xref: /linux/fs/xfs/xfs_buf.c (revision eb01fe7abbe2d0b38824d2a93fdb4cc3eaf2ccc1)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include <linux/backing-dev.h>
8 #include <linux/dax.h>
9 
10 #include "xfs_shared.h"
11 #include "xfs_format.h"
12 #include "xfs_log_format.h"
13 #include "xfs_trans_resv.h"
14 #include "xfs_mount.h"
15 #include "xfs_trace.h"
16 #include "xfs_log.h"
17 #include "xfs_log_recover.h"
18 #include "xfs_log_priv.h"
19 #include "xfs_trans.h"
20 #include "xfs_buf_item.h"
21 #include "xfs_errortag.h"
22 #include "xfs_error.h"
23 #include "xfs_ag.h"
24 #include "xfs_buf_mem.h"
25 
26 struct kmem_cache *xfs_buf_cache;
27 
28 /*
29  * Locking orders
30  *
31  * xfs_buf_ioacct_inc:
32  * xfs_buf_ioacct_dec:
33  *	b_sema (caller holds)
34  *	  b_lock
35  *
36  * xfs_buf_stale:
37  *	b_sema (caller holds)
38  *	  b_lock
39  *	    lru_lock
40  *
41  * xfs_buf_rele:
42  *	b_lock
43  *	  pag_buf_lock
44  *	    lru_lock
45  *
46  * xfs_buftarg_drain_rele
47  *	lru_lock
48  *	  b_lock (trylock due to inversion)
49  *
50  * xfs_buftarg_isolate
51  *	lru_lock
52  *	  b_lock (trylock due to inversion)
53  */
54 
55 static int __xfs_buf_submit(struct xfs_buf *bp, bool wait);
56 
57 static inline int
58 xfs_buf_submit(
59 	struct xfs_buf		*bp)
60 {
61 	return __xfs_buf_submit(bp, !(bp->b_flags & XBF_ASYNC));
62 }
63 
64 static inline bool xfs_buf_is_uncached(struct xfs_buf *bp)
65 {
66 	return bp->b_rhash_key == XFS_BUF_DADDR_NULL;
67 }
68 
69 static inline int
70 xfs_buf_is_vmapped(
71 	struct xfs_buf	*bp)
72 {
73 	/*
74 	 * Return true if the buffer is vmapped.
75 	 *
76 	 * b_addr is null if the buffer is not mapped, but the code is clever
77 	 * enough to know it doesn't have to map a single page, so the check has
78 	 * to be both for b_addr and bp->b_page_count > 1.
79 	 */
80 	return bp->b_addr && bp->b_page_count > 1;
81 }
82 
83 static inline int
84 xfs_buf_vmap_len(
85 	struct xfs_buf	*bp)
86 {
87 	return (bp->b_page_count * PAGE_SIZE);
88 }
89 
90 /*
91  * Bump the I/O in flight count on the buftarg if we haven't yet done so for
92  * this buffer. The count is incremented once per buffer (per hold cycle)
93  * because the corresponding decrement is deferred to buffer release. Buffers
94  * can undergo I/O multiple times in a hold-release cycle and per buffer I/O
95  * tracking adds unnecessary overhead. This is used for sychronization purposes
96  * with unmount (see xfs_buftarg_drain()), so all we really need is a count of
97  * in-flight buffers.
98  *
99  * Buffers that are never released (e.g., superblock, iclog buffers) must set
100  * the XBF_NO_IOACCT flag before I/O submission. Otherwise, the buftarg count
101  * never reaches zero and unmount hangs indefinitely.
102  */
103 static inline void
104 xfs_buf_ioacct_inc(
105 	struct xfs_buf	*bp)
106 {
107 	if (bp->b_flags & XBF_NO_IOACCT)
108 		return;
109 
110 	ASSERT(bp->b_flags & XBF_ASYNC);
111 	spin_lock(&bp->b_lock);
112 	if (!(bp->b_state & XFS_BSTATE_IN_FLIGHT)) {
113 		bp->b_state |= XFS_BSTATE_IN_FLIGHT;
114 		percpu_counter_inc(&bp->b_target->bt_io_count);
115 	}
116 	spin_unlock(&bp->b_lock);
117 }
118 
119 /*
120  * Clear the in-flight state on a buffer about to be released to the LRU or
121  * freed and unaccount from the buftarg.
122  */
123 static inline void
124 __xfs_buf_ioacct_dec(
125 	struct xfs_buf	*bp)
126 {
127 	lockdep_assert_held(&bp->b_lock);
128 
129 	if (bp->b_state & XFS_BSTATE_IN_FLIGHT) {
130 		bp->b_state &= ~XFS_BSTATE_IN_FLIGHT;
131 		percpu_counter_dec(&bp->b_target->bt_io_count);
132 	}
133 }
134 
135 static inline void
136 xfs_buf_ioacct_dec(
137 	struct xfs_buf	*bp)
138 {
139 	spin_lock(&bp->b_lock);
140 	__xfs_buf_ioacct_dec(bp);
141 	spin_unlock(&bp->b_lock);
142 }
143 
144 /*
145  * When we mark a buffer stale, we remove the buffer from the LRU and clear the
146  * b_lru_ref count so that the buffer is freed immediately when the buffer
147  * reference count falls to zero. If the buffer is already on the LRU, we need
148  * to remove the reference that LRU holds on the buffer.
149  *
150  * This prevents build-up of stale buffers on the LRU.
151  */
152 void
153 xfs_buf_stale(
154 	struct xfs_buf	*bp)
155 {
156 	ASSERT(xfs_buf_islocked(bp));
157 
158 	bp->b_flags |= XBF_STALE;
159 
160 	/*
161 	 * Clear the delwri status so that a delwri queue walker will not
162 	 * flush this buffer to disk now that it is stale. The delwri queue has
163 	 * a reference to the buffer, so this is safe to do.
164 	 */
165 	bp->b_flags &= ~_XBF_DELWRI_Q;
166 
167 	/*
168 	 * Once the buffer is marked stale and unlocked, a subsequent lookup
169 	 * could reset b_flags. There is no guarantee that the buffer is
170 	 * unaccounted (released to LRU) before that occurs. Drop in-flight
171 	 * status now to preserve accounting consistency.
172 	 */
173 	spin_lock(&bp->b_lock);
174 	__xfs_buf_ioacct_dec(bp);
175 
176 	atomic_set(&bp->b_lru_ref, 0);
177 	if (!(bp->b_state & XFS_BSTATE_DISPOSE) &&
178 	    (list_lru_del_obj(&bp->b_target->bt_lru, &bp->b_lru)))
179 		atomic_dec(&bp->b_hold);
180 
181 	ASSERT(atomic_read(&bp->b_hold) >= 1);
182 	spin_unlock(&bp->b_lock);
183 }
184 
185 static int
186 xfs_buf_get_maps(
187 	struct xfs_buf		*bp,
188 	int			map_count)
189 {
190 	ASSERT(bp->b_maps == NULL);
191 	bp->b_map_count = map_count;
192 
193 	if (map_count == 1) {
194 		bp->b_maps = &bp->__b_map;
195 		return 0;
196 	}
197 
198 	bp->b_maps = kzalloc(map_count * sizeof(struct xfs_buf_map),
199 			GFP_KERNEL | __GFP_NOLOCKDEP | __GFP_NOFAIL);
200 	if (!bp->b_maps)
201 		return -ENOMEM;
202 	return 0;
203 }
204 
205 /*
206  *	Frees b_pages if it was allocated.
207  */
208 static void
209 xfs_buf_free_maps(
210 	struct xfs_buf	*bp)
211 {
212 	if (bp->b_maps != &bp->__b_map) {
213 		kfree(bp->b_maps);
214 		bp->b_maps = NULL;
215 	}
216 }
217 
218 static int
219 _xfs_buf_alloc(
220 	struct xfs_buftarg	*target,
221 	struct xfs_buf_map	*map,
222 	int			nmaps,
223 	xfs_buf_flags_t		flags,
224 	struct xfs_buf		**bpp)
225 {
226 	struct xfs_buf		*bp;
227 	int			error;
228 	int			i;
229 
230 	*bpp = NULL;
231 	bp = kmem_cache_zalloc(xfs_buf_cache,
232 			GFP_KERNEL | __GFP_NOLOCKDEP | __GFP_NOFAIL);
233 
234 	/*
235 	 * We don't want certain flags to appear in b_flags unless they are
236 	 * specifically set by later operations on the buffer.
237 	 */
238 	flags &= ~(XBF_UNMAPPED | XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD);
239 
240 	atomic_set(&bp->b_hold, 1);
241 	atomic_set(&bp->b_lru_ref, 1);
242 	init_completion(&bp->b_iowait);
243 	INIT_LIST_HEAD(&bp->b_lru);
244 	INIT_LIST_HEAD(&bp->b_list);
245 	INIT_LIST_HEAD(&bp->b_li_list);
246 	sema_init(&bp->b_sema, 0); /* held, no waiters */
247 	spin_lock_init(&bp->b_lock);
248 	bp->b_target = target;
249 	bp->b_mount = target->bt_mount;
250 	bp->b_flags = flags;
251 
252 	/*
253 	 * Set length and io_length to the same value initially.
254 	 * I/O routines should use io_length, which will be the same in
255 	 * most cases but may be reset (e.g. XFS recovery).
256 	 */
257 	error = xfs_buf_get_maps(bp, nmaps);
258 	if (error)  {
259 		kmem_cache_free(xfs_buf_cache, bp);
260 		return error;
261 	}
262 
263 	bp->b_rhash_key = map[0].bm_bn;
264 	bp->b_length = 0;
265 	for (i = 0; i < nmaps; i++) {
266 		bp->b_maps[i].bm_bn = map[i].bm_bn;
267 		bp->b_maps[i].bm_len = map[i].bm_len;
268 		bp->b_length += map[i].bm_len;
269 	}
270 
271 	atomic_set(&bp->b_pin_count, 0);
272 	init_waitqueue_head(&bp->b_waiters);
273 
274 	XFS_STATS_INC(bp->b_mount, xb_create);
275 	trace_xfs_buf_init(bp, _RET_IP_);
276 
277 	*bpp = bp;
278 	return 0;
279 }
280 
281 static void
282 xfs_buf_free_pages(
283 	struct xfs_buf	*bp)
284 {
285 	uint		i;
286 
287 	ASSERT(bp->b_flags & _XBF_PAGES);
288 
289 	if (xfs_buf_is_vmapped(bp))
290 		vm_unmap_ram(bp->b_addr, bp->b_page_count);
291 
292 	for (i = 0; i < bp->b_page_count; i++) {
293 		if (bp->b_pages[i])
294 			__free_page(bp->b_pages[i]);
295 	}
296 	mm_account_reclaimed_pages(bp->b_page_count);
297 
298 	if (bp->b_pages != bp->b_page_array)
299 		kfree(bp->b_pages);
300 	bp->b_pages = NULL;
301 	bp->b_flags &= ~_XBF_PAGES;
302 }
303 
304 static void
305 xfs_buf_free_callback(
306 	struct callback_head	*cb)
307 {
308 	struct xfs_buf		*bp = container_of(cb, struct xfs_buf, b_rcu);
309 
310 	xfs_buf_free_maps(bp);
311 	kmem_cache_free(xfs_buf_cache, bp);
312 }
313 
314 static void
315 xfs_buf_free(
316 	struct xfs_buf		*bp)
317 {
318 	trace_xfs_buf_free(bp, _RET_IP_);
319 
320 	ASSERT(list_empty(&bp->b_lru));
321 
322 	if (xfs_buftarg_is_mem(bp->b_target))
323 		xmbuf_unmap_page(bp);
324 	else if (bp->b_flags & _XBF_PAGES)
325 		xfs_buf_free_pages(bp);
326 	else if (bp->b_flags & _XBF_KMEM)
327 		kfree(bp->b_addr);
328 
329 	call_rcu(&bp->b_rcu, xfs_buf_free_callback);
330 }
331 
332 static int
333 xfs_buf_alloc_kmem(
334 	struct xfs_buf	*bp,
335 	xfs_buf_flags_t	flags)
336 {
337 	gfp_t		gfp_mask = GFP_KERNEL | __GFP_NOLOCKDEP | __GFP_NOFAIL;
338 	size_t		size = BBTOB(bp->b_length);
339 
340 	/* Assure zeroed buffer for non-read cases. */
341 	if (!(flags & XBF_READ))
342 		gfp_mask |= __GFP_ZERO;
343 
344 	bp->b_addr = kmalloc(size, gfp_mask);
345 	if (!bp->b_addr)
346 		return -ENOMEM;
347 
348 	if (((unsigned long)(bp->b_addr + size - 1) & PAGE_MASK) !=
349 	    ((unsigned long)bp->b_addr & PAGE_MASK)) {
350 		/* b_addr spans two pages - use alloc_page instead */
351 		kfree(bp->b_addr);
352 		bp->b_addr = NULL;
353 		return -ENOMEM;
354 	}
355 	bp->b_offset = offset_in_page(bp->b_addr);
356 	bp->b_pages = bp->b_page_array;
357 	bp->b_pages[0] = kmem_to_page(bp->b_addr);
358 	bp->b_page_count = 1;
359 	bp->b_flags |= _XBF_KMEM;
360 	return 0;
361 }
362 
363 static int
364 xfs_buf_alloc_pages(
365 	struct xfs_buf	*bp,
366 	xfs_buf_flags_t	flags)
367 {
368 	gfp_t		gfp_mask = GFP_KERNEL | __GFP_NOLOCKDEP | __GFP_NOWARN;
369 	long		filled = 0;
370 
371 	if (flags & XBF_READ_AHEAD)
372 		gfp_mask |= __GFP_NORETRY;
373 
374 	/* Make sure that we have a page list */
375 	bp->b_page_count = DIV_ROUND_UP(BBTOB(bp->b_length), PAGE_SIZE);
376 	if (bp->b_page_count <= XB_PAGES) {
377 		bp->b_pages = bp->b_page_array;
378 	} else {
379 		bp->b_pages = kzalloc(sizeof(struct page *) * bp->b_page_count,
380 					gfp_mask);
381 		if (!bp->b_pages)
382 			return -ENOMEM;
383 	}
384 	bp->b_flags |= _XBF_PAGES;
385 
386 	/* Assure zeroed buffer for non-read cases. */
387 	if (!(flags & XBF_READ))
388 		gfp_mask |= __GFP_ZERO;
389 
390 	/*
391 	 * Bulk filling of pages can take multiple calls. Not filling the entire
392 	 * array is not an allocation failure, so don't back off if we get at
393 	 * least one extra page.
394 	 */
395 	for (;;) {
396 		long	last = filled;
397 
398 		filled = alloc_pages_bulk_array(gfp_mask, bp->b_page_count,
399 						bp->b_pages);
400 		if (filled == bp->b_page_count) {
401 			XFS_STATS_INC(bp->b_mount, xb_page_found);
402 			break;
403 		}
404 
405 		if (filled != last)
406 			continue;
407 
408 		if (flags & XBF_READ_AHEAD) {
409 			xfs_buf_free_pages(bp);
410 			return -ENOMEM;
411 		}
412 
413 		XFS_STATS_INC(bp->b_mount, xb_page_retries);
414 		memalloc_retry_wait(gfp_mask);
415 	}
416 	return 0;
417 }
418 
419 /*
420  *	Map buffer into kernel address-space if necessary.
421  */
422 STATIC int
423 _xfs_buf_map_pages(
424 	struct xfs_buf		*bp,
425 	xfs_buf_flags_t		flags)
426 {
427 	ASSERT(bp->b_flags & _XBF_PAGES);
428 	if (bp->b_page_count == 1) {
429 		/* A single page buffer is always mappable */
430 		bp->b_addr = page_address(bp->b_pages[0]);
431 	} else if (flags & XBF_UNMAPPED) {
432 		bp->b_addr = NULL;
433 	} else {
434 		int retried = 0;
435 		unsigned nofs_flag;
436 
437 		/*
438 		 * vm_map_ram() will allocate auxiliary structures (e.g.
439 		 * pagetables) with GFP_KERNEL, yet we often under a scoped nofs
440 		 * context here. Mixing GFP_KERNEL with GFP_NOFS allocations
441 		 * from the same call site that can be run from both above and
442 		 * below memory reclaim causes lockdep false positives. Hence we
443 		 * always need to force this allocation to nofs context because
444 		 * we can't pass __GFP_NOLOCKDEP down to auxillary structures to
445 		 * prevent false positive lockdep reports.
446 		 *
447 		 * XXX(dgc): I think dquot reclaim is the only place we can get
448 		 * to this function from memory reclaim context now. If we fix
449 		 * that like we've fixed inode reclaim to avoid writeback from
450 		 * reclaim, this nofs wrapping can go away.
451 		 */
452 		nofs_flag = memalloc_nofs_save();
453 		do {
454 			bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
455 						-1);
456 			if (bp->b_addr)
457 				break;
458 			vm_unmap_aliases();
459 		} while (retried++ <= 1);
460 		memalloc_nofs_restore(nofs_flag);
461 
462 		if (!bp->b_addr)
463 			return -ENOMEM;
464 	}
465 
466 	return 0;
467 }
468 
469 /*
470  *	Finding and Reading Buffers
471  */
472 static int
473 _xfs_buf_obj_cmp(
474 	struct rhashtable_compare_arg	*arg,
475 	const void			*obj)
476 {
477 	const struct xfs_buf_map	*map = arg->key;
478 	const struct xfs_buf		*bp = obj;
479 
480 	/*
481 	 * The key hashing in the lookup path depends on the key being the
482 	 * first element of the compare_arg, make sure to assert this.
483 	 */
484 	BUILD_BUG_ON(offsetof(struct xfs_buf_map, bm_bn) != 0);
485 
486 	if (bp->b_rhash_key != map->bm_bn)
487 		return 1;
488 
489 	if (unlikely(bp->b_length != map->bm_len)) {
490 		/*
491 		 * found a block number match. If the range doesn't
492 		 * match, the only way this is allowed is if the buffer
493 		 * in the cache is stale and the transaction that made
494 		 * it stale has not yet committed. i.e. we are
495 		 * reallocating a busy extent. Skip this buffer and
496 		 * continue searching for an exact match.
497 		 */
498 		if (!(map->bm_flags & XBM_LIVESCAN))
499 			ASSERT(bp->b_flags & XBF_STALE);
500 		return 1;
501 	}
502 	return 0;
503 }
504 
505 static const struct rhashtable_params xfs_buf_hash_params = {
506 	.min_size		= 32,	/* empty AGs have minimal footprint */
507 	.nelem_hint		= 16,
508 	.key_len		= sizeof(xfs_daddr_t),
509 	.key_offset		= offsetof(struct xfs_buf, b_rhash_key),
510 	.head_offset		= offsetof(struct xfs_buf, b_rhash_head),
511 	.automatic_shrinking	= true,
512 	.obj_cmpfn		= _xfs_buf_obj_cmp,
513 };
514 
515 int
516 xfs_buf_cache_init(
517 	struct xfs_buf_cache	*bch)
518 {
519 	spin_lock_init(&bch->bc_lock);
520 	return rhashtable_init(&bch->bc_hash, &xfs_buf_hash_params);
521 }
522 
523 void
524 xfs_buf_cache_destroy(
525 	struct xfs_buf_cache	*bch)
526 {
527 	rhashtable_destroy(&bch->bc_hash);
528 }
529 
530 static int
531 xfs_buf_map_verify(
532 	struct xfs_buftarg	*btp,
533 	struct xfs_buf_map	*map)
534 {
535 	xfs_daddr_t		eofs;
536 
537 	/* Check for IOs smaller than the sector size / not sector aligned */
538 	ASSERT(!(BBTOB(map->bm_len) < btp->bt_meta_sectorsize));
539 	ASSERT(!(BBTOB(map->bm_bn) & (xfs_off_t)btp->bt_meta_sectormask));
540 
541 	/*
542 	 * Corrupted block numbers can get through to here, unfortunately, so we
543 	 * have to check that the buffer falls within the filesystem bounds.
544 	 */
545 	eofs = XFS_FSB_TO_BB(btp->bt_mount, btp->bt_mount->m_sb.sb_dblocks);
546 	if (map->bm_bn < 0 || map->bm_bn >= eofs) {
547 		xfs_alert(btp->bt_mount,
548 			  "%s: daddr 0x%llx out of range, EOFS 0x%llx",
549 			  __func__, map->bm_bn, eofs);
550 		WARN_ON(1);
551 		return -EFSCORRUPTED;
552 	}
553 	return 0;
554 }
555 
556 static int
557 xfs_buf_find_lock(
558 	struct xfs_buf          *bp,
559 	xfs_buf_flags_t		flags)
560 {
561 	if (flags & XBF_TRYLOCK) {
562 		if (!xfs_buf_trylock(bp)) {
563 			XFS_STATS_INC(bp->b_mount, xb_busy_locked);
564 			return -EAGAIN;
565 		}
566 	} else {
567 		xfs_buf_lock(bp);
568 		XFS_STATS_INC(bp->b_mount, xb_get_locked_waited);
569 	}
570 
571 	/*
572 	 * if the buffer is stale, clear all the external state associated with
573 	 * it. We need to keep flags such as how we allocated the buffer memory
574 	 * intact here.
575 	 */
576 	if (bp->b_flags & XBF_STALE) {
577 		if (flags & XBF_LIVESCAN) {
578 			xfs_buf_unlock(bp);
579 			return -ENOENT;
580 		}
581 		ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
582 		bp->b_flags &= _XBF_KMEM | _XBF_PAGES;
583 		bp->b_ops = NULL;
584 	}
585 	return 0;
586 }
587 
588 static inline int
589 xfs_buf_lookup(
590 	struct xfs_buf_cache	*bch,
591 	struct xfs_buf_map	*map,
592 	xfs_buf_flags_t		flags,
593 	struct xfs_buf		**bpp)
594 {
595 	struct xfs_buf          *bp;
596 	int			error;
597 
598 	rcu_read_lock();
599 	bp = rhashtable_lookup(&bch->bc_hash, map, xfs_buf_hash_params);
600 	if (!bp || !atomic_inc_not_zero(&bp->b_hold)) {
601 		rcu_read_unlock();
602 		return -ENOENT;
603 	}
604 	rcu_read_unlock();
605 
606 	error = xfs_buf_find_lock(bp, flags);
607 	if (error) {
608 		xfs_buf_rele(bp);
609 		return error;
610 	}
611 
612 	trace_xfs_buf_find(bp, flags, _RET_IP_);
613 	*bpp = bp;
614 	return 0;
615 }
616 
617 /*
618  * Insert the new_bp into the hash table. This consumes the perag reference
619  * taken for the lookup regardless of the result of the insert.
620  */
621 static int
622 xfs_buf_find_insert(
623 	struct xfs_buftarg	*btp,
624 	struct xfs_buf_cache	*bch,
625 	struct xfs_perag	*pag,
626 	struct xfs_buf_map	*cmap,
627 	struct xfs_buf_map	*map,
628 	int			nmaps,
629 	xfs_buf_flags_t		flags,
630 	struct xfs_buf		**bpp)
631 {
632 	struct xfs_buf		*new_bp;
633 	struct xfs_buf		*bp;
634 	int			error;
635 
636 	error = _xfs_buf_alloc(btp, map, nmaps, flags, &new_bp);
637 	if (error)
638 		goto out_drop_pag;
639 
640 	if (xfs_buftarg_is_mem(new_bp->b_target)) {
641 		error = xmbuf_map_page(new_bp);
642 	} else if (BBTOB(new_bp->b_length) >= PAGE_SIZE ||
643 		   xfs_buf_alloc_kmem(new_bp, flags) < 0) {
644 		/*
645 		 * For buffers that fit entirely within a single page, first
646 		 * attempt to allocate the memory from the heap to minimise
647 		 * memory usage. If we can't get heap memory for these small
648 		 * buffers, we fall back to using the page allocator.
649 		 */
650 		error = xfs_buf_alloc_pages(new_bp, flags);
651 	}
652 	if (error)
653 		goto out_free_buf;
654 
655 	spin_lock(&bch->bc_lock);
656 	bp = rhashtable_lookup_get_insert_fast(&bch->bc_hash,
657 			&new_bp->b_rhash_head, xfs_buf_hash_params);
658 	if (IS_ERR(bp)) {
659 		error = PTR_ERR(bp);
660 		spin_unlock(&bch->bc_lock);
661 		goto out_free_buf;
662 	}
663 	if (bp) {
664 		/* found an existing buffer */
665 		atomic_inc(&bp->b_hold);
666 		spin_unlock(&bch->bc_lock);
667 		error = xfs_buf_find_lock(bp, flags);
668 		if (error)
669 			xfs_buf_rele(bp);
670 		else
671 			*bpp = bp;
672 		goto out_free_buf;
673 	}
674 
675 	/* The new buffer keeps the perag reference until it is freed. */
676 	new_bp->b_pag = pag;
677 	spin_unlock(&bch->bc_lock);
678 	*bpp = new_bp;
679 	return 0;
680 
681 out_free_buf:
682 	xfs_buf_free(new_bp);
683 out_drop_pag:
684 	if (pag)
685 		xfs_perag_put(pag);
686 	return error;
687 }
688 
689 static inline struct xfs_perag *
690 xfs_buftarg_get_pag(
691 	struct xfs_buftarg		*btp,
692 	const struct xfs_buf_map	*map)
693 {
694 	struct xfs_mount		*mp = btp->bt_mount;
695 
696 	if (xfs_buftarg_is_mem(btp))
697 		return NULL;
698 	return xfs_perag_get(mp, xfs_daddr_to_agno(mp, map->bm_bn));
699 }
700 
701 static inline struct xfs_buf_cache *
702 xfs_buftarg_buf_cache(
703 	struct xfs_buftarg		*btp,
704 	struct xfs_perag		*pag)
705 {
706 	if (pag)
707 		return &pag->pag_bcache;
708 	return btp->bt_cache;
709 }
710 
711 /*
712  * Assembles a buffer covering the specified range. The code is optimised for
713  * cache hits, as metadata intensive workloads will see 3 orders of magnitude
714  * more hits than misses.
715  */
716 int
717 xfs_buf_get_map(
718 	struct xfs_buftarg	*btp,
719 	struct xfs_buf_map	*map,
720 	int			nmaps,
721 	xfs_buf_flags_t		flags,
722 	struct xfs_buf		**bpp)
723 {
724 	struct xfs_buf_cache	*bch;
725 	struct xfs_perag	*pag;
726 	struct xfs_buf		*bp = NULL;
727 	struct xfs_buf_map	cmap = { .bm_bn = map[0].bm_bn };
728 	int			error;
729 	int			i;
730 
731 	if (flags & XBF_LIVESCAN)
732 		cmap.bm_flags |= XBM_LIVESCAN;
733 	for (i = 0; i < nmaps; i++)
734 		cmap.bm_len += map[i].bm_len;
735 
736 	error = xfs_buf_map_verify(btp, &cmap);
737 	if (error)
738 		return error;
739 
740 	pag = xfs_buftarg_get_pag(btp, &cmap);
741 	bch = xfs_buftarg_buf_cache(btp, pag);
742 
743 	error = xfs_buf_lookup(bch, &cmap, flags, &bp);
744 	if (error && error != -ENOENT)
745 		goto out_put_perag;
746 
747 	/* cache hits always outnumber misses by at least 10:1 */
748 	if (unlikely(!bp)) {
749 		XFS_STATS_INC(btp->bt_mount, xb_miss_locked);
750 
751 		if (flags & XBF_INCORE)
752 			goto out_put_perag;
753 
754 		/* xfs_buf_find_insert() consumes the perag reference. */
755 		error = xfs_buf_find_insert(btp, bch, pag, &cmap, map, nmaps,
756 				flags, &bp);
757 		if (error)
758 			return error;
759 	} else {
760 		XFS_STATS_INC(btp->bt_mount, xb_get_locked);
761 		if (pag)
762 			xfs_perag_put(pag);
763 	}
764 
765 	/* We do not hold a perag reference anymore. */
766 	if (!bp->b_addr) {
767 		error = _xfs_buf_map_pages(bp, flags);
768 		if (unlikely(error)) {
769 			xfs_warn_ratelimited(btp->bt_mount,
770 				"%s: failed to map %u pages", __func__,
771 				bp->b_page_count);
772 			xfs_buf_relse(bp);
773 			return error;
774 		}
775 	}
776 
777 	/*
778 	 * Clear b_error if this is a lookup from a caller that doesn't expect
779 	 * valid data to be found in the buffer.
780 	 */
781 	if (!(flags & XBF_READ))
782 		xfs_buf_ioerror(bp, 0);
783 
784 	XFS_STATS_INC(btp->bt_mount, xb_get);
785 	trace_xfs_buf_get(bp, flags, _RET_IP_);
786 	*bpp = bp;
787 	return 0;
788 
789 out_put_perag:
790 	if (pag)
791 		xfs_perag_put(pag);
792 	return error;
793 }
794 
795 int
796 _xfs_buf_read(
797 	struct xfs_buf		*bp,
798 	xfs_buf_flags_t		flags)
799 {
800 	ASSERT(!(flags & XBF_WRITE));
801 	ASSERT(bp->b_maps[0].bm_bn != XFS_BUF_DADDR_NULL);
802 
803 	bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD | XBF_DONE);
804 	bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD);
805 
806 	return xfs_buf_submit(bp);
807 }
808 
809 /*
810  * Reverify a buffer found in cache without an attached ->b_ops.
811  *
812  * If the caller passed an ops structure and the buffer doesn't have ops
813  * assigned, set the ops and use it to verify the contents. If verification
814  * fails, clear XBF_DONE. We assume the buffer has no recorded errors and is
815  * already in XBF_DONE state on entry.
816  *
817  * Under normal operations, every in-core buffer is verified on read I/O
818  * completion. There are two scenarios that can lead to in-core buffers without
819  * an assigned ->b_ops. The first is during log recovery of buffers on a V4
820  * filesystem, though these buffers are purged at the end of recovery. The
821  * other is online repair, which intentionally reads with a NULL buffer ops to
822  * run several verifiers across an in-core buffer in order to establish buffer
823  * type.  If repair can't establish that, the buffer will be left in memory
824  * with NULL buffer ops.
825  */
826 int
827 xfs_buf_reverify(
828 	struct xfs_buf		*bp,
829 	const struct xfs_buf_ops *ops)
830 {
831 	ASSERT(bp->b_flags & XBF_DONE);
832 	ASSERT(bp->b_error == 0);
833 
834 	if (!ops || bp->b_ops)
835 		return 0;
836 
837 	bp->b_ops = ops;
838 	bp->b_ops->verify_read(bp);
839 	if (bp->b_error)
840 		bp->b_flags &= ~XBF_DONE;
841 	return bp->b_error;
842 }
843 
844 int
845 xfs_buf_read_map(
846 	struct xfs_buftarg	*target,
847 	struct xfs_buf_map	*map,
848 	int			nmaps,
849 	xfs_buf_flags_t		flags,
850 	struct xfs_buf		**bpp,
851 	const struct xfs_buf_ops *ops,
852 	xfs_failaddr_t		fa)
853 {
854 	struct xfs_buf		*bp;
855 	int			error;
856 
857 	flags |= XBF_READ;
858 	*bpp = NULL;
859 
860 	error = xfs_buf_get_map(target, map, nmaps, flags, &bp);
861 	if (error)
862 		return error;
863 
864 	trace_xfs_buf_read(bp, flags, _RET_IP_);
865 
866 	if (!(bp->b_flags & XBF_DONE)) {
867 		/* Initiate the buffer read and wait. */
868 		XFS_STATS_INC(target->bt_mount, xb_get_read);
869 		bp->b_ops = ops;
870 		error = _xfs_buf_read(bp, flags);
871 
872 		/* Readahead iodone already dropped the buffer, so exit. */
873 		if (flags & XBF_ASYNC)
874 			return 0;
875 	} else {
876 		/* Buffer already read; all we need to do is check it. */
877 		error = xfs_buf_reverify(bp, ops);
878 
879 		/* Readahead already finished; drop the buffer and exit. */
880 		if (flags & XBF_ASYNC) {
881 			xfs_buf_relse(bp);
882 			return 0;
883 		}
884 
885 		/* We do not want read in the flags */
886 		bp->b_flags &= ~XBF_READ;
887 		ASSERT(bp->b_ops != NULL || ops == NULL);
888 	}
889 
890 	/*
891 	 * If we've had a read error, then the contents of the buffer are
892 	 * invalid and should not be used. To ensure that a followup read tries
893 	 * to pull the buffer from disk again, we clear the XBF_DONE flag and
894 	 * mark the buffer stale. This ensures that anyone who has a current
895 	 * reference to the buffer will interpret it's contents correctly and
896 	 * future cache lookups will also treat it as an empty, uninitialised
897 	 * buffer.
898 	 */
899 	if (error) {
900 		/*
901 		 * Check against log shutdown for error reporting because
902 		 * metadata writeback may require a read first and we need to
903 		 * report errors in metadata writeback until the log is shut
904 		 * down. High level transaction read functions already check
905 		 * against mount shutdown, anyway, so we only need to be
906 		 * concerned about low level IO interactions here.
907 		 */
908 		if (!xlog_is_shutdown(target->bt_mount->m_log))
909 			xfs_buf_ioerror_alert(bp, fa);
910 
911 		bp->b_flags &= ~XBF_DONE;
912 		xfs_buf_stale(bp);
913 		xfs_buf_relse(bp);
914 
915 		/* bad CRC means corrupted metadata */
916 		if (error == -EFSBADCRC)
917 			error = -EFSCORRUPTED;
918 		return error;
919 	}
920 
921 	*bpp = bp;
922 	return 0;
923 }
924 
925 /*
926  *	If we are not low on memory then do the readahead in a deadlock
927  *	safe manner.
928  */
929 void
930 xfs_buf_readahead_map(
931 	struct xfs_buftarg	*target,
932 	struct xfs_buf_map	*map,
933 	int			nmaps,
934 	const struct xfs_buf_ops *ops)
935 {
936 	struct xfs_buf		*bp;
937 
938 	/*
939 	 * Currently we don't have a good means or justification for performing
940 	 * xmbuf_map_page asynchronously, so we don't do readahead.
941 	 */
942 	if (xfs_buftarg_is_mem(target))
943 		return;
944 
945 	xfs_buf_read_map(target, map, nmaps,
946 		     XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD, &bp, ops,
947 		     __this_address);
948 }
949 
950 /*
951  * Read an uncached buffer from disk. Allocates and returns a locked
952  * buffer containing the disk contents or nothing. Uncached buffers always have
953  * a cache index of XFS_BUF_DADDR_NULL so we can easily determine if the buffer
954  * is cached or uncached during fault diagnosis.
955  */
956 int
957 xfs_buf_read_uncached(
958 	struct xfs_buftarg	*target,
959 	xfs_daddr_t		daddr,
960 	size_t			numblks,
961 	xfs_buf_flags_t		flags,
962 	struct xfs_buf		**bpp,
963 	const struct xfs_buf_ops *ops)
964 {
965 	struct xfs_buf		*bp;
966 	int			error;
967 
968 	*bpp = NULL;
969 
970 	error = xfs_buf_get_uncached(target, numblks, flags, &bp);
971 	if (error)
972 		return error;
973 
974 	/* set up the buffer for a read IO */
975 	ASSERT(bp->b_map_count == 1);
976 	bp->b_rhash_key = XFS_BUF_DADDR_NULL;
977 	bp->b_maps[0].bm_bn = daddr;
978 	bp->b_flags |= XBF_READ;
979 	bp->b_ops = ops;
980 
981 	xfs_buf_submit(bp);
982 	if (bp->b_error) {
983 		error = bp->b_error;
984 		xfs_buf_relse(bp);
985 		return error;
986 	}
987 
988 	*bpp = bp;
989 	return 0;
990 }
991 
992 int
993 xfs_buf_get_uncached(
994 	struct xfs_buftarg	*target,
995 	size_t			numblks,
996 	xfs_buf_flags_t		flags,
997 	struct xfs_buf		**bpp)
998 {
999 	int			error;
1000 	struct xfs_buf		*bp;
1001 	DEFINE_SINGLE_BUF_MAP(map, XFS_BUF_DADDR_NULL, numblks);
1002 
1003 	*bpp = NULL;
1004 
1005 	/* flags might contain irrelevant bits, pass only what we care about */
1006 	error = _xfs_buf_alloc(target, &map, 1, flags & XBF_NO_IOACCT, &bp);
1007 	if (error)
1008 		return error;
1009 
1010 	if (xfs_buftarg_is_mem(bp->b_target))
1011 		error = xmbuf_map_page(bp);
1012 	else
1013 		error = xfs_buf_alloc_pages(bp, flags);
1014 	if (error)
1015 		goto fail_free_buf;
1016 
1017 	error = _xfs_buf_map_pages(bp, 0);
1018 	if (unlikely(error)) {
1019 		xfs_warn(target->bt_mount,
1020 			"%s: failed to map pages", __func__);
1021 		goto fail_free_buf;
1022 	}
1023 
1024 	trace_xfs_buf_get_uncached(bp, _RET_IP_);
1025 	*bpp = bp;
1026 	return 0;
1027 
1028 fail_free_buf:
1029 	xfs_buf_free(bp);
1030 	return error;
1031 }
1032 
1033 /*
1034  *	Increment reference count on buffer, to hold the buffer concurrently
1035  *	with another thread which may release (free) the buffer asynchronously.
1036  *	Must hold the buffer already to call this function.
1037  */
1038 void
1039 xfs_buf_hold(
1040 	struct xfs_buf		*bp)
1041 {
1042 	trace_xfs_buf_hold(bp, _RET_IP_);
1043 	atomic_inc(&bp->b_hold);
1044 }
1045 
1046 static void
1047 xfs_buf_rele_uncached(
1048 	struct xfs_buf		*bp)
1049 {
1050 	ASSERT(list_empty(&bp->b_lru));
1051 	if (atomic_dec_and_test(&bp->b_hold)) {
1052 		xfs_buf_ioacct_dec(bp);
1053 		xfs_buf_free(bp);
1054 	}
1055 }
1056 
1057 static void
1058 xfs_buf_rele_cached(
1059 	struct xfs_buf		*bp)
1060 {
1061 	struct xfs_buftarg	*btp = bp->b_target;
1062 	struct xfs_perag	*pag = bp->b_pag;
1063 	struct xfs_buf_cache	*bch = xfs_buftarg_buf_cache(btp, pag);
1064 	bool			release;
1065 	bool			freebuf = false;
1066 
1067 	trace_xfs_buf_rele(bp, _RET_IP_);
1068 
1069 	ASSERT(atomic_read(&bp->b_hold) > 0);
1070 
1071 	/*
1072 	 * We grab the b_lock here first to serialise racing xfs_buf_rele()
1073 	 * calls. The pag_buf_lock being taken on the last reference only
1074 	 * serialises against racing lookups in xfs_buf_find(). IOWs, the second
1075 	 * to last reference we drop here is not serialised against the last
1076 	 * reference until we take bp->b_lock. Hence if we don't grab b_lock
1077 	 * first, the last "release" reference can win the race to the lock and
1078 	 * free the buffer before the second-to-last reference is processed,
1079 	 * leading to a use-after-free scenario.
1080 	 */
1081 	spin_lock(&bp->b_lock);
1082 	release = atomic_dec_and_lock(&bp->b_hold, &bch->bc_lock);
1083 	if (!release) {
1084 		/*
1085 		 * Drop the in-flight state if the buffer is already on the LRU
1086 		 * and it holds the only reference. This is racy because we
1087 		 * haven't acquired the pag lock, but the use of _XBF_IN_FLIGHT
1088 		 * ensures the decrement occurs only once per-buf.
1089 		 */
1090 		if ((atomic_read(&bp->b_hold) == 1) && !list_empty(&bp->b_lru))
1091 			__xfs_buf_ioacct_dec(bp);
1092 		goto out_unlock;
1093 	}
1094 
1095 	/* the last reference has been dropped ... */
1096 	__xfs_buf_ioacct_dec(bp);
1097 	if (!(bp->b_flags & XBF_STALE) && atomic_read(&bp->b_lru_ref)) {
1098 		/*
1099 		 * If the buffer is added to the LRU take a new reference to the
1100 		 * buffer for the LRU and clear the (now stale) dispose list
1101 		 * state flag
1102 		 */
1103 		if (list_lru_add_obj(&btp->bt_lru, &bp->b_lru)) {
1104 			bp->b_state &= ~XFS_BSTATE_DISPOSE;
1105 			atomic_inc(&bp->b_hold);
1106 		}
1107 		spin_unlock(&bch->bc_lock);
1108 	} else {
1109 		/*
1110 		 * most of the time buffers will already be removed from the
1111 		 * LRU, so optimise that case by checking for the
1112 		 * XFS_BSTATE_DISPOSE flag indicating the last list the buffer
1113 		 * was on was the disposal list
1114 		 */
1115 		if (!(bp->b_state & XFS_BSTATE_DISPOSE)) {
1116 			list_lru_del_obj(&btp->bt_lru, &bp->b_lru);
1117 		} else {
1118 			ASSERT(list_empty(&bp->b_lru));
1119 		}
1120 
1121 		ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1122 		rhashtable_remove_fast(&bch->bc_hash, &bp->b_rhash_head,
1123 				xfs_buf_hash_params);
1124 		spin_unlock(&bch->bc_lock);
1125 		if (pag)
1126 			xfs_perag_put(pag);
1127 		freebuf = true;
1128 	}
1129 
1130 out_unlock:
1131 	spin_unlock(&bp->b_lock);
1132 
1133 	if (freebuf)
1134 		xfs_buf_free(bp);
1135 }
1136 
1137 /*
1138  * Release a hold on the specified buffer.
1139  */
1140 void
1141 xfs_buf_rele(
1142 	struct xfs_buf		*bp)
1143 {
1144 	trace_xfs_buf_rele(bp, _RET_IP_);
1145 	if (xfs_buf_is_uncached(bp))
1146 		xfs_buf_rele_uncached(bp);
1147 	else
1148 		xfs_buf_rele_cached(bp);
1149 }
1150 
1151 /*
1152  *	Lock a buffer object, if it is not already locked.
1153  *
1154  *	If we come across a stale, pinned, locked buffer, we know that we are
1155  *	being asked to lock a buffer that has been reallocated. Because it is
1156  *	pinned, we know that the log has not been pushed to disk and hence it
1157  *	will still be locked.  Rather than continuing to have trylock attempts
1158  *	fail until someone else pushes the log, push it ourselves before
1159  *	returning.  This means that the xfsaild will not get stuck trying
1160  *	to push on stale inode buffers.
1161  */
1162 int
1163 xfs_buf_trylock(
1164 	struct xfs_buf		*bp)
1165 {
1166 	int			locked;
1167 
1168 	locked = down_trylock(&bp->b_sema) == 0;
1169 	if (locked)
1170 		trace_xfs_buf_trylock(bp, _RET_IP_);
1171 	else
1172 		trace_xfs_buf_trylock_fail(bp, _RET_IP_);
1173 	return locked;
1174 }
1175 
1176 /*
1177  *	Lock a buffer object.
1178  *
1179  *	If we come across a stale, pinned, locked buffer, we know that we
1180  *	are being asked to lock a buffer that has been reallocated. Because
1181  *	it is pinned, we know that the log has not been pushed to disk and
1182  *	hence it will still be locked. Rather than sleeping until someone
1183  *	else pushes the log, push it ourselves before trying to get the lock.
1184  */
1185 void
1186 xfs_buf_lock(
1187 	struct xfs_buf		*bp)
1188 {
1189 	trace_xfs_buf_lock(bp, _RET_IP_);
1190 
1191 	if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
1192 		xfs_log_force(bp->b_mount, 0);
1193 	down(&bp->b_sema);
1194 
1195 	trace_xfs_buf_lock_done(bp, _RET_IP_);
1196 }
1197 
1198 void
1199 xfs_buf_unlock(
1200 	struct xfs_buf		*bp)
1201 {
1202 	ASSERT(xfs_buf_islocked(bp));
1203 
1204 	up(&bp->b_sema);
1205 	trace_xfs_buf_unlock(bp, _RET_IP_);
1206 }
1207 
1208 STATIC void
1209 xfs_buf_wait_unpin(
1210 	struct xfs_buf		*bp)
1211 {
1212 	DECLARE_WAITQUEUE	(wait, current);
1213 
1214 	if (atomic_read(&bp->b_pin_count) == 0)
1215 		return;
1216 
1217 	add_wait_queue(&bp->b_waiters, &wait);
1218 	for (;;) {
1219 		set_current_state(TASK_UNINTERRUPTIBLE);
1220 		if (atomic_read(&bp->b_pin_count) == 0)
1221 			break;
1222 		io_schedule();
1223 	}
1224 	remove_wait_queue(&bp->b_waiters, &wait);
1225 	set_current_state(TASK_RUNNING);
1226 }
1227 
1228 static void
1229 xfs_buf_ioerror_alert_ratelimited(
1230 	struct xfs_buf		*bp)
1231 {
1232 	static unsigned long	lasttime;
1233 	static struct xfs_buftarg *lasttarg;
1234 
1235 	if (bp->b_target != lasttarg ||
1236 	    time_after(jiffies, (lasttime + 5*HZ))) {
1237 		lasttime = jiffies;
1238 		xfs_buf_ioerror_alert(bp, __this_address);
1239 	}
1240 	lasttarg = bp->b_target;
1241 }
1242 
1243 /*
1244  * Account for this latest trip around the retry handler, and decide if
1245  * we've failed enough times to constitute a permanent failure.
1246  */
1247 static bool
1248 xfs_buf_ioerror_permanent(
1249 	struct xfs_buf		*bp,
1250 	struct xfs_error_cfg	*cfg)
1251 {
1252 	struct xfs_mount	*mp = bp->b_mount;
1253 
1254 	if (cfg->max_retries != XFS_ERR_RETRY_FOREVER &&
1255 	    ++bp->b_retries > cfg->max_retries)
1256 		return true;
1257 	if (cfg->retry_timeout != XFS_ERR_RETRY_FOREVER &&
1258 	    time_after(jiffies, cfg->retry_timeout + bp->b_first_retry_time))
1259 		return true;
1260 
1261 	/* At unmount we may treat errors differently */
1262 	if (xfs_is_unmounting(mp) && mp->m_fail_unmount)
1263 		return true;
1264 
1265 	return false;
1266 }
1267 
1268 /*
1269  * On a sync write or shutdown we just want to stale the buffer and let the
1270  * caller handle the error in bp->b_error appropriately.
1271  *
1272  * If the write was asynchronous then no one will be looking for the error.  If
1273  * this is the first failure of this type, clear the error state and write the
1274  * buffer out again. This means we always retry an async write failure at least
1275  * once, but we also need to set the buffer up to behave correctly now for
1276  * repeated failures.
1277  *
1278  * If we get repeated async write failures, then we take action according to the
1279  * error configuration we have been set up to use.
1280  *
1281  * Returns true if this function took care of error handling and the caller must
1282  * not touch the buffer again.  Return false if the caller should proceed with
1283  * normal I/O completion handling.
1284  */
1285 static bool
1286 xfs_buf_ioend_handle_error(
1287 	struct xfs_buf		*bp)
1288 {
1289 	struct xfs_mount	*mp = bp->b_mount;
1290 	struct xfs_error_cfg	*cfg;
1291 
1292 	/*
1293 	 * If we've already shutdown the journal because of I/O errors, there's
1294 	 * no point in giving this a retry.
1295 	 */
1296 	if (xlog_is_shutdown(mp->m_log))
1297 		goto out_stale;
1298 
1299 	xfs_buf_ioerror_alert_ratelimited(bp);
1300 
1301 	/*
1302 	 * We're not going to bother about retrying this during recovery.
1303 	 * One strike!
1304 	 */
1305 	if (bp->b_flags & _XBF_LOGRECOVERY) {
1306 		xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1307 		return false;
1308 	}
1309 
1310 	/*
1311 	 * Synchronous writes will have callers process the error.
1312 	 */
1313 	if (!(bp->b_flags & XBF_ASYNC))
1314 		goto out_stale;
1315 
1316 	trace_xfs_buf_iodone_async(bp, _RET_IP_);
1317 
1318 	cfg = xfs_error_get_cfg(mp, XFS_ERR_METADATA, bp->b_error);
1319 	if (bp->b_last_error != bp->b_error ||
1320 	    !(bp->b_flags & (XBF_STALE | XBF_WRITE_FAIL))) {
1321 		bp->b_last_error = bp->b_error;
1322 		if (cfg->retry_timeout != XFS_ERR_RETRY_FOREVER &&
1323 		    !bp->b_first_retry_time)
1324 			bp->b_first_retry_time = jiffies;
1325 		goto resubmit;
1326 	}
1327 
1328 	/*
1329 	 * Permanent error - we need to trigger a shutdown if we haven't already
1330 	 * to indicate that inconsistency will result from this action.
1331 	 */
1332 	if (xfs_buf_ioerror_permanent(bp, cfg)) {
1333 		xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1334 		goto out_stale;
1335 	}
1336 
1337 	/* Still considered a transient error. Caller will schedule retries. */
1338 	if (bp->b_flags & _XBF_INODES)
1339 		xfs_buf_inode_io_fail(bp);
1340 	else if (bp->b_flags & _XBF_DQUOTS)
1341 		xfs_buf_dquot_io_fail(bp);
1342 	else
1343 		ASSERT(list_empty(&bp->b_li_list));
1344 	xfs_buf_ioerror(bp, 0);
1345 	xfs_buf_relse(bp);
1346 	return true;
1347 
1348 resubmit:
1349 	xfs_buf_ioerror(bp, 0);
1350 	bp->b_flags |= (XBF_DONE | XBF_WRITE_FAIL);
1351 	xfs_buf_submit(bp);
1352 	return true;
1353 out_stale:
1354 	xfs_buf_stale(bp);
1355 	bp->b_flags |= XBF_DONE;
1356 	bp->b_flags &= ~XBF_WRITE;
1357 	trace_xfs_buf_error_relse(bp, _RET_IP_);
1358 	return false;
1359 }
1360 
1361 static void
1362 xfs_buf_ioend(
1363 	struct xfs_buf	*bp)
1364 {
1365 	trace_xfs_buf_iodone(bp, _RET_IP_);
1366 
1367 	/*
1368 	 * Pull in IO completion errors now. We are guaranteed to be running
1369 	 * single threaded, so we don't need the lock to read b_io_error.
1370 	 */
1371 	if (!bp->b_error && bp->b_io_error)
1372 		xfs_buf_ioerror(bp, bp->b_io_error);
1373 
1374 	if (bp->b_flags & XBF_READ) {
1375 		if (!bp->b_error && bp->b_ops)
1376 			bp->b_ops->verify_read(bp);
1377 		if (!bp->b_error)
1378 			bp->b_flags |= XBF_DONE;
1379 	} else {
1380 		if (!bp->b_error) {
1381 			bp->b_flags &= ~XBF_WRITE_FAIL;
1382 			bp->b_flags |= XBF_DONE;
1383 		}
1384 
1385 		if (unlikely(bp->b_error) && xfs_buf_ioend_handle_error(bp))
1386 			return;
1387 
1388 		/* clear the retry state */
1389 		bp->b_last_error = 0;
1390 		bp->b_retries = 0;
1391 		bp->b_first_retry_time = 0;
1392 
1393 		/*
1394 		 * Note that for things like remote attribute buffers, there may
1395 		 * not be a buffer log item here, so processing the buffer log
1396 		 * item must remain optional.
1397 		 */
1398 		if (bp->b_log_item)
1399 			xfs_buf_item_done(bp);
1400 
1401 		if (bp->b_flags & _XBF_INODES)
1402 			xfs_buf_inode_iodone(bp);
1403 		else if (bp->b_flags & _XBF_DQUOTS)
1404 			xfs_buf_dquot_iodone(bp);
1405 
1406 	}
1407 
1408 	bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD |
1409 			 _XBF_LOGRECOVERY);
1410 
1411 	if (bp->b_flags & XBF_ASYNC)
1412 		xfs_buf_relse(bp);
1413 	else
1414 		complete(&bp->b_iowait);
1415 }
1416 
1417 static void
1418 xfs_buf_ioend_work(
1419 	struct work_struct	*work)
1420 {
1421 	struct xfs_buf		*bp =
1422 		container_of(work, struct xfs_buf, b_ioend_work);
1423 
1424 	xfs_buf_ioend(bp);
1425 }
1426 
1427 static void
1428 xfs_buf_ioend_async(
1429 	struct xfs_buf	*bp)
1430 {
1431 	INIT_WORK(&bp->b_ioend_work, xfs_buf_ioend_work);
1432 	queue_work(bp->b_mount->m_buf_workqueue, &bp->b_ioend_work);
1433 }
1434 
1435 void
1436 __xfs_buf_ioerror(
1437 	struct xfs_buf		*bp,
1438 	int			error,
1439 	xfs_failaddr_t		failaddr)
1440 {
1441 	ASSERT(error <= 0 && error >= -1000);
1442 	bp->b_error = error;
1443 	trace_xfs_buf_ioerror(bp, error, failaddr);
1444 }
1445 
1446 void
1447 xfs_buf_ioerror_alert(
1448 	struct xfs_buf		*bp,
1449 	xfs_failaddr_t		func)
1450 {
1451 	xfs_buf_alert_ratelimited(bp, "XFS: metadata IO error",
1452 		"metadata I/O error in \"%pS\" at daddr 0x%llx len %d error %d",
1453 				  func, (uint64_t)xfs_buf_daddr(bp),
1454 				  bp->b_length, -bp->b_error);
1455 }
1456 
1457 /*
1458  * To simulate an I/O failure, the buffer must be locked and held with at least
1459  * three references. The LRU reference is dropped by the stale call. The buf
1460  * item reference is dropped via ioend processing. The third reference is owned
1461  * by the caller and is dropped on I/O completion if the buffer is XBF_ASYNC.
1462  */
1463 void
1464 xfs_buf_ioend_fail(
1465 	struct xfs_buf	*bp)
1466 {
1467 	bp->b_flags &= ~XBF_DONE;
1468 	xfs_buf_stale(bp);
1469 	xfs_buf_ioerror(bp, -EIO);
1470 	xfs_buf_ioend(bp);
1471 }
1472 
1473 int
1474 xfs_bwrite(
1475 	struct xfs_buf		*bp)
1476 {
1477 	int			error;
1478 
1479 	ASSERT(xfs_buf_islocked(bp));
1480 
1481 	bp->b_flags |= XBF_WRITE;
1482 	bp->b_flags &= ~(XBF_ASYNC | XBF_READ | _XBF_DELWRI_Q |
1483 			 XBF_DONE);
1484 
1485 	error = xfs_buf_submit(bp);
1486 	if (error)
1487 		xfs_force_shutdown(bp->b_mount, SHUTDOWN_META_IO_ERROR);
1488 	return error;
1489 }
1490 
1491 static void
1492 xfs_buf_bio_end_io(
1493 	struct bio		*bio)
1494 {
1495 	struct xfs_buf		*bp = (struct xfs_buf *)bio->bi_private;
1496 
1497 	if (!bio->bi_status &&
1498 	    (bp->b_flags & XBF_WRITE) && (bp->b_flags & XBF_ASYNC) &&
1499 	    XFS_TEST_ERROR(false, bp->b_mount, XFS_ERRTAG_BUF_IOERROR))
1500 		bio->bi_status = BLK_STS_IOERR;
1501 
1502 	/*
1503 	 * don't overwrite existing errors - otherwise we can lose errors on
1504 	 * buffers that require multiple bios to complete.
1505 	 */
1506 	if (bio->bi_status) {
1507 		int error = blk_status_to_errno(bio->bi_status);
1508 
1509 		cmpxchg(&bp->b_io_error, 0, error);
1510 	}
1511 
1512 	if (!bp->b_error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
1513 		invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1514 
1515 	if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1516 		xfs_buf_ioend_async(bp);
1517 	bio_put(bio);
1518 }
1519 
1520 static void
1521 xfs_buf_ioapply_map(
1522 	struct xfs_buf	*bp,
1523 	int		map,
1524 	int		*buf_offset,
1525 	int		*count,
1526 	blk_opf_t	op)
1527 {
1528 	int		page_index;
1529 	unsigned int	total_nr_pages = bp->b_page_count;
1530 	int		nr_pages;
1531 	struct bio	*bio;
1532 	sector_t	sector =  bp->b_maps[map].bm_bn;
1533 	int		size;
1534 	int		offset;
1535 
1536 	/* skip the pages in the buffer before the start offset */
1537 	page_index = 0;
1538 	offset = *buf_offset;
1539 	while (offset >= PAGE_SIZE) {
1540 		page_index++;
1541 		offset -= PAGE_SIZE;
1542 	}
1543 
1544 	/*
1545 	 * Limit the IO size to the length of the current vector, and update the
1546 	 * remaining IO count for the next time around.
1547 	 */
1548 	size = min_t(int, BBTOB(bp->b_maps[map].bm_len), *count);
1549 	*count -= size;
1550 	*buf_offset += size;
1551 
1552 next_chunk:
1553 	atomic_inc(&bp->b_io_remaining);
1554 	nr_pages = bio_max_segs(total_nr_pages);
1555 
1556 	bio = bio_alloc(bp->b_target->bt_bdev, nr_pages, op, GFP_NOIO);
1557 	bio->bi_iter.bi_sector = sector;
1558 	bio->bi_end_io = xfs_buf_bio_end_io;
1559 	bio->bi_private = bp;
1560 
1561 	for (; size && nr_pages; nr_pages--, page_index++) {
1562 		int	rbytes, nbytes = PAGE_SIZE - offset;
1563 
1564 		if (nbytes > size)
1565 			nbytes = size;
1566 
1567 		rbytes = bio_add_page(bio, bp->b_pages[page_index], nbytes,
1568 				      offset);
1569 		if (rbytes < nbytes)
1570 			break;
1571 
1572 		offset = 0;
1573 		sector += BTOBB(nbytes);
1574 		size -= nbytes;
1575 		total_nr_pages--;
1576 	}
1577 
1578 	if (likely(bio->bi_iter.bi_size)) {
1579 		if (xfs_buf_is_vmapped(bp)) {
1580 			flush_kernel_vmap_range(bp->b_addr,
1581 						xfs_buf_vmap_len(bp));
1582 		}
1583 		submit_bio(bio);
1584 		if (size)
1585 			goto next_chunk;
1586 	} else {
1587 		/*
1588 		 * This is guaranteed not to be the last io reference count
1589 		 * because the caller (xfs_buf_submit) holds a count itself.
1590 		 */
1591 		atomic_dec(&bp->b_io_remaining);
1592 		xfs_buf_ioerror(bp, -EIO);
1593 		bio_put(bio);
1594 	}
1595 
1596 }
1597 
1598 STATIC void
1599 _xfs_buf_ioapply(
1600 	struct xfs_buf	*bp)
1601 {
1602 	struct blk_plug	plug;
1603 	blk_opf_t	op;
1604 	int		offset;
1605 	int		size;
1606 	int		i;
1607 
1608 	/*
1609 	 * Make sure we capture only current IO errors rather than stale errors
1610 	 * left over from previous use of the buffer (e.g. failed readahead).
1611 	 */
1612 	bp->b_error = 0;
1613 
1614 	if (bp->b_flags & XBF_WRITE) {
1615 		op = REQ_OP_WRITE;
1616 
1617 		/*
1618 		 * Run the write verifier callback function if it exists. If
1619 		 * this function fails it will mark the buffer with an error and
1620 		 * the IO should not be dispatched.
1621 		 */
1622 		if (bp->b_ops) {
1623 			bp->b_ops->verify_write(bp);
1624 			if (bp->b_error) {
1625 				xfs_force_shutdown(bp->b_mount,
1626 						   SHUTDOWN_CORRUPT_INCORE);
1627 				return;
1628 			}
1629 		} else if (bp->b_rhash_key != XFS_BUF_DADDR_NULL) {
1630 			struct xfs_mount *mp = bp->b_mount;
1631 
1632 			/*
1633 			 * non-crc filesystems don't attach verifiers during
1634 			 * log recovery, so don't warn for such filesystems.
1635 			 */
1636 			if (xfs_has_crc(mp)) {
1637 				xfs_warn(mp,
1638 					"%s: no buf ops on daddr 0x%llx len %d",
1639 					__func__, xfs_buf_daddr(bp),
1640 					bp->b_length);
1641 				xfs_hex_dump(bp->b_addr,
1642 						XFS_CORRUPTION_DUMP_LEN);
1643 				dump_stack();
1644 			}
1645 		}
1646 	} else {
1647 		op = REQ_OP_READ;
1648 		if (bp->b_flags & XBF_READ_AHEAD)
1649 			op |= REQ_RAHEAD;
1650 	}
1651 
1652 	/* we only use the buffer cache for meta-data */
1653 	op |= REQ_META;
1654 
1655 	/* in-memory targets are directly mapped, no IO required. */
1656 	if (xfs_buftarg_is_mem(bp->b_target)) {
1657 		xfs_buf_ioend(bp);
1658 		return;
1659 	}
1660 
1661 	/*
1662 	 * Walk all the vectors issuing IO on them. Set up the initial offset
1663 	 * into the buffer and the desired IO size before we start -
1664 	 * _xfs_buf_ioapply_vec() will modify them appropriately for each
1665 	 * subsequent call.
1666 	 */
1667 	offset = bp->b_offset;
1668 	size = BBTOB(bp->b_length);
1669 	blk_start_plug(&plug);
1670 	for (i = 0; i < bp->b_map_count; i++) {
1671 		xfs_buf_ioapply_map(bp, i, &offset, &size, op);
1672 		if (bp->b_error)
1673 			break;
1674 		if (size <= 0)
1675 			break;	/* all done */
1676 	}
1677 	blk_finish_plug(&plug);
1678 }
1679 
1680 /*
1681  * Wait for I/O completion of a sync buffer and return the I/O error code.
1682  */
1683 static int
1684 xfs_buf_iowait(
1685 	struct xfs_buf	*bp)
1686 {
1687 	ASSERT(!(bp->b_flags & XBF_ASYNC));
1688 
1689 	trace_xfs_buf_iowait(bp, _RET_IP_);
1690 	wait_for_completion(&bp->b_iowait);
1691 	trace_xfs_buf_iowait_done(bp, _RET_IP_);
1692 
1693 	return bp->b_error;
1694 }
1695 
1696 /*
1697  * Buffer I/O submission path, read or write. Asynchronous submission transfers
1698  * the buffer lock ownership and the current reference to the IO. It is not
1699  * safe to reference the buffer after a call to this function unless the caller
1700  * holds an additional reference itself.
1701  */
1702 static int
1703 __xfs_buf_submit(
1704 	struct xfs_buf	*bp,
1705 	bool		wait)
1706 {
1707 	int		error = 0;
1708 
1709 	trace_xfs_buf_submit(bp, _RET_IP_);
1710 
1711 	ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1712 
1713 	/*
1714 	 * On log shutdown we stale and complete the buffer immediately. We can
1715 	 * be called to read the superblock before the log has been set up, so
1716 	 * be careful checking the log state.
1717 	 *
1718 	 * Checking the mount shutdown state here can result in the log tail
1719 	 * moving inappropriately on disk as the log may not yet be shut down.
1720 	 * i.e. failing this buffer on mount shutdown can remove it from the AIL
1721 	 * and move the tail of the log forwards without having written this
1722 	 * buffer to disk. This corrupts the log tail state in memory, and
1723 	 * because the log may not be shut down yet, it can then be propagated
1724 	 * to disk before the log is shutdown. Hence we check log shutdown
1725 	 * state here rather than mount state to avoid corrupting the log tail
1726 	 * on shutdown.
1727 	 */
1728 	if (bp->b_mount->m_log &&
1729 	    xlog_is_shutdown(bp->b_mount->m_log)) {
1730 		xfs_buf_ioend_fail(bp);
1731 		return -EIO;
1732 	}
1733 
1734 	/*
1735 	 * Grab a reference so the buffer does not go away underneath us. For
1736 	 * async buffers, I/O completion drops the callers reference, which
1737 	 * could occur before submission returns.
1738 	 */
1739 	xfs_buf_hold(bp);
1740 
1741 	if (bp->b_flags & XBF_WRITE)
1742 		xfs_buf_wait_unpin(bp);
1743 
1744 	/* clear the internal error state to avoid spurious errors */
1745 	bp->b_io_error = 0;
1746 
1747 	/*
1748 	 * Set the count to 1 initially, this will stop an I/O completion
1749 	 * callout which happens before we have started all the I/O from calling
1750 	 * xfs_buf_ioend too early.
1751 	 */
1752 	atomic_set(&bp->b_io_remaining, 1);
1753 	if (bp->b_flags & XBF_ASYNC)
1754 		xfs_buf_ioacct_inc(bp);
1755 	_xfs_buf_ioapply(bp);
1756 
1757 	/*
1758 	 * If _xfs_buf_ioapply failed, we can get back here with only the IO
1759 	 * reference we took above. If we drop it to zero, run completion so
1760 	 * that we don't return to the caller with completion still pending.
1761 	 */
1762 	if (atomic_dec_and_test(&bp->b_io_remaining) == 1) {
1763 		if (bp->b_error || !(bp->b_flags & XBF_ASYNC))
1764 			xfs_buf_ioend(bp);
1765 		else
1766 			xfs_buf_ioend_async(bp);
1767 	}
1768 
1769 	if (wait)
1770 		error = xfs_buf_iowait(bp);
1771 
1772 	/*
1773 	 * Release the hold that keeps the buffer referenced for the entire
1774 	 * I/O. Note that if the buffer is async, it is not safe to reference
1775 	 * after this release.
1776 	 */
1777 	xfs_buf_rele(bp);
1778 	return error;
1779 }
1780 
1781 void *
1782 xfs_buf_offset(
1783 	struct xfs_buf		*bp,
1784 	size_t			offset)
1785 {
1786 	struct page		*page;
1787 
1788 	if (bp->b_addr)
1789 		return bp->b_addr + offset;
1790 
1791 	page = bp->b_pages[offset >> PAGE_SHIFT];
1792 	return page_address(page) + (offset & (PAGE_SIZE-1));
1793 }
1794 
1795 void
1796 xfs_buf_zero(
1797 	struct xfs_buf		*bp,
1798 	size_t			boff,
1799 	size_t			bsize)
1800 {
1801 	size_t			bend;
1802 
1803 	bend = boff + bsize;
1804 	while (boff < bend) {
1805 		struct page	*page;
1806 		int		page_index, page_offset, csize;
1807 
1808 		page_index = (boff + bp->b_offset) >> PAGE_SHIFT;
1809 		page_offset = (boff + bp->b_offset) & ~PAGE_MASK;
1810 		page = bp->b_pages[page_index];
1811 		csize = min_t(size_t, PAGE_SIZE - page_offset,
1812 				      BBTOB(bp->b_length) - boff);
1813 
1814 		ASSERT((csize + page_offset) <= PAGE_SIZE);
1815 
1816 		memset(page_address(page) + page_offset, 0, csize);
1817 
1818 		boff += csize;
1819 	}
1820 }
1821 
1822 /*
1823  * Log a message about and stale a buffer that a caller has decided is corrupt.
1824  *
1825  * This function should be called for the kinds of metadata corruption that
1826  * cannot be detect from a verifier, such as incorrect inter-block relationship
1827  * data.  Do /not/ call this function from a verifier function.
1828  *
1829  * The buffer must be XBF_DONE prior to the call.  Afterwards, the buffer will
1830  * be marked stale, but b_error will not be set.  The caller is responsible for
1831  * releasing the buffer or fixing it.
1832  */
1833 void
1834 __xfs_buf_mark_corrupt(
1835 	struct xfs_buf		*bp,
1836 	xfs_failaddr_t		fa)
1837 {
1838 	ASSERT(bp->b_flags & XBF_DONE);
1839 
1840 	xfs_buf_corruption_error(bp, fa);
1841 	xfs_buf_stale(bp);
1842 }
1843 
1844 /*
1845  *	Handling of buffer targets (buftargs).
1846  */
1847 
1848 /*
1849  * Wait for any bufs with callbacks that have been submitted but have not yet
1850  * returned. These buffers will have an elevated hold count, so wait on those
1851  * while freeing all the buffers only held by the LRU.
1852  */
1853 static enum lru_status
1854 xfs_buftarg_drain_rele(
1855 	struct list_head	*item,
1856 	struct list_lru_one	*lru,
1857 	spinlock_t		*lru_lock,
1858 	void			*arg)
1859 
1860 {
1861 	struct xfs_buf		*bp = container_of(item, struct xfs_buf, b_lru);
1862 	struct list_head	*dispose = arg;
1863 
1864 	if (atomic_read(&bp->b_hold) > 1) {
1865 		/* need to wait, so skip it this pass */
1866 		trace_xfs_buf_drain_buftarg(bp, _RET_IP_);
1867 		return LRU_SKIP;
1868 	}
1869 	if (!spin_trylock(&bp->b_lock))
1870 		return LRU_SKIP;
1871 
1872 	/*
1873 	 * clear the LRU reference count so the buffer doesn't get
1874 	 * ignored in xfs_buf_rele().
1875 	 */
1876 	atomic_set(&bp->b_lru_ref, 0);
1877 	bp->b_state |= XFS_BSTATE_DISPOSE;
1878 	list_lru_isolate_move(lru, item, dispose);
1879 	spin_unlock(&bp->b_lock);
1880 	return LRU_REMOVED;
1881 }
1882 
1883 /*
1884  * Wait for outstanding I/O on the buftarg to complete.
1885  */
1886 void
1887 xfs_buftarg_wait(
1888 	struct xfs_buftarg	*btp)
1889 {
1890 	/*
1891 	 * First wait on the buftarg I/O count for all in-flight buffers to be
1892 	 * released. This is critical as new buffers do not make the LRU until
1893 	 * they are released.
1894 	 *
1895 	 * Next, flush the buffer workqueue to ensure all completion processing
1896 	 * has finished. Just waiting on buffer locks is not sufficient for
1897 	 * async IO as the reference count held over IO is not released until
1898 	 * after the buffer lock is dropped. Hence we need to ensure here that
1899 	 * all reference counts have been dropped before we start walking the
1900 	 * LRU list.
1901 	 */
1902 	while (percpu_counter_sum(&btp->bt_io_count))
1903 		delay(100);
1904 	flush_workqueue(btp->bt_mount->m_buf_workqueue);
1905 }
1906 
1907 void
1908 xfs_buftarg_drain(
1909 	struct xfs_buftarg	*btp)
1910 {
1911 	LIST_HEAD(dispose);
1912 	int			loop = 0;
1913 	bool			write_fail = false;
1914 
1915 	xfs_buftarg_wait(btp);
1916 
1917 	/* loop until there is nothing left on the lru list. */
1918 	while (list_lru_count(&btp->bt_lru)) {
1919 		list_lru_walk(&btp->bt_lru, xfs_buftarg_drain_rele,
1920 			      &dispose, LONG_MAX);
1921 
1922 		while (!list_empty(&dispose)) {
1923 			struct xfs_buf *bp;
1924 			bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1925 			list_del_init(&bp->b_lru);
1926 			if (bp->b_flags & XBF_WRITE_FAIL) {
1927 				write_fail = true;
1928 				xfs_buf_alert_ratelimited(bp,
1929 					"XFS: Corruption Alert",
1930 "Corruption Alert: Buffer at daddr 0x%llx had permanent write failures!",
1931 					(long long)xfs_buf_daddr(bp));
1932 			}
1933 			xfs_buf_rele(bp);
1934 		}
1935 		if (loop++ != 0)
1936 			delay(100);
1937 	}
1938 
1939 	/*
1940 	 * If one or more failed buffers were freed, that means dirty metadata
1941 	 * was thrown away. This should only ever happen after I/O completion
1942 	 * handling has elevated I/O error(s) to permanent failures and shuts
1943 	 * down the journal.
1944 	 */
1945 	if (write_fail) {
1946 		ASSERT(xlog_is_shutdown(btp->bt_mount->m_log));
1947 		xfs_alert(btp->bt_mount,
1948 	      "Please run xfs_repair to determine the extent of the problem.");
1949 	}
1950 }
1951 
1952 static enum lru_status
1953 xfs_buftarg_isolate(
1954 	struct list_head	*item,
1955 	struct list_lru_one	*lru,
1956 	spinlock_t		*lru_lock,
1957 	void			*arg)
1958 {
1959 	struct xfs_buf		*bp = container_of(item, struct xfs_buf, b_lru);
1960 	struct list_head	*dispose = arg;
1961 
1962 	/*
1963 	 * we are inverting the lru lock/bp->b_lock here, so use a trylock.
1964 	 * If we fail to get the lock, just skip it.
1965 	 */
1966 	if (!spin_trylock(&bp->b_lock))
1967 		return LRU_SKIP;
1968 	/*
1969 	 * Decrement the b_lru_ref count unless the value is already
1970 	 * zero. If the value is already zero, we need to reclaim the
1971 	 * buffer, otherwise it gets another trip through the LRU.
1972 	 */
1973 	if (atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
1974 		spin_unlock(&bp->b_lock);
1975 		return LRU_ROTATE;
1976 	}
1977 
1978 	bp->b_state |= XFS_BSTATE_DISPOSE;
1979 	list_lru_isolate_move(lru, item, dispose);
1980 	spin_unlock(&bp->b_lock);
1981 	return LRU_REMOVED;
1982 }
1983 
1984 static unsigned long
1985 xfs_buftarg_shrink_scan(
1986 	struct shrinker		*shrink,
1987 	struct shrink_control	*sc)
1988 {
1989 	struct xfs_buftarg	*btp = shrink->private_data;
1990 	LIST_HEAD(dispose);
1991 	unsigned long		freed;
1992 
1993 	freed = list_lru_shrink_walk(&btp->bt_lru, sc,
1994 				     xfs_buftarg_isolate, &dispose);
1995 
1996 	while (!list_empty(&dispose)) {
1997 		struct xfs_buf *bp;
1998 		bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1999 		list_del_init(&bp->b_lru);
2000 		xfs_buf_rele(bp);
2001 	}
2002 
2003 	return freed;
2004 }
2005 
2006 static unsigned long
2007 xfs_buftarg_shrink_count(
2008 	struct shrinker		*shrink,
2009 	struct shrink_control	*sc)
2010 {
2011 	struct xfs_buftarg	*btp = shrink->private_data;
2012 	return list_lru_shrink_count(&btp->bt_lru, sc);
2013 }
2014 
2015 void
2016 xfs_destroy_buftarg(
2017 	struct xfs_buftarg	*btp)
2018 {
2019 	shrinker_free(btp->bt_shrinker);
2020 	ASSERT(percpu_counter_sum(&btp->bt_io_count) == 0);
2021 	percpu_counter_destroy(&btp->bt_io_count);
2022 	list_lru_destroy(&btp->bt_lru);
2023 }
2024 
2025 void
2026 xfs_free_buftarg(
2027 	struct xfs_buftarg	*btp)
2028 {
2029 	xfs_destroy_buftarg(btp);
2030 	fs_put_dax(btp->bt_daxdev, btp->bt_mount);
2031 	/* the main block device is closed by kill_block_super */
2032 	if (btp->bt_bdev != btp->bt_mount->m_super->s_bdev)
2033 		fput(btp->bt_bdev_file);
2034 	kfree(btp);
2035 }
2036 
2037 int
2038 xfs_setsize_buftarg(
2039 	struct xfs_buftarg	*btp,
2040 	unsigned int		sectorsize)
2041 {
2042 	/* Set up metadata sector size info */
2043 	btp->bt_meta_sectorsize = sectorsize;
2044 	btp->bt_meta_sectormask = sectorsize - 1;
2045 
2046 	if (set_blocksize(btp->bt_bdev, sectorsize)) {
2047 		xfs_warn(btp->bt_mount,
2048 			"Cannot set_blocksize to %u on device %pg",
2049 			sectorsize, btp->bt_bdev);
2050 		return -EINVAL;
2051 	}
2052 
2053 	return 0;
2054 }
2055 
2056 int
2057 xfs_init_buftarg(
2058 	struct xfs_buftarg		*btp,
2059 	size_t				logical_sectorsize,
2060 	const char			*descr)
2061 {
2062 	/* Set up device logical sector size mask */
2063 	btp->bt_logical_sectorsize = logical_sectorsize;
2064 	btp->bt_logical_sectormask = logical_sectorsize - 1;
2065 
2066 	/*
2067 	 * Buffer IO error rate limiting. Limit it to no more than 10 messages
2068 	 * per 30 seconds so as to not spam logs too much on repeated errors.
2069 	 */
2070 	ratelimit_state_init(&btp->bt_ioerror_rl, 30 * HZ,
2071 			     DEFAULT_RATELIMIT_BURST);
2072 
2073 	if (list_lru_init(&btp->bt_lru))
2074 		return -ENOMEM;
2075 	if (percpu_counter_init(&btp->bt_io_count, 0, GFP_KERNEL))
2076 		goto out_destroy_lru;
2077 
2078 	btp->bt_shrinker =
2079 		shrinker_alloc(SHRINKER_NUMA_AWARE, "xfs-buf:%s", descr);
2080 	if (!btp->bt_shrinker)
2081 		goto out_destroy_io_count;
2082 	btp->bt_shrinker->count_objects = xfs_buftarg_shrink_count;
2083 	btp->bt_shrinker->scan_objects = xfs_buftarg_shrink_scan;
2084 	btp->bt_shrinker->private_data = btp;
2085 	shrinker_register(btp->bt_shrinker);
2086 	return 0;
2087 
2088 out_destroy_io_count:
2089 	percpu_counter_destroy(&btp->bt_io_count);
2090 out_destroy_lru:
2091 	list_lru_destroy(&btp->bt_lru);
2092 	return -ENOMEM;
2093 }
2094 
2095 struct xfs_buftarg *
2096 xfs_alloc_buftarg(
2097 	struct xfs_mount	*mp,
2098 	struct file		*bdev_file)
2099 {
2100 	struct xfs_buftarg	*btp;
2101 	const struct dax_holder_operations *ops = NULL;
2102 
2103 #if defined(CONFIG_FS_DAX) && defined(CONFIG_MEMORY_FAILURE)
2104 	ops = &xfs_dax_holder_operations;
2105 #endif
2106 	btp = kzalloc(sizeof(*btp), GFP_KERNEL | __GFP_NOFAIL);
2107 
2108 	btp->bt_mount = mp;
2109 	btp->bt_bdev_file = bdev_file;
2110 	btp->bt_bdev = file_bdev(bdev_file);
2111 	btp->bt_dev = btp->bt_bdev->bd_dev;
2112 	btp->bt_daxdev = fs_dax_get_by_bdev(btp->bt_bdev, &btp->bt_dax_part_off,
2113 					    mp, ops);
2114 
2115 	/*
2116 	 * When allocating the buftargs we have not yet read the super block and
2117 	 * thus don't know the file system sector size yet.
2118 	 */
2119 	if (xfs_setsize_buftarg(btp, bdev_logical_block_size(btp->bt_bdev)))
2120 		goto error_free;
2121 	if (xfs_init_buftarg(btp, bdev_logical_block_size(btp->bt_bdev),
2122 			mp->m_super->s_id))
2123 		goto error_free;
2124 
2125 	return btp;
2126 
2127 error_free:
2128 	kfree(btp);
2129 	return NULL;
2130 }
2131 
2132 static inline void
2133 xfs_buf_list_del(
2134 	struct xfs_buf		*bp)
2135 {
2136 	list_del_init(&bp->b_list);
2137 	wake_up_var(&bp->b_list);
2138 }
2139 
2140 /*
2141  * Cancel a delayed write list.
2142  *
2143  * Remove each buffer from the list, clear the delwri queue flag and drop the
2144  * associated buffer reference.
2145  */
2146 void
2147 xfs_buf_delwri_cancel(
2148 	struct list_head	*list)
2149 {
2150 	struct xfs_buf		*bp;
2151 
2152 	while (!list_empty(list)) {
2153 		bp = list_first_entry(list, struct xfs_buf, b_list);
2154 
2155 		xfs_buf_lock(bp);
2156 		bp->b_flags &= ~_XBF_DELWRI_Q;
2157 		xfs_buf_list_del(bp);
2158 		xfs_buf_relse(bp);
2159 	}
2160 }
2161 
2162 /*
2163  * Add a buffer to the delayed write list.
2164  *
2165  * This queues a buffer for writeout if it hasn't already been.  Note that
2166  * neither this routine nor the buffer list submission functions perform
2167  * any internal synchronization.  It is expected that the lists are thread-local
2168  * to the callers.
2169  *
2170  * Returns true if we queued up the buffer, or false if it already had
2171  * been on the buffer list.
2172  */
2173 bool
2174 xfs_buf_delwri_queue(
2175 	struct xfs_buf		*bp,
2176 	struct list_head	*list)
2177 {
2178 	ASSERT(xfs_buf_islocked(bp));
2179 	ASSERT(!(bp->b_flags & XBF_READ));
2180 
2181 	/*
2182 	 * If the buffer is already marked delwri it already is queued up
2183 	 * by someone else for imediate writeout.  Just ignore it in that
2184 	 * case.
2185 	 */
2186 	if (bp->b_flags & _XBF_DELWRI_Q) {
2187 		trace_xfs_buf_delwri_queued(bp, _RET_IP_);
2188 		return false;
2189 	}
2190 
2191 	trace_xfs_buf_delwri_queue(bp, _RET_IP_);
2192 
2193 	/*
2194 	 * If a buffer gets written out synchronously or marked stale while it
2195 	 * is on a delwri list we lazily remove it. To do this, the other party
2196 	 * clears the  _XBF_DELWRI_Q flag but otherwise leaves the buffer alone.
2197 	 * It remains referenced and on the list.  In a rare corner case it
2198 	 * might get readded to a delwri list after the synchronous writeout, in
2199 	 * which case we need just need to re-add the flag here.
2200 	 */
2201 	bp->b_flags |= _XBF_DELWRI_Q;
2202 	if (list_empty(&bp->b_list)) {
2203 		atomic_inc(&bp->b_hold);
2204 		list_add_tail(&bp->b_list, list);
2205 	}
2206 
2207 	return true;
2208 }
2209 
2210 /*
2211  * Queue a buffer to this delwri list as part of a data integrity operation.
2212  * If the buffer is on any other delwri list, we'll wait for that to clear
2213  * so that the caller can submit the buffer for IO and wait for the result.
2214  * Callers must ensure the buffer is not already on the list.
2215  */
2216 void
2217 xfs_buf_delwri_queue_here(
2218 	struct xfs_buf		*bp,
2219 	struct list_head	*buffer_list)
2220 {
2221 	/*
2222 	 * We need this buffer to end up on the /caller's/ delwri list, not any
2223 	 * old list.  This can happen if the buffer is marked stale (which
2224 	 * clears DELWRI_Q) after the AIL queues the buffer to its list but
2225 	 * before the AIL has a chance to submit the list.
2226 	 */
2227 	while (!list_empty(&bp->b_list)) {
2228 		xfs_buf_unlock(bp);
2229 		wait_var_event(&bp->b_list, list_empty(&bp->b_list));
2230 		xfs_buf_lock(bp);
2231 	}
2232 
2233 	ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
2234 
2235 	xfs_buf_delwri_queue(bp, buffer_list);
2236 }
2237 
2238 /*
2239  * Compare function is more complex than it needs to be because
2240  * the return value is only 32 bits and we are doing comparisons
2241  * on 64 bit values
2242  */
2243 static int
2244 xfs_buf_cmp(
2245 	void			*priv,
2246 	const struct list_head	*a,
2247 	const struct list_head	*b)
2248 {
2249 	struct xfs_buf	*ap = container_of(a, struct xfs_buf, b_list);
2250 	struct xfs_buf	*bp = container_of(b, struct xfs_buf, b_list);
2251 	xfs_daddr_t		diff;
2252 
2253 	diff = ap->b_maps[0].bm_bn - bp->b_maps[0].bm_bn;
2254 	if (diff < 0)
2255 		return -1;
2256 	if (diff > 0)
2257 		return 1;
2258 	return 0;
2259 }
2260 
2261 /*
2262  * Submit buffers for write. If wait_list is specified, the buffers are
2263  * submitted using sync I/O and placed on the wait list such that the caller can
2264  * iowait each buffer. Otherwise async I/O is used and the buffers are released
2265  * at I/O completion time. In either case, buffers remain locked until I/O
2266  * completes and the buffer is released from the queue.
2267  */
2268 static int
2269 xfs_buf_delwri_submit_buffers(
2270 	struct list_head	*buffer_list,
2271 	struct list_head	*wait_list)
2272 {
2273 	struct xfs_buf		*bp, *n;
2274 	int			pinned = 0;
2275 	struct blk_plug		plug;
2276 
2277 	list_sort(NULL, buffer_list, xfs_buf_cmp);
2278 
2279 	blk_start_plug(&plug);
2280 	list_for_each_entry_safe(bp, n, buffer_list, b_list) {
2281 		if (!wait_list) {
2282 			if (!xfs_buf_trylock(bp))
2283 				continue;
2284 			if (xfs_buf_ispinned(bp)) {
2285 				xfs_buf_unlock(bp);
2286 				pinned++;
2287 				continue;
2288 			}
2289 		} else {
2290 			xfs_buf_lock(bp);
2291 		}
2292 
2293 		/*
2294 		 * Someone else might have written the buffer synchronously or
2295 		 * marked it stale in the meantime.  In that case only the
2296 		 * _XBF_DELWRI_Q flag got cleared, and we have to drop the
2297 		 * reference and remove it from the list here.
2298 		 */
2299 		if (!(bp->b_flags & _XBF_DELWRI_Q)) {
2300 			xfs_buf_list_del(bp);
2301 			xfs_buf_relse(bp);
2302 			continue;
2303 		}
2304 
2305 		trace_xfs_buf_delwri_split(bp, _RET_IP_);
2306 
2307 		/*
2308 		 * If we have a wait list, each buffer (and associated delwri
2309 		 * queue reference) transfers to it and is submitted
2310 		 * synchronously. Otherwise, drop the buffer from the delwri
2311 		 * queue and submit async.
2312 		 */
2313 		bp->b_flags &= ~_XBF_DELWRI_Q;
2314 		bp->b_flags |= XBF_WRITE;
2315 		if (wait_list) {
2316 			bp->b_flags &= ~XBF_ASYNC;
2317 			list_move_tail(&bp->b_list, wait_list);
2318 		} else {
2319 			bp->b_flags |= XBF_ASYNC;
2320 			xfs_buf_list_del(bp);
2321 		}
2322 		__xfs_buf_submit(bp, false);
2323 	}
2324 	blk_finish_plug(&plug);
2325 
2326 	return pinned;
2327 }
2328 
2329 /*
2330  * Write out a buffer list asynchronously.
2331  *
2332  * This will take the @buffer_list, write all non-locked and non-pinned buffers
2333  * out and not wait for I/O completion on any of the buffers.  This interface
2334  * is only safely useable for callers that can track I/O completion by higher
2335  * level means, e.g. AIL pushing as the @buffer_list is consumed in this
2336  * function.
2337  *
2338  * Note: this function will skip buffers it would block on, and in doing so
2339  * leaves them on @buffer_list so they can be retried on a later pass. As such,
2340  * it is up to the caller to ensure that the buffer list is fully submitted or
2341  * cancelled appropriately when they are finished with the list. Failure to
2342  * cancel or resubmit the list until it is empty will result in leaked buffers
2343  * at unmount time.
2344  */
2345 int
2346 xfs_buf_delwri_submit_nowait(
2347 	struct list_head	*buffer_list)
2348 {
2349 	return xfs_buf_delwri_submit_buffers(buffer_list, NULL);
2350 }
2351 
2352 /*
2353  * Write out a buffer list synchronously.
2354  *
2355  * This will take the @buffer_list, write all buffers out and wait for I/O
2356  * completion on all of the buffers. @buffer_list is consumed by the function,
2357  * so callers must have some other way of tracking buffers if they require such
2358  * functionality.
2359  */
2360 int
2361 xfs_buf_delwri_submit(
2362 	struct list_head	*buffer_list)
2363 {
2364 	LIST_HEAD		(wait_list);
2365 	int			error = 0, error2;
2366 	struct xfs_buf		*bp;
2367 
2368 	xfs_buf_delwri_submit_buffers(buffer_list, &wait_list);
2369 
2370 	/* Wait for IO to complete. */
2371 	while (!list_empty(&wait_list)) {
2372 		bp = list_first_entry(&wait_list, struct xfs_buf, b_list);
2373 
2374 		xfs_buf_list_del(bp);
2375 
2376 		/*
2377 		 * Wait on the locked buffer, check for errors and unlock and
2378 		 * release the delwri queue reference.
2379 		 */
2380 		error2 = xfs_buf_iowait(bp);
2381 		xfs_buf_relse(bp);
2382 		if (!error)
2383 			error = error2;
2384 	}
2385 
2386 	return error;
2387 }
2388 
2389 /*
2390  * Push a single buffer on a delwri queue.
2391  *
2392  * The purpose of this function is to submit a single buffer of a delwri queue
2393  * and return with the buffer still on the original queue. The waiting delwri
2394  * buffer submission infrastructure guarantees transfer of the delwri queue
2395  * buffer reference to a temporary wait list. We reuse this infrastructure to
2396  * transfer the buffer back to the original queue.
2397  *
2398  * Note the buffer transitions from the queued state, to the submitted and wait
2399  * listed state and back to the queued state during this call. The buffer
2400  * locking and queue management logic between _delwri_pushbuf() and
2401  * _delwri_queue() guarantee that the buffer cannot be queued to another list
2402  * before returning.
2403  */
2404 int
2405 xfs_buf_delwri_pushbuf(
2406 	struct xfs_buf		*bp,
2407 	struct list_head	*buffer_list)
2408 {
2409 	LIST_HEAD		(submit_list);
2410 	int			error;
2411 
2412 	ASSERT(bp->b_flags & _XBF_DELWRI_Q);
2413 
2414 	trace_xfs_buf_delwri_pushbuf(bp, _RET_IP_);
2415 
2416 	/*
2417 	 * Isolate the buffer to a new local list so we can submit it for I/O
2418 	 * independently from the rest of the original list.
2419 	 */
2420 	xfs_buf_lock(bp);
2421 	list_move(&bp->b_list, &submit_list);
2422 	xfs_buf_unlock(bp);
2423 
2424 	/*
2425 	 * Delwri submission clears the DELWRI_Q buffer flag and returns with
2426 	 * the buffer on the wait list with the original reference. Rather than
2427 	 * bounce the buffer from a local wait list back to the original list
2428 	 * after I/O completion, reuse the original list as the wait list.
2429 	 */
2430 	xfs_buf_delwri_submit_buffers(&submit_list, buffer_list);
2431 
2432 	/*
2433 	 * The buffer is now locked, under I/O and wait listed on the original
2434 	 * delwri queue. Wait for I/O completion, restore the DELWRI_Q flag and
2435 	 * return with the buffer unlocked and on the original queue.
2436 	 */
2437 	error = xfs_buf_iowait(bp);
2438 	bp->b_flags |= _XBF_DELWRI_Q;
2439 	xfs_buf_unlock(bp);
2440 
2441 	return error;
2442 }
2443 
2444 void xfs_buf_set_ref(struct xfs_buf *bp, int lru_ref)
2445 {
2446 	/*
2447 	 * Set the lru reference count to 0 based on the error injection tag.
2448 	 * This allows userspace to disrupt buffer caching for debug/testing
2449 	 * purposes.
2450 	 */
2451 	if (XFS_TEST_ERROR(false, bp->b_mount, XFS_ERRTAG_BUF_LRU_REF))
2452 		lru_ref = 0;
2453 
2454 	atomic_set(&bp->b_lru_ref, lru_ref);
2455 }
2456 
2457 /*
2458  * Verify an on-disk magic value against the magic value specified in the
2459  * verifier structure. The verifier magic is in disk byte order so the caller is
2460  * expected to pass the value directly from disk.
2461  */
2462 bool
2463 xfs_verify_magic(
2464 	struct xfs_buf		*bp,
2465 	__be32			dmagic)
2466 {
2467 	struct xfs_mount	*mp = bp->b_mount;
2468 	int			idx;
2469 
2470 	idx = xfs_has_crc(mp);
2471 	if (WARN_ON(!bp->b_ops || !bp->b_ops->magic[idx]))
2472 		return false;
2473 	return dmagic == bp->b_ops->magic[idx];
2474 }
2475 /*
2476  * Verify an on-disk magic value against the magic value specified in the
2477  * verifier structure. The verifier magic is in disk byte order so the caller is
2478  * expected to pass the value directly from disk.
2479  */
2480 bool
2481 xfs_verify_magic16(
2482 	struct xfs_buf		*bp,
2483 	__be16			dmagic)
2484 {
2485 	struct xfs_mount	*mp = bp->b_mount;
2486 	int			idx;
2487 
2488 	idx = xfs_has_crc(mp);
2489 	if (WARN_ON(!bp->b_ops || !bp->b_ops->magic16[idx]))
2490 		return false;
2491 	return dmagic == bp->b_ops->magic16[idx];
2492 }
2493