail_lock);
1067 }
1068 
1069 static bool
1070 xfs_buf_iodone_callback_error(
1071 	struct xfs_buf		*bp)
1072 {
1073 	struct xfs_buf_log_item	*bip = bp->b_log_item;
1074 	struct xfs_log_item	*lip;
1075 	struct xfs_mount	*mp;
1076 	static ulong		lasttime;
1077 	static xfs_buftarg_t	*lasttarg;
1078 	struct xfs_error_cfg	*cfg;
1079 
1080 	/*
1081 	 * The failed buffer might not have a buf_log_item attached or the
1082 	 * log_item list might be empty. Get the mp from the available
1083 	 * xfs_log_item
1084 	 */
1085 	lip = list_first_entry_or_null(&bp->b_li_list, struct xfs_log_item,
1086 				       li_bio_list);
1087 	mp = lip ? lip->li_mountp : bip->bli_item.li_mountp;
1088 
1089 	/*
1090 	 * If we've already decided to shutdown the filesystem because of
1091 	 * I/O errors, there's no point in giving this a retry.
1092 	 */
1093 	if (XFS_FORCED_SHUTDOWN(mp))
1094 		goto out_stale;
1095 
1096 	if (bp->b_target != lasttarg ||
1097 	    time_after(jiffies, (lasttime + 5*HZ))) {
1098 		lasttime = jiffies;
1099 		xfs_buf_ioerror_alert(bp, __func__);
1100 	}
1101 	lasttarg = bp->b_target;
1102 
1103 	/* synchronous writes will have callers process the error */
1104 	if (!(bp->b_flags & XBF_ASYNC))
1105 		goto out_stale;
1106 
1107 	trace_xfs_buf_item_iodone_async(bp, _RET_IP_);
1108 	ASSERT(bp->b_iodone != NULL);
1109 
1110 	cfg = xfs_error_get_cfg(mp, XFS_ERR_METADATA, bp->b_error);
1111 
1112 	/*
1113 	 * If the write was asynchronous then no one will be looking for the
1114 	 * error.  If this is the first failure of this type, clear the error
1115 	 * state and write the buffer out again. This means we always retry an
1116 	 * async write failure at least once, but we also need to set the buffer
1117 	 * up to behave correctly now for repeated failures.
1118 	 */
1119 	if (!(bp->b_flags & (XBF_STALE | XBF_WRITE_FAIL)) ||
1120 	     bp->b_last_error != bp->b_error) {
1121 		bp->b_flags |= (XBF_WRITE | XBF_DONE | XBF_WRITE_FAIL);
1122 		bp->b_last_error = bp->b_error;
1123 		if (cfg->retry_timeout != XFS_ERR_RETRY_FOREVER &&
1124 		    !bp->b_first_retry_time)
1125 			bp->b_first_retry_time = jiffies;
1126 
1127 		xfs_buf_ioerror(bp, 0);
1128 		xfs_buf_submit(bp);
1129 		return true;
1130 	}
1131 
1132 	/*
1133 	 * Repeated failure on an async write. Take action according to the
1134 	 * error configuration we have been set up to use.
1135 	 */
1136 
1137 	if (cfg->max_retries != XFS_ERR_RETRY_FOREVER &&
1138 	    ++bp->b_retries > cfg->max_retries)
1139 			goto permanent_error;
1140 	if (cfg->retry_timeout != XFS_ERR_RETRY_FOREVER &&
1141 	    time_after(jiffies, cfg->retry_timeout + bp->b_first_retry_time))
1142 			goto permanent_error;
1143 
1144 	/* At unmount we may treat errors differently */
1145 	if ((mp->m_flags & XFS_MOUNT_UNMOUNTING) && mp->m_fail_unmount)
1146 		goto permanent_error;
1147 
1148 	/*
1149 	 * Still a transient error, run IO completion failure callbacks and let
1150 	 * the higher layers retry the buffer.
1151 	 */
1152 	xfs_buf_do_callbacks_fail(bp);
1153 	xfs_buf_ioerror(bp, 0);
1154 	xfs_buf_relse(bp);
1155 	return true;
1156 
1157 	/*
1158 	 * Permanent error - we need to trigger a shutdown if we haven't already
1159 	 * to indicate that inconsistency will result from this action.
1160 	 */
1161 permanent_error:
1162 	xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1163 out_stale:
1164 	xfs_buf_stale(bp);
1165 	bp->b_flags |= XBF_DONE;
1166 	trace_xfs_buf_error_relse(bp, _RET_IP_);
1167 	return false;
1168 }
1169 
1170 /*
1171  * This is the iodone() function for buffers which have had callbacks attached
1172  * to them by xfs_buf_attach_iodone(). We need to iterate the items on the
1173  * callback list, mark the buffer as having no more callbacks and then push the
1174  * buffer through IO completion processing.
1175  */
1176 void
1177 xfs_buf_iodone_callbacks(
1178 	struct xfs_buf		*bp)
1179 {
1180 	/*
1181 	 * If there is an error, process it. Some errors require us
1182 	 * to run callbacks after failure processing is done so we
1183 	 * detect that and take appropriate action.
1184 	 */
1185 	if (bp->b_error && xfs_buf_iodone_callback_error(bp))
1186 		return;
1187 
1188 	/*
1189 	 * Successful IO or permanent error. Either way, we can clear the
1190 	 * retry state here in preparation for the next error that may occur.
1191 	 */
1192 	bp->b_last_error = 0;
1193 	bp->b_retries = 0;
1194 	bp->b_first_retry_time = 0;
1195 
1196 	xfs_buf_do_callbacks(bp);
1197 	bp->b_log_item = NULL;
1198 	list_del_init(&bp->b_li_list);
1199 	bp->b_iodone = NULL;
1200 	xfs_buf_ioend(bp);
1201 }
1202 
1203 /*
1204  * This is the iodone() function for buffers which have been
1205  * logged.  It is called when they are eventually flushed out.
1206  * It should remove the buf item from the AIL, and free the buf item.
1207  * It is called by xfs_buf_iodone_callbacks() above which will take
1208  * care of cleaning up the buffer itself.
1209  */
1210 void
1211 xfs_buf_iodone(
1212 	struct xfs_buf		*bp,
1213 	struct xfs_log_item	*lip)
1214 {
1215 	struct xfs_ail		*ailp = lip->li_ailp;
1216 
1217 	ASSERT(BUF_ITEM(lip)->bli_buf == bp);
1218 
1219 	xfs_buf_rele(bp);
1220 
1221 	/*
1222 	 * If we are forcibly shutting down, this may well be
1223 	 * off the AIL already. That's because we simulate the
1224 	 * log-committed callbacks to unpin these buffers. Or we may never
1225 	 * have put this item on AIL because of the transaction was
1226 	 * aborted forcibly. xfs_trans_ail_delete() takes care of these.
1227 	 *
1228 	 * Either way, AIL is useless if we're forcing a shutdown.
1229 	 */
1230 	spin_lock(&ailp->ail_lock);
1231 	xfs_trans_ail_delete(ailp, lip, SHUTDOWN_CORRUPT_INCORE);
1232 	xfs_buf_item_free(BUF_ITEM(lip));
1233 }
1234 
1235 /*
1236  * Requeue a failed buffer for writeback.
1237  *
1238  * We clear the log item failed state here as well, but we have to be careful
1239  * about reference counts because the only active reference counts on the buffer
1240  * may be the failed log items. Hence if we clear the log item failed state
1241  * before queuing the buffer for IO we can release all active references to
1242  * the buffer and free it, leading to use after free problems in
1243  * xfs_buf_delwri_queue. It makes no difference to the buffer or log items which
1244  * order we process them in - the buffer is locked, and we own the buffer list
1245  * so nothing on them is going to change while we are performing this action.
1246  *
1247  * Hence we can safely queue the buffer for IO before we clear the failed log
1248  * item state, therefore  always having an active reference to the buffer and
1249  * avoiding the transient zero-reference state that leads to use-after-free.
1250  *
1251  * Return true if the buffer was added to the buffer list, false if it was
1252  * already on the buffer list.
1253  */
1254 bool
1255 xfs_buf_resubmit_failed_buffers(
1256 	struct xfs_buf		*bp,
1257 	struct list_head	*buffer_list)
1258 {
1259 	struct xfs_log_item	*lip;
1260 	bool			ret;
1261 
1262 	ret = xfs_buf_delwri_queue(bp, buffer_list);
1263 
1264 	/*
1265 	 * XFS_LI_FAILED set/clear is protected by ail_lock, caller of this
1266 	 * function already have it acquired
1267 	 */
1268 	list_for_each_entry(lip, &bp->b_li_list, li_bio_list)
1269 		xfs_clear_li_failed(lip);
1270 
1271 	return ret;
1272 }
1273