1 /* 2 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_fs.h" 20 #include "xfs_types.h" 21 #include "xfs_bit.h" 22 #include "xfs_log.h" 23 #include "xfs_trans.h" 24 #include "xfs_sb.h" 25 #include "xfs_ag.h" 26 #include "xfs_mount.h" 27 #include "xfs_buf_item.h" 28 #include "xfs_trans_priv.h" 29 #include "xfs_error.h" 30 #include "xfs_trace.h" 31 32 33 kmem_zone_t *xfs_buf_item_zone; 34 35 static inline struct xfs_buf_log_item *BUF_ITEM(struct xfs_log_item *lip) 36 { 37 return container_of(lip, struct xfs_buf_log_item, bli_item); 38 } 39 40 41 #ifdef XFS_TRANS_DEBUG 42 /* 43 * This function uses an alternate strategy for tracking the bytes 44 * that the user requests to be logged. This can then be used 45 * in conjunction with the bli_orig array in the buf log item to 46 * catch bugs in our callers' code. 47 * 48 * We also double check the bits set in xfs_buf_item_log using a 49 * simple algorithm to check that every byte is accounted for. 50 */ 51 STATIC void 52 xfs_buf_item_log_debug( 53 xfs_buf_log_item_t *bip, 54 uint first, 55 uint last) 56 { 57 uint x; 58 uint byte; 59 uint nbytes; 60 uint chunk_num; 61 uint word_num; 62 uint bit_num; 63 uint bit_set; 64 uint *wordp; 65 66 ASSERT(bip->bli_logged != NULL); 67 byte = first; 68 nbytes = last - first + 1; 69 bfset(bip->bli_logged, first, nbytes); 70 for (x = 0; x < nbytes; x++) { 71 chunk_num = byte >> XFS_BLF_SHIFT; 72 word_num = chunk_num >> BIT_TO_WORD_SHIFT; 73 bit_num = chunk_num & (NBWORD - 1); 74 wordp = &(bip->bli_format.blf_data_map[word_num]); 75 bit_set = *wordp & (1 << bit_num); 76 ASSERT(bit_set); 77 byte++; 78 } 79 } 80 81 /* 82 * This function is called when we flush something into a buffer without 83 * logging it. This happens for things like inodes which are logged 84 * separately from the buffer. 85 */ 86 void 87 xfs_buf_item_flush_log_debug( 88 xfs_buf_t *bp, 89 uint first, 90 uint last) 91 { 92 xfs_buf_log_item_t *bip = bp->b_fspriv; 93 uint nbytes; 94 95 if (bip == NULL || (bip->bli_item.li_type != XFS_LI_BUF)) 96 return; 97 98 ASSERT(bip->bli_logged != NULL); 99 nbytes = last - first + 1; 100 bfset(bip->bli_logged, first, nbytes); 101 } 102 103 /* 104 * This function is called to verify that our callers have logged 105 * all the bytes that they changed. 106 * 107 * It does this by comparing the original copy of the buffer stored in 108 * the buf log item's bli_orig array to the current copy of the buffer 109 * and ensuring that all bytes which mismatch are set in the bli_logged 110 * array of the buf log item. 111 */ 112 STATIC void 113 xfs_buf_item_log_check( 114 xfs_buf_log_item_t *bip) 115 { 116 char *orig; 117 char *buffer; 118 int x; 119 xfs_buf_t *bp; 120 121 ASSERT(bip->bli_orig != NULL); 122 ASSERT(bip->bli_logged != NULL); 123 124 bp = bip->bli_buf; 125 ASSERT(bp->b_length > 0); 126 ASSERT(bp->b_addr != NULL); 127 orig = bip->bli_orig; 128 buffer = bp->b_addr; 129 for (x = 0; x < BBTOB(bp->b_length); x++) { 130 if (orig[x] != buffer[x] && !btst(bip->bli_logged, x)) { 131 xfs_emerg(bp->b_mount, 132 "%s: bip %x buffer %x orig %x index %d", 133 __func__, bip, bp, orig, x); 134 ASSERT(0); 135 } 136 } 137 } 138 #else 139 #define xfs_buf_item_log_debug(x,y,z) 140 #define xfs_buf_item_log_check(x) 141 #endif 142 143 STATIC void xfs_buf_do_callbacks(struct xfs_buf *bp); 144 145 /* 146 * This returns the number of log iovecs needed to log the 147 * given buf log item. 148 * 149 * It calculates this as 1 iovec for the buf log format structure 150 * and 1 for each stretch of non-contiguous chunks to be logged. 151 * Contiguous chunks are logged in a single iovec. 152 * 153 * If the XFS_BLI_STALE flag has been set, then log nothing. 154 */ 155 STATIC uint 156 xfs_buf_item_size( 157 struct xfs_log_item *lip) 158 { 159 struct xfs_buf_log_item *bip = BUF_ITEM(lip); 160 struct xfs_buf *bp = bip->bli_buf; 161 uint nvecs; 162 int next_bit; 163 int last_bit; 164 165 ASSERT(atomic_read(&bip->bli_refcount) > 0); 166 if (bip->bli_flags & XFS_BLI_STALE) { 167 /* 168 * The buffer is stale, so all we need to log 169 * is the buf log format structure with the 170 * cancel flag in it. 171 */ 172 trace_xfs_buf_item_size_stale(bip); 173 ASSERT(bip->bli_format.blf_flags & XFS_BLF_CANCEL); 174 return 1; 175 } 176 177 ASSERT(bip->bli_flags & XFS_BLI_LOGGED); 178 nvecs = 1; 179 last_bit = xfs_next_bit(bip->bli_format.blf_data_map, 180 bip->bli_format.blf_map_size, 0); 181 ASSERT(last_bit != -1); 182 nvecs++; 183 while (last_bit != -1) { 184 /* 185 * This takes the bit number to start looking from and 186 * returns the next set bit from there. It returns -1 187 * if there are no more bits set or the start bit is 188 * beyond the end of the bitmap. 189 */ 190 next_bit = xfs_next_bit(bip->bli_format.blf_data_map, 191 bip->bli_format.blf_map_size, 192 last_bit + 1); 193 /* 194 * If we run out of bits, leave the loop, 195 * else if we find a new set of bits bump the number of vecs, 196 * else keep scanning the current set of bits. 197 */ 198 if (next_bit == -1) { 199 last_bit = -1; 200 } else if (next_bit != last_bit + 1) { 201 last_bit = next_bit; 202 nvecs++; 203 } else if (xfs_buf_offset(bp, next_bit * XFS_BLF_CHUNK) != 204 (xfs_buf_offset(bp, last_bit * XFS_BLF_CHUNK) + 205 XFS_BLF_CHUNK)) { 206 last_bit = next_bit; 207 nvecs++; 208 } else { 209 last_bit++; 210 } 211 } 212 213 trace_xfs_buf_item_size(bip); 214 return nvecs; 215 } 216 217 /* 218 * This is called to fill in the vector of log iovecs for the 219 * given log buf item. It fills the first entry with a buf log 220 * format structure, and the rest point to contiguous chunks 221 * within the buffer. 222 */ 223 STATIC void 224 xfs_buf_item_format( 225 struct xfs_log_item *lip, 226 struct xfs_log_iovec *vecp) 227 { 228 struct xfs_buf_log_item *bip = BUF_ITEM(lip); 229 struct xfs_buf *bp = bip->bli_buf; 230 uint base_size; 231 uint nvecs; 232 int first_bit; 233 int last_bit; 234 int next_bit; 235 uint nbits; 236 uint buffer_offset; 237 238 ASSERT(atomic_read(&bip->bli_refcount) > 0); 239 ASSERT((bip->bli_flags & XFS_BLI_LOGGED) || 240 (bip->bli_flags & XFS_BLI_STALE)); 241 242 /* 243 * The size of the base structure is the size of the 244 * declared structure plus the space for the extra words 245 * of the bitmap. We subtract one from the map size, because 246 * the first element of the bitmap is accounted for in the 247 * size of the base structure. 248 */ 249 base_size = 250 (uint)(sizeof(xfs_buf_log_format_t) + 251 ((bip->bli_format.blf_map_size - 1) * sizeof(uint))); 252 vecp->i_addr = &bip->bli_format; 253 vecp->i_len = base_size; 254 vecp->i_type = XLOG_REG_TYPE_BFORMAT; 255 vecp++; 256 nvecs = 1; 257 258 /* 259 * If it is an inode buffer, transfer the in-memory state to the 260 * format flags and clear the in-memory state. We do not transfer 261 * this state if the inode buffer allocation has not yet been committed 262 * to the log as setting the XFS_BLI_INODE_BUF flag will prevent 263 * correct replay of the inode allocation. 264 */ 265 if (bip->bli_flags & XFS_BLI_INODE_BUF) { 266 if (!((bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF) && 267 xfs_log_item_in_current_chkpt(lip))) 268 bip->bli_format.blf_flags |= XFS_BLF_INODE_BUF; 269 bip->bli_flags &= ~XFS_BLI_INODE_BUF; 270 } 271 272 if (bip->bli_flags & XFS_BLI_STALE) { 273 /* 274 * The buffer is stale, so all we need to log 275 * is the buf log format structure with the 276 * cancel flag in it. 277 */ 278 trace_xfs_buf_item_format_stale(bip); 279 ASSERT(bip->bli_format.blf_flags & XFS_BLF_CANCEL); 280 bip->bli_format.blf_size = nvecs; 281 return; 282 } 283 284 /* 285 * Fill in an iovec for each set of contiguous chunks. 286 */ 287 first_bit = xfs_next_bit(bip->bli_format.blf_data_map, 288 bip->bli_format.blf_map_size, 0); 289 ASSERT(first_bit != -1); 290 last_bit = first_bit; 291 nbits = 1; 292 for (;;) { 293 /* 294 * This takes the bit number to start looking from and 295 * returns the next set bit from there. It returns -1 296 * if there are no more bits set or the start bit is 297 * beyond the end of the bitmap. 298 */ 299 next_bit = xfs_next_bit(bip->bli_format.blf_data_map, 300 bip->bli_format.blf_map_size, 301 (uint)last_bit + 1); 302 /* 303 * If we run out of bits fill in the last iovec and get 304 * out of the loop. 305 * Else if we start a new set of bits then fill in the 306 * iovec for the series we were looking at and start 307 * counting the bits in the new one. 308 * Else we're still in the same set of bits so just 309 * keep counting and scanning. 310 */ 311 if (next_bit == -1) { 312 buffer_offset = first_bit * XFS_BLF_CHUNK; 313 vecp->i_addr = xfs_buf_offset(bp, buffer_offset); 314 vecp->i_len = nbits * XFS_BLF_CHUNK; 315 vecp->i_type = XLOG_REG_TYPE_BCHUNK; 316 nvecs++; 317 break; 318 } else if (next_bit != last_bit + 1) { 319 buffer_offset = first_bit * XFS_BLF_CHUNK; 320 vecp->i_addr = xfs_buf_offset(bp, buffer_offset); 321 vecp->i_len = nbits * XFS_BLF_CHUNK; 322 vecp->i_type = XLOG_REG_TYPE_BCHUNK; 323 nvecs++; 324 vecp++; 325 first_bit = next_bit; 326 last_bit = next_bit; 327 nbits = 1; 328 } else if (xfs_buf_offset(bp, next_bit << XFS_BLF_SHIFT) != 329 (xfs_buf_offset(bp, last_bit << XFS_BLF_SHIFT) + 330 XFS_BLF_CHUNK)) { 331 buffer_offset = first_bit * XFS_BLF_CHUNK; 332 vecp->i_addr = xfs_buf_offset(bp, buffer_offset); 333 vecp->i_len = nbits * XFS_BLF_CHUNK; 334 vecp->i_type = XLOG_REG_TYPE_BCHUNK; 335 /* You would think we need to bump the nvecs here too, but we do not 336 * this number is used by recovery, and it gets confused by the boundary 337 * split here 338 * nvecs++; 339 */ 340 vecp++; 341 first_bit = next_bit; 342 last_bit = next_bit; 343 nbits = 1; 344 } else { 345 last_bit++; 346 nbits++; 347 } 348 } 349 bip->bli_format.blf_size = nvecs; 350 351 /* 352 * Check to make sure everything is consistent. 353 */ 354 trace_xfs_buf_item_format(bip); 355 xfs_buf_item_log_check(bip); 356 } 357 358 /* 359 * This is called to pin the buffer associated with the buf log item in memory 360 * so it cannot be written out. 361 * 362 * We also always take a reference to the buffer log item here so that the bli 363 * is held while the item is pinned in memory. This means that we can 364 * unconditionally drop the reference count a transaction holds when the 365 * transaction is completed. 366 */ 367 STATIC void 368 xfs_buf_item_pin( 369 struct xfs_log_item *lip) 370 { 371 struct xfs_buf_log_item *bip = BUF_ITEM(lip); 372 373 ASSERT(atomic_read(&bip->bli_refcount) > 0); 374 ASSERT((bip->bli_flags & XFS_BLI_LOGGED) || 375 (bip->bli_flags & XFS_BLI_STALE)); 376 377 trace_xfs_buf_item_pin(bip); 378 379 atomic_inc(&bip->bli_refcount); 380 atomic_inc(&bip->bli_buf->b_pin_count); 381 } 382 383 /* 384 * This is called to unpin the buffer associated with the buf log 385 * item which was previously pinned with a call to xfs_buf_item_pin(). 386 * 387 * Also drop the reference to the buf item for the current transaction. 388 * If the XFS_BLI_STALE flag is set and we are the last reference, 389 * then free up the buf log item and unlock the buffer. 390 * 391 * If the remove flag is set we are called from uncommit in the 392 * forced-shutdown path. If that is true and the reference count on 393 * the log item is going to drop to zero we need to free the item's 394 * descriptor in the transaction. 395 */ 396 STATIC void 397 xfs_buf_item_unpin( 398 struct xfs_log_item *lip, 399 int remove) 400 { 401 struct xfs_buf_log_item *bip = BUF_ITEM(lip); 402 xfs_buf_t *bp = bip->bli_buf; 403 struct xfs_ail *ailp = lip->li_ailp; 404 int stale = bip->bli_flags & XFS_BLI_STALE; 405 int freed; 406 407 ASSERT(bp->b_fspriv == bip); 408 ASSERT(atomic_read(&bip->bli_refcount) > 0); 409 410 trace_xfs_buf_item_unpin(bip); 411 412 freed = atomic_dec_and_test(&bip->bli_refcount); 413 414 if (atomic_dec_and_test(&bp->b_pin_count)) 415 wake_up_all(&bp->b_waiters); 416 417 if (freed && stale) { 418 ASSERT(bip->bli_flags & XFS_BLI_STALE); 419 ASSERT(xfs_buf_islocked(bp)); 420 ASSERT(XFS_BUF_ISSTALE(bp)); 421 ASSERT(bip->bli_format.blf_flags & XFS_BLF_CANCEL); 422 423 trace_xfs_buf_item_unpin_stale(bip); 424 425 if (remove) { 426 /* 427 * If we are in a transaction context, we have to 428 * remove the log item from the transaction as we are 429 * about to release our reference to the buffer. If we 430 * don't, the unlock that occurs later in 431 * xfs_trans_uncommit() will try to reference the 432 * buffer which we no longer have a hold on. 433 */ 434 if (lip->li_desc) 435 xfs_trans_del_item(lip); 436 437 /* 438 * Since the transaction no longer refers to the buffer, 439 * the buffer should no longer refer to the transaction. 440 */ 441 bp->b_transp = NULL; 442 } 443 444 /* 445 * If we get called here because of an IO error, we may 446 * or may not have the item on the AIL. xfs_trans_ail_delete() 447 * will take care of that situation. 448 * xfs_trans_ail_delete() drops the AIL lock. 449 */ 450 if (bip->bli_flags & XFS_BLI_STALE_INODE) { 451 xfs_buf_do_callbacks(bp); 452 bp->b_fspriv = NULL; 453 bp->b_iodone = NULL; 454 } else { 455 spin_lock(&ailp->xa_lock); 456 xfs_trans_ail_delete(ailp, lip, SHUTDOWN_LOG_IO_ERROR); 457 xfs_buf_item_relse(bp); 458 ASSERT(bp->b_fspriv == NULL); 459 } 460 xfs_buf_relse(bp); 461 } else if (freed && remove) { 462 xfs_buf_lock(bp); 463 xfs_buf_ioerror(bp, EIO); 464 XFS_BUF_UNDONE(bp); 465 xfs_buf_stale(bp); 466 xfs_buf_ioend(bp, 0); 467 } 468 } 469 470 STATIC uint 471 xfs_buf_item_push( 472 struct xfs_log_item *lip, 473 struct list_head *buffer_list) 474 { 475 struct xfs_buf_log_item *bip = BUF_ITEM(lip); 476 struct xfs_buf *bp = bip->bli_buf; 477 uint rval = XFS_ITEM_SUCCESS; 478 479 if (xfs_buf_ispinned(bp)) 480 return XFS_ITEM_PINNED; 481 if (!xfs_buf_trylock(bp)) 482 return XFS_ITEM_LOCKED; 483 484 ASSERT(!(bip->bli_flags & XFS_BLI_STALE)); 485 486 trace_xfs_buf_item_push(bip); 487 488 if (!xfs_buf_delwri_queue(bp, buffer_list)) 489 rval = XFS_ITEM_FLUSHING; 490 xfs_buf_unlock(bp); 491 return rval; 492 } 493 494 /* 495 * Release the buffer associated with the buf log item. If there is no dirty 496 * logged data associated with the buffer recorded in the buf log item, then 497 * free the buf log item and remove the reference to it in the buffer. 498 * 499 * This call ignores the recursion count. It is only called when the buffer 500 * should REALLY be unlocked, regardless of the recursion count. 501 * 502 * We unconditionally drop the transaction's reference to the log item. If the 503 * item was logged, then another reference was taken when it was pinned, so we 504 * can safely drop the transaction reference now. This also allows us to avoid 505 * potential races with the unpin code freeing the bli by not referencing the 506 * bli after we've dropped the reference count. 507 * 508 * If the XFS_BLI_HOLD flag is set in the buf log item, then free the log item 509 * if necessary but do not unlock the buffer. This is for support of 510 * xfs_trans_bhold(). Make sure the XFS_BLI_HOLD field is cleared if we don't 511 * free the item. 512 */ 513 STATIC void 514 xfs_buf_item_unlock( 515 struct xfs_log_item *lip) 516 { 517 struct xfs_buf_log_item *bip = BUF_ITEM(lip); 518 struct xfs_buf *bp = bip->bli_buf; 519 int aborted; 520 uint hold; 521 522 /* Clear the buffer's association with this transaction. */ 523 bp->b_transp = NULL; 524 525 /* 526 * If this is a transaction abort, don't return early. Instead, allow 527 * the brelse to happen. Normally it would be done for stale 528 * (cancelled) buffers at unpin time, but we'll never go through the 529 * pin/unpin cycle if we abort inside commit. 530 */ 531 aborted = (lip->li_flags & XFS_LI_ABORTED) != 0; 532 533 /* 534 * Before possibly freeing the buf item, determine if we should 535 * release the buffer at the end of this routine. 536 */ 537 hold = bip->bli_flags & XFS_BLI_HOLD; 538 539 /* Clear the per transaction state. */ 540 bip->bli_flags &= ~(XFS_BLI_LOGGED | XFS_BLI_HOLD); 541 542 /* 543 * If the buf item is marked stale, then don't do anything. We'll 544 * unlock the buffer and free the buf item when the buffer is unpinned 545 * for the last time. 546 */ 547 if (bip->bli_flags & XFS_BLI_STALE) { 548 trace_xfs_buf_item_unlock_stale(bip); 549 ASSERT(bip->bli_format.blf_flags & XFS_BLF_CANCEL); 550 if (!aborted) { 551 atomic_dec(&bip->bli_refcount); 552 return; 553 } 554 } 555 556 trace_xfs_buf_item_unlock(bip); 557 558 /* 559 * If the buf item isn't tracking any data, free it, otherwise drop the 560 * reference we hold to it. 561 */ 562 if (xfs_bitmap_empty(bip->bli_format.blf_data_map, 563 bip->bli_format.blf_map_size)) 564 xfs_buf_item_relse(bp); 565 else 566 atomic_dec(&bip->bli_refcount); 567 568 if (!hold) 569 xfs_buf_relse(bp); 570 } 571 572 /* 573 * This is called to find out where the oldest active copy of the 574 * buf log item in the on disk log resides now that the last log 575 * write of it completed at the given lsn. 576 * We always re-log all the dirty data in a buffer, so usually the 577 * latest copy in the on disk log is the only one that matters. For 578 * those cases we simply return the given lsn. 579 * 580 * The one exception to this is for buffers full of newly allocated 581 * inodes. These buffers are only relogged with the XFS_BLI_INODE_BUF 582 * flag set, indicating that only the di_next_unlinked fields from the 583 * inodes in the buffers will be replayed during recovery. If the 584 * original newly allocated inode images have not yet been flushed 585 * when the buffer is so relogged, then we need to make sure that we 586 * keep the old images in the 'active' portion of the log. We do this 587 * by returning the original lsn of that transaction here rather than 588 * the current one. 589 */ 590 STATIC xfs_lsn_t 591 xfs_buf_item_committed( 592 struct xfs_log_item *lip, 593 xfs_lsn_t lsn) 594 { 595 struct xfs_buf_log_item *bip = BUF_ITEM(lip); 596 597 trace_xfs_buf_item_committed(bip); 598 599 if ((bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF) && lip->li_lsn != 0) 600 return lip->li_lsn; 601 return lsn; 602 } 603 604 STATIC void 605 xfs_buf_item_committing( 606 struct xfs_log_item *lip, 607 xfs_lsn_t commit_lsn) 608 { 609 } 610 611 /* 612 * This is the ops vector shared by all buf log items. 613 */ 614 static const struct xfs_item_ops xfs_buf_item_ops = { 615 .iop_size = xfs_buf_item_size, 616 .iop_format = xfs_buf_item_format, 617 .iop_pin = xfs_buf_item_pin, 618 .iop_unpin = xfs_buf_item_unpin, 619 .iop_unlock = xfs_buf_item_unlock, 620 .iop_committed = xfs_buf_item_committed, 621 .iop_push = xfs_buf_item_push, 622 .iop_committing = xfs_buf_item_committing 623 }; 624 625 626 /* 627 * Allocate a new buf log item to go with the given buffer. 628 * Set the buffer's b_fsprivate field to point to the new 629 * buf log item. If there are other item's attached to the 630 * buffer (see xfs_buf_attach_iodone() below), then put the 631 * buf log item at the front. 632 */ 633 void 634 xfs_buf_item_init( 635 xfs_buf_t *bp, 636 xfs_mount_t *mp) 637 { 638 xfs_log_item_t *lip = bp->b_fspriv; 639 xfs_buf_log_item_t *bip; 640 int chunks; 641 int map_size; 642 643 /* 644 * Check to see if there is already a buf log item for 645 * this buffer. If there is, it is guaranteed to be 646 * the first. If we do already have one, there is 647 * nothing to do here so return. 648 */ 649 ASSERT(bp->b_target->bt_mount == mp); 650 if (lip != NULL && lip->li_type == XFS_LI_BUF) 651 return; 652 653 /* 654 * chunks is the number of XFS_BLF_CHUNK size pieces 655 * the buffer can be divided into. Make sure not to 656 * truncate any pieces. map_size is the size of the 657 * bitmap needed to describe the chunks of the buffer. 658 */ 659 chunks = (int)((BBTOB(bp->b_length) + (XFS_BLF_CHUNK - 1)) >> 660 XFS_BLF_SHIFT); 661 map_size = (int)((chunks + NBWORD) >> BIT_TO_WORD_SHIFT); 662 663 bip = (xfs_buf_log_item_t*)kmem_zone_zalloc(xfs_buf_item_zone, 664 KM_SLEEP); 665 xfs_log_item_init(mp, &bip->bli_item, XFS_LI_BUF, &xfs_buf_item_ops); 666 bip->bli_buf = bp; 667 xfs_buf_hold(bp); 668 bip->bli_format.blf_type = XFS_LI_BUF; 669 bip->bli_format.blf_blkno = (__int64_t)XFS_BUF_ADDR(bp); 670 bip->bli_format.blf_len = (ushort)bp->b_length; 671 bip->bli_format.blf_map_size = map_size; 672 673 #ifdef XFS_TRANS_DEBUG 674 /* 675 * Allocate the arrays for tracking what needs to be logged 676 * and what our callers request to be logged. bli_orig 677 * holds a copy of the original, clean buffer for comparison 678 * against, and bli_logged keeps a 1 bit flag per byte in 679 * the buffer to indicate which bytes the callers have asked 680 * to have logged. 681 */ 682 bip->bli_orig = kmem_alloc(BBTOB(bp->b_length), KM_SLEEP); 683 memcpy(bip->bli_orig, bp->b_addr, BBTOB(bp->b_length)); 684 bip->bli_logged = kmem_zalloc(BBTOB(bp->b_length) / NBBY, KM_SLEEP); 685 #endif 686 687 /* 688 * Put the buf item into the list of items attached to the 689 * buffer at the front. 690 */ 691 if (bp->b_fspriv) 692 bip->bli_item.li_bio_list = bp->b_fspriv; 693 bp->b_fspriv = bip; 694 } 695 696 697 /* 698 * Mark bytes first through last inclusive as dirty in the buf 699 * item's bitmap. 700 */ 701 void 702 xfs_buf_item_log( 703 xfs_buf_log_item_t *bip, 704 uint first, 705 uint last) 706 { 707 uint first_bit; 708 uint last_bit; 709 uint bits_to_set; 710 uint bits_set; 711 uint word_num; 712 uint *wordp; 713 uint bit; 714 uint end_bit; 715 uint mask; 716 717 /* 718 * Mark the item as having some dirty data for 719 * quick reference in xfs_buf_item_dirty. 720 */ 721 bip->bli_flags |= XFS_BLI_DIRTY; 722 723 /* 724 * Convert byte offsets to bit numbers. 725 */ 726 first_bit = first >> XFS_BLF_SHIFT; 727 last_bit = last >> XFS_BLF_SHIFT; 728 729 /* 730 * Calculate the total number of bits to be set. 731 */ 732 bits_to_set = last_bit - first_bit + 1; 733 734 /* 735 * Get a pointer to the first word in the bitmap 736 * to set a bit in. 737 */ 738 word_num = first_bit >> BIT_TO_WORD_SHIFT; 739 wordp = &(bip->bli_format.blf_data_map[word_num]); 740 741 /* 742 * Calculate the starting bit in the first word. 743 */ 744 bit = first_bit & (uint)(NBWORD - 1); 745 746 /* 747 * First set any bits in the first word of our range. 748 * If it starts at bit 0 of the word, it will be 749 * set below rather than here. That is what the variable 750 * bit tells us. The variable bits_set tracks the number 751 * of bits that have been set so far. End_bit is the number 752 * of the last bit to be set in this word plus one. 753 */ 754 if (bit) { 755 end_bit = MIN(bit + bits_to_set, (uint)NBWORD); 756 mask = ((1 << (end_bit - bit)) - 1) << bit; 757 *wordp |= mask; 758 wordp++; 759 bits_set = end_bit - bit; 760 } else { 761 bits_set = 0; 762 } 763 764 /* 765 * Now set bits a whole word at a time that are between 766 * first_bit and last_bit. 767 */ 768 while ((bits_to_set - bits_set) >= NBWORD) { 769 *wordp |= 0xffffffff; 770 bits_set += NBWORD; 771 wordp++; 772 } 773 774 /* 775 * Finally, set any bits left to be set in one last partial word. 776 */ 777 end_bit = bits_to_set - bits_set; 778 if (end_bit) { 779 mask = (1 << end_bit) - 1; 780 *wordp |= mask; 781 } 782 783 xfs_buf_item_log_debug(bip, first, last); 784 } 785 786 787 /* 788 * Return 1 if the buffer has some data that has been logged (at any 789 * point, not just the current transaction) and 0 if not. 790 */ 791 uint 792 xfs_buf_item_dirty( 793 xfs_buf_log_item_t *bip) 794 { 795 return (bip->bli_flags & XFS_BLI_DIRTY); 796 } 797 798 STATIC void 799 xfs_buf_item_free( 800 xfs_buf_log_item_t *bip) 801 { 802 #ifdef XFS_TRANS_DEBUG 803 kmem_free(bip->bli_orig); 804 kmem_free(bip->bli_logged); 805 #endif /* XFS_TRANS_DEBUG */ 806 807 kmem_zone_free(xfs_buf_item_zone, bip); 808 } 809 810 /* 811 * This is called when the buf log item is no longer needed. It should 812 * free the buf log item associated with the given buffer and clear 813 * the buffer's pointer to the buf log item. If there are no more 814 * items in the list, clear the b_iodone field of the buffer (see 815 * xfs_buf_attach_iodone() below). 816 */ 817 void 818 xfs_buf_item_relse( 819 xfs_buf_t *bp) 820 { 821 xfs_buf_log_item_t *bip; 822 823 trace_xfs_buf_item_relse(bp, _RET_IP_); 824 825 bip = bp->b_fspriv; 826 bp->b_fspriv = bip->bli_item.li_bio_list; 827 if (bp->b_fspriv == NULL) 828 bp->b_iodone = NULL; 829 830 xfs_buf_rele(bp); 831 xfs_buf_item_free(bip); 832 } 833 834 835 /* 836 * Add the given log item with its callback to the list of callbacks 837 * to be called when the buffer's I/O completes. If it is not set 838 * already, set the buffer's b_iodone() routine to be 839 * xfs_buf_iodone_callbacks() and link the log item into the list of 840 * items rooted at b_fsprivate. Items are always added as the second 841 * entry in the list if there is a first, because the buf item code 842 * assumes that the buf log item is first. 843 */ 844 void 845 xfs_buf_attach_iodone( 846 xfs_buf_t *bp, 847 void (*cb)(xfs_buf_t *, xfs_log_item_t *), 848 xfs_log_item_t *lip) 849 { 850 xfs_log_item_t *head_lip; 851 852 ASSERT(xfs_buf_islocked(bp)); 853 854 lip->li_cb = cb; 855 head_lip = bp->b_fspriv; 856 if (head_lip) { 857 lip->li_bio_list = head_lip->li_bio_list; 858 head_lip->li_bio_list = lip; 859 } else { 860 bp->b_fspriv = lip; 861 } 862 863 ASSERT(bp->b_iodone == NULL || 864 bp->b_iodone == xfs_buf_iodone_callbacks); 865 bp->b_iodone = xfs_buf_iodone_callbacks; 866 } 867 868 /* 869 * We can have many callbacks on a buffer. Running the callbacks individually 870 * can cause a lot of contention on the AIL lock, so we allow for a single 871 * callback to be able to scan the remaining lip->li_bio_list for other items 872 * of the same type and callback to be processed in the first call. 873 * 874 * As a result, the loop walking the callback list below will also modify the 875 * list. it removes the first item from the list and then runs the callback. 876 * The loop then restarts from the new head of the list. This allows the 877 * callback to scan and modify the list attached to the buffer and we don't 878 * have to care about maintaining a next item pointer. 879 */ 880 STATIC void 881 xfs_buf_do_callbacks( 882 struct xfs_buf *bp) 883 { 884 struct xfs_log_item *lip; 885 886 while ((lip = bp->b_fspriv) != NULL) { 887 bp->b_fspriv = lip->li_bio_list; 888 ASSERT(lip->li_cb != NULL); 889 /* 890 * Clear the next pointer so we don't have any 891 * confusion if the item is added to another buf. 892 * Don't touch the log item after calling its 893 * callback, because it could have freed itself. 894 */ 895 lip->li_bio_list = NULL; 896 lip->li_cb(bp, lip); 897 } 898 } 899 900 /* 901 * This is the iodone() function for buffers which have had callbacks 902 * attached to them by xfs_buf_attach_iodone(). It should remove each 903 * log item from the buffer's list and call the callback of each in turn. 904 * When done, the buffer's fsprivate field is set to NULL and the buffer 905 * is unlocked with a call to iodone(). 906 */ 907 void 908 xfs_buf_iodone_callbacks( 909 struct xfs_buf *bp) 910 { 911 struct xfs_log_item *lip = bp->b_fspriv; 912 struct xfs_mount *mp = lip->li_mountp; 913 static ulong lasttime; 914 static xfs_buftarg_t *lasttarg; 915 916 if (likely(!xfs_buf_geterror(bp))) 917 goto do_callbacks; 918 919 /* 920 * If we've already decided to shutdown the filesystem because of 921 * I/O errors, there's no point in giving this a retry. 922 */ 923 if (XFS_FORCED_SHUTDOWN(mp)) { 924 xfs_buf_stale(bp); 925 XFS_BUF_DONE(bp); 926 trace_xfs_buf_item_iodone(bp, _RET_IP_); 927 goto do_callbacks; 928 } 929 930 if (bp->b_target != lasttarg || 931 time_after(jiffies, (lasttime + 5*HZ))) { 932 lasttime = jiffies; 933 xfs_buf_ioerror_alert(bp, __func__); 934 } 935 lasttarg = bp->b_target; 936 937 /* 938 * If the write was asynchronous then no one will be looking for the 939 * error. Clear the error state and write the buffer out again. 940 * 941 * XXX: This helps against transient write errors, but we need to find 942 * a way to shut the filesystem down if the writes keep failing. 943 * 944 * In practice we'll shut the filesystem down soon as non-transient 945 * erorrs tend to affect the whole device and a failing log write 946 * will make us give up. But we really ought to do better here. 947 */ 948 if (XFS_BUF_ISASYNC(bp)) { 949 ASSERT(bp->b_iodone != NULL); 950 951 trace_xfs_buf_item_iodone_async(bp, _RET_IP_); 952 953 xfs_buf_ioerror(bp, 0); /* errno of 0 unsets the flag */ 954 955 if (!XFS_BUF_ISSTALE(bp)) { 956 bp->b_flags |= XBF_WRITE | XBF_ASYNC | XBF_DONE; 957 xfs_bdstrat_cb(bp); 958 } else { 959 xfs_buf_relse(bp); 960 } 961 962 return; 963 } 964 965 /* 966 * If the write of the buffer was synchronous, we want to make 967 * sure to return the error to the caller of xfs_bwrite(). 968 */ 969 xfs_buf_stale(bp); 970 XFS_BUF_DONE(bp); 971 972 trace_xfs_buf_error_relse(bp, _RET_IP_); 973 974 do_callbacks: 975 xfs_buf_do_callbacks(bp); 976 bp->b_fspriv = NULL; 977 bp->b_iodone = NULL; 978 xfs_buf_ioend(bp, 0); 979 } 980 981 /* 982 * This is the iodone() function for buffers which have been 983 * logged. It is called when they are eventually flushed out. 984 * It should remove the buf item from the AIL, and free the buf item. 985 * It is called by xfs_buf_iodone_callbacks() above which will take 986 * care of cleaning up the buffer itself. 987 */ 988 void 989 xfs_buf_iodone( 990 struct xfs_buf *bp, 991 struct xfs_log_item *lip) 992 { 993 struct xfs_ail *ailp = lip->li_ailp; 994 995 ASSERT(BUF_ITEM(lip)->bli_buf == bp); 996 997 xfs_buf_rele(bp); 998 999 /* 1000 * If we are forcibly shutting down, this may well be 1001 * off the AIL already. That's because we simulate the 1002 * log-committed callbacks to unpin these buffers. Or we may never 1003 * have put this item on AIL because of the transaction was 1004 * aborted forcibly. xfs_trans_ail_delete() takes care of these. 1005 * 1006 * Either way, AIL is useless if we're forcing a shutdown. 1007 */ 1008 spin_lock(&ailp->xa_lock); 1009 xfs_trans_ail_delete(ailp, lip, SHUTDOWN_CORRUPT_INCORE); 1010 xfs_buf_item_free(BUF_ITEM(lip)); 1011 } 1012