1 /* 2 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_fs.h" 20 #include "xfs_types.h" 21 #include "xfs_bit.h" 22 #include "xfs_log.h" 23 #include "xfs_inum.h" 24 #include "xfs_trans.h" 25 #include "xfs_sb.h" 26 #include "xfs_ag.h" 27 #include "xfs_dmapi.h" 28 #include "xfs_mount.h" 29 #include "xfs_buf_item.h" 30 #include "xfs_trans_priv.h" 31 #include "xfs_error.h" 32 #include "xfs_trace.h" 33 34 35 kmem_zone_t *xfs_buf_item_zone; 36 37 #ifdef XFS_TRANS_DEBUG 38 /* 39 * This function uses an alternate strategy for tracking the bytes 40 * that the user requests to be logged. This can then be used 41 * in conjunction with the bli_orig array in the buf log item to 42 * catch bugs in our callers' code. 43 * 44 * We also double check the bits set in xfs_buf_item_log using a 45 * simple algorithm to check that every byte is accounted for. 46 */ 47 STATIC void 48 xfs_buf_item_log_debug( 49 xfs_buf_log_item_t *bip, 50 uint first, 51 uint last) 52 { 53 uint x; 54 uint byte; 55 uint nbytes; 56 uint chunk_num; 57 uint word_num; 58 uint bit_num; 59 uint bit_set; 60 uint *wordp; 61 62 ASSERT(bip->bli_logged != NULL); 63 byte = first; 64 nbytes = last - first + 1; 65 bfset(bip->bli_logged, first, nbytes); 66 for (x = 0; x < nbytes; x++) { 67 chunk_num = byte >> XFS_BLF_SHIFT; 68 word_num = chunk_num >> BIT_TO_WORD_SHIFT; 69 bit_num = chunk_num & (NBWORD - 1); 70 wordp = &(bip->bli_format.blf_data_map[word_num]); 71 bit_set = *wordp & (1 << bit_num); 72 ASSERT(bit_set); 73 byte++; 74 } 75 } 76 77 /* 78 * This function is called when we flush something into a buffer without 79 * logging it. This happens for things like inodes which are logged 80 * separately from the buffer. 81 */ 82 void 83 xfs_buf_item_flush_log_debug( 84 xfs_buf_t *bp, 85 uint first, 86 uint last) 87 { 88 xfs_buf_log_item_t *bip; 89 uint nbytes; 90 91 bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t*); 92 if ((bip == NULL) || (bip->bli_item.li_type != XFS_LI_BUF)) { 93 return; 94 } 95 96 ASSERT(bip->bli_logged != NULL); 97 nbytes = last - first + 1; 98 bfset(bip->bli_logged, first, nbytes); 99 } 100 101 /* 102 * This function is called to verify that our callers have logged 103 * all the bytes that they changed. 104 * 105 * It does this by comparing the original copy of the buffer stored in 106 * the buf log item's bli_orig array to the current copy of the buffer 107 * and ensuring that all bytes which mismatch are set in the bli_logged 108 * array of the buf log item. 109 */ 110 STATIC void 111 xfs_buf_item_log_check( 112 xfs_buf_log_item_t *bip) 113 { 114 char *orig; 115 char *buffer; 116 int x; 117 xfs_buf_t *bp; 118 119 ASSERT(bip->bli_orig != NULL); 120 ASSERT(bip->bli_logged != NULL); 121 122 bp = bip->bli_buf; 123 ASSERT(XFS_BUF_COUNT(bp) > 0); 124 ASSERT(XFS_BUF_PTR(bp) != NULL); 125 orig = bip->bli_orig; 126 buffer = XFS_BUF_PTR(bp); 127 for (x = 0; x < XFS_BUF_COUNT(bp); x++) { 128 if (orig[x] != buffer[x] && !btst(bip->bli_logged, x)) 129 cmn_err(CE_PANIC, 130 "xfs_buf_item_log_check bip %x buffer %x orig %x index %d", 131 bip, bp, orig, x); 132 } 133 } 134 #else 135 #define xfs_buf_item_log_debug(x,y,z) 136 #define xfs_buf_item_log_check(x) 137 #endif 138 139 STATIC void xfs_buf_error_relse(xfs_buf_t *bp); 140 STATIC void xfs_buf_do_callbacks(xfs_buf_t *bp, xfs_log_item_t *lip); 141 142 /* 143 * This returns the number of log iovecs needed to log the 144 * given buf log item. 145 * 146 * It calculates this as 1 iovec for the buf log format structure 147 * and 1 for each stretch of non-contiguous chunks to be logged. 148 * Contiguous chunks are logged in a single iovec. 149 * 150 * If the XFS_BLI_STALE flag has been set, then log nothing. 151 */ 152 STATIC uint 153 xfs_buf_item_size( 154 xfs_buf_log_item_t *bip) 155 { 156 uint nvecs; 157 int next_bit; 158 int last_bit; 159 xfs_buf_t *bp; 160 161 ASSERT(atomic_read(&bip->bli_refcount) > 0); 162 if (bip->bli_flags & XFS_BLI_STALE) { 163 /* 164 * The buffer is stale, so all we need to log 165 * is the buf log format structure with the 166 * cancel flag in it. 167 */ 168 trace_xfs_buf_item_size_stale(bip); 169 ASSERT(bip->bli_format.blf_flags & XFS_BLF_CANCEL); 170 return 1; 171 } 172 173 bp = bip->bli_buf; 174 ASSERT(bip->bli_flags & XFS_BLI_LOGGED); 175 nvecs = 1; 176 last_bit = xfs_next_bit(bip->bli_format.blf_data_map, 177 bip->bli_format.blf_map_size, 0); 178 ASSERT(last_bit != -1); 179 nvecs++; 180 while (last_bit != -1) { 181 /* 182 * This takes the bit number to start looking from and 183 * returns the next set bit from there. It returns -1 184 * if there are no more bits set or the start bit is 185 * beyond the end of the bitmap. 186 */ 187 next_bit = xfs_next_bit(bip->bli_format.blf_data_map, 188 bip->bli_format.blf_map_size, 189 last_bit + 1); 190 /* 191 * If we run out of bits, leave the loop, 192 * else if we find a new set of bits bump the number of vecs, 193 * else keep scanning the current set of bits. 194 */ 195 if (next_bit == -1) { 196 last_bit = -1; 197 } else if (next_bit != last_bit + 1) { 198 last_bit = next_bit; 199 nvecs++; 200 } else if (xfs_buf_offset(bp, next_bit * XFS_BLF_CHUNK) != 201 (xfs_buf_offset(bp, last_bit * XFS_BLF_CHUNK) + 202 XFS_BLF_CHUNK)) { 203 last_bit = next_bit; 204 nvecs++; 205 } else { 206 last_bit++; 207 } 208 } 209 210 trace_xfs_buf_item_size(bip); 211 return nvecs; 212 } 213 214 /* 215 * This is called to fill in the vector of log iovecs for the 216 * given log buf item. It fills the first entry with a buf log 217 * format structure, and the rest point to contiguous chunks 218 * within the buffer. 219 */ 220 STATIC void 221 xfs_buf_item_format( 222 xfs_buf_log_item_t *bip, 223 xfs_log_iovec_t *log_vector) 224 { 225 uint base_size; 226 uint nvecs; 227 xfs_log_iovec_t *vecp; 228 xfs_buf_t *bp; 229 int first_bit; 230 int last_bit; 231 int next_bit; 232 uint nbits; 233 uint buffer_offset; 234 235 ASSERT(atomic_read(&bip->bli_refcount) > 0); 236 ASSERT((bip->bli_flags & XFS_BLI_LOGGED) || 237 (bip->bli_flags & XFS_BLI_STALE)); 238 bp = bip->bli_buf; 239 vecp = log_vector; 240 241 /* 242 * The size of the base structure is the size of the 243 * declared structure plus the space for the extra words 244 * of the bitmap. We subtract one from the map size, because 245 * the first element of the bitmap is accounted for in the 246 * size of the base structure. 247 */ 248 base_size = 249 (uint)(sizeof(xfs_buf_log_format_t) + 250 ((bip->bli_format.blf_map_size - 1) * sizeof(uint))); 251 vecp->i_addr = (xfs_caddr_t)&bip->bli_format; 252 vecp->i_len = base_size; 253 vecp->i_type = XLOG_REG_TYPE_BFORMAT; 254 vecp++; 255 nvecs = 1; 256 257 /* 258 * If it is an inode buffer, transfer the in-memory state to the 259 * format flags and clear the in-memory state. We do not transfer 260 * this state if the inode buffer allocation has not yet been committed 261 * to the log as setting the XFS_BLI_INODE_BUF flag will prevent 262 * correct replay of the inode allocation. 263 */ 264 if (bip->bli_flags & XFS_BLI_INODE_BUF) { 265 if (!((bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF) && 266 xfs_log_item_in_current_chkpt(&bip->bli_item))) 267 bip->bli_format.blf_flags |= XFS_BLF_INODE_BUF; 268 bip->bli_flags &= ~XFS_BLI_INODE_BUF; 269 } 270 271 if (bip->bli_flags & XFS_BLI_STALE) { 272 /* 273 * The buffer is stale, so all we need to log 274 * is the buf log format structure with the 275 * cancel flag in it. 276 */ 277 trace_xfs_buf_item_format_stale(bip); 278 ASSERT(bip->bli_format.blf_flags & XFS_BLF_CANCEL); 279 bip->bli_format.blf_size = nvecs; 280 return; 281 } 282 283 /* 284 * Fill in an iovec for each set of contiguous chunks. 285 */ 286 first_bit = xfs_next_bit(bip->bli_format.blf_data_map, 287 bip->bli_format.blf_map_size, 0); 288 ASSERT(first_bit != -1); 289 last_bit = first_bit; 290 nbits = 1; 291 for (;;) { 292 /* 293 * This takes the bit number to start looking from and 294 * returns the next set bit from there. It returns -1 295 * if there are no more bits set or the start bit is 296 * beyond the end of the bitmap. 297 */ 298 next_bit = xfs_next_bit(bip->bli_format.blf_data_map, 299 bip->bli_format.blf_map_size, 300 (uint)last_bit + 1); 301 /* 302 * If we run out of bits fill in the last iovec and get 303 * out of the loop. 304 * Else if we start a new set of bits then fill in the 305 * iovec for the series we were looking at and start 306 * counting the bits in the new one. 307 * Else we're still in the same set of bits so just 308 * keep counting and scanning. 309 */ 310 if (next_bit == -1) { 311 buffer_offset = first_bit * XFS_BLF_CHUNK; 312 vecp->i_addr = xfs_buf_offset(bp, buffer_offset); 313 vecp->i_len = nbits * XFS_BLF_CHUNK; 314 vecp->i_type = XLOG_REG_TYPE_BCHUNK; 315 nvecs++; 316 break; 317 } else if (next_bit != last_bit + 1) { 318 buffer_offset = first_bit * XFS_BLF_CHUNK; 319 vecp->i_addr = xfs_buf_offset(bp, buffer_offset); 320 vecp->i_len = nbits * XFS_BLF_CHUNK; 321 vecp->i_type = XLOG_REG_TYPE_BCHUNK; 322 nvecs++; 323 vecp++; 324 first_bit = next_bit; 325 last_bit = next_bit; 326 nbits = 1; 327 } else if (xfs_buf_offset(bp, next_bit << XFS_BLF_SHIFT) != 328 (xfs_buf_offset(bp, last_bit << XFS_BLF_SHIFT) + 329 XFS_BLF_CHUNK)) { 330 buffer_offset = first_bit * XFS_BLF_CHUNK; 331 vecp->i_addr = xfs_buf_offset(bp, buffer_offset); 332 vecp->i_len = nbits * XFS_BLF_CHUNK; 333 vecp->i_type = XLOG_REG_TYPE_BCHUNK; 334 /* You would think we need to bump the nvecs here too, but we do not 335 * this number is used by recovery, and it gets confused by the boundary 336 * split here 337 * nvecs++; 338 */ 339 vecp++; 340 first_bit = next_bit; 341 last_bit = next_bit; 342 nbits = 1; 343 } else { 344 last_bit++; 345 nbits++; 346 } 347 } 348 bip->bli_format.blf_size = nvecs; 349 350 /* 351 * Check to make sure everything is consistent. 352 */ 353 trace_xfs_buf_item_format(bip); 354 xfs_buf_item_log_check(bip); 355 } 356 357 /* 358 * This is called to pin the buffer associated with the buf log item in memory 359 * so it cannot be written out. Simply call bpin() on the buffer to do this. 360 * 361 * We also always take a reference to the buffer log item here so that the bli 362 * is held while the item is pinned in memory. This means that we can 363 * unconditionally drop the reference count a transaction holds when the 364 * transaction is completed. 365 */ 366 367 STATIC void 368 xfs_buf_item_pin( 369 xfs_buf_log_item_t *bip) 370 { 371 xfs_buf_t *bp; 372 373 bp = bip->bli_buf; 374 ASSERT(XFS_BUF_ISBUSY(bp)); 375 ASSERT(atomic_read(&bip->bli_refcount) > 0); 376 ASSERT((bip->bli_flags & XFS_BLI_LOGGED) || 377 (bip->bli_flags & XFS_BLI_STALE)); 378 atomic_inc(&bip->bli_refcount); 379 trace_xfs_buf_item_pin(bip); 380 xfs_bpin(bp); 381 } 382 383 384 /* 385 * This is called to unpin the buffer associated with the buf log 386 * item which was previously pinned with a call to xfs_buf_item_pin(). 387 * Just call bunpin() on the buffer to do this. 388 * 389 * Also drop the reference to the buf item for the current transaction. 390 * If the XFS_BLI_STALE flag is set and we are the last reference, 391 * then free up the buf log item and unlock the buffer. 392 */ 393 STATIC void 394 xfs_buf_item_unpin( 395 xfs_buf_log_item_t *bip) 396 { 397 struct xfs_ail *ailp; 398 xfs_buf_t *bp; 399 int freed; 400 int stale = bip->bli_flags & XFS_BLI_STALE; 401 402 bp = bip->bli_buf; 403 ASSERT(bp != NULL); 404 ASSERT(XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t *) == bip); 405 ASSERT(atomic_read(&bip->bli_refcount) > 0); 406 trace_xfs_buf_item_unpin(bip); 407 408 freed = atomic_dec_and_test(&bip->bli_refcount); 409 ailp = bip->bli_item.li_ailp; 410 xfs_bunpin(bp); 411 if (freed && stale) { 412 ASSERT(bip->bli_flags & XFS_BLI_STALE); 413 ASSERT(XFS_BUF_VALUSEMA(bp) <= 0); 414 ASSERT(!(XFS_BUF_ISDELAYWRITE(bp))); 415 ASSERT(XFS_BUF_ISSTALE(bp)); 416 ASSERT(bip->bli_format.blf_flags & XFS_BLF_CANCEL); 417 trace_xfs_buf_item_unpin_stale(bip); 418 419 /* 420 * If we get called here because of an IO error, we may 421 * or may not have the item on the AIL. xfs_trans_ail_delete() 422 * will take care of that situation. 423 * xfs_trans_ail_delete() drops the AIL lock. 424 */ 425 if (bip->bli_flags & XFS_BLI_STALE_INODE) { 426 xfs_buf_do_callbacks(bp, (xfs_log_item_t *)bip); 427 XFS_BUF_SET_FSPRIVATE(bp, NULL); 428 XFS_BUF_CLR_IODONE_FUNC(bp); 429 } else { 430 spin_lock(&ailp->xa_lock); 431 xfs_trans_ail_delete(ailp, (xfs_log_item_t *)bip); 432 xfs_buf_item_relse(bp); 433 ASSERT(XFS_BUF_FSPRIVATE(bp, void *) == NULL); 434 } 435 xfs_buf_relse(bp); 436 } 437 } 438 439 /* 440 * this is called from uncommit in the forced-shutdown path. 441 * we need to check to see if the reference count on the log item 442 * is going to drop to zero. If so, unpin will free the log item 443 * so we need to free the item's descriptor (that points to the item) 444 * in the transaction. 445 */ 446 STATIC void 447 xfs_buf_item_unpin_remove( 448 xfs_buf_log_item_t *bip, 449 xfs_trans_t *tp) 450 { 451 /* will xfs_buf_item_unpin() call xfs_buf_item_relse()? */ 452 if ((atomic_read(&bip->bli_refcount) == 1) && 453 (bip->bli_flags & XFS_BLI_STALE)) { 454 /* 455 * yes -- We can safely do some work here and then call 456 * buf_item_unpin to do the rest because we are 457 * are holding the buffer locked so no one else will be 458 * able to bump up the refcount. We have to remove the 459 * log item from the transaction as we are about to release 460 * our reference to the buffer. If we don't, the unlock that 461 * occurs later in the xfs_trans_uncommit() will try to 462 * reference the buffer which we no longer have a hold on. 463 */ 464 struct xfs_log_item_desc *lidp; 465 466 ASSERT(XFS_BUF_VALUSEMA(bip->bli_buf) <= 0); 467 trace_xfs_buf_item_unpin_stale(bip); 468 469 lidp = xfs_trans_find_item(tp, (xfs_log_item_t *)bip); 470 xfs_trans_free_item(tp, lidp); 471 472 /* 473 * Since the transaction no longer refers to the buffer, the 474 * buffer should no longer refer to the transaction. 475 */ 476 XFS_BUF_SET_FSPRIVATE2(bip->bli_buf, NULL); 477 } 478 xfs_buf_item_unpin(bip); 479 } 480 481 /* 482 * This is called to attempt to lock the buffer associated with this 483 * buf log item. Don't sleep on the buffer lock. If we can't get 484 * the lock right away, return 0. If we can get the lock, take a 485 * reference to the buffer. If this is a delayed write buffer that 486 * needs AIL help to be written back, invoke the pushbuf routine 487 * rather than the normal success path. 488 */ 489 STATIC uint 490 xfs_buf_item_trylock( 491 xfs_buf_log_item_t *bip) 492 { 493 xfs_buf_t *bp; 494 495 bp = bip->bli_buf; 496 if (XFS_BUF_ISPINNED(bp)) 497 return XFS_ITEM_PINNED; 498 if (!XFS_BUF_CPSEMA(bp)) 499 return XFS_ITEM_LOCKED; 500 501 /* take a reference to the buffer. */ 502 XFS_BUF_HOLD(bp); 503 504 ASSERT(!(bip->bli_flags & XFS_BLI_STALE)); 505 trace_xfs_buf_item_trylock(bip); 506 if (XFS_BUF_ISDELAYWRITE(bp)) 507 return XFS_ITEM_PUSHBUF; 508 return XFS_ITEM_SUCCESS; 509 } 510 511 /* 512 * Release the buffer associated with the buf log item. If there is no dirty 513 * logged data associated with the buffer recorded in the buf log item, then 514 * free the buf log item and remove the reference to it in the buffer. 515 * 516 * This call ignores the recursion count. It is only called when the buffer 517 * should REALLY be unlocked, regardless of the recursion count. 518 * 519 * We unconditionally drop the transaction's reference to the log item. If the 520 * item was logged, then another reference was taken when it was pinned, so we 521 * can safely drop the transaction reference now. This also allows us to avoid 522 * potential races with the unpin code freeing the bli by not referencing the 523 * bli after we've dropped the reference count. 524 * 525 * If the XFS_BLI_HOLD flag is set in the buf log item, then free the log item 526 * if necessary but do not unlock the buffer. This is for support of 527 * xfs_trans_bhold(). Make sure the XFS_BLI_HOLD field is cleared if we don't 528 * free the item. 529 */ 530 STATIC void 531 xfs_buf_item_unlock( 532 xfs_buf_log_item_t *bip) 533 { 534 int aborted; 535 xfs_buf_t *bp; 536 uint hold; 537 538 bp = bip->bli_buf; 539 540 /* Clear the buffer's association with this transaction. */ 541 XFS_BUF_SET_FSPRIVATE2(bp, NULL); 542 543 /* 544 * If this is a transaction abort, don't return early. Instead, allow 545 * the brelse to happen. Normally it would be done for stale 546 * (cancelled) buffers at unpin time, but we'll never go through the 547 * pin/unpin cycle if we abort inside commit. 548 */ 549 aborted = (bip->bli_item.li_flags & XFS_LI_ABORTED) != 0; 550 551 /* 552 * Before possibly freeing the buf item, determine if we should 553 * release the buffer at the end of this routine. 554 */ 555 hold = bip->bli_flags & XFS_BLI_HOLD; 556 557 /* Clear the per transaction state. */ 558 bip->bli_flags &= ~(XFS_BLI_LOGGED | XFS_BLI_HOLD); 559 560 /* 561 * If the buf item is marked stale, then don't do anything. We'll 562 * unlock the buffer and free the buf item when the buffer is unpinned 563 * for the last time. 564 */ 565 if (bip->bli_flags & XFS_BLI_STALE) { 566 trace_xfs_buf_item_unlock_stale(bip); 567 ASSERT(bip->bli_format.blf_flags & XFS_BLF_CANCEL); 568 if (!aborted) { 569 atomic_dec(&bip->bli_refcount); 570 return; 571 } 572 } 573 574 trace_xfs_buf_item_unlock(bip); 575 576 /* 577 * If the buf item isn't tracking any data, free it, otherwise drop the 578 * reference we hold to it. 579 */ 580 if (xfs_bitmap_empty(bip->bli_format.blf_data_map, 581 bip->bli_format.blf_map_size)) 582 xfs_buf_item_relse(bp); 583 else 584 atomic_dec(&bip->bli_refcount); 585 586 if (!hold) 587 xfs_buf_relse(bp); 588 } 589 590 /* 591 * This is called to find out where the oldest active copy of the 592 * buf log item in the on disk log resides now that the last log 593 * write of it completed at the given lsn. 594 * We always re-log all the dirty data in a buffer, so usually the 595 * latest copy in the on disk log is the only one that matters. For 596 * those cases we simply return the given lsn. 597 * 598 * The one exception to this is for buffers full of newly allocated 599 * inodes. These buffers are only relogged with the XFS_BLI_INODE_BUF 600 * flag set, indicating that only the di_next_unlinked fields from the 601 * inodes in the buffers will be replayed during recovery. If the 602 * original newly allocated inode images have not yet been flushed 603 * when the buffer is so relogged, then we need to make sure that we 604 * keep the old images in the 'active' portion of the log. We do this 605 * by returning the original lsn of that transaction here rather than 606 * the current one. 607 */ 608 STATIC xfs_lsn_t 609 xfs_buf_item_committed( 610 xfs_buf_log_item_t *bip, 611 xfs_lsn_t lsn) 612 { 613 trace_xfs_buf_item_committed(bip); 614 615 if ((bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF) && 616 (bip->bli_item.li_lsn != 0)) { 617 return bip->bli_item.li_lsn; 618 } 619 return (lsn); 620 } 621 622 /* 623 * The buffer is locked, but is not a delayed write buffer. This happens 624 * if we race with IO completion and hence we don't want to try to write it 625 * again. Just release the buffer. 626 */ 627 STATIC void 628 xfs_buf_item_push( 629 xfs_buf_log_item_t *bip) 630 { 631 xfs_buf_t *bp; 632 633 ASSERT(!(bip->bli_flags & XFS_BLI_STALE)); 634 trace_xfs_buf_item_push(bip); 635 636 bp = bip->bli_buf; 637 ASSERT(!XFS_BUF_ISDELAYWRITE(bp)); 638 xfs_buf_relse(bp); 639 } 640 641 /* 642 * The buffer is locked and is a delayed write buffer. Promote the buffer 643 * in the delayed write queue as the caller knows that they must invoke 644 * the xfsbufd to get this buffer written. We have to unlock the buffer 645 * to allow the xfsbufd to write it, too. 646 */ 647 STATIC void 648 xfs_buf_item_pushbuf( 649 xfs_buf_log_item_t *bip) 650 { 651 xfs_buf_t *bp; 652 653 ASSERT(!(bip->bli_flags & XFS_BLI_STALE)); 654 trace_xfs_buf_item_pushbuf(bip); 655 656 bp = bip->bli_buf; 657 ASSERT(XFS_BUF_ISDELAYWRITE(bp)); 658 xfs_buf_delwri_promote(bp); 659 xfs_buf_relse(bp); 660 } 661 662 /* ARGSUSED */ 663 STATIC void 664 xfs_buf_item_committing(xfs_buf_log_item_t *bip, xfs_lsn_t commit_lsn) 665 { 666 } 667 668 /* 669 * This is the ops vector shared by all buf log items. 670 */ 671 static struct xfs_item_ops xfs_buf_item_ops = { 672 .iop_size = (uint(*)(xfs_log_item_t*))xfs_buf_item_size, 673 .iop_format = (void(*)(xfs_log_item_t*, xfs_log_iovec_t*)) 674 xfs_buf_item_format, 675 .iop_pin = (void(*)(xfs_log_item_t*))xfs_buf_item_pin, 676 .iop_unpin = (void(*)(xfs_log_item_t*))xfs_buf_item_unpin, 677 .iop_unpin_remove = (void(*)(xfs_log_item_t*, xfs_trans_t *)) 678 xfs_buf_item_unpin_remove, 679 .iop_trylock = (uint(*)(xfs_log_item_t*))xfs_buf_item_trylock, 680 .iop_unlock = (void(*)(xfs_log_item_t*))xfs_buf_item_unlock, 681 .iop_committed = (xfs_lsn_t(*)(xfs_log_item_t*, xfs_lsn_t)) 682 xfs_buf_item_committed, 683 .iop_push = (void(*)(xfs_log_item_t*))xfs_buf_item_push, 684 .iop_pushbuf = (void(*)(xfs_log_item_t*))xfs_buf_item_pushbuf, 685 .iop_committing = (void(*)(xfs_log_item_t*, xfs_lsn_t)) 686 xfs_buf_item_committing 687 }; 688 689 690 /* 691 * Allocate a new buf log item to go with the given buffer. 692 * Set the buffer's b_fsprivate field to point to the new 693 * buf log item. If there are other item's attached to the 694 * buffer (see xfs_buf_attach_iodone() below), then put the 695 * buf log item at the front. 696 */ 697 void 698 xfs_buf_item_init( 699 xfs_buf_t *bp, 700 xfs_mount_t *mp) 701 { 702 xfs_log_item_t *lip; 703 xfs_buf_log_item_t *bip; 704 int chunks; 705 int map_size; 706 707 /* 708 * Check to see if there is already a buf log item for 709 * this buffer. If there is, it is guaranteed to be 710 * the first. If we do already have one, there is 711 * nothing to do here so return. 712 */ 713 if (bp->b_mount != mp) 714 bp->b_mount = mp; 715 XFS_BUF_SET_BDSTRAT_FUNC(bp, xfs_bdstrat_cb); 716 if (XFS_BUF_FSPRIVATE(bp, void *) != NULL) { 717 lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *); 718 if (lip->li_type == XFS_LI_BUF) { 719 return; 720 } 721 } 722 723 /* 724 * chunks is the number of XFS_BLF_CHUNK size pieces 725 * the buffer can be divided into. Make sure not to 726 * truncate any pieces. map_size is the size of the 727 * bitmap needed to describe the chunks of the buffer. 728 */ 729 chunks = (int)((XFS_BUF_COUNT(bp) + (XFS_BLF_CHUNK - 1)) >> XFS_BLF_SHIFT); 730 map_size = (int)((chunks + NBWORD) >> BIT_TO_WORD_SHIFT); 731 732 bip = (xfs_buf_log_item_t*)kmem_zone_zalloc(xfs_buf_item_zone, 733 KM_SLEEP); 734 xfs_log_item_init(mp, &bip->bli_item, XFS_LI_BUF, &xfs_buf_item_ops); 735 bip->bli_buf = bp; 736 xfs_buf_hold(bp); 737 bip->bli_format.blf_type = XFS_LI_BUF; 738 bip->bli_format.blf_blkno = (__int64_t)XFS_BUF_ADDR(bp); 739 bip->bli_format.blf_len = (ushort)BTOBB(XFS_BUF_COUNT(bp)); 740 bip->bli_format.blf_map_size = map_size; 741 742 #ifdef XFS_TRANS_DEBUG 743 /* 744 * Allocate the arrays for tracking what needs to be logged 745 * and what our callers request to be logged. bli_orig 746 * holds a copy of the original, clean buffer for comparison 747 * against, and bli_logged keeps a 1 bit flag per byte in 748 * the buffer to indicate which bytes the callers have asked 749 * to have logged. 750 */ 751 bip->bli_orig = (char *)kmem_alloc(XFS_BUF_COUNT(bp), KM_SLEEP); 752 memcpy(bip->bli_orig, XFS_BUF_PTR(bp), XFS_BUF_COUNT(bp)); 753 bip->bli_logged = (char *)kmem_zalloc(XFS_BUF_COUNT(bp) / NBBY, KM_SLEEP); 754 #endif 755 756 /* 757 * Put the buf item into the list of items attached to the 758 * buffer at the front. 759 */ 760 if (XFS_BUF_FSPRIVATE(bp, void *) != NULL) { 761 bip->bli_item.li_bio_list = 762 XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *); 763 } 764 XFS_BUF_SET_FSPRIVATE(bp, bip); 765 } 766 767 768 /* 769 * Mark bytes first through last inclusive as dirty in the buf 770 * item's bitmap. 771 */ 772 void 773 xfs_buf_item_log( 774 xfs_buf_log_item_t *bip, 775 uint first, 776 uint last) 777 { 778 uint first_bit; 779 uint last_bit; 780 uint bits_to_set; 781 uint bits_set; 782 uint word_num; 783 uint *wordp; 784 uint bit; 785 uint end_bit; 786 uint mask; 787 788 /* 789 * Mark the item as having some dirty data for 790 * quick reference in xfs_buf_item_dirty. 791 */ 792 bip->bli_flags |= XFS_BLI_DIRTY; 793 794 /* 795 * Convert byte offsets to bit numbers. 796 */ 797 first_bit = first >> XFS_BLF_SHIFT; 798 last_bit = last >> XFS_BLF_SHIFT; 799 800 /* 801 * Calculate the total number of bits to be set. 802 */ 803 bits_to_set = last_bit - first_bit + 1; 804 805 /* 806 * Get a pointer to the first word in the bitmap 807 * to set a bit in. 808 */ 809 word_num = first_bit >> BIT_TO_WORD_SHIFT; 810 wordp = &(bip->bli_format.blf_data_map[word_num]); 811 812 /* 813 * Calculate the starting bit in the first word. 814 */ 815 bit = first_bit & (uint)(NBWORD - 1); 816 817 /* 818 * First set any bits in the first word of our range. 819 * If it starts at bit 0 of the word, it will be 820 * set below rather than here. That is what the variable 821 * bit tells us. The variable bits_set tracks the number 822 * of bits that have been set so far. End_bit is the number 823 * of the last bit to be set in this word plus one. 824 */ 825 if (bit) { 826 end_bit = MIN(bit + bits_to_set, (uint)NBWORD); 827 mask = ((1 << (end_bit - bit)) - 1) << bit; 828 *wordp |= mask; 829 wordp++; 830 bits_set = end_bit - bit; 831 } else { 832 bits_set = 0; 833 } 834 835 /* 836 * Now set bits a whole word at a time that are between 837 * first_bit and last_bit. 838 */ 839 while ((bits_to_set - bits_set) >= NBWORD) { 840 *wordp |= 0xffffffff; 841 bits_set += NBWORD; 842 wordp++; 843 } 844 845 /* 846 * Finally, set any bits left to be set in one last partial word. 847 */ 848 end_bit = bits_to_set - bits_set; 849 if (end_bit) { 850 mask = (1 << end_bit) - 1; 851 *wordp |= mask; 852 } 853 854 xfs_buf_item_log_debug(bip, first, last); 855 } 856 857 858 /* 859 * Return 1 if the buffer has some data that has been logged (at any 860 * point, not just the current transaction) and 0 if not. 861 */ 862 uint 863 xfs_buf_item_dirty( 864 xfs_buf_log_item_t *bip) 865 { 866 return (bip->bli_flags & XFS_BLI_DIRTY); 867 } 868 869 STATIC void 870 xfs_buf_item_free( 871 xfs_buf_log_item_t *bip) 872 { 873 #ifdef XFS_TRANS_DEBUG 874 kmem_free(bip->bli_orig); 875 kmem_free(bip->bli_logged); 876 #endif /* XFS_TRANS_DEBUG */ 877 878 kmem_zone_free(xfs_buf_item_zone, bip); 879 } 880 881 /* 882 * This is called when the buf log item is no longer needed. It should 883 * free the buf log item associated with the given buffer and clear 884 * the buffer's pointer to the buf log item. If there are no more 885 * items in the list, clear the b_iodone field of the buffer (see 886 * xfs_buf_attach_iodone() below). 887 */ 888 void 889 xfs_buf_item_relse( 890 xfs_buf_t *bp) 891 { 892 xfs_buf_log_item_t *bip; 893 894 trace_xfs_buf_item_relse(bp, _RET_IP_); 895 896 bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t*); 897 XFS_BUF_SET_FSPRIVATE(bp, bip->bli_item.li_bio_list); 898 if ((XFS_BUF_FSPRIVATE(bp, void *) == NULL) && 899 (XFS_BUF_IODONE_FUNC(bp) != NULL)) { 900 XFS_BUF_CLR_IODONE_FUNC(bp); 901 } 902 xfs_buf_rele(bp); 903 xfs_buf_item_free(bip); 904 } 905 906 907 /* 908 * Add the given log item with its callback to the list of callbacks 909 * to be called when the buffer's I/O completes. If it is not set 910 * already, set the buffer's b_iodone() routine to be 911 * xfs_buf_iodone_callbacks() and link the log item into the list of 912 * items rooted at b_fsprivate. Items are always added as the second 913 * entry in the list if there is a first, because the buf item code 914 * assumes that the buf log item is first. 915 */ 916 void 917 xfs_buf_attach_iodone( 918 xfs_buf_t *bp, 919 void (*cb)(xfs_buf_t *, xfs_log_item_t *), 920 xfs_log_item_t *lip) 921 { 922 xfs_log_item_t *head_lip; 923 924 ASSERT(XFS_BUF_ISBUSY(bp)); 925 ASSERT(XFS_BUF_VALUSEMA(bp) <= 0); 926 927 lip->li_cb = cb; 928 if (XFS_BUF_FSPRIVATE(bp, void *) != NULL) { 929 head_lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *); 930 lip->li_bio_list = head_lip->li_bio_list; 931 head_lip->li_bio_list = lip; 932 } else { 933 XFS_BUF_SET_FSPRIVATE(bp, lip); 934 } 935 936 ASSERT((XFS_BUF_IODONE_FUNC(bp) == xfs_buf_iodone_callbacks) || 937 (XFS_BUF_IODONE_FUNC(bp) == NULL)); 938 XFS_BUF_SET_IODONE_FUNC(bp, xfs_buf_iodone_callbacks); 939 } 940 941 STATIC void 942 xfs_buf_do_callbacks( 943 xfs_buf_t *bp, 944 xfs_log_item_t *lip) 945 { 946 xfs_log_item_t *nlip; 947 948 while (lip != NULL) { 949 nlip = lip->li_bio_list; 950 ASSERT(lip->li_cb != NULL); 951 /* 952 * Clear the next pointer so we don't have any 953 * confusion if the item is added to another buf. 954 * Don't touch the log item after calling its 955 * callback, because it could have freed itself. 956 */ 957 lip->li_bio_list = NULL; 958 lip->li_cb(bp, lip); 959 lip = nlip; 960 } 961 } 962 963 /* 964 * This is the iodone() function for buffers which have had callbacks 965 * attached to them by xfs_buf_attach_iodone(). It should remove each 966 * log item from the buffer's list and call the callback of each in turn. 967 * When done, the buffer's fsprivate field is set to NULL and the buffer 968 * is unlocked with a call to iodone(). 969 */ 970 void 971 xfs_buf_iodone_callbacks( 972 xfs_buf_t *bp) 973 { 974 xfs_log_item_t *lip; 975 static ulong lasttime; 976 static xfs_buftarg_t *lasttarg; 977 xfs_mount_t *mp; 978 979 ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL); 980 lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *); 981 982 if (XFS_BUF_GETERROR(bp) != 0) { 983 /* 984 * If we've already decided to shutdown the filesystem 985 * because of IO errors, there's no point in giving this 986 * a retry. 987 */ 988 mp = lip->li_mountp; 989 if (XFS_FORCED_SHUTDOWN(mp)) { 990 ASSERT(XFS_BUF_TARGET(bp) == mp->m_ddev_targp); 991 XFS_BUF_SUPER_STALE(bp); 992 trace_xfs_buf_item_iodone(bp, _RET_IP_); 993 xfs_buf_do_callbacks(bp, lip); 994 XFS_BUF_SET_FSPRIVATE(bp, NULL); 995 XFS_BUF_CLR_IODONE_FUNC(bp); 996 xfs_biodone(bp); 997 return; 998 } 999 1000 if ((XFS_BUF_TARGET(bp) != lasttarg) || 1001 (time_after(jiffies, (lasttime + 5*HZ)))) { 1002 lasttime = jiffies; 1003 cmn_err(CE_ALERT, "Device %s, XFS metadata write error" 1004 " block 0x%llx in %s", 1005 XFS_BUFTARG_NAME(XFS_BUF_TARGET(bp)), 1006 (__uint64_t)XFS_BUF_ADDR(bp), mp->m_fsname); 1007 } 1008 lasttarg = XFS_BUF_TARGET(bp); 1009 1010 if (XFS_BUF_ISASYNC(bp)) { 1011 /* 1012 * If the write was asynchronous then noone will be 1013 * looking for the error. Clear the error state 1014 * and write the buffer out again delayed write. 1015 * 1016 * XXXsup This is OK, so long as we catch these 1017 * before we start the umount; we don't want these 1018 * DELWRI metadata bufs to be hanging around. 1019 */ 1020 XFS_BUF_ERROR(bp,0); /* errno of 0 unsets the flag */ 1021 1022 if (!(XFS_BUF_ISSTALE(bp))) { 1023 XFS_BUF_DELAYWRITE(bp); 1024 XFS_BUF_DONE(bp); 1025 XFS_BUF_SET_START(bp); 1026 } 1027 ASSERT(XFS_BUF_IODONE_FUNC(bp)); 1028 trace_xfs_buf_item_iodone_async(bp, _RET_IP_); 1029 xfs_buf_relse(bp); 1030 } else { 1031 /* 1032 * If the write of the buffer was not asynchronous, 1033 * then we want to make sure to return the error 1034 * to the caller of bwrite(). Because of this we 1035 * cannot clear the B_ERROR state at this point. 1036 * Instead we install a callback function that 1037 * will be called when the buffer is released, and 1038 * that routine will clear the error state and 1039 * set the buffer to be written out again after 1040 * some delay. 1041 */ 1042 /* We actually overwrite the existing b-relse 1043 function at times, but we're gonna be shutting down 1044 anyway. */ 1045 XFS_BUF_SET_BRELSE_FUNC(bp,xfs_buf_error_relse); 1046 XFS_BUF_DONE(bp); 1047 XFS_BUF_FINISH_IOWAIT(bp); 1048 } 1049 return; 1050 } 1051 1052 xfs_buf_do_callbacks(bp, lip); 1053 XFS_BUF_SET_FSPRIVATE(bp, NULL); 1054 XFS_BUF_CLR_IODONE_FUNC(bp); 1055 xfs_biodone(bp); 1056 } 1057 1058 /* 1059 * This is a callback routine attached to a buffer which gets an error 1060 * when being written out synchronously. 1061 */ 1062 STATIC void 1063 xfs_buf_error_relse( 1064 xfs_buf_t *bp) 1065 { 1066 xfs_log_item_t *lip; 1067 xfs_mount_t *mp; 1068 1069 lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *); 1070 mp = (xfs_mount_t *)lip->li_mountp; 1071 ASSERT(XFS_BUF_TARGET(bp) == mp->m_ddev_targp); 1072 1073 XFS_BUF_STALE(bp); 1074 XFS_BUF_DONE(bp); 1075 XFS_BUF_UNDELAYWRITE(bp); 1076 XFS_BUF_ERROR(bp,0); 1077 1078 trace_xfs_buf_error_relse(bp, _RET_IP_); 1079 1080 if (! XFS_FORCED_SHUTDOWN(mp)) 1081 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR); 1082 /* 1083 * We have to unpin the pinned buffers so do the 1084 * callbacks. 1085 */ 1086 xfs_buf_do_callbacks(bp, lip); 1087 XFS_BUF_SET_FSPRIVATE(bp, NULL); 1088 XFS_BUF_CLR_IODONE_FUNC(bp); 1089 XFS_BUF_SET_BRELSE_FUNC(bp,NULL); 1090 xfs_buf_relse(bp); 1091 } 1092 1093 1094 /* 1095 * This is the iodone() function for buffers which have been 1096 * logged. It is called when they are eventually flushed out. 1097 * It should remove the buf item from the AIL, and free the buf item. 1098 * It is called by xfs_buf_iodone_callbacks() above which will take 1099 * care of cleaning up the buffer itself. 1100 */ 1101 /* ARGSUSED */ 1102 void 1103 xfs_buf_iodone( 1104 xfs_buf_t *bp, 1105 xfs_buf_log_item_t *bip) 1106 { 1107 struct xfs_ail *ailp = bip->bli_item.li_ailp; 1108 1109 ASSERT(bip->bli_buf == bp); 1110 1111 xfs_buf_rele(bp); 1112 1113 /* 1114 * If we are forcibly shutting down, this may well be 1115 * off the AIL already. That's because we simulate the 1116 * log-committed callbacks to unpin these buffers. Or we may never 1117 * have put this item on AIL because of the transaction was 1118 * aborted forcibly. xfs_trans_ail_delete() takes care of these. 1119 * 1120 * Either way, AIL is useless if we're forcing a shutdown. 1121 */ 1122 spin_lock(&ailp->xa_lock); 1123 xfs_trans_ail_delete(ailp, (xfs_log_item_t *)bip); 1124 xfs_buf_item_free(bip); 1125 } 1126