xref: /linux/fs/xfs/xfs_buf_item.c (revision 31368ce83c59a5422ee621a38aeea98142d0ecf7)
1 /*
2  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_format.h"
21 #include "xfs_log_format.h"
22 #include "xfs_trans_resv.h"
23 #include "xfs_bit.h"
24 #include "xfs_sb.h"
25 #include "xfs_mount.h"
26 #include "xfs_trans.h"
27 #include "xfs_buf_item.h"
28 #include "xfs_trans_priv.h"
29 #include "xfs_error.h"
30 #include "xfs_trace.h"
31 #include "xfs_log.h"
32 
33 
34 kmem_zone_t	*xfs_buf_item_zone;
35 
36 static inline struct xfs_buf_log_item *BUF_ITEM(struct xfs_log_item *lip)
37 {
38 	return container_of(lip, struct xfs_buf_log_item, bli_item);
39 }
40 
41 STATIC void	xfs_buf_do_callbacks(struct xfs_buf *bp);
42 
43 static inline int
44 xfs_buf_log_format_size(
45 	struct xfs_buf_log_format *blfp)
46 {
47 	return offsetof(struct xfs_buf_log_format, blf_data_map) +
48 			(blfp->blf_map_size * sizeof(blfp->blf_data_map[0]));
49 }
50 
51 /*
52  * This returns the number of log iovecs needed to log the
53  * given buf log item.
54  *
55  * It calculates this as 1 iovec for the buf log format structure
56  * and 1 for each stretch of non-contiguous chunks to be logged.
57  * Contiguous chunks are logged in a single iovec.
58  *
59  * If the XFS_BLI_STALE flag has been set, then log nothing.
60  */
61 STATIC void
62 xfs_buf_item_size_segment(
63 	struct xfs_buf_log_item	*bip,
64 	struct xfs_buf_log_format *blfp,
65 	int			*nvecs,
66 	int			*nbytes)
67 {
68 	struct xfs_buf		*bp = bip->bli_buf;
69 	int			next_bit;
70 	int			last_bit;
71 
72 	last_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size, 0);
73 	if (last_bit == -1)
74 		return;
75 
76 	/*
77 	 * initial count for a dirty buffer is 2 vectors - the format structure
78 	 * and the first dirty region.
79 	 */
80 	*nvecs += 2;
81 	*nbytes += xfs_buf_log_format_size(blfp) + XFS_BLF_CHUNK;
82 
83 	while (last_bit != -1) {
84 		/*
85 		 * This takes the bit number to start looking from and
86 		 * returns the next set bit from there.  It returns -1
87 		 * if there are no more bits set or the start bit is
88 		 * beyond the end of the bitmap.
89 		 */
90 		next_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size,
91 					last_bit + 1);
92 		/*
93 		 * If we run out of bits, leave the loop,
94 		 * else if we find a new set of bits bump the number of vecs,
95 		 * else keep scanning the current set of bits.
96 		 */
97 		if (next_bit == -1) {
98 			break;
99 		} else if (next_bit != last_bit + 1) {
100 			last_bit = next_bit;
101 			(*nvecs)++;
102 		} else if (xfs_buf_offset(bp, next_bit * XFS_BLF_CHUNK) !=
103 			   (xfs_buf_offset(bp, last_bit * XFS_BLF_CHUNK) +
104 			    XFS_BLF_CHUNK)) {
105 			last_bit = next_bit;
106 			(*nvecs)++;
107 		} else {
108 			last_bit++;
109 		}
110 		*nbytes += XFS_BLF_CHUNK;
111 	}
112 }
113 
114 /*
115  * This returns the number of log iovecs needed to log the given buf log item.
116  *
117  * It calculates this as 1 iovec for the buf log format structure and 1 for each
118  * stretch of non-contiguous chunks to be logged.  Contiguous chunks are logged
119  * in a single iovec.
120  *
121  * Discontiguous buffers need a format structure per region that that is being
122  * logged. This makes the changes in the buffer appear to log recovery as though
123  * they came from separate buffers, just like would occur if multiple buffers
124  * were used instead of a single discontiguous buffer. This enables
125  * discontiguous buffers to be in-memory constructs, completely transparent to
126  * what ends up on disk.
127  *
128  * If the XFS_BLI_STALE flag has been set, then log nothing but the buf log
129  * format structures.
130  */
131 STATIC void
132 xfs_buf_item_size(
133 	struct xfs_log_item	*lip,
134 	int			*nvecs,
135 	int			*nbytes)
136 {
137 	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
138 	int			i;
139 
140 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
141 	if (bip->bli_flags & XFS_BLI_STALE) {
142 		/*
143 		 * The buffer is stale, so all we need to log
144 		 * is the buf log format structure with the
145 		 * cancel flag in it.
146 		 */
147 		trace_xfs_buf_item_size_stale(bip);
148 		ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL);
149 		*nvecs += bip->bli_format_count;
150 		for (i = 0; i < bip->bli_format_count; i++) {
151 			*nbytes += xfs_buf_log_format_size(&bip->bli_formats[i]);
152 		}
153 		return;
154 	}
155 
156 	ASSERT(bip->bli_flags & XFS_BLI_LOGGED);
157 
158 	if (bip->bli_flags & XFS_BLI_ORDERED) {
159 		/*
160 		 * The buffer has been logged just to order it.
161 		 * It is not being included in the transaction
162 		 * commit, so no vectors are used at all.
163 		 */
164 		trace_xfs_buf_item_size_ordered(bip);
165 		*nvecs = XFS_LOG_VEC_ORDERED;
166 		return;
167 	}
168 
169 	/*
170 	 * the vector count is based on the number of buffer vectors we have
171 	 * dirty bits in. This will only be greater than one when we have a
172 	 * compound buffer with more than one segment dirty. Hence for compound
173 	 * buffers we need to track which segment the dirty bits correspond to,
174 	 * and when we move from one segment to the next increment the vector
175 	 * count for the extra buf log format structure that will need to be
176 	 * written.
177 	 */
178 	for (i = 0; i < bip->bli_format_count; i++) {
179 		xfs_buf_item_size_segment(bip, &bip->bli_formats[i],
180 					  nvecs, nbytes);
181 	}
182 	trace_xfs_buf_item_size(bip);
183 }
184 
185 static inline void
186 xfs_buf_item_copy_iovec(
187 	struct xfs_log_vec	*lv,
188 	struct xfs_log_iovec	**vecp,
189 	struct xfs_buf		*bp,
190 	uint			offset,
191 	int			first_bit,
192 	uint			nbits)
193 {
194 	offset += first_bit * XFS_BLF_CHUNK;
195 	xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_BCHUNK,
196 			xfs_buf_offset(bp, offset),
197 			nbits * XFS_BLF_CHUNK);
198 }
199 
200 static inline bool
201 xfs_buf_item_straddle(
202 	struct xfs_buf		*bp,
203 	uint			offset,
204 	int			next_bit,
205 	int			last_bit)
206 {
207 	return xfs_buf_offset(bp, offset + (next_bit << XFS_BLF_SHIFT)) !=
208 		(xfs_buf_offset(bp, offset + (last_bit << XFS_BLF_SHIFT)) +
209 		 XFS_BLF_CHUNK);
210 }
211 
212 static void
213 xfs_buf_item_format_segment(
214 	struct xfs_buf_log_item	*bip,
215 	struct xfs_log_vec	*lv,
216 	struct xfs_log_iovec	**vecp,
217 	uint			offset,
218 	struct xfs_buf_log_format *blfp)
219 {
220 	struct xfs_buf	*bp = bip->bli_buf;
221 	uint		base_size;
222 	int		first_bit;
223 	int		last_bit;
224 	int		next_bit;
225 	uint		nbits;
226 
227 	/* copy the flags across from the base format item */
228 	blfp->blf_flags = bip->__bli_format.blf_flags;
229 
230 	/*
231 	 * Base size is the actual size of the ondisk structure - it reflects
232 	 * the actual size of the dirty bitmap rather than the size of the in
233 	 * memory structure.
234 	 */
235 	base_size = xfs_buf_log_format_size(blfp);
236 
237 	first_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size, 0);
238 	if (!(bip->bli_flags & XFS_BLI_STALE) && first_bit == -1) {
239 		/*
240 		 * If the map is not be dirty in the transaction, mark
241 		 * the size as zero and do not advance the vector pointer.
242 		 */
243 		return;
244 	}
245 
246 	blfp = xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_BFORMAT, blfp, base_size);
247 	blfp->blf_size = 1;
248 
249 	if (bip->bli_flags & XFS_BLI_STALE) {
250 		/*
251 		 * The buffer is stale, so all we need to log
252 		 * is the buf log format structure with the
253 		 * cancel flag in it.
254 		 */
255 		trace_xfs_buf_item_format_stale(bip);
256 		ASSERT(blfp->blf_flags & XFS_BLF_CANCEL);
257 		return;
258 	}
259 
260 
261 	/*
262 	 * Fill in an iovec for each set of contiguous chunks.
263 	 */
264 	last_bit = first_bit;
265 	nbits = 1;
266 	for (;;) {
267 		/*
268 		 * This takes the bit number to start looking from and
269 		 * returns the next set bit from there.  It returns -1
270 		 * if there are no more bits set or the start bit is
271 		 * beyond the end of the bitmap.
272 		 */
273 		next_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size,
274 					(uint)last_bit + 1);
275 		/*
276 		 * If we run out of bits fill in the last iovec and get out of
277 		 * the loop.  Else if we start a new set of bits then fill in
278 		 * the iovec for the series we were looking at and start
279 		 * counting the bits in the new one.  Else we're still in the
280 		 * same set of bits so just keep counting and scanning.
281 		 */
282 		if (next_bit == -1) {
283 			xfs_buf_item_copy_iovec(lv, vecp, bp, offset,
284 						first_bit, nbits);
285 			blfp->blf_size++;
286 			break;
287 		} else if (next_bit != last_bit + 1 ||
288 		           xfs_buf_item_straddle(bp, offset, next_bit, last_bit)) {
289 			xfs_buf_item_copy_iovec(lv, vecp, bp, offset,
290 						first_bit, nbits);
291 			blfp->blf_size++;
292 			first_bit = next_bit;
293 			last_bit = next_bit;
294 			nbits = 1;
295 		} else {
296 			last_bit++;
297 			nbits++;
298 		}
299 	}
300 }
301 
302 /*
303  * This is called to fill in the vector of log iovecs for the
304  * given log buf item.  It fills the first entry with a buf log
305  * format structure, and the rest point to contiguous chunks
306  * within the buffer.
307  */
308 STATIC void
309 xfs_buf_item_format(
310 	struct xfs_log_item	*lip,
311 	struct xfs_log_vec	*lv)
312 {
313 	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
314 	struct xfs_buf		*bp = bip->bli_buf;
315 	struct xfs_log_iovec	*vecp = NULL;
316 	uint			offset = 0;
317 	int			i;
318 
319 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
320 	ASSERT((bip->bli_flags & XFS_BLI_LOGGED) ||
321 	       (bip->bli_flags & XFS_BLI_STALE));
322 	ASSERT((bip->bli_flags & XFS_BLI_STALE) ||
323 	       (xfs_blft_from_flags(&bip->__bli_format) > XFS_BLFT_UNKNOWN_BUF
324 	        && xfs_blft_from_flags(&bip->__bli_format) < XFS_BLFT_MAX_BUF));
325 
326 
327 	/*
328 	 * If it is an inode buffer, transfer the in-memory state to the
329 	 * format flags and clear the in-memory state.
330 	 *
331 	 * For buffer based inode allocation, we do not transfer
332 	 * this state if the inode buffer allocation has not yet been committed
333 	 * to the log as setting the XFS_BLI_INODE_BUF flag will prevent
334 	 * correct replay of the inode allocation.
335 	 *
336 	 * For icreate item based inode allocation, the buffers aren't written
337 	 * to the journal during allocation, and hence we should always tag the
338 	 * buffer as an inode buffer so that the correct unlinked list replay
339 	 * occurs during recovery.
340 	 */
341 	if (bip->bli_flags & XFS_BLI_INODE_BUF) {
342 		if (xfs_sb_version_hascrc(&lip->li_mountp->m_sb) ||
343 		    !((bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF) &&
344 		      xfs_log_item_in_current_chkpt(lip)))
345 			bip->__bli_format.blf_flags |= XFS_BLF_INODE_BUF;
346 		bip->bli_flags &= ~XFS_BLI_INODE_BUF;
347 	}
348 
349 	if ((bip->bli_flags & (XFS_BLI_ORDERED|XFS_BLI_STALE)) ==
350 							XFS_BLI_ORDERED) {
351 		/*
352 		 * The buffer has been logged just to order it.  It is not being
353 		 * included in the transaction commit, so don't format it.
354 		 */
355 		trace_xfs_buf_item_format_ordered(bip);
356 		return;
357 	}
358 
359 	for (i = 0; i < bip->bli_format_count; i++) {
360 		xfs_buf_item_format_segment(bip, lv, &vecp, offset,
361 					    &bip->bli_formats[i]);
362 		offset += BBTOB(bp->b_maps[i].bm_len);
363 	}
364 
365 	/*
366 	 * Check to make sure everything is consistent.
367 	 */
368 	trace_xfs_buf_item_format(bip);
369 }
370 
371 /*
372  * This is called to pin the buffer associated with the buf log item in memory
373  * so it cannot be written out.
374  *
375  * We also always take a reference to the buffer log item here so that the bli
376  * is held while the item is pinned in memory. This means that we can
377  * unconditionally drop the reference count a transaction holds when the
378  * transaction is completed.
379  */
380 STATIC void
381 xfs_buf_item_pin(
382 	struct xfs_log_item	*lip)
383 {
384 	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
385 
386 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
387 	ASSERT((bip->bli_flags & XFS_BLI_LOGGED) ||
388 	       (bip->bli_flags & XFS_BLI_ORDERED) ||
389 	       (bip->bli_flags & XFS_BLI_STALE));
390 
391 	trace_xfs_buf_item_pin(bip);
392 
393 	atomic_inc(&bip->bli_refcount);
394 	atomic_inc(&bip->bli_buf->b_pin_count);
395 }
396 
397 /*
398  * This is called to unpin the buffer associated with the buf log
399  * item which was previously pinned with a call to xfs_buf_item_pin().
400  *
401  * Also drop the reference to the buf item for the current transaction.
402  * If the XFS_BLI_STALE flag is set and we are the last reference,
403  * then free up the buf log item and unlock the buffer.
404  *
405  * If the remove flag is set we are called from uncommit in the
406  * forced-shutdown path.  If that is true and the reference count on
407  * the log item is going to drop to zero we need to free the item's
408  * descriptor in the transaction.
409  */
410 STATIC void
411 xfs_buf_item_unpin(
412 	struct xfs_log_item	*lip,
413 	int			remove)
414 {
415 	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
416 	xfs_buf_t	*bp = bip->bli_buf;
417 	struct xfs_ail	*ailp = lip->li_ailp;
418 	int		stale = bip->bli_flags & XFS_BLI_STALE;
419 	int		freed;
420 
421 	ASSERT(bp->b_fspriv == bip);
422 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
423 
424 	trace_xfs_buf_item_unpin(bip);
425 
426 	freed = atomic_dec_and_test(&bip->bli_refcount);
427 
428 	if (atomic_dec_and_test(&bp->b_pin_count))
429 		wake_up_all(&bp->b_waiters);
430 
431 	if (freed && stale) {
432 		ASSERT(bip->bli_flags & XFS_BLI_STALE);
433 		ASSERT(xfs_buf_islocked(bp));
434 		ASSERT(bp->b_flags & XBF_STALE);
435 		ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL);
436 
437 		trace_xfs_buf_item_unpin_stale(bip);
438 
439 		if (remove) {
440 			/*
441 			 * If we are in a transaction context, we have to
442 			 * remove the log item from the transaction as we are
443 			 * about to release our reference to the buffer.  If we
444 			 * don't, the unlock that occurs later in
445 			 * xfs_trans_uncommit() will try to reference the
446 			 * buffer which we no longer have a hold on.
447 			 */
448 			if (lip->li_desc)
449 				xfs_trans_del_item(lip);
450 
451 			/*
452 			 * Since the transaction no longer refers to the buffer,
453 			 * the buffer should no longer refer to the transaction.
454 			 */
455 			bp->b_transp = NULL;
456 		}
457 
458 		/*
459 		 * If we get called here because of an IO error, we may
460 		 * or may not have the item on the AIL. xfs_trans_ail_delete()
461 		 * will take care of that situation.
462 		 * xfs_trans_ail_delete() drops the AIL lock.
463 		 */
464 		if (bip->bli_flags & XFS_BLI_STALE_INODE) {
465 			xfs_buf_do_callbacks(bp);
466 			bp->b_fspriv = NULL;
467 			bp->b_iodone = NULL;
468 		} else {
469 			spin_lock(&ailp->xa_lock);
470 			xfs_trans_ail_delete(ailp, lip, SHUTDOWN_LOG_IO_ERROR);
471 			xfs_buf_item_relse(bp);
472 			ASSERT(bp->b_fspriv == NULL);
473 		}
474 		xfs_buf_relse(bp);
475 	} else if (freed && remove) {
476 		/*
477 		 * There are currently two references to the buffer - the active
478 		 * LRU reference and the buf log item. What we are about to do
479 		 * here - simulate a failed IO completion - requires 3
480 		 * references.
481 		 *
482 		 * The LRU reference is removed by the xfs_buf_stale() call. The
483 		 * buf item reference is removed by the xfs_buf_iodone()
484 		 * callback that is run by xfs_buf_do_callbacks() during ioend
485 		 * processing (via the bp->b_iodone callback), and then finally
486 		 * the ioend processing will drop the IO reference if the buffer
487 		 * is marked XBF_ASYNC.
488 		 *
489 		 * Hence we need to take an additional reference here so that IO
490 		 * completion processing doesn't free the buffer prematurely.
491 		 */
492 		xfs_buf_lock(bp);
493 		xfs_buf_hold(bp);
494 		bp->b_flags |= XBF_ASYNC;
495 		xfs_buf_ioerror(bp, -EIO);
496 		bp->b_flags &= ~XBF_DONE;
497 		xfs_buf_stale(bp);
498 		xfs_buf_ioend(bp);
499 	}
500 }
501 
502 /*
503  * Buffer IO error rate limiting. Limit it to no more than 10 messages per 30
504  * seconds so as to not spam logs too much on repeated detection of the same
505  * buffer being bad..
506  */
507 
508 static DEFINE_RATELIMIT_STATE(xfs_buf_write_fail_rl_state, 30 * HZ, 10);
509 
510 STATIC uint
511 xfs_buf_item_push(
512 	struct xfs_log_item	*lip,
513 	struct list_head	*buffer_list)
514 {
515 	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
516 	struct xfs_buf		*bp = bip->bli_buf;
517 	uint			rval = XFS_ITEM_SUCCESS;
518 
519 	if (xfs_buf_ispinned(bp))
520 		return XFS_ITEM_PINNED;
521 	if (!xfs_buf_trylock(bp)) {
522 		/*
523 		 * If we have just raced with a buffer being pinned and it has
524 		 * been marked stale, we could end up stalling until someone else
525 		 * issues a log force to unpin the stale buffer. Check for the
526 		 * race condition here so xfsaild recognizes the buffer is pinned
527 		 * and queues a log force to move it along.
528 		 */
529 		if (xfs_buf_ispinned(bp))
530 			return XFS_ITEM_PINNED;
531 		return XFS_ITEM_LOCKED;
532 	}
533 
534 	ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
535 
536 	trace_xfs_buf_item_push(bip);
537 
538 	/* has a previous flush failed due to IO errors? */
539 	if ((bp->b_flags & XBF_WRITE_FAIL) &&
540 	    ___ratelimit(&xfs_buf_write_fail_rl_state, "XFS: Failing async write")) {
541 		xfs_warn(bp->b_target->bt_mount,
542 "Failing async write on buffer block 0x%llx. Retrying async write.",
543 			 (long long)bp->b_bn);
544 	}
545 
546 	if (!xfs_buf_delwri_queue(bp, buffer_list))
547 		rval = XFS_ITEM_FLUSHING;
548 	xfs_buf_unlock(bp);
549 	return rval;
550 }
551 
552 /*
553  * Release the buffer associated with the buf log item.  If there is no dirty
554  * logged data associated with the buffer recorded in the buf log item, then
555  * free the buf log item and remove the reference to it in the buffer.
556  *
557  * This call ignores the recursion count.  It is only called when the buffer
558  * should REALLY be unlocked, regardless of the recursion count.
559  *
560  * We unconditionally drop the transaction's reference to the log item. If the
561  * item was logged, then another reference was taken when it was pinned, so we
562  * can safely drop the transaction reference now.  This also allows us to avoid
563  * potential races with the unpin code freeing the bli by not referencing the
564  * bli after we've dropped the reference count.
565  *
566  * If the XFS_BLI_HOLD flag is set in the buf log item, then free the log item
567  * if necessary but do not unlock the buffer.  This is for support of
568  * xfs_trans_bhold(). Make sure the XFS_BLI_HOLD field is cleared if we don't
569  * free the item.
570  */
571 STATIC void
572 xfs_buf_item_unlock(
573 	struct xfs_log_item	*lip)
574 {
575 	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
576 	struct xfs_buf		*bp = bip->bli_buf;
577 	bool			clean;
578 	bool			aborted;
579 	int			flags;
580 
581 	/* Clear the buffer's association with this transaction. */
582 	bp->b_transp = NULL;
583 
584 	/*
585 	 * If this is a transaction abort, don't return early.  Instead, allow
586 	 * the brelse to happen.  Normally it would be done for stale
587 	 * (cancelled) buffers at unpin time, but we'll never go through the
588 	 * pin/unpin cycle if we abort inside commit.
589 	 */
590 	aborted = (lip->li_flags & XFS_LI_ABORTED) ? true : false;
591 	/*
592 	 * Before possibly freeing the buf item, copy the per-transaction state
593 	 * so we can reference it safely later after clearing it from the
594 	 * buffer log item.
595 	 */
596 	flags = bip->bli_flags;
597 	bip->bli_flags &= ~(XFS_BLI_LOGGED | XFS_BLI_HOLD | XFS_BLI_ORDERED);
598 
599 	/*
600 	 * If the buf item is marked stale, then don't do anything.  We'll
601 	 * unlock the buffer and free the buf item when the buffer is unpinned
602 	 * for the last time.
603 	 */
604 	if (flags & XFS_BLI_STALE) {
605 		trace_xfs_buf_item_unlock_stale(bip);
606 		ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL);
607 		if (!aborted) {
608 			atomic_dec(&bip->bli_refcount);
609 			return;
610 		}
611 	}
612 
613 	trace_xfs_buf_item_unlock(bip);
614 
615 	/*
616 	 * If the buf item isn't tracking any data, free it, otherwise drop the
617 	 * reference we hold to it. If we are aborting the transaction, this may
618 	 * be the only reference to the buf item, so we free it anyway
619 	 * regardless of whether it is dirty or not. A dirty abort implies a
620 	 * shutdown, anyway.
621 	 *
622 	 * Ordered buffers are dirty but may have no recorded changes, so ensure
623 	 * we only release clean items here.
624 	 */
625 	clean = (flags & XFS_BLI_DIRTY) ? false : true;
626 	if (clean) {
627 		int i;
628 		for (i = 0; i < bip->bli_format_count; i++) {
629 			if (!xfs_bitmap_empty(bip->bli_formats[i].blf_data_map,
630 				     bip->bli_formats[i].blf_map_size)) {
631 				clean = false;
632 				break;
633 			}
634 		}
635 	}
636 
637 	/*
638 	 * Clean buffers, by definition, cannot be in the AIL. However, aborted
639 	 * buffers may be in the AIL regardless of dirty state. An aborted
640 	 * transaction that invalidates a buffer already in the AIL may have
641 	 * marked it stale and cleared the dirty state, for example.
642 	 *
643 	 * Therefore if we are aborting a buffer and we've just taken the last
644 	 * reference away, we have to check if it is in the AIL before freeing
645 	 * it. We need to free it in this case, because an aborted transaction
646 	 * has already shut the filesystem down and this is the last chance we
647 	 * will have to do so.
648 	 */
649 	if (atomic_dec_and_test(&bip->bli_refcount)) {
650 		if (aborted) {
651 			ASSERT(XFS_FORCED_SHUTDOWN(lip->li_mountp));
652 			xfs_trans_ail_remove(lip, SHUTDOWN_LOG_IO_ERROR);
653 			xfs_buf_item_relse(bp);
654 		} else if (clean)
655 			xfs_buf_item_relse(bp);
656 	}
657 
658 	if (!(flags & XFS_BLI_HOLD))
659 		xfs_buf_relse(bp);
660 }
661 
662 /*
663  * This is called to find out where the oldest active copy of the
664  * buf log item in the on disk log resides now that the last log
665  * write of it completed at the given lsn.
666  * We always re-log all the dirty data in a buffer, so usually the
667  * latest copy in the on disk log is the only one that matters.  For
668  * those cases we simply return the given lsn.
669  *
670  * The one exception to this is for buffers full of newly allocated
671  * inodes.  These buffers are only relogged with the XFS_BLI_INODE_BUF
672  * flag set, indicating that only the di_next_unlinked fields from the
673  * inodes in the buffers will be replayed during recovery.  If the
674  * original newly allocated inode images have not yet been flushed
675  * when the buffer is so relogged, then we need to make sure that we
676  * keep the old images in the 'active' portion of the log.  We do this
677  * by returning the original lsn of that transaction here rather than
678  * the current one.
679  */
680 STATIC xfs_lsn_t
681 xfs_buf_item_committed(
682 	struct xfs_log_item	*lip,
683 	xfs_lsn_t		lsn)
684 {
685 	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
686 
687 	trace_xfs_buf_item_committed(bip);
688 
689 	if ((bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF) && lip->li_lsn != 0)
690 		return lip->li_lsn;
691 	return lsn;
692 }
693 
694 STATIC void
695 xfs_buf_item_committing(
696 	struct xfs_log_item	*lip,
697 	xfs_lsn_t		commit_lsn)
698 {
699 }
700 
701 /*
702  * This is the ops vector shared by all buf log items.
703  */
704 static const struct xfs_item_ops xfs_buf_item_ops = {
705 	.iop_size	= xfs_buf_item_size,
706 	.iop_format	= xfs_buf_item_format,
707 	.iop_pin	= xfs_buf_item_pin,
708 	.iop_unpin	= xfs_buf_item_unpin,
709 	.iop_unlock	= xfs_buf_item_unlock,
710 	.iop_committed	= xfs_buf_item_committed,
711 	.iop_push	= xfs_buf_item_push,
712 	.iop_committing = xfs_buf_item_committing
713 };
714 
715 STATIC int
716 xfs_buf_item_get_format(
717 	struct xfs_buf_log_item	*bip,
718 	int			count)
719 {
720 	ASSERT(bip->bli_formats == NULL);
721 	bip->bli_format_count = count;
722 
723 	if (count == 1) {
724 		bip->bli_formats = &bip->__bli_format;
725 		return 0;
726 	}
727 
728 	bip->bli_formats = kmem_zalloc(count * sizeof(struct xfs_buf_log_format),
729 				KM_SLEEP);
730 	if (!bip->bli_formats)
731 		return -ENOMEM;
732 	return 0;
733 }
734 
735 STATIC void
736 xfs_buf_item_free_format(
737 	struct xfs_buf_log_item	*bip)
738 {
739 	if (bip->bli_formats != &bip->__bli_format) {
740 		kmem_free(bip->bli_formats);
741 		bip->bli_formats = NULL;
742 	}
743 }
744 
745 /*
746  * Allocate a new buf log item to go with the given buffer.
747  * Set the buffer's b_fsprivate field to point to the new
748  * buf log item.  If there are other item's attached to the
749  * buffer (see xfs_buf_attach_iodone() below), then put the
750  * buf log item at the front.
751  */
752 int
753 xfs_buf_item_init(
754 	struct xfs_buf	*bp,
755 	struct xfs_mount *mp)
756 {
757 	struct xfs_log_item	*lip = bp->b_fspriv;
758 	struct xfs_buf_log_item	*bip;
759 	int			chunks;
760 	int			map_size;
761 	int			error;
762 	int			i;
763 
764 	/*
765 	 * Check to see if there is already a buf log item for
766 	 * this buffer.  If there is, it is guaranteed to be
767 	 * the first.  If we do already have one, there is
768 	 * nothing to do here so return.
769 	 */
770 	ASSERT(bp->b_target->bt_mount == mp);
771 	if (lip != NULL && lip->li_type == XFS_LI_BUF)
772 		return 0;
773 
774 	bip = kmem_zone_zalloc(xfs_buf_item_zone, KM_SLEEP);
775 	xfs_log_item_init(mp, &bip->bli_item, XFS_LI_BUF, &xfs_buf_item_ops);
776 	bip->bli_buf = bp;
777 
778 	/*
779 	 * chunks is the number of XFS_BLF_CHUNK size pieces the buffer
780 	 * can be divided into. Make sure not to truncate any pieces.
781 	 * map_size is the size of the bitmap needed to describe the
782 	 * chunks of the buffer.
783 	 *
784 	 * Discontiguous buffer support follows the layout of the underlying
785 	 * buffer. This makes the implementation as simple as possible.
786 	 */
787 	error = xfs_buf_item_get_format(bip, bp->b_map_count);
788 	ASSERT(error == 0);
789 	if (error) {	/* to stop gcc throwing set-but-unused warnings */
790 		kmem_zone_free(xfs_buf_item_zone, bip);
791 		return error;
792 	}
793 
794 
795 	for (i = 0; i < bip->bli_format_count; i++) {
796 		chunks = DIV_ROUND_UP(BBTOB(bp->b_maps[i].bm_len),
797 				      XFS_BLF_CHUNK);
798 		map_size = DIV_ROUND_UP(chunks, NBWORD);
799 
800 		bip->bli_formats[i].blf_type = XFS_LI_BUF;
801 		bip->bli_formats[i].blf_blkno = bp->b_maps[i].bm_bn;
802 		bip->bli_formats[i].blf_len = bp->b_maps[i].bm_len;
803 		bip->bli_formats[i].blf_map_size = map_size;
804 	}
805 
806 	/*
807 	 * Put the buf item into the list of items attached to the
808 	 * buffer at the front.
809 	 */
810 	if (bp->b_fspriv)
811 		bip->bli_item.li_bio_list = bp->b_fspriv;
812 	bp->b_fspriv = bip;
813 	xfs_buf_hold(bp);
814 	return 0;
815 }
816 
817 
818 /*
819  * Mark bytes first through last inclusive as dirty in the buf
820  * item's bitmap.
821  */
822 static void
823 xfs_buf_item_log_segment(
824 	uint			first,
825 	uint			last,
826 	uint			*map)
827 {
828 	uint		first_bit;
829 	uint		last_bit;
830 	uint		bits_to_set;
831 	uint		bits_set;
832 	uint		word_num;
833 	uint		*wordp;
834 	uint		bit;
835 	uint		end_bit;
836 	uint		mask;
837 
838 	/*
839 	 * Convert byte offsets to bit numbers.
840 	 */
841 	first_bit = first >> XFS_BLF_SHIFT;
842 	last_bit = last >> XFS_BLF_SHIFT;
843 
844 	/*
845 	 * Calculate the total number of bits to be set.
846 	 */
847 	bits_to_set = last_bit - first_bit + 1;
848 
849 	/*
850 	 * Get a pointer to the first word in the bitmap
851 	 * to set a bit in.
852 	 */
853 	word_num = first_bit >> BIT_TO_WORD_SHIFT;
854 	wordp = &map[word_num];
855 
856 	/*
857 	 * Calculate the starting bit in the first word.
858 	 */
859 	bit = first_bit & (uint)(NBWORD - 1);
860 
861 	/*
862 	 * First set any bits in the first word of our range.
863 	 * If it starts at bit 0 of the word, it will be
864 	 * set below rather than here.  That is what the variable
865 	 * bit tells us. The variable bits_set tracks the number
866 	 * of bits that have been set so far.  End_bit is the number
867 	 * of the last bit to be set in this word plus one.
868 	 */
869 	if (bit) {
870 		end_bit = MIN(bit + bits_to_set, (uint)NBWORD);
871 		mask = ((1U << (end_bit - bit)) - 1) << bit;
872 		*wordp |= mask;
873 		wordp++;
874 		bits_set = end_bit - bit;
875 	} else {
876 		bits_set = 0;
877 	}
878 
879 	/*
880 	 * Now set bits a whole word at a time that are between
881 	 * first_bit and last_bit.
882 	 */
883 	while ((bits_to_set - bits_set) >= NBWORD) {
884 		*wordp |= 0xffffffff;
885 		bits_set += NBWORD;
886 		wordp++;
887 	}
888 
889 	/*
890 	 * Finally, set any bits left to be set in one last partial word.
891 	 */
892 	end_bit = bits_to_set - bits_set;
893 	if (end_bit) {
894 		mask = (1U << end_bit) - 1;
895 		*wordp |= mask;
896 	}
897 }
898 
899 /*
900  * Mark bytes first through last inclusive as dirty in the buf
901  * item's bitmap.
902  */
903 void
904 xfs_buf_item_log(
905 	xfs_buf_log_item_t	*bip,
906 	uint			first,
907 	uint			last)
908 {
909 	int			i;
910 	uint			start;
911 	uint			end;
912 	struct xfs_buf		*bp = bip->bli_buf;
913 
914 	/*
915 	 * walk each buffer segment and mark them dirty appropriately.
916 	 */
917 	start = 0;
918 	for (i = 0; i < bip->bli_format_count; i++) {
919 		if (start > last)
920 			break;
921 		end = start + BBTOB(bp->b_maps[i].bm_len) - 1;
922 
923 		/* skip to the map that includes the first byte to log */
924 		if (first > end) {
925 			start += BBTOB(bp->b_maps[i].bm_len);
926 			continue;
927 		}
928 
929 		/*
930 		 * Trim the range to this segment and mark it in the bitmap.
931 		 * Note that we must convert buffer offsets to segment relative
932 		 * offsets (e.g., the first byte of each segment is byte 0 of
933 		 * that segment).
934 		 */
935 		if (first < start)
936 			first = start;
937 		if (end > last)
938 			end = last;
939 		xfs_buf_item_log_segment(first - start, end - start,
940 					 &bip->bli_formats[i].blf_data_map[0]);
941 
942 		start += BBTOB(bp->b_maps[i].bm_len);
943 	}
944 }
945 
946 
947 /*
948  * Return 1 if the buffer has been logged or ordered in a transaction (at any
949  * point, not just the current transaction) and 0 if not.
950  */
951 uint
952 xfs_buf_item_dirty(
953 	xfs_buf_log_item_t	*bip)
954 {
955 	return (bip->bli_flags & XFS_BLI_DIRTY);
956 }
957 
958 STATIC void
959 xfs_buf_item_free(
960 	xfs_buf_log_item_t	*bip)
961 {
962 	xfs_buf_item_free_format(bip);
963 	kmem_free(bip->bli_item.li_lv_shadow);
964 	kmem_zone_free(xfs_buf_item_zone, bip);
965 }
966 
967 /*
968  * This is called when the buf log item is no longer needed.  It should
969  * free the buf log item associated with the given buffer and clear
970  * the buffer's pointer to the buf log item.  If there are no more
971  * items in the list, clear the b_iodone field of the buffer (see
972  * xfs_buf_attach_iodone() below).
973  */
974 void
975 xfs_buf_item_relse(
976 	xfs_buf_t	*bp)
977 {
978 	xfs_buf_log_item_t	*bip = bp->b_fspriv;
979 
980 	trace_xfs_buf_item_relse(bp, _RET_IP_);
981 	ASSERT(!(bip->bli_item.li_flags & XFS_LI_IN_AIL));
982 
983 	bp->b_fspriv = bip->bli_item.li_bio_list;
984 	if (bp->b_fspriv == NULL)
985 		bp->b_iodone = NULL;
986 
987 	xfs_buf_rele(bp);
988 	xfs_buf_item_free(bip);
989 }
990 
991 
992 /*
993  * Add the given log item with its callback to the list of callbacks
994  * to be called when the buffer's I/O completes.  If it is not set
995  * already, set the buffer's b_iodone() routine to be
996  * xfs_buf_iodone_callbacks() and link the log item into the list of
997  * items rooted at b_fsprivate.  Items are always added as the second
998  * entry in the list if there is a first, because the buf item code
999  * assumes that the buf log item is first.
1000  */
1001 void
1002 xfs_buf_attach_iodone(
1003 	xfs_buf_t	*bp,
1004 	void		(*cb)(xfs_buf_t *, xfs_log_item_t *),
1005 	xfs_log_item_t	*lip)
1006 {
1007 	xfs_log_item_t	*head_lip;
1008 
1009 	ASSERT(xfs_buf_islocked(bp));
1010 
1011 	lip->li_cb = cb;
1012 	head_lip = bp->b_fspriv;
1013 	if (head_lip) {
1014 		lip->li_bio_list = head_lip->li_bio_list;
1015 		head_lip->li_bio_list = lip;
1016 	} else {
1017 		bp->b_fspriv = lip;
1018 	}
1019 
1020 	ASSERT(bp->b_iodone == NULL ||
1021 	       bp->b_iodone == xfs_buf_iodone_callbacks);
1022 	bp->b_iodone = xfs_buf_iodone_callbacks;
1023 }
1024 
1025 /*
1026  * We can have many callbacks on a buffer. Running the callbacks individually
1027  * can cause a lot of contention on the AIL lock, so we allow for a single
1028  * callback to be able to scan the remaining lip->li_bio_list for other items
1029  * of the same type and callback to be processed in the first call.
1030  *
1031  * As a result, the loop walking the callback list below will also modify the
1032  * list. it removes the first item from the list and then runs the callback.
1033  * The loop then restarts from the new head of the list. This allows the
1034  * callback to scan and modify the list attached to the buffer and we don't
1035  * have to care about maintaining a next item pointer.
1036  */
1037 STATIC void
1038 xfs_buf_do_callbacks(
1039 	struct xfs_buf		*bp)
1040 {
1041 	struct xfs_log_item	*lip;
1042 
1043 	while ((lip = bp->b_fspriv) != NULL) {
1044 		bp->b_fspriv = lip->li_bio_list;
1045 		ASSERT(lip->li_cb != NULL);
1046 		/*
1047 		 * Clear the next pointer so we don't have any
1048 		 * confusion if the item is added to another buf.
1049 		 * Don't touch the log item after calling its
1050 		 * callback, because it could have freed itself.
1051 		 */
1052 		lip->li_bio_list = NULL;
1053 		lip->li_cb(bp, lip);
1054 	}
1055 }
1056 
1057 static bool
1058 xfs_buf_iodone_callback_error(
1059 	struct xfs_buf		*bp)
1060 {
1061 	struct xfs_log_item	*lip = bp->b_fspriv;
1062 	struct xfs_mount	*mp = lip->li_mountp;
1063 	static ulong		lasttime;
1064 	static xfs_buftarg_t	*lasttarg;
1065 	struct xfs_error_cfg	*cfg;
1066 
1067 	/*
1068 	 * If we've already decided to shutdown the filesystem because of
1069 	 * I/O errors, there's no point in giving this a retry.
1070 	 */
1071 	if (XFS_FORCED_SHUTDOWN(mp))
1072 		goto out_stale;
1073 
1074 	if (bp->b_target != lasttarg ||
1075 	    time_after(jiffies, (lasttime + 5*HZ))) {
1076 		lasttime = jiffies;
1077 		xfs_buf_ioerror_alert(bp, __func__);
1078 	}
1079 	lasttarg = bp->b_target;
1080 
1081 	/* synchronous writes will have callers process the error */
1082 	if (!(bp->b_flags & XBF_ASYNC))
1083 		goto out_stale;
1084 
1085 	trace_xfs_buf_item_iodone_async(bp, _RET_IP_);
1086 	ASSERT(bp->b_iodone != NULL);
1087 
1088 	cfg = xfs_error_get_cfg(mp, XFS_ERR_METADATA, bp->b_error);
1089 
1090 	/*
1091 	 * If the write was asynchronous then no one will be looking for the
1092 	 * error.  If this is the first failure of this type, clear the error
1093 	 * state and write the buffer out again. This means we always retry an
1094 	 * async write failure at least once, but we also need to set the buffer
1095 	 * up to behave correctly now for repeated failures.
1096 	 */
1097 	if (!(bp->b_flags & (XBF_STALE | XBF_WRITE_FAIL)) ||
1098 	     bp->b_last_error != bp->b_error) {
1099 		bp->b_flags |= (XBF_WRITE | XBF_DONE | XBF_WRITE_FAIL);
1100 		bp->b_last_error = bp->b_error;
1101 		if (cfg->retry_timeout != XFS_ERR_RETRY_FOREVER &&
1102 		    !bp->b_first_retry_time)
1103 			bp->b_first_retry_time = jiffies;
1104 
1105 		xfs_buf_ioerror(bp, 0);
1106 		xfs_buf_submit(bp);
1107 		return true;
1108 	}
1109 
1110 	/*
1111 	 * Repeated failure on an async write. Take action according to the
1112 	 * error configuration we have been set up to use.
1113 	 */
1114 
1115 	if (cfg->max_retries != XFS_ERR_RETRY_FOREVER &&
1116 	    ++bp->b_retries > cfg->max_retries)
1117 			goto permanent_error;
1118 	if (cfg->retry_timeout != XFS_ERR_RETRY_FOREVER &&
1119 	    time_after(jiffies, cfg->retry_timeout + bp->b_first_retry_time))
1120 			goto permanent_error;
1121 
1122 	/* At unmount we may treat errors differently */
1123 	if ((mp->m_flags & XFS_MOUNT_UNMOUNTING) && mp->m_fail_unmount)
1124 		goto permanent_error;
1125 
1126 	/* still a transient error, higher layers will retry */
1127 	xfs_buf_ioerror(bp, 0);
1128 	xfs_buf_relse(bp);
1129 	return true;
1130 
1131 	/*
1132 	 * Permanent error - we need to trigger a shutdown if we haven't already
1133 	 * to indicate that inconsistency will result from this action.
1134 	 */
1135 permanent_error:
1136 	xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1137 out_stale:
1138 	xfs_buf_stale(bp);
1139 	bp->b_flags |= XBF_DONE;
1140 	trace_xfs_buf_error_relse(bp, _RET_IP_);
1141 	return false;
1142 }
1143 
1144 /*
1145  * This is the iodone() function for buffers which have had callbacks attached
1146  * to them by xfs_buf_attach_iodone(). We need to iterate the items on the
1147  * callback list, mark the buffer as having no more callbacks and then push the
1148  * buffer through IO completion processing.
1149  */
1150 void
1151 xfs_buf_iodone_callbacks(
1152 	struct xfs_buf		*bp)
1153 {
1154 	/*
1155 	 * If there is an error, process it. Some errors require us
1156 	 * to run callbacks after failure processing is done so we
1157 	 * detect that and take appropriate action.
1158 	 */
1159 	if (bp->b_error && xfs_buf_iodone_callback_error(bp))
1160 		return;
1161 
1162 	/*
1163 	 * Successful IO or permanent error. Either way, we can clear the
1164 	 * retry state here in preparation for the next error that may occur.
1165 	 */
1166 	bp->b_last_error = 0;
1167 	bp->b_retries = 0;
1168 	bp->b_first_retry_time = 0;
1169 
1170 	xfs_buf_do_callbacks(bp);
1171 	bp->b_fspriv = NULL;
1172 	bp->b_iodone = NULL;
1173 	xfs_buf_ioend(bp);
1174 }
1175 
1176 /*
1177  * This is the iodone() function for buffers which have been
1178  * logged.  It is called when they are eventually flushed out.
1179  * It should remove the buf item from the AIL, and free the buf item.
1180  * It is called by xfs_buf_iodone_callbacks() above which will take
1181  * care of cleaning up the buffer itself.
1182  */
1183 void
1184 xfs_buf_iodone(
1185 	struct xfs_buf		*bp,
1186 	struct xfs_log_item	*lip)
1187 {
1188 	struct xfs_ail		*ailp = lip->li_ailp;
1189 
1190 	ASSERT(BUF_ITEM(lip)->bli_buf == bp);
1191 
1192 	xfs_buf_rele(bp);
1193 
1194 	/*
1195 	 * If we are forcibly shutting down, this may well be
1196 	 * off the AIL already. That's because we simulate the
1197 	 * log-committed callbacks to unpin these buffers. Or we may never
1198 	 * have put this item on AIL because of the transaction was
1199 	 * aborted forcibly. xfs_trans_ail_delete() takes care of these.
1200 	 *
1201 	 * Either way, AIL is useless if we're forcing a shutdown.
1202 	 */
1203 	spin_lock(&ailp->xa_lock);
1204 	xfs_trans_ail_delete(ailp, lip, SHUTDOWN_CORRUPT_INCORE);
1205 	xfs_buf_item_free(BUF_ITEM(lip));
1206 }
1207