xref: /linux/fs/xfs/xfs_buf.c (revision f3a8b6645dc2e60d11f20c1c23afd964ff4e55ae)
1 /*
2  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include <linux/stddef.h>
20 #include <linux/errno.h>
21 #include <linux/gfp.h>
22 #include <linux/pagemap.h>
23 #include <linux/init.h>
24 #include <linux/vmalloc.h>
25 #include <linux/bio.h>
26 #include <linux/sysctl.h>
27 #include <linux/proc_fs.h>
28 #include <linux/workqueue.h>
29 #include <linux/percpu.h>
30 #include <linux/blkdev.h>
31 #include <linux/hash.h>
32 #include <linux/kthread.h>
33 #include <linux/migrate.h>
34 #include <linux/backing-dev.h>
35 #include <linux/freezer.h>
36 
37 #include "xfs_format.h"
38 #include "xfs_log_format.h"
39 #include "xfs_trans_resv.h"
40 #include "xfs_sb.h"
41 #include "xfs_mount.h"
42 #include "xfs_trace.h"
43 #include "xfs_log.h"
44 
45 static kmem_zone_t *xfs_buf_zone;
46 
47 #ifdef XFS_BUF_LOCK_TRACKING
48 # define XB_SET_OWNER(bp)	((bp)->b_last_holder = current->pid)
49 # define XB_CLEAR_OWNER(bp)	((bp)->b_last_holder = -1)
50 # define XB_GET_OWNER(bp)	((bp)->b_last_holder)
51 #else
52 # define XB_SET_OWNER(bp)	do { } while (0)
53 # define XB_CLEAR_OWNER(bp)	do { } while (0)
54 # define XB_GET_OWNER(bp)	do { } while (0)
55 #endif
56 
57 #define xb_to_gfp(flags) \
58 	((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : GFP_NOFS) | __GFP_NOWARN)
59 
60 
61 static inline int
62 xfs_buf_is_vmapped(
63 	struct xfs_buf	*bp)
64 {
65 	/*
66 	 * Return true if the buffer is vmapped.
67 	 *
68 	 * b_addr is null if the buffer is not mapped, but the code is clever
69 	 * enough to know it doesn't have to map a single page, so the check has
70 	 * to be both for b_addr and bp->b_page_count > 1.
71 	 */
72 	return bp->b_addr && bp->b_page_count > 1;
73 }
74 
75 static inline int
76 xfs_buf_vmap_len(
77 	struct xfs_buf	*bp)
78 {
79 	return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
80 }
81 
82 /*
83  * Bump the I/O in flight count on the buftarg if we haven't yet done so for
84  * this buffer. The count is incremented once per buffer (per hold cycle)
85  * because the corresponding decrement is deferred to buffer release. Buffers
86  * can undergo I/O multiple times in a hold-release cycle and per buffer I/O
87  * tracking adds unnecessary overhead. This is used for sychronization purposes
88  * with unmount (see xfs_wait_buftarg()), so all we really need is a count of
89  * in-flight buffers.
90  *
91  * Buffers that are never released (e.g., superblock, iclog buffers) must set
92  * the XBF_NO_IOACCT flag before I/O submission. Otherwise, the buftarg count
93  * never reaches zero and unmount hangs indefinitely.
94  */
95 static inline void
96 xfs_buf_ioacct_inc(
97 	struct xfs_buf	*bp)
98 {
99 	if (bp->b_flags & (XBF_NO_IOACCT|_XBF_IN_FLIGHT))
100 		return;
101 
102 	ASSERT(bp->b_flags & XBF_ASYNC);
103 	bp->b_flags |= _XBF_IN_FLIGHT;
104 	percpu_counter_inc(&bp->b_target->bt_io_count);
105 }
106 
107 /*
108  * Clear the in-flight state on a buffer about to be released to the LRU or
109  * freed and unaccount from the buftarg.
110  */
111 static inline void
112 xfs_buf_ioacct_dec(
113 	struct xfs_buf	*bp)
114 {
115 	if (!(bp->b_flags & _XBF_IN_FLIGHT))
116 		return;
117 
118 	bp->b_flags &= ~_XBF_IN_FLIGHT;
119 	percpu_counter_dec(&bp->b_target->bt_io_count);
120 }
121 
122 /*
123  * When we mark a buffer stale, we remove the buffer from the LRU and clear the
124  * b_lru_ref count so that the buffer is freed immediately when the buffer
125  * reference count falls to zero. If the buffer is already on the LRU, we need
126  * to remove the reference that LRU holds on the buffer.
127  *
128  * This prevents build-up of stale buffers on the LRU.
129  */
130 void
131 xfs_buf_stale(
132 	struct xfs_buf	*bp)
133 {
134 	ASSERT(xfs_buf_islocked(bp));
135 
136 	bp->b_flags |= XBF_STALE;
137 
138 	/*
139 	 * Clear the delwri status so that a delwri queue walker will not
140 	 * flush this buffer to disk now that it is stale. The delwri queue has
141 	 * a reference to the buffer, so this is safe to do.
142 	 */
143 	bp->b_flags &= ~_XBF_DELWRI_Q;
144 
145 	/*
146 	 * Once the buffer is marked stale and unlocked, a subsequent lookup
147 	 * could reset b_flags. There is no guarantee that the buffer is
148 	 * unaccounted (released to LRU) before that occurs. Drop in-flight
149 	 * status now to preserve accounting consistency.
150 	 */
151 	xfs_buf_ioacct_dec(bp);
152 
153 	spin_lock(&bp->b_lock);
154 	atomic_set(&bp->b_lru_ref, 0);
155 	if (!(bp->b_state & XFS_BSTATE_DISPOSE) &&
156 	    (list_lru_del(&bp->b_target->bt_lru, &bp->b_lru)))
157 		atomic_dec(&bp->b_hold);
158 
159 	ASSERT(atomic_read(&bp->b_hold) >= 1);
160 	spin_unlock(&bp->b_lock);
161 }
162 
163 static int
164 xfs_buf_get_maps(
165 	struct xfs_buf		*bp,
166 	int			map_count)
167 {
168 	ASSERT(bp->b_maps == NULL);
169 	bp->b_map_count = map_count;
170 
171 	if (map_count == 1) {
172 		bp->b_maps = &bp->__b_map;
173 		return 0;
174 	}
175 
176 	bp->b_maps = kmem_zalloc(map_count * sizeof(struct xfs_buf_map),
177 				KM_NOFS);
178 	if (!bp->b_maps)
179 		return -ENOMEM;
180 	return 0;
181 }
182 
183 /*
184  *	Frees b_pages if it was allocated.
185  */
186 static void
187 xfs_buf_free_maps(
188 	struct xfs_buf	*bp)
189 {
190 	if (bp->b_maps != &bp->__b_map) {
191 		kmem_free(bp->b_maps);
192 		bp->b_maps = NULL;
193 	}
194 }
195 
196 struct xfs_buf *
197 _xfs_buf_alloc(
198 	struct xfs_buftarg	*target,
199 	struct xfs_buf_map	*map,
200 	int			nmaps,
201 	xfs_buf_flags_t		flags)
202 {
203 	struct xfs_buf		*bp;
204 	int			error;
205 	int			i;
206 
207 	bp = kmem_zone_zalloc(xfs_buf_zone, KM_NOFS);
208 	if (unlikely(!bp))
209 		return NULL;
210 
211 	/*
212 	 * We don't want certain flags to appear in b_flags unless they are
213 	 * specifically set by later operations on the buffer.
214 	 */
215 	flags &= ~(XBF_UNMAPPED | XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD);
216 
217 	atomic_set(&bp->b_hold, 1);
218 	atomic_set(&bp->b_lru_ref, 1);
219 	init_completion(&bp->b_iowait);
220 	INIT_LIST_HEAD(&bp->b_lru);
221 	INIT_LIST_HEAD(&bp->b_list);
222 	RB_CLEAR_NODE(&bp->b_rbnode);
223 	sema_init(&bp->b_sema, 0); /* held, no waiters */
224 	spin_lock_init(&bp->b_lock);
225 	XB_SET_OWNER(bp);
226 	bp->b_target = target;
227 	bp->b_flags = flags;
228 
229 	/*
230 	 * Set length and io_length to the same value initially.
231 	 * I/O routines should use io_length, which will be the same in
232 	 * most cases but may be reset (e.g. XFS recovery).
233 	 */
234 	error = xfs_buf_get_maps(bp, nmaps);
235 	if (error)  {
236 		kmem_zone_free(xfs_buf_zone, bp);
237 		return NULL;
238 	}
239 
240 	bp->b_bn = map[0].bm_bn;
241 	bp->b_length = 0;
242 	for (i = 0; i < nmaps; i++) {
243 		bp->b_maps[i].bm_bn = map[i].bm_bn;
244 		bp->b_maps[i].bm_len = map[i].bm_len;
245 		bp->b_length += map[i].bm_len;
246 	}
247 	bp->b_io_length = bp->b_length;
248 
249 	atomic_set(&bp->b_pin_count, 0);
250 	init_waitqueue_head(&bp->b_waiters);
251 
252 	XFS_STATS_INC(target->bt_mount, xb_create);
253 	trace_xfs_buf_init(bp, _RET_IP_);
254 
255 	return bp;
256 }
257 
258 /*
259  *	Allocate a page array capable of holding a specified number
260  *	of pages, and point the page buf at it.
261  */
262 STATIC int
263 _xfs_buf_get_pages(
264 	xfs_buf_t		*bp,
265 	int			page_count)
266 {
267 	/* Make sure that we have a page list */
268 	if (bp->b_pages == NULL) {
269 		bp->b_page_count = page_count;
270 		if (page_count <= XB_PAGES) {
271 			bp->b_pages = bp->b_page_array;
272 		} else {
273 			bp->b_pages = kmem_alloc(sizeof(struct page *) *
274 						 page_count, KM_NOFS);
275 			if (bp->b_pages == NULL)
276 				return -ENOMEM;
277 		}
278 		memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
279 	}
280 	return 0;
281 }
282 
283 /*
284  *	Frees b_pages if it was allocated.
285  */
286 STATIC void
287 _xfs_buf_free_pages(
288 	xfs_buf_t	*bp)
289 {
290 	if (bp->b_pages != bp->b_page_array) {
291 		kmem_free(bp->b_pages);
292 		bp->b_pages = NULL;
293 	}
294 }
295 
296 /*
297  *	Releases the specified buffer.
298  *
299  * 	The modification state of any associated pages is left unchanged.
300  * 	The buffer must not be on any hash - use xfs_buf_rele instead for
301  * 	hashed and refcounted buffers
302  */
303 void
304 xfs_buf_free(
305 	xfs_buf_t		*bp)
306 {
307 	trace_xfs_buf_free(bp, _RET_IP_);
308 
309 	ASSERT(list_empty(&bp->b_lru));
310 
311 	if (bp->b_flags & _XBF_PAGES) {
312 		uint		i;
313 
314 		if (xfs_buf_is_vmapped(bp))
315 			vm_unmap_ram(bp->b_addr - bp->b_offset,
316 					bp->b_page_count);
317 
318 		for (i = 0; i < bp->b_page_count; i++) {
319 			struct page	*page = bp->b_pages[i];
320 
321 			__free_page(page);
322 		}
323 	} else if (bp->b_flags & _XBF_KMEM)
324 		kmem_free(bp->b_addr);
325 	_xfs_buf_free_pages(bp);
326 	xfs_buf_free_maps(bp);
327 	kmem_zone_free(xfs_buf_zone, bp);
328 }
329 
330 /*
331  * Allocates all the pages for buffer in question and builds it's page list.
332  */
333 STATIC int
334 xfs_buf_allocate_memory(
335 	xfs_buf_t		*bp,
336 	uint			flags)
337 {
338 	size_t			size;
339 	size_t			nbytes, offset;
340 	gfp_t			gfp_mask = xb_to_gfp(flags);
341 	unsigned short		page_count, i;
342 	xfs_off_t		start, end;
343 	int			error;
344 
345 	/*
346 	 * for buffers that are contained within a single page, just allocate
347 	 * the memory from the heap - there's no need for the complexity of
348 	 * page arrays to keep allocation down to order 0.
349 	 */
350 	size = BBTOB(bp->b_length);
351 	if (size < PAGE_SIZE) {
352 		bp->b_addr = kmem_alloc(size, KM_NOFS);
353 		if (!bp->b_addr) {
354 			/* low memory - use alloc_page loop instead */
355 			goto use_alloc_page;
356 		}
357 
358 		if (((unsigned long)(bp->b_addr + size - 1) & PAGE_MASK) !=
359 		    ((unsigned long)bp->b_addr & PAGE_MASK)) {
360 			/* b_addr spans two pages - use alloc_page instead */
361 			kmem_free(bp->b_addr);
362 			bp->b_addr = NULL;
363 			goto use_alloc_page;
364 		}
365 		bp->b_offset = offset_in_page(bp->b_addr);
366 		bp->b_pages = bp->b_page_array;
367 		bp->b_pages[0] = virt_to_page(bp->b_addr);
368 		bp->b_page_count = 1;
369 		bp->b_flags |= _XBF_KMEM;
370 		return 0;
371 	}
372 
373 use_alloc_page:
374 	start = BBTOB(bp->b_maps[0].bm_bn) >> PAGE_SHIFT;
375 	end = (BBTOB(bp->b_maps[0].bm_bn + bp->b_length) + PAGE_SIZE - 1)
376 								>> PAGE_SHIFT;
377 	page_count = end - start;
378 	error = _xfs_buf_get_pages(bp, page_count);
379 	if (unlikely(error))
380 		return error;
381 
382 	offset = bp->b_offset;
383 	bp->b_flags |= _XBF_PAGES;
384 
385 	for (i = 0; i < bp->b_page_count; i++) {
386 		struct page	*page;
387 		uint		retries = 0;
388 retry:
389 		page = alloc_page(gfp_mask);
390 		if (unlikely(page == NULL)) {
391 			if (flags & XBF_READ_AHEAD) {
392 				bp->b_page_count = i;
393 				error = -ENOMEM;
394 				goto out_free_pages;
395 			}
396 
397 			/*
398 			 * This could deadlock.
399 			 *
400 			 * But until all the XFS lowlevel code is revamped to
401 			 * handle buffer allocation failures we can't do much.
402 			 */
403 			if (!(++retries % 100))
404 				xfs_err(NULL,
405 		"%s(%u) possible memory allocation deadlock in %s (mode:0x%x)",
406 					current->comm, current->pid,
407 					__func__, gfp_mask);
408 
409 			XFS_STATS_INC(bp->b_target->bt_mount, xb_page_retries);
410 			congestion_wait(BLK_RW_ASYNC, HZ/50);
411 			goto retry;
412 		}
413 
414 		XFS_STATS_INC(bp->b_target->bt_mount, xb_page_found);
415 
416 		nbytes = min_t(size_t, size, PAGE_SIZE - offset);
417 		size -= nbytes;
418 		bp->b_pages[i] = page;
419 		offset = 0;
420 	}
421 	return 0;
422 
423 out_free_pages:
424 	for (i = 0; i < bp->b_page_count; i++)
425 		__free_page(bp->b_pages[i]);
426 	return error;
427 }
428 
429 /*
430  *	Map buffer into kernel address-space if necessary.
431  */
432 STATIC int
433 _xfs_buf_map_pages(
434 	xfs_buf_t		*bp,
435 	uint			flags)
436 {
437 	ASSERT(bp->b_flags & _XBF_PAGES);
438 	if (bp->b_page_count == 1) {
439 		/* A single page buffer is always mappable */
440 		bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
441 	} else if (flags & XBF_UNMAPPED) {
442 		bp->b_addr = NULL;
443 	} else {
444 		int retried = 0;
445 		unsigned noio_flag;
446 
447 		/*
448 		 * vm_map_ram() will allocate auxillary structures (e.g.
449 		 * pagetables) with GFP_KERNEL, yet we are likely to be under
450 		 * GFP_NOFS context here. Hence we need to tell memory reclaim
451 		 * that we are in such a context via PF_MEMALLOC_NOIO to prevent
452 		 * memory reclaim re-entering the filesystem here and
453 		 * potentially deadlocking.
454 		 */
455 		noio_flag = memalloc_noio_save();
456 		do {
457 			bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
458 						-1, PAGE_KERNEL);
459 			if (bp->b_addr)
460 				break;
461 			vm_unmap_aliases();
462 		} while (retried++ <= 1);
463 		memalloc_noio_restore(noio_flag);
464 
465 		if (!bp->b_addr)
466 			return -ENOMEM;
467 		bp->b_addr += bp->b_offset;
468 	}
469 
470 	return 0;
471 }
472 
473 /*
474  *	Finding and Reading Buffers
475  */
476 
477 /*
478  *	Look up, and creates if absent, a lockable buffer for
479  *	a given range of an inode.  The buffer is returned
480  *	locked.	No I/O is implied by this call.
481  */
482 xfs_buf_t *
483 _xfs_buf_find(
484 	struct xfs_buftarg	*btp,
485 	struct xfs_buf_map	*map,
486 	int			nmaps,
487 	xfs_buf_flags_t		flags,
488 	xfs_buf_t		*new_bp)
489 {
490 	struct xfs_perag	*pag;
491 	struct rb_node		**rbp;
492 	struct rb_node		*parent;
493 	xfs_buf_t		*bp;
494 	xfs_daddr_t		blkno = map[0].bm_bn;
495 	xfs_daddr_t		eofs;
496 	int			numblks = 0;
497 	int			i;
498 
499 	for (i = 0; i < nmaps; i++)
500 		numblks += map[i].bm_len;
501 
502 	/* Check for IOs smaller than the sector size / not sector aligned */
503 	ASSERT(!(BBTOB(numblks) < btp->bt_meta_sectorsize));
504 	ASSERT(!(BBTOB(blkno) & (xfs_off_t)btp->bt_meta_sectormask));
505 
506 	/*
507 	 * Corrupted block numbers can get through to here, unfortunately, so we
508 	 * have to check that the buffer falls within the filesystem bounds.
509 	 */
510 	eofs = XFS_FSB_TO_BB(btp->bt_mount, btp->bt_mount->m_sb.sb_dblocks);
511 	if (blkno < 0 || blkno >= eofs) {
512 		/*
513 		 * XXX (dgc): we should really be returning -EFSCORRUPTED here,
514 		 * but none of the higher level infrastructure supports
515 		 * returning a specific error on buffer lookup failures.
516 		 */
517 		xfs_alert(btp->bt_mount,
518 			  "%s: Block out of range: block 0x%llx, EOFS 0x%llx ",
519 			  __func__, blkno, eofs);
520 		WARN_ON(1);
521 		return NULL;
522 	}
523 
524 	/* get tree root */
525 	pag = xfs_perag_get(btp->bt_mount,
526 				xfs_daddr_to_agno(btp->bt_mount, blkno));
527 
528 	/* walk tree */
529 	spin_lock(&pag->pag_buf_lock);
530 	rbp = &pag->pag_buf_tree.rb_node;
531 	parent = NULL;
532 	bp = NULL;
533 	while (*rbp) {
534 		parent = *rbp;
535 		bp = rb_entry(parent, struct xfs_buf, b_rbnode);
536 
537 		if (blkno < bp->b_bn)
538 			rbp = &(*rbp)->rb_left;
539 		else if (blkno > bp->b_bn)
540 			rbp = &(*rbp)->rb_right;
541 		else {
542 			/*
543 			 * found a block number match. If the range doesn't
544 			 * match, the only way this is allowed is if the buffer
545 			 * in the cache is stale and the transaction that made
546 			 * it stale has not yet committed. i.e. we are
547 			 * reallocating a busy extent. Skip this buffer and
548 			 * continue searching to the right for an exact match.
549 			 */
550 			if (bp->b_length != numblks) {
551 				ASSERT(bp->b_flags & XBF_STALE);
552 				rbp = &(*rbp)->rb_right;
553 				continue;
554 			}
555 			atomic_inc(&bp->b_hold);
556 			goto found;
557 		}
558 	}
559 
560 	/* No match found */
561 	if (new_bp) {
562 		rb_link_node(&new_bp->b_rbnode, parent, rbp);
563 		rb_insert_color(&new_bp->b_rbnode, &pag->pag_buf_tree);
564 		/* the buffer keeps the perag reference until it is freed */
565 		new_bp->b_pag = pag;
566 		spin_unlock(&pag->pag_buf_lock);
567 	} else {
568 		XFS_STATS_INC(btp->bt_mount, xb_miss_locked);
569 		spin_unlock(&pag->pag_buf_lock);
570 		xfs_perag_put(pag);
571 	}
572 	return new_bp;
573 
574 found:
575 	spin_unlock(&pag->pag_buf_lock);
576 	xfs_perag_put(pag);
577 
578 	if (!xfs_buf_trylock(bp)) {
579 		if (flags & XBF_TRYLOCK) {
580 			xfs_buf_rele(bp);
581 			XFS_STATS_INC(btp->bt_mount, xb_busy_locked);
582 			return NULL;
583 		}
584 		xfs_buf_lock(bp);
585 		XFS_STATS_INC(btp->bt_mount, xb_get_locked_waited);
586 	}
587 
588 	/*
589 	 * if the buffer is stale, clear all the external state associated with
590 	 * it. We need to keep flags such as how we allocated the buffer memory
591 	 * intact here.
592 	 */
593 	if (bp->b_flags & XBF_STALE) {
594 		ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
595 		ASSERT(bp->b_iodone == NULL);
596 		bp->b_flags &= _XBF_KMEM | _XBF_PAGES;
597 		bp->b_ops = NULL;
598 	}
599 
600 	trace_xfs_buf_find(bp, flags, _RET_IP_);
601 	XFS_STATS_INC(btp->bt_mount, xb_get_locked);
602 	return bp;
603 }
604 
605 /*
606  * Assembles a buffer covering the specified range. The code is optimised for
607  * cache hits, as metadata intensive workloads will see 3 orders of magnitude
608  * more hits than misses.
609  */
610 struct xfs_buf *
611 xfs_buf_get_map(
612 	struct xfs_buftarg	*target,
613 	struct xfs_buf_map	*map,
614 	int			nmaps,
615 	xfs_buf_flags_t		flags)
616 {
617 	struct xfs_buf		*bp;
618 	struct xfs_buf		*new_bp;
619 	int			error = 0;
620 
621 	bp = _xfs_buf_find(target, map, nmaps, flags, NULL);
622 	if (likely(bp))
623 		goto found;
624 
625 	new_bp = _xfs_buf_alloc(target, map, nmaps, flags);
626 	if (unlikely(!new_bp))
627 		return NULL;
628 
629 	error = xfs_buf_allocate_memory(new_bp, flags);
630 	if (error) {
631 		xfs_buf_free(new_bp);
632 		return NULL;
633 	}
634 
635 	bp = _xfs_buf_find(target, map, nmaps, flags, new_bp);
636 	if (!bp) {
637 		xfs_buf_free(new_bp);
638 		return NULL;
639 	}
640 
641 	if (bp != new_bp)
642 		xfs_buf_free(new_bp);
643 
644 found:
645 	if (!bp->b_addr) {
646 		error = _xfs_buf_map_pages(bp, flags);
647 		if (unlikely(error)) {
648 			xfs_warn(target->bt_mount,
649 				"%s: failed to map pagesn", __func__);
650 			xfs_buf_relse(bp);
651 			return NULL;
652 		}
653 	}
654 
655 	/*
656 	 * Clear b_error if this is a lookup from a caller that doesn't expect
657 	 * valid data to be found in the buffer.
658 	 */
659 	if (!(flags & XBF_READ))
660 		xfs_buf_ioerror(bp, 0);
661 
662 	XFS_STATS_INC(target->bt_mount, xb_get);
663 	trace_xfs_buf_get(bp, flags, _RET_IP_);
664 	return bp;
665 }
666 
667 STATIC int
668 _xfs_buf_read(
669 	xfs_buf_t		*bp,
670 	xfs_buf_flags_t		flags)
671 {
672 	ASSERT(!(flags & XBF_WRITE));
673 	ASSERT(bp->b_maps[0].bm_bn != XFS_BUF_DADDR_NULL);
674 
675 	bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD);
676 	bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD);
677 
678 	if (flags & XBF_ASYNC) {
679 		xfs_buf_submit(bp);
680 		return 0;
681 	}
682 	return xfs_buf_submit_wait(bp);
683 }
684 
685 xfs_buf_t *
686 xfs_buf_read_map(
687 	struct xfs_buftarg	*target,
688 	struct xfs_buf_map	*map,
689 	int			nmaps,
690 	xfs_buf_flags_t		flags,
691 	const struct xfs_buf_ops *ops)
692 {
693 	struct xfs_buf		*bp;
694 
695 	flags |= XBF_READ;
696 
697 	bp = xfs_buf_get_map(target, map, nmaps, flags);
698 	if (bp) {
699 		trace_xfs_buf_read(bp, flags, _RET_IP_);
700 
701 		if (!(bp->b_flags & XBF_DONE)) {
702 			XFS_STATS_INC(target->bt_mount, xb_get_read);
703 			bp->b_ops = ops;
704 			_xfs_buf_read(bp, flags);
705 		} else if (flags & XBF_ASYNC) {
706 			/*
707 			 * Read ahead call which is already satisfied,
708 			 * drop the buffer
709 			 */
710 			xfs_buf_relse(bp);
711 			return NULL;
712 		} else {
713 			/* We do not want read in the flags */
714 			bp->b_flags &= ~XBF_READ;
715 		}
716 	}
717 
718 	return bp;
719 }
720 
721 /*
722  *	If we are not low on memory then do the readahead in a deadlock
723  *	safe manner.
724  */
725 void
726 xfs_buf_readahead_map(
727 	struct xfs_buftarg	*target,
728 	struct xfs_buf_map	*map,
729 	int			nmaps,
730 	const struct xfs_buf_ops *ops)
731 {
732 	if (bdi_read_congested(target->bt_bdi))
733 		return;
734 
735 	xfs_buf_read_map(target, map, nmaps,
736 		     XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD, ops);
737 }
738 
739 /*
740  * Read an uncached buffer from disk. Allocates and returns a locked
741  * buffer containing the disk contents or nothing.
742  */
743 int
744 xfs_buf_read_uncached(
745 	struct xfs_buftarg	*target,
746 	xfs_daddr_t		daddr,
747 	size_t			numblks,
748 	int			flags,
749 	struct xfs_buf		**bpp,
750 	const struct xfs_buf_ops *ops)
751 {
752 	struct xfs_buf		*bp;
753 
754 	*bpp = NULL;
755 
756 	bp = xfs_buf_get_uncached(target, numblks, flags);
757 	if (!bp)
758 		return -ENOMEM;
759 
760 	/* set up the buffer for a read IO */
761 	ASSERT(bp->b_map_count == 1);
762 	bp->b_bn = XFS_BUF_DADDR_NULL;  /* always null for uncached buffers */
763 	bp->b_maps[0].bm_bn = daddr;
764 	bp->b_flags |= XBF_READ;
765 	bp->b_ops = ops;
766 
767 	xfs_buf_submit_wait(bp);
768 	if (bp->b_error) {
769 		int	error = bp->b_error;
770 		xfs_buf_relse(bp);
771 		return error;
772 	}
773 
774 	*bpp = bp;
775 	return 0;
776 }
777 
778 /*
779  * Return a buffer allocated as an empty buffer and associated to external
780  * memory via xfs_buf_associate_memory() back to it's empty state.
781  */
782 void
783 xfs_buf_set_empty(
784 	struct xfs_buf		*bp,
785 	size_t			numblks)
786 {
787 	if (bp->b_pages)
788 		_xfs_buf_free_pages(bp);
789 
790 	bp->b_pages = NULL;
791 	bp->b_page_count = 0;
792 	bp->b_addr = NULL;
793 	bp->b_length = numblks;
794 	bp->b_io_length = numblks;
795 
796 	ASSERT(bp->b_map_count == 1);
797 	bp->b_bn = XFS_BUF_DADDR_NULL;
798 	bp->b_maps[0].bm_bn = XFS_BUF_DADDR_NULL;
799 	bp->b_maps[0].bm_len = bp->b_length;
800 }
801 
802 static inline struct page *
803 mem_to_page(
804 	void			*addr)
805 {
806 	if ((!is_vmalloc_addr(addr))) {
807 		return virt_to_page(addr);
808 	} else {
809 		return vmalloc_to_page(addr);
810 	}
811 }
812 
813 int
814 xfs_buf_associate_memory(
815 	xfs_buf_t		*bp,
816 	void			*mem,
817 	size_t			len)
818 {
819 	int			rval;
820 	int			i = 0;
821 	unsigned long		pageaddr;
822 	unsigned long		offset;
823 	size_t			buflen;
824 	int			page_count;
825 
826 	pageaddr = (unsigned long)mem & PAGE_MASK;
827 	offset = (unsigned long)mem - pageaddr;
828 	buflen = PAGE_ALIGN(len + offset);
829 	page_count = buflen >> PAGE_SHIFT;
830 
831 	/* Free any previous set of page pointers */
832 	if (bp->b_pages)
833 		_xfs_buf_free_pages(bp);
834 
835 	bp->b_pages = NULL;
836 	bp->b_addr = mem;
837 
838 	rval = _xfs_buf_get_pages(bp, page_count);
839 	if (rval)
840 		return rval;
841 
842 	bp->b_offset = offset;
843 
844 	for (i = 0; i < bp->b_page_count; i++) {
845 		bp->b_pages[i] = mem_to_page((void *)pageaddr);
846 		pageaddr += PAGE_SIZE;
847 	}
848 
849 	bp->b_io_length = BTOBB(len);
850 	bp->b_length = BTOBB(buflen);
851 
852 	return 0;
853 }
854 
855 xfs_buf_t *
856 xfs_buf_get_uncached(
857 	struct xfs_buftarg	*target,
858 	size_t			numblks,
859 	int			flags)
860 {
861 	unsigned long		page_count;
862 	int			error, i;
863 	struct xfs_buf		*bp;
864 	DEFINE_SINGLE_BUF_MAP(map, XFS_BUF_DADDR_NULL, numblks);
865 
866 	/* flags might contain irrelevant bits, pass only what we care about */
867 	bp = _xfs_buf_alloc(target, &map, 1, flags & XBF_NO_IOACCT);
868 	if (unlikely(bp == NULL))
869 		goto fail;
870 
871 	page_count = PAGE_ALIGN(numblks << BBSHIFT) >> PAGE_SHIFT;
872 	error = _xfs_buf_get_pages(bp, page_count);
873 	if (error)
874 		goto fail_free_buf;
875 
876 	for (i = 0; i < page_count; i++) {
877 		bp->b_pages[i] = alloc_page(xb_to_gfp(flags));
878 		if (!bp->b_pages[i])
879 			goto fail_free_mem;
880 	}
881 	bp->b_flags |= _XBF_PAGES;
882 
883 	error = _xfs_buf_map_pages(bp, 0);
884 	if (unlikely(error)) {
885 		xfs_warn(target->bt_mount,
886 			"%s: failed to map pages", __func__);
887 		goto fail_free_mem;
888 	}
889 
890 	trace_xfs_buf_get_uncached(bp, _RET_IP_);
891 	return bp;
892 
893  fail_free_mem:
894 	while (--i >= 0)
895 		__free_page(bp->b_pages[i]);
896 	_xfs_buf_free_pages(bp);
897  fail_free_buf:
898 	xfs_buf_free_maps(bp);
899 	kmem_zone_free(xfs_buf_zone, bp);
900  fail:
901 	return NULL;
902 }
903 
904 /*
905  *	Increment reference count on buffer, to hold the buffer concurrently
906  *	with another thread which may release (free) the buffer asynchronously.
907  *	Must hold the buffer already to call this function.
908  */
909 void
910 xfs_buf_hold(
911 	xfs_buf_t		*bp)
912 {
913 	trace_xfs_buf_hold(bp, _RET_IP_);
914 	atomic_inc(&bp->b_hold);
915 }
916 
917 /*
918  * Release a hold on the specified buffer. If the hold count is 1, the buffer is
919  * placed on LRU or freed (depending on b_lru_ref).
920  */
921 void
922 xfs_buf_rele(
923 	xfs_buf_t		*bp)
924 {
925 	struct xfs_perag	*pag = bp->b_pag;
926 	bool			release;
927 	bool			freebuf = false;
928 
929 	trace_xfs_buf_rele(bp, _RET_IP_);
930 
931 	if (!pag) {
932 		ASSERT(list_empty(&bp->b_lru));
933 		ASSERT(RB_EMPTY_NODE(&bp->b_rbnode));
934 		if (atomic_dec_and_test(&bp->b_hold)) {
935 			xfs_buf_ioacct_dec(bp);
936 			xfs_buf_free(bp);
937 		}
938 		return;
939 	}
940 
941 	ASSERT(!RB_EMPTY_NODE(&bp->b_rbnode));
942 
943 	ASSERT(atomic_read(&bp->b_hold) > 0);
944 
945 	release = atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock);
946 	spin_lock(&bp->b_lock);
947 	if (!release) {
948 		/*
949 		 * Drop the in-flight state if the buffer is already on the LRU
950 		 * and it holds the only reference. This is racy because we
951 		 * haven't acquired the pag lock, but the use of _XBF_IN_FLIGHT
952 		 * ensures the decrement occurs only once per-buf.
953 		 */
954 		if ((atomic_read(&bp->b_hold) == 1) && !list_empty(&bp->b_lru))
955 			xfs_buf_ioacct_dec(bp);
956 		goto out_unlock;
957 	}
958 
959 	/* the last reference has been dropped ... */
960 	xfs_buf_ioacct_dec(bp);
961 	if (!(bp->b_flags & XBF_STALE) && atomic_read(&bp->b_lru_ref)) {
962 		/*
963 		 * If the buffer is added to the LRU take a new reference to the
964 		 * buffer for the LRU and clear the (now stale) dispose list
965 		 * state flag
966 		 */
967 		if (list_lru_add(&bp->b_target->bt_lru, &bp->b_lru)) {
968 			bp->b_state &= ~XFS_BSTATE_DISPOSE;
969 			atomic_inc(&bp->b_hold);
970 		}
971 		spin_unlock(&pag->pag_buf_lock);
972 	} else {
973 		/*
974 		 * most of the time buffers will already be removed from the
975 		 * LRU, so optimise that case by checking for the
976 		 * XFS_BSTATE_DISPOSE flag indicating the last list the buffer
977 		 * was on was the disposal list
978 		 */
979 		if (!(bp->b_state & XFS_BSTATE_DISPOSE)) {
980 			list_lru_del(&bp->b_target->bt_lru, &bp->b_lru);
981 		} else {
982 			ASSERT(list_empty(&bp->b_lru));
983 		}
984 
985 		ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
986 		rb_erase(&bp->b_rbnode, &pag->pag_buf_tree);
987 		spin_unlock(&pag->pag_buf_lock);
988 		xfs_perag_put(pag);
989 		freebuf = true;
990 	}
991 
992 out_unlock:
993 	spin_unlock(&bp->b_lock);
994 
995 	if (freebuf)
996 		xfs_buf_free(bp);
997 }
998 
999 
1000 /*
1001  *	Lock a buffer object, if it is not already locked.
1002  *
1003  *	If we come across a stale, pinned, locked buffer, we know that we are
1004  *	being asked to lock a buffer that has been reallocated. Because it is
1005  *	pinned, we know that the log has not been pushed to disk and hence it
1006  *	will still be locked.  Rather than continuing to have trylock attempts
1007  *	fail until someone else pushes the log, push it ourselves before
1008  *	returning.  This means that the xfsaild will not get stuck trying
1009  *	to push on stale inode buffers.
1010  */
1011 int
1012 xfs_buf_trylock(
1013 	struct xfs_buf		*bp)
1014 {
1015 	int			locked;
1016 
1017 	locked = down_trylock(&bp->b_sema) == 0;
1018 	if (locked) {
1019 		XB_SET_OWNER(bp);
1020 		trace_xfs_buf_trylock(bp, _RET_IP_);
1021 	} else {
1022 		trace_xfs_buf_trylock_fail(bp, _RET_IP_);
1023 	}
1024 	return locked;
1025 }
1026 
1027 /*
1028  *	Lock a buffer object.
1029  *
1030  *	If we come across a stale, pinned, locked buffer, we know that we
1031  *	are being asked to lock a buffer that has been reallocated. Because
1032  *	it is pinned, we know that the log has not been pushed to disk and
1033  *	hence it will still be locked. Rather than sleeping until someone
1034  *	else pushes the log, push it ourselves before trying to get the lock.
1035  */
1036 void
1037 xfs_buf_lock(
1038 	struct xfs_buf		*bp)
1039 {
1040 	trace_xfs_buf_lock(bp, _RET_IP_);
1041 
1042 	if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
1043 		xfs_log_force(bp->b_target->bt_mount, 0);
1044 	down(&bp->b_sema);
1045 	XB_SET_OWNER(bp);
1046 
1047 	trace_xfs_buf_lock_done(bp, _RET_IP_);
1048 }
1049 
1050 void
1051 xfs_buf_unlock(
1052 	struct xfs_buf		*bp)
1053 {
1054 	XB_CLEAR_OWNER(bp);
1055 	up(&bp->b_sema);
1056 
1057 	trace_xfs_buf_unlock(bp, _RET_IP_);
1058 }
1059 
1060 STATIC void
1061 xfs_buf_wait_unpin(
1062 	xfs_buf_t		*bp)
1063 {
1064 	DECLARE_WAITQUEUE	(wait, current);
1065 
1066 	if (atomic_read(&bp->b_pin_count) == 0)
1067 		return;
1068 
1069 	add_wait_queue(&bp->b_waiters, &wait);
1070 	for (;;) {
1071 		set_current_state(TASK_UNINTERRUPTIBLE);
1072 		if (atomic_read(&bp->b_pin_count) == 0)
1073 			break;
1074 		io_schedule();
1075 	}
1076 	remove_wait_queue(&bp->b_waiters, &wait);
1077 	set_current_state(TASK_RUNNING);
1078 }
1079 
1080 /*
1081  *	Buffer Utility Routines
1082  */
1083 
1084 void
1085 xfs_buf_ioend(
1086 	struct xfs_buf	*bp)
1087 {
1088 	bool		read = bp->b_flags & XBF_READ;
1089 
1090 	trace_xfs_buf_iodone(bp, _RET_IP_);
1091 
1092 	bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
1093 
1094 	/*
1095 	 * Pull in IO completion errors now. We are guaranteed to be running
1096 	 * single threaded, so we don't need the lock to read b_io_error.
1097 	 */
1098 	if (!bp->b_error && bp->b_io_error)
1099 		xfs_buf_ioerror(bp, bp->b_io_error);
1100 
1101 	/* Only validate buffers that were read without errors */
1102 	if (read && !bp->b_error && bp->b_ops) {
1103 		ASSERT(!bp->b_iodone);
1104 		bp->b_ops->verify_read(bp);
1105 	}
1106 
1107 	if (!bp->b_error)
1108 		bp->b_flags |= XBF_DONE;
1109 
1110 	if (bp->b_iodone)
1111 		(*(bp->b_iodone))(bp);
1112 	else if (bp->b_flags & XBF_ASYNC)
1113 		xfs_buf_relse(bp);
1114 	else
1115 		complete(&bp->b_iowait);
1116 }
1117 
1118 static void
1119 xfs_buf_ioend_work(
1120 	struct work_struct	*work)
1121 {
1122 	struct xfs_buf		*bp =
1123 		container_of(work, xfs_buf_t, b_ioend_work);
1124 
1125 	xfs_buf_ioend(bp);
1126 }
1127 
1128 static void
1129 xfs_buf_ioend_async(
1130 	struct xfs_buf	*bp)
1131 {
1132 	INIT_WORK(&bp->b_ioend_work, xfs_buf_ioend_work);
1133 	queue_work(bp->b_ioend_wq, &bp->b_ioend_work);
1134 }
1135 
1136 void
1137 xfs_buf_ioerror(
1138 	xfs_buf_t		*bp,
1139 	int			error)
1140 {
1141 	ASSERT(error <= 0 && error >= -1000);
1142 	bp->b_error = error;
1143 	trace_xfs_buf_ioerror(bp, error, _RET_IP_);
1144 }
1145 
1146 void
1147 xfs_buf_ioerror_alert(
1148 	struct xfs_buf		*bp,
1149 	const char		*func)
1150 {
1151 	xfs_alert(bp->b_target->bt_mount,
1152 "metadata I/O error: block 0x%llx (\"%s\") error %d numblks %d",
1153 		(__uint64_t)XFS_BUF_ADDR(bp), func, -bp->b_error, bp->b_length);
1154 }
1155 
1156 int
1157 xfs_bwrite(
1158 	struct xfs_buf		*bp)
1159 {
1160 	int			error;
1161 
1162 	ASSERT(xfs_buf_islocked(bp));
1163 
1164 	bp->b_flags |= XBF_WRITE;
1165 	bp->b_flags &= ~(XBF_ASYNC | XBF_READ | _XBF_DELWRI_Q |
1166 			 XBF_WRITE_FAIL | XBF_DONE);
1167 
1168 	error = xfs_buf_submit_wait(bp);
1169 	if (error) {
1170 		xfs_force_shutdown(bp->b_target->bt_mount,
1171 				   SHUTDOWN_META_IO_ERROR);
1172 	}
1173 	return error;
1174 }
1175 
1176 static void
1177 xfs_buf_bio_end_io(
1178 	struct bio		*bio)
1179 {
1180 	struct xfs_buf		*bp = (struct xfs_buf *)bio->bi_private;
1181 
1182 	/*
1183 	 * don't overwrite existing errors - otherwise we can lose errors on
1184 	 * buffers that require multiple bios to complete.
1185 	 */
1186 	if (bio->bi_error)
1187 		cmpxchg(&bp->b_io_error, 0, bio->bi_error);
1188 
1189 	if (!bp->b_error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
1190 		invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1191 
1192 	if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1193 		xfs_buf_ioend_async(bp);
1194 	bio_put(bio);
1195 }
1196 
1197 static void
1198 xfs_buf_ioapply_map(
1199 	struct xfs_buf	*bp,
1200 	int		map,
1201 	int		*buf_offset,
1202 	int		*count,
1203 	int		op,
1204 	int		op_flags)
1205 {
1206 	int		page_index;
1207 	int		total_nr_pages = bp->b_page_count;
1208 	int		nr_pages;
1209 	struct bio	*bio;
1210 	sector_t	sector =  bp->b_maps[map].bm_bn;
1211 	int		size;
1212 	int		offset;
1213 
1214 	total_nr_pages = bp->b_page_count;
1215 
1216 	/* skip the pages in the buffer before the start offset */
1217 	page_index = 0;
1218 	offset = *buf_offset;
1219 	while (offset >= PAGE_SIZE) {
1220 		page_index++;
1221 		offset -= PAGE_SIZE;
1222 	}
1223 
1224 	/*
1225 	 * Limit the IO size to the length of the current vector, and update the
1226 	 * remaining IO count for the next time around.
1227 	 */
1228 	size = min_t(int, BBTOB(bp->b_maps[map].bm_len), *count);
1229 	*count -= size;
1230 	*buf_offset += size;
1231 
1232 next_chunk:
1233 	atomic_inc(&bp->b_io_remaining);
1234 	nr_pages = min(total_nr_pages, BIO_MAX_PAGES);
1235 
1236 	bio = bio_alloc(GFP_NOIO, nr_pages);
1237 	bio->bi_bdev = bp->b_target->bt_bdev;
1238 	bio->bi_iter.bi_sector = sector;
1239 	bio->bi_end_io = xfs_buf_bio_end_io;
1240 	bio->bi_private = bp;
1241 	bio_set_op_attrs(bio, op, op_flags);
1242 
1243 	for (; size && nr_pages; nr_pages--, page_index++) {
1244 		int	rbytes, nbytes = PAGE_SIZE - offset;
1245 
1246 		if (nbytes > size)
1247 			nbytes = size;
1248 
1249 		rbytes = bio_add_page(bio, bp->b_pages[page_index], nbytes,
1250 				      offset);
1251 		if (rbytes < nbytes)
1252 			break;
1253 
1254 		offset = 0;
1255 		sector += BTOBB(nbytes);
1256 		size -= nbytes;
1257 		total_nr_pages--;
1258 	}
1259 
1260 	if (likely(bio->bi_iter.bi_size)) {
1261 		if (xfs_buf_is_vmapped(bp)) {
1262 			flush_kernel_vmap_range(bp->b_addr,
1263 						xfs_buf_vmap_len(bp));
1264 		}
1265 		submit_bio(bio);
1266 		if (size)
1267 			goto next_chunk;
1268 	} else {
1269 		/*
1270 		 * This is guaranteed not to be the last io reference count
1271 		 * because the caller (xfs_buf_submit) holds a count itself.
1272 		 */
1273 		atomic_dec(&bp->b_io_remaining);
1274 		xfs_buf_ioerror(bp, -EIO);
1275 		bio_put(bio);
1276 	}
1277 
1278 }
1279 
1280 STATIC void
1281 _xfs_buf_ioapply(
1282 	struct xfs_buf	*bp)
1283 {
1284 	struct blk_plug	plug;
1285 	int		op;
1286 	int		op_flags = 0;
1287 	int		offset;
1288 	int		size;
1289 	int		i;
1290 
1291 	/*
1292 	 * Make sure we capture only current IO errors rather than stale errors
1293 	 * left over from previous use of the buffer (e.g. failed readahead).
1294 	 */
1295 	bp->b_error = 0;
1296 
1297 	/*
1298 	 * Initialize the I/O completion workqueue if we haven't yet or the
1299 	 * submitter has not opted to specify a custom one.
1300 	 */
1301 	if (!bp->b_ioend_wq)
1302 		bp->b_ioend_wq = bp->b_target->bt_mount->m_buf_workqueue;
1303 
1304 	if (bp->b_flags & XBF_WRITE) {
1305 		op = REQ_OP_WRITE;
1306 		if (bp->b_flags & XBF_SYNCIO)
1307 			op_flags = WRITE_SYNC;
1308 		if (bp->b_flags & XBF_FUA)
1309 			op_flags |= REQ_FUA;
1310 		if (bp->b_flags & XBF_FLUSH)
1311 			op_flags |= REQ_PREFLUSH;
1312 
1313 		/*
1314 		 * Run the write verifier callback function if it exists. If
1315 		 * this function fails it will mark the buffer with an error and
1316 		 * the IO should not be dispatched.
1317 		 */
1318 		if (bp->b_ops) {
1319 			bp->b_ops->verify_write(bp);
1320 			if (bp->b_error) {
1321 				xfs_force_shutdown(bp->b_target->bt_mount,
1322 						   SHUTDOWN_CORRUPT_INCORE);
1323 				return;
1324 			}
1325 		} else if (bp->b_bn != XFS_BUF_DADDR_NULL) {
1326 			struct xfs_mount *mp = bp->b_target->bt_mount;
1327 
1328 			/*
1329 			 * non-crc filesystems don't attach verifiers during
1330 			 * log recovery, so don't warn for such filesystems.
1331 			 */
1332 			if (xfs_sb_version_hascrc(&mp->m_sb)) {
1333 				xfs_warn(mp,
1334 					"%s: no ops on block 0x%llx/0x%x",
1335 					__func__, bp->b_bn, bp->b_length);
1336 				xfs_hex_dump(bp->b_addr, 64);
1337 				dump_stack();
1338 			}
1339 		}
1340 	} else if (bp->b_flags & XBF_READ_AHEAD) {
1341 		op = REQ_OP_READ;
1342 		op_flags = REQ_RAHEAD;
1343 	} else {
1344 		op = REQ_OP_READ;
1345 	}
1346 
1347 	/* we only use the buffer cache for meta-data */
1348 	op_flags |= REQ_META;
1349 
1350 	/*
1351 	 * Walk all the vectors issuing IO on them. Set up the initial offset
1352 	 * into the buffer and the desired IO size before we start -
1353 	 * _xfs_buf_ioapply_vec() will modify them appropriately for each
1354 	 * subsequent call.
1355 	 */
1356 	offset = bp->b_offset;
1357 	size = BBTOB(bp->b_io_length);
1358 	blk_start_plug(&plug);
1359 	for (i = 0; i < bp->b_map_count; i++) {
1360 		xfs_buf_ioapply_map(bp, i, &offset, &size, op, op_flags);
1361 		if (bp->b_error)
1362 			break;
1363 		if (size <= 0)
1364 			break;	/* all done */
1365 	}
1366 	blk_finish_plug(&plug);
1367 }
1368 
1369 /*
1370  * Asynchronous IO submission path. This transfers the buffer lock ownership and
1371  * the current reference to the IO. It is not safe to reference the buffer after
1372  * a call to this function unless the caller holds an additional reference
1373  * itself.
1374  */
1375 void
1376 xfs_buf_submit(
1377 	struct xfs_buf	*bp)
1378 {
1379 	trace_xfs_buf_submit(bp, _RET_IP_);
1380 
1381 	ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1382 	ASSERT(bp->b_flags & XBF_ASYNC);
1383 
1384 	/* on shutdown we stale and complete the buffer immediately */
1385 	if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
1386 		xfs_buf_ioerror(bp, -EIO);
1387 		bp->b_flags &= ~XBF_DONE;
1388 		xfs_buf_stale(bp);
1389 		xfs_buf_ioend(bp);
1390 		return;
1391 	}
1392 
1393 	if (bp->b_flags & XBF_WRITE)
1394 		xfs_buf_wait_unpin(bp);
1395 
1396 	/* clear the internal error state to avoid spurious errors */
1397 	bp->b_io_error = 0;
1398 
1399 	/*
1400 	 * The caller's reference is released during I/O completion.
1401 	 * This occurs some time after the last b_io_remaining reference is
1402 	 * released, so after we drop our Io reference we have to have some
1403 	 * other reference to ensure the buffer doesn't go away from underneath
1404 	 * us. Take a direct reference to ensure we have safe access to the
1405 	 * buffer until we are finished with it.
1406 	 */
1407 	xfs_buf_hold(bp);
1408 
1409 	/*
1410 	 * Set the count to 1 initially, this will stop an I/O completion
1411 	 * callout which happens before we have started all the I/O from calling
1412 	 * xfs_buf_ioend too early.
1413 	 */
1414 	atomic_set(&bp->b_io_remaining, 1);
1415 	xfs_buf_ioacct_inc(bp);
1416 	_xfs_buf_ioapply(bp);
1417 
1418 	/*
1419 	 * If _xfs_buf_ioapply failed, we can get back here with only the IO
1420 	 * reference we took above. If we drop it to zero, run completion so
1421 	 * that we don't return to the caller with completion still pending.
1422 	 */
1423 	if (atomic_dec_and_test(&bp->b_io_remaining) == 1) {
1424 		if (bp->b_error)
1425 			xfs_buf_ioend(bp);
1426 		else
1427 			xfs_buf_ioend_async(bp);
1428 	}
1429 
1430 	xfs_buf_rele(bp);
1431 	/* Note: it is not safe to reference bp now we've dropped our ref */
1432 }
1433 
1434 /*
1435  * Synchronous buffer IO submission path, read or write.
1436  */
1437 int
1438 xfs_buf_submit_wait(
1439 	struct xfs_buf	*bp)
1440 {
1441 	int		error;
1442 
1443 	trace_xfs_buf_submit_wait(bp, _RET_IP_);
1444 
1445 	ASSERT(!(bp->b_flags & (_XBF_DELWRI_Q | XBF_ASYNC)));
1446 
1447 	if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
1448 		xfs_buf_ioerror(bp, -EIO);
1449 		xfs_buf_stale(bp);
1450 		bp->b_flags &= ~XBF_DONE;
1451 		return -EIO;
1452 	}
1453 
1454 	if (bp->b_flags & XBF_WRITE)
1455 		xfs_buf_wait_unpin(bp);
1456 
1457 	/* clear the internal error state to avoid spurious errors */
1458 	bp->b_io_error = 0;
1459 
1460 	/*
1461 	 * For synchronous IO, the IO does not inherit the submitters reference
1462 	 * count, nor the buffer lock. Hence we cannot release the reference we
1463 	 * are about to take until we've waited for all IO completion to occur,
1464 	 * including any xfs_buf_ioend_async() work that may be pending.
1465 	 */
1466 	xfs_buf_hold(bp);
1467 
1468 	/*
1469 	 * Set the count to 1 initially, this will stop an I/O completion
1470 	 * callout which happens before we have started all the I/O from calling
1471 	 * xfs_buf_ioend too early.
1472 	 */
1473 	atomic_set(&bp->b_io_remaining, 1);
1474 	_xfs_buf_ioapply(bp);
1475 
1476 	/*
1477 	 * make sure we run completion synchronously if it raced with us and is
1478 	 * already complete.
1479 	 */
1480 	if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1481 		xfs_buf_ioend(bp);
1482 
1483 	/* wait for completion before gathering the error from the buffer */
1484 	trace_xfs_buf_iowait(bp, _RET_IP_);
1485 	wait_for_completion(&bp->b_iowait);
1486 	trace_xfs_buf_iowait_done(bp, _RET_IP_);
1487 	error = bp->b_error;
1488 
1489 	/*
1490 	 * all done now, we can release the hold that keeps the buffer
1491 	 * referenced for the entire IO.
1492 	 */
1493 	xfs_buf_rele(bp);
1494 	return error;
1495 }
1496 
1497 void *
1498 xfs_buf_offset(
1499 	struct xfs_buf		*bp,
1500 	size_t			offset)
1501 {
1502 	struct page		*page;
1503 
1504 	if (bp->b_addr)
1505 		return bp->b_addr + offset;
1506 
1507 	offset += bp->b_offset;
1508 	page = bp->b_pages[offset >> PAGE_SHIFT];
1509 	return page_address(page) + (offset & (PAGE_SIZE-1));
1510 }
1511 
1512 /*
1513  *	Move data into or out of a buffer.
1514  */
1515 void
1516 xfs_buf_iomove(
1517 	xfs_buf_t		*bp,	/* buffer to process		*/
1518 	size_t			boff,	/* starting buffer offset	*/
1519 	size_t			bsize,	/* length to copy		*/
1520 	void			*data,	/* data address			*/
1521 	xfs_buf_rw_t		mode)	/* read/write/zero flag		*/
1522 {
1523 	size_t			bend;
1524 
1525 	bend = boff + bsize;
1526 	while (boff < bend) {
1527 		struct page	*page;
1528 		int		page_index, page_offset, csize;
1529 
1530 		page_index = (boff + bp->b_offset) >> PAGE_SHIFT;
1531 		page_offset = (boff + bp->b_offset) & ~PAGE_MASK;
1532 		page = bp->b_pages[page_index];
1533 		csize = min_t(size_t, PAGE_SIZE - page_offset,
1534 				      BBTOB(bp->b_io_length) - boff);
1535 
1536 		ASSERT((csize + page_offset) <= PAGE_SIZE);
1537 
1538 		switch (mode) {
1539 		case XBRW_ZERO:
1540 			memset(page_address(page) + page_offset, 0, csize);
1541 			break;
1542 		case XBRW_READ:
1543 			memcpy(data, page_address(page) + page_offset, csize);
1544 			break;
1545 		case XBRW_WRITE:
1546 			memcpy(page_address(page) + page_offset, data, csize);
1547 		}
1548 
1549 		boff += csize;
1550 		data += csize;
1551 	}
1552 }
1553 
1554 /*
1555  *	Handling of buffer targets (buftargs).
1556  */
1557 
1558 /*
1559  * Wait for any bufs with callbacks that have been submitted but have not yet
1560  * returned. These buffers will have an elevated hold count, so wait on those
1561  * while freeing all the buffers only held by the LRU.
1562  */
1563 static enum lru_status
1564 xfs_buftarg_wait_rele(
1565 	struct list_head	*item,
1566 	struct list_lru_one	*lru,
1567 	spinlock_t		*lru_lock,
1568 	void			*arg)
1569 
1570 {
1571 	struct xfs_buf		*bp = container_of(item, struct xfs_buf, b_lru);
1572 	struct list_head	*dispose = arg;
1573 
1574 	if (atomic_read(&bp->b_hold) > 1) {
1575 		/* need to wait, so skip it this pass */
1576 		trace_xfs_buf_wait_buftarg(bp, _RET_IP_);
1577 		return LRU_SKIP;
1578 	}
1579 	if (!spin_trylock(&bp->b_lock))
1580 		return LRU_SKIP;
1581 
1582 	/*
1583 	 * clear the LRU reference count so the buffer doesn't get
1584 	 * ignored in xfs_buf_rele().
1585 	 */
1586 	atomic_set(&bp->b_lru_ref, 0);
1587 	bp->b_state |= XFS_BSTATE_DISPOSE;
1588 	list_lru_isolate_move(lru, item, dispose);
1589 	spin_unlock(&bp->b_lock);
1590 	return LRU_REMOVED;
1591 }
1592 
1593 void
1594 xfs_wait_buftarg(
1595 	struct xfs_buftarg	*btp)
1596 {
1597 	LIST_HEAD(dispose);
1598 	int loop = 0;
1599 
1600 	/*
1601 	 * First wait on the buftarg I/O count for all in-flight buffers to be
1602 	 * released. This is critical as new buffers do not make the LRU until
1603 	 * they are released.
1604 	 *
1605 	 * Next, flush the buffer workqueue to ensure all completion processing
1606 	 * has finished. Just waiting on buffer locks is not sufficient for
1607 	 * async IO as the reference count held over IO is not released until
1608 	 * after the buffer lock is dropped. Hence we need to ensure here that
1609 	 * all reference counts have been dropped before we start walking the
1610 	 * LRU list.
1611 	 */
1612 	while (percpu_counter_sum(&btp->bt_io_count))
1613 		delay(100);
1614 	flush_workqueue(btp->bt_mount->m_buf_workqueue);
1615 
1616 	/* loop until there is nothing left on the lru list. */
1617 	while (list_lru_count(&btp->bt_lru)) {
1618 		list_lru_walk(&btp->bt_lru, xfs_buftarg_wait_rele,
1619 			      &dispose, LONG_MAX);
1620 
1621 		while (!list_empty(&dispose)) {
1622 			struct xfs_buf *bp;
1623 			bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1624 			list_del_init(&bp->b_lru);
1625 			if (bp->b_flags & XBF_WRITE_FAIL) {
1626 				xfs_alert(btp->bt_mount,
1627 "Corruption Alert: Buffer at block 0x%llx had permanent write failures!",
1628 					(long long)bp->b_bn);
1629 				xfs_alert(btp->bt_mount,
1630 "Please run xfs_repair to determine the extent of the problem.");
1631 			}
1632 			xfs_buf_rele(bp);
1633 		}
1634 		if (loop++ != 0)
1635 			delay(100);
1636 	}
1637 }
1638 
1639 static enum lru_status
1640 xfs_buftarg_isolate(
1641 	struct list_head	*item,
1642 	struct list_lru_one	*lru,
1643 	spinlock_t		*lru_lock,
1644 	void			*arg)
1645 {
1646 	struct xfs_buf		*bp = container_of(item, struct xfs_buf, b_lru);
1647 	struct list_head	*dispose = arg;
1648 
1649 	/*
1650 	 * we are inverting the lru lock/bp->b_lock here, so use a trylock.
1651 	 * If we fail to get the lock, just skip it.
1652 	 */
1653 	if (!spin_trylock(&bp->b_lock))
1654 		return LRU_SKIP;
1655 	/*
1656 	 * Decrement the b_lru_ref count unless the value is already
1657 	 * zero. If the value is already zero, we need to reclaim the
1658 	 * buffer, otherwise it gets another trip through the LRU.
1659 	 */
1660 	if (!atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
1661 		spin_unlock(&bp->b_lock);
1662 		return LRU_ROTATE;
1663 	}
1664 
1665 	bp->b_state |= XFS_BSTATE_DISPOSE;
1666 	list_lru_isolate_move(lru, item, dispose);
1667 	spin_unlock(&bp->b_lock);
1668 	return LRU_REMOVED;
1669 }
1670 
1671 static unsigned long
1672 xfs_buftarg_shrink_scan(
1673 	struct shrinker		*shrink,
1674 	struct shrink_control	*sc)
1675 {
1676 	struct xfs_buftarg	*btp = container_of(shrink,
1677 					struct xfs_buftarg, bt_shrinker);
1678 	LIST_HEAD(dispose);
1679 	unsigned long		freed;
1680 
1681 	freed = list_lru_shrink_walk(&btp->bt_lru, sc,
1682 				     xfs_buftarg_isolate, &dispose);
1683 
1684 	while (!list_empty(&dispose)) {
1685 		struct xfs_buf *bp;
1686 		bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1687 		list_del_init(&bp->b_lru);
1688 		xfs_buf_rele(bp);
1689 	}
1690 
1691 	return freed;
1692 }
1693 
1694 static unsigned long
1695 xfs_buftarg_shrink_count(
1696 	struct shrinker		*shrink,
1697 	struct shrink_control	*sc)
1698 {
1699 	struct xfs_buftarg	*btp = container_of(shrink,
1700 					struct xfs_buftarg, bt_shrinker);
1701 	return list_lru_shrink_count(&btp->bt_lru, sc);
1702 }
1703 
1704 void
1705 xfs_free_buftarg(
1706 	struct xfs_mount	*mp,
1707 	struct xfs_buftarg	*btp)
1708 {
1709 	unregister_shrinker(&btp->bt_shrinker);
1710 	ASSERT(percpu_counter_sum(&btp->bt_io_count) == 0);
1711 	percpu_counter_destroy(&btp->bt_io_count);
1712 	list_lru_destroy(&btp->bt_lru);
1713 
1714 	if (mp->m_flags & XFS_MOUNT_BARRIER)
1715 		xfs_blkdev_issue_flush(btp);
1716 
1717 	kmem_free(btp);
1718 }
1719 
1720 int
1721 xfs_setsize_buftarg(
1722 	xfs_buftarg_t		*btp,
1723 	unsigned int		sectorsize)
1724 {
1725 	/* Set up metadata sector size info */
1726 	btp->bt_meta_sectorsize = sectorsize;
1727 	btp->bt_meta_sectormask = sectorsize - 1;
1728 
1729 	if (set_blocksize(btp->bt_bdev, sectorsize)) {
1730 		xfs_warn(btp->bt_mount,
1731 			"Cannot set_blocksize to %u on device %pg",
1732 			sectorsize, btp->bt_bdev);
1733 		return -EINVAL;
1734 	}
1735 
1736 	/* Set up device logical sector size mask */
1737 	btp->bt_logical_sectorsize = bdev_logical_block_size(btp->bt_bdev);
1738 	btp->bt_logical_sectormask = bdev_logical_block_size(btp->bt_bdev) - 1;
1739 
1740 	return 0;
1741 }
1742 
1743 /*
1744  * When allocating the initial buffer target we have not yet
1745  * read in the superblock, so don't know what sized sectors
1746  * are being used at this early stage.  Play safe.
1747  */
1748 STATIC int
1749 xfs_setsize_buftarg_early(
1750 	xfs_buftarg_t		*btp,
1751 	struct block_device	*bdev)
1752 {
1753 	return xfs_setsize_buftarg(btp, bdev_logical_block_size(bdev));
1754 }
1755 
1756 xfs_buftarg_t *
1757 xfs_alloc_buftarg(
1758 	struct xfs_mount	*mp,
1759 	struct block_device	*bdev)
1760 {
1761 	xfs_buftarg_t		*btp;
1762 
1763 	btp = kmem_zalloc(sizeof(*btp), KM_SLEEP | KM_NOFS);
1764 
1765 	btp->bt_mount = mp;
1766 	btp->bt_dev =  bdev->bd_dev;
1767 	btp->bt_bdev = bdev;
1768 	btp->bt_bdi = blk_get_backing_dev_info(bdev);
1769 
1770 	if (xfs_setsize_buftarg_early(btp, bdev))
1771 		goto error;
1772 
1773 	if (list_lru_init(&btp->bt_lru))
1774 		goto error;
1775 
1776 	if (percpu_counter_init(&btp->bt_io_count, 0, GFP_KERNEL))
1777 		goto error;
1778 
1779 	btp->bt_shrinker.count_objects = xfs_buftarg_shrink_count;
1780 	btp->bt_shrinker.scan_objects = xfs_buftarg_shrink_scan;
1781 	btp->bt_shrinker.seeks = DEFAULT_SEEKS;
1782 	btp->bt_shrinker.flags = SHRINKER_NUMA_AWARE;
1783 	register_shrinker(&btp->bt_shrinker);
1784 	return btp;
1785 
1786 error:
1787 	kmem_free(btp);
1788 	return NULL;
1789 }
1790 
1791 /*
1792  * Add a buffer to the delayed write list.
1793  *
1794  * This queues a buffer for writeout if it hasn't already been.  Note that
1795  * neither this routine nor the buffer list submission functions perform
1796  * any internal synchronization.  It is expected that the lists are thread-local
1797  * to the callers.
1798  *
1799  * Returns true if we queued up the buffer, or false if it already had
1800  * been on the buffer list.
1801  */
1802 bool
1803 xfs_buf_delwri_queue(
1804 	struct xfs_buf		*bp,
1805 	struct list_head	*list)
1806 {
1807 	ASSERT(xfs_buf_islocked(bp));
1808 	ASSERT(!(bp->b_flags & XBF_READ));
1809 
1810 	/*
1811 	 * If the buffer is already marked delwri it already is queued up
1812 	 * by someone else for imediate writeout.  Just ignore it in that
1813 	 * case.
1814 	 */
1815 	if (bp->b_flags & _XBF_DELWRI_Q) {
1816 		trace_xfs_buf_delwri_queued(bp, _RET_IP_);
1817 		return false;
1818 	}
1819 
1820 	trace_xfs_buf_delwri_queue(bp, _RET_IP_);
1821 
1822 	/*
1823 	 * If a buffer gets written out synchronously or marked stale while it
1824 	 * is on a delwri list we lazily remove it. To do this, the other party
1825 	 * clears the  _XBF_DELWRI_Q flag but otherwise leaves the buffer alone.
1826 	 * It remains referenced and on the list.  In a rare corner case it
1827 	 * might get readded to a delwri list after the synchronous writeout, in
1828 	 * which case we need just need to re-add the flag here.
1829 	 */
1830 	bp->b_flags |= _XBF_DELWRI_Q;
1831 	if (list_empty(&bp->b_list)) {
1832 		atomic_inc(&bp->b_hold);
1833 		list_add_tail(&bp->b_list, list);
1834 	}
1835 
1836 	return true;
1837 }
1838 
1839 /*
1840  * Compare function is more complex than it needs to be because
1841  * the return value is only 32 bits and we are doing comparisons
1842  * on 64 bit values
1843  */
1844 static int
1845 xfs_buf_cmp(
1846 	void		*priv,
1847 	struct list_head *a,
1848 	struct list_head *b)
1849 {
1850 	struct xfs_buf	*ap = container_of(a, struct xfs_buf, b_list);
1851 	struct xfs_buf	*bp = container_of(b, struct xfs_buf, b_list);
1852 	xfs_daddr_t		diff;
1853 
1854 	diff = ap->b_maps[0].bm_bn - bp->b_maps[0].bm_bn;
1855 	if (diff < 0)
1856 		return -1;
1857 	if (diff > 0)
1858 		return 1;
1859 	return 0;
1860 }
1861 
1862 /*
1863  * submit buffers for write.
1864  *
1865  * When we have a large buffer list, we do not want to hold all the buffers
1866  * locked while we block on the request queue waiting for IO dispatch. To avoid
1867  * this problem, we lock and submit buffers in groups of 50, thereby minimising
1868  * the lock hold times for lists which may contain thousands of objects.
1869  *
1870  * To do this, we sort the buffer list before we walk the list to lock and
1871  * submit buffers, and we plug and unplug around each group of buffers we
1872  * submit.
1873  */
1874 static int
1875 xfs_buf_delwri_submit_buffers(
1876 	struct list_head	*buffer_list,
1877 	struct list_head	*wait_list)
1878 {
1879 	struct xfs_buf		*bp, *n;
1880 	LIST_HEAD		(submit_list);
1881 	int			pinned = 0;
1882 	struct blk_plug		plug;
1883 
1884 	list_sort(NULL, buffer_list, xfs_buf_cmp);
1885 
1886 	blk_start_plug(&plug);
1887 	list_for_each_entry_safe(bp, n, buffer_list, b_list) {
1888 		if (!wait_list) {
1889 			if (xfs_buf_ispinned(bp)) {
1890 				pinned++;
1891 				continue;
1892 			}
1893 			if (!xfs_buf_trylock(bp))
1894 				continue;
1895 		} else {
1896 			xfs_buf_lock(bp);
1897 		}
1898 
1899 		/*
1900 		 * Someone else might have written the buffer synchronously or
1901 		 * marked it stale in the meantime.  In that case only the
1902 		 * _XBF_DELWRI_Q flag got cleared, and we have to drop the
1903 		 * reference and remove it from the list here.
1904 		 */
1905 		if (!(bp->b_flags & _XBF_DELWRI_Q)) {
1906 			list_del_init(&bp->b_list);
1907 			xfs_buf_relse(bp);
1908 			continue;
1909 		}
1910 
1911 		trace_xfs_buf_delwri_split(bp, _RET_IP_);
1912 
1913 		/*
1914 		 * We do all IO submission async. This means if we need
1915 		 * to wait for IO completion we need to take an extra
1916 		 * reference so the buffer is still valid on the other
1917 		 * side. We need to move the buffer onto the io_list
1918 		 * at this point so the caller can still access it.
1919 		 */
1920 		bp->b_flags &= ~(_XBF_DELWRI_Q | XBF_WRITE_FAIL);
1921 		bp->b_flags |= XBF_WRITE | XBF_ASYNC;
1922 		if (wait_list) {
1923 			xfs_buf_hold(bp);
1924 			list_move_tail(&bp->b_list, wait_list);
1925 		} else
1926 			list_del_init(&bp->b_list);
1927 
1928 		xfs_buf_submit(bp);
1929 	}
1930 	blk_finish_plug(&plug);
1931 
1932 	return pinned;
1933 }
1934 
1935 /*
1936  * Write out a buffer list asynchronously.
1937  *
1938  * This will take the @buffer_list, write all non-locked and non-pinned buffers
1939  * out and not wait for I/O completion on any of the buffers.  This interface
1940  * is only safely useable for callers that can track I/O completion by higher
1941  * level means, e.g. AIL pushing as the @buffer_list is consumed in this
1942  * function.
1943  */
1944 int
1945 xfs_buf_delwri_submit_nowait(
1946 	struct list_head	*buffer_list)
1947 {
1948 	return xfs_buf_delwri_submit_buffers(buffer_list, NULL);
1949 }
1950 
1951 /*
1952  * Write out a buffer list synchronously.
1953  *
1954  * This will take the @buffer_list, write all buffers out and wait for I/O
1955  * completion on all of the buffers. @buffer_list is consumed by the function,
1956  * so callers must have some other way of tracking buffers if they require such
1957  * functionality.
1958  */
1959 int
1960 xfs_buf_delwri_submit(
1961 	struct list_head	*buffer_list)
1962 {
1963 	LIST_HEAD		(wait_list);
1964 	int			error = 0, error2;
1965 	struct xfs_buf		*bp;
1966 
1967 	xfs_buf_delwri_submit_buffers(buffer_list, &wait_list);
1968 
1969 	/* Wait for IO to complete. */
1970 	while (!list_empty(&wait_list)) {
1971 		bp = list_first_entry(&wait_list, struct xfs_buf, b_list);
1972 
1973 		list_del_init(&bp->b_list);
1974 
1975 		/* locking the buffer will wait for async IO completion. */
1976 		xfs_buf_lock(bp);
1977 		error2 = bp->b_error;
1978 		xfs_buf_relse(bp);
1979 		if (!error)
1980 			error = error2;
1981 	}
1982 
1983 	return error;
1984 }
1985 
1986 int __init
1987 xfs_buf_init(void)
1988 {
1989 	xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
1990 						KM_ZONE_HWALIGN, NULL);
1991 	if (!xfs_buf_zone)
1992 		goto out;
1993 
1994 	return 0;
1995 
1996  out:
1997 	return -ENOMEM;
1998 }
1999 
2000 void
2001 xfs_buf_terminate(void)
2002 {
2003 	kmem_zone_destroy(xfs_buf_zone);
2004 }
2005