xref: /linux/fs/xfs/xfs_buf.c (revision e47e2e0ba9103df7b3d25356421e6832c4d0e7be)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include <linux/backing-dev.h>
8 #include <linux/dax.h>
9 
10 #include "xfs_shared.h"
11 #include "xfs_format.h"
12 #include "xfs_log_format.h"
13 #include "xfs_trans_resv.h"
14 #include "xfs_mount.h"
15 #include "xfs_trace.h"
16 #include "xfs_log.h"
17 #include "xfs_log_recover.h"
18 #include "xfs_log_priv.h"
19 #include "xfs_trans.h"
20 #include "xfs_buf_item.h"
21 #include "xfs_errortag.h"
22 #include "xfs_error.h"
23 #include "xfs_ag.h"
24 
25 struct kmem_cache *xfs_buf_cache;
26 
27 /*
28  * Locking orders
29  *
30  * xfs_buf_ioacct_inc:
31  * xfs_buf_ioacct_dec:
32  *	b_sema (caller holds)
33  *	  b_lock
34  *
35  * xfs_buf_stale:
36  *	b_sema (caller holds)
37  *	  b_lock
38  *	    lru_lock
39  *
40  * xfs_buf_rele:
41  *	b_lock
42  *	  pag_buf_lock
43  *	    lru_lock
44  *
45  * xfs_buftarg_drain_rele
46  *	lru_lock
47  *	  b_lock (trylock due to inversion)
48  *
49  * xfs_buftarg_isolate
50  *	lru_lock
51  *	  b_lock (trylock due to inversion)
52  */
53 
54 static int __xfs_buf_submit(struct xfs_buf *bp, bool wait);
55 
56 static inline int
57 xfs_buf_submit(
58 	struct xfs_buf		*bp)
59 {
60 	return __xfs_buf_submit(bp, !(bp->b_flags & XBF_ASYNC));
61 }
62 
63 static inline int
64 xfs_buf_is_vmapped(
65 	struct xfs_buf	*bp)
66 {
67 	/*
68 	 * Return true if the buffer is vmapped.
69 	 *
70 	 * b_addr is null if the buffer is not mapped, but the code is clever
71 	 * enough to know it doesn't have to map a single page, so the check has
72 	 * to be both for b_addr and bp->b_page_count > 1.
73 	 */
74 	return bp->b_addr && bp->b_page_count > 1;
75 }
76 
77 static inline int
78 xfs_buf_vmap_len(
79 	struct xfs_buf	*bp)
80 {
81 	return (bp->b_page_count * PAGE_SIZE);
82 }
83 
84 /*
85  * Bump the I/O in flight count on the buftarg if we haven't yet done so for
86  * this buffer. The count is incremented once per buffer (per hold cycle)
87  * because the corresponding decrement is deferred to buffer release. Buffers
88  * can undergo I/O multiple times in a hold-release cycle and per buffer I/O
89  * tracking adds unnecessary overhead. This is used for sychronization purposes
90  * with unmount (see xfs_buftarg_drain()), so all we really need is a count of
91  * in-flight buffers.
92  *
93  * Buffers that are never released (e.g., superblock, iclog buffers) must set
94  * the XBF_NO_IOACCT flag before I/O submission. Otherwise, the buftarg count
95  * never reaches zero and unmount hangs indefinitely.
96  */
97 static inline void
98 xfs_buf_ioacct_inc(
99 	struct xfs_buf	*bp)
100 {
101 	if (bp->b_flags & XBF_NO_IOACCT)
102 		return;
103 
104 	ASSERT(bp->b_flags & XBF_ASYNC);
105 	spin_lock(&bp->b_lock);
106 	if (!(bp->b_state & XFS_BSTATE_IN_FLIGHT)) {
107 		bp->b_state |= XFS_BSTATE_IN_FLIGHT;
108 		percpu_counter_inc(&bp->b_target->bt_io_count);
109 	}
110 	spin_unlock(&bp->b_lock);
111 }
112 
113 /*
114  * Clear the in-flight state on a buffer about to be released to the LRU or
115  * freed and unaccount from the buftarg.
116  */
117 static inline void
118 __xfs_buf_ioacct_dec(
119 	struct xfs_buf	*bp)
120 {
121 	lockdep_assert_held(&bp->b_lock);
122 
123 	if (bp->b_state & XFS_BSTATE_IN_FLIGHT) {
124 		bp->b_state &= ~XFS_BSTATE_IN_FLIGHT;
125 		percpu_counter_dec(&bp->b_target->bt_io_count);
126 	}
127 }
128 
129 static inline void
130 xfs_buf_ioacct_dec(
131 	struct xfs_buf	*bp)
132 {
133 	spin_lock(&bp->b_lock);
134 	__xfs_buf_ioacct_dec(bp);
135 	spin_unlock(&bp->b_lock);
136 }
137 
138 /*
139  * When we mark a buffer stale, we remove the buffer from the LRU and clear the
140  * b_lru_ref count so that the buffer is freed immediately when the buffer
141  * reference count falls to zero. If the buffer is already on the LRU, we need
142  * to remove the reference that LRU holds on the buffer.
143  *
144  * This prevents build-up of stale buffers on the LRU.
145  */
146 void
147 xfs_buf_stale(
148 	struct xfs_buf	*bp)
149 {
150 	ASSERT(xfs_buf_islocked(bp));
151 
152 	bp->b_flags |= XBF_STALE;
153 
154 	/*
155 	 * Clear the delwri status so that a delwri queue walker will not
156 	 * flush this buffer to disk now that it is stale. The delwri queue has
157 	 * a reference to the buffer, so this is safe to do.
158 	 */
159 	bp->b_flags &= ~_XBF_DELWRI_Q;
160 
161 	/*
162 	 * Once the buffer is marked stale and unlocked, a subsequent lookup
163 	 * could reset b_flags. There is no guarantee that the buffer is
164 	 * unaccounted (released to LRU) before that occurs. Drop in-flight
165 	 * status now to preserve accounting consistency.
166 	 */
167 	spin_lock(&bp->b_lock);
168 	__xfs_buf_ioacct_dec(bp);
169 
170 	atomic_set(&bp->b_lru_ref, 0);
171 	if (!(bp->b_state & XFS_BSTATE_DISPOSE) &&
172 	    (list_lru_del_obj(&bp->b_target->bt_lru, &bp->b_lru)))
173 		atomic_dec(&bp->b_hold);
174 
175 	ASSERT(atomic_read(&bp->b_hold) >= 1);
176 	spin_unlock(&bp->b_lock);
177 }
178 
179 static int
180 xfs_buf_get_maps(
181 	struct xfs_buf		*bp,
182 	int			map_count)
183 {
184 	ASSERT(bp->b_maps == NULL);
185 	bp->b_map_count = map_count;
186 
187 	if (map_count == 1) {
188 		bp->b_maps = &bp->__b_map;
189 		return 0;
190 	}
191 
192 	bp->b_maps = kzalloc(map_count * sizeof(struct xfs_buf_map),
193 			GFP_KERNEL | __GFP_NOLOCKDEP | __GFP_NOFAIL);
194 	if (!bp->b_maps)
195 		return -ENOMEM;
196 	return 0;
197 }
198 
199 /*
200  *	Frees b_pages if it was allocated.
201  */
202 static void
203 xfs_buf_free_maps(
204 	struct xfs_buf	*bp)
205 {
206 	if (bp->b_maps != &bp->__b_map) {
207 		kfree(bp->b_maps);
208 		bp->b_maps = NULL;
209 	}
210 }
211 
212 static int
213 _xfs_buf_alloc(
214 	struct xfs_buftarg	*target,
215 	struct xfs_buf_map	*map,
216 	int			nmaps,
217 	xfs_buf_flags_t		flags,
218 	struct xfs_buf		**bpp)
219 {
220 	struct xfs_buf		*bp;
221 	int			error;
222 	int			i;
223 
224 	*bpp = NULL;
225 	bp = kmem_cache_zalloc(xfs_buf_cache,
226 			GFP_KERNEL | __GFP_NOLOCKDEP | __GFP_NOFAIL);
227 
228 	/*
229 	 * We don't want certain flags to appear in b_flags unless they are
230 	 * specifically set by later operations on the buffer.
231 	 */
232 	flags &= ~(XBF_UNMAPPED | XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD);
233 
234 	atomic_set(&bp->b_hold, 1);
235 	atomic_set(&bp->b_lru_ref, 1);
236 	init_completion(&bp->b_iowait);
237 	INIT_LIST_HEAD(&bp->b_lru);
238 	INIT_LIST_HEAD(&bp->b_list);
239 	INIT_LIST_HEAD(&bp->b_li_list);
240 	sema_init(&bp->b_sema, 0); /* held, no waiters */
241 	spin_lock_init(&bp->b_lock);
242 	bp->b_target = target;
243 	bp->b_mount = target->bt_mount;
244 	bp->b_flags = flags;
245 
246 	/*
247 	 * Set length and io_length to the same value initially.
248 	 * I/O routines should use io_length, which will be the same in
249 	 * most cases but may be reset (e.g. XFS recovery).
250 	 */
251 	error = xfs_buf_get_maps(bp, nmaps);
252 	if (error)  {
253 		kmem_cache_free(xfs_buf_cache, bp);
254 		return error;
255 	}
256 
257 	bp->b_rhash_key = map[0].bm_bn;
258 	bp->b_length = 0;
259 	for (i = 0; i < nmaps; i++) {
260 		bp->b_maps[i].bm_bn = map[i].bm_bn;
261 		bp->b_maps[i].bm_len = map[i].bm_len;
262 		bp->b_length += map[i].bm_len;
263 	}
264 
265 	atomic_set(&bp->b_pin_count, 0);
266 	init_waitqueue_head(&bp->b_waiters);
267 
268 	XFS_STATS_INC(bp->b_mount, xb_create);
269 	trace_xfs_buf_init(bp, _RET_IP_);
270 
271 	*bpp = bp;
272 	return 0;
273 }
274 
275 static void
276 xfs_buf_free_pages(
277 	struct xfs_buf	*bp)
278 {
279 	uint		i;
280 
281 	ASSERT(bp->b_flags & _XBF_PAGES);
282 
283 	if (xfs_buf_is_vmapped(bp))
284 		vm_unmap_ram(bp->b_addr, bp->b_page_count);
285 
286 	for (i = 0; i < bp->b_page_count; i++) {
287 		if (bp->b_pages[i])
288 			__free_page(bp->b_pages[i]);
289 	}
290 	mm_account_reclaimed_pages(bp->b_page_count);
291 
292 	if (bp->b_pages != bp->b_page_array)
293 		kfree(bp->b_pages);
294 	bp->b_pages = NULL;
295 	bp->b_flags &= ~_XBF_PAGES;
296 }
297 
298 static void
299 xfs_buf_free_callback(
300 	struct callback_head	*cb)
301 {
302 	struct xfs_buf		*bp = container_of(cb, struct xfs_buf, b_rcu);
303 
304 	xfs_buf_free_maps(bp);
305 	kmem_cache_free(xfs_buf_cache, bp);
306 }
307 
308 static void
309 xfs_buf_free(
310 	struct xfs_buf		*bp)
311 {
312 	trace_xfs_buf_free(bp, _RET_IP_);
313 
314 	ASSERT(list_empty(&bp->b_lru));
315 
316 	if (bp->b_flags & _XBF_PAGES)
317 		xfs_buf_free_pages(bp);
318 	else if (bp->b_flags & _XBF_KMEM)
319 		kfree(bp->b_addr);
320 
321 	call_rcu(&bp->b_rcu, xfs_buf_free_callback);
322 }
323 
324 static int
325 xfs_buf_alloc_kmem(
326 	struct xfs_buf	*bp,
327 	xfs_buf_flags_t	flags)
328 {
329 	gfp_t		gfp_mask = GFP_KERNEL | __GFP_NOLOCKDEP | __GFP_NOFAIL;
330 	size_t		size = BBTOB(bp->b_length);
331 
332 	/* Assure zeroed buffer for non-read cases. */
333 	if (!(flags & XBF_READ))
334 		gfp_mask |= __GFP_ZERO;
335 
336 	bp->b_addr = kmalloc(size, gfp_mask);
337 	if (!bp->b_addr)
338 		return -ENOMEM;
339 
340 	if (((unsigned long)(bp->b_addr + size - 1) & PAGE_MASK) !=
341 	    ((unsigned long)bp->b_addr & PAGE_MASK)) {
342 		/* b_addr spans two pages - use alloc_page instead */
343 		kfree(bp->b_addr);
344 		bp->b_addr = NULL;
345 		return -ENOMEM;
346 	}
347 	bp->b_offset = offset_in_page(bp->b_addr);
348 	bp->b_pages = bp->b_page_array;
349 	bp->b_pages[0] = kmem_to_page(bp->b_addr);
350 	bp->b_page_count = 1;
351 	bp->b_flags |= _XBF_KMEM;
352 	return 0;
353 }
354 
355 static int
356 xfs_buf_alloc_pages(
357 	struct xfs_buf	*bp,
358 	xfs_buf_flags_t	flags)
359 {
360 	gfp_t		gfp_mask = GFP_KERNEL | __GFP_NOLOCKDEP | __GFP_NOWARN;
361 	long		filled = 0;
362 
363 	if (flags & XBF_READ_AHEAD)
364 		gfp_mask |= __GFP_NORETRY;
365 
366 	/* Make sure that we have a page list */
367 	bp->b_page_count = DIV_ROUND_UP(BBTOB(bp->b_length), PAGE_SIZE);
368 	if (bp->b_page_count <= XB_PAGES) {
369 		bp->b_pages = bp->b_page_array;
370 	} else {
371 		bp->b_pages = kzalloc(sizeof(struct page *) * bp->b_page_count,
372 					gfp_mask);
373 		if (!bp->b_pages)
374 			return -ENOMEM;
375 	}
376 	bp->b_flags |= _XBF_PAGES;
377 
378 	/* Assure zeroed buffer for non-read cases. */
379 	if (!(flags & XBF_READ))
380 		gfp_mask |= __GFP_ZERO;
381 
382 	/*
383 	 * Bulk filling of pages can take multiple calls. Not filling the entire
384 	 * array is not an allocation failure, so don't back off if we get at
385 	 * least one extra page.
386 	 */
387 	for (;;) {
388 		long	last = filled;
389 
390 		filled = alloc_pages_bulk_array(gfp_mask, bp->b_page_count,
391 						bp->b_pages);
392 		if (filled == bp->b_page_count) {
393 			XFS_STATS_INC(bp->b_mount, xb_page_found);
394 			break;
395 		}
396 
397 		if (filled != last)
398 			continue;
399 
400 		if (flags & XBF_READ_AHEAD) {
401 			xfs_buf_free_pages(bp);
402 			return -ENOMEM;
403 		}
404 
405 		XFS_STATS_INC(bp->b_mount, xb_page_retries);
406 		memalloc_retry_wait(gfp_mask);
407 	}
408 	return 0;
409 }
410 
411 /*
412  *	Map buffer into kernel address-space if necessary.
413  */
414 STATIC int
415 _xfs_buf_map_pages(
416 	struct xfs_buf		*bp,
417 	xfs_buf_flags_t		flags)
418 {
419 	ASSERT(bp->b_flags & _XBF_PAGES);
420 	if (bp->b_page_count == 1) {
421 		/* A single page buffer is always mappable */
422 		bp->b_addr = page_address(bp->b_pages[0]);
423 	} else if (flags & XBF_UNMAPPED) {
424 		bp->b_addr = NULL;
425 	} else {
426 		int retried = 0;
427 		unsigned nofs_flag;
428 
429 		/*
430 		 * vm_map_ram() will allocate auxiliary structures (e.g.
431 		 * pagetables) with GFP_KERNEL, yet we often under a scoped nofs
432 		 * context here. Mixing GFP_KERNEL with GFP_NOFS allocations
433 		 * from the same call site that can be run from both above and
434 		 * below memory reclaim causes lockdep false positives. Hence we
435 		 * always need to force this allocation to nofs context because
436 		 * we can't pass __GFP_NOLOCKDEP down to auxillary structures to
437 		 * prevent false positive lockdep reports.
438 		 *
439 		 * XXX(dgc): I think dquot reclaim is the only place we can get
440 		 * to this function from memory reclaim context now. If we fix
441 		 * that like we've fixed inode reclaim to avoid writeback from
442 		 * reclaim, this nofs wrapping can go away.
443 		 */
444 		nofs_flag = memalloc_nofs_save();
445 		do {
446 			bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
447 						-1);
448 			if (bp->b_addr)
449 				break;
450 			vm_unmap_aliases();
451 		} while (retried++ <= 1);
452 		memalloc_nofs_restore(nofs_flag);
453 
454 		if (!bp->b_addr)
455 			return -ENOMEM;
456 	}
457 
458 	return 0;
459 }
460 
461 /*
462  *	Finding and Reading Buffers
463  */
464 static int
465 _xfs_buf_obj_cmp(
466 	struct rhashtable_compare_arg	*arg,
467 	const void			*obj)
468 {
469 	const struct xfs_buf_map	*map = arg->key;
470 	const struct xfs_buf		*bp = obj;
471 
472 	/*
473 	 * The key hashing in the lookup path depends on the key being the
474 	 * first element of the compare_arg, make sure to assert this.
475 	 */
476 	BUILD_BUG_ON(offsetof(struct xfs_buf_map, bm_bn) != 0);
477 
478 	if (bp->b_rhash_key != map->bm_bn)
479 		return 1;
480 
481 	if (unlikely(bp->b_length != map->bm_len)) {
482 		/*
483 		 * found a block number match. If the range doesn't
484 		 * match, the only way this is allowed is if the buffer
485 		 * in the cache is stale and the transaction that made
486 		 * it stale has not yet committed. i.e. we are
487 		 * reallocating a busy extent. Skip this buffer and
488 		 * continue searching for an exact match.
489 		 */
490 		if (!(map->bm_flags & XBM_LIVESCAN))
491 			ASSERT(bp->b_flags & XBF_STALE);
492 		return 1;
493 	}
494 	return 0;
495 }
496 
497 static const struct rhashtable_params xfs_buf_hash_params = {
498 	.min_size		= 32,	/* empty AGs have minimal footprint */
499 	.nelem_hint		= 16,
500 	.key_len		= sizeof(xfs_daddr_t),
501 	.key_offset		= offsetof(struct xfs_buf, b_rhash_key),
502 	.head_offset		= offsetof(struct xfs_buf, b_rhash_head),
503 	.automatic_shrinking	= true,
504 	.obj_cmpfn		= _xfs_buf_obj_cmp,
505 };
506 
507 int
508 xfs_buf_hash_init(
509 	struct xfs_perag	*pag)
510 {
511 	spin_lock_init(&pag->pag_buf_lock);
512 	return rhashtable_init(&pag->pag_buf_hash, &xfs_buf_hash_params);
513 }
514 
515 void
516 xfs_buf_hash_destroy(
517 	struct xfs_perag	*pag)
518 {
519 	rhashtable_destroy(&pag->pag_buf_hash);
520 }
521 
522 static int
523 xfs_buf_map_verify(
524 	struct xfs_buftarg	*btp,
525 	struct xfs_buf_map	*map)
526 {
527 	xfs_daddr_t		eofs;
528 
529 	/* Check for IOs smaller than the sector size / not sector aligned */
530 	ASSERT(!(BBTOB(map->bm_len) < btp->bt_meta_sectorsize));
531 	ASSERT(!(BBTOB(map->bm_bn) & (xfs_off_t)btp->bt_meta_sectormask));
532 
533 	/*
534 	 * Corrupted block numbers can get through to here, unfortunately, so we
535 	 * have to check that the buffer falls within the filesystem bounds.
536 	 */
537 	eofs = XFS_FSB_TO_BB(btp->bt_mount, btp->bt_mount->m_sb.sb_dblocks);
538 	if (map->bm_bn < 0 || map->bm_bn >= eofs) {
539 		xfs_alert(btp->bt_mount,
540 			  "%s: daddr 0x%llx out of range, EOFS 0x%llx",
541 			  __func__, map->bm_bn, eofs);
542 		WARN_ON(1);
543 		return -EFSCORRUPTED;
544 	}
545 	return 0;
546 }
547 
548 static int
549 xfs_buf_find_lock(
550 	struct xfs_buf          *bp,
551 	xfs_buf_flags_t		flags)
552 {
553 	if (flags & XBF_TRYLOCK) {
554 		if (!xfs_buf_trylock(bp)) {
555 			XFS_STATS_INC(bp->b_mount, xb_busy_locked);
556 			return -EAGAIN;
557 		}
558 	} else {
559 		xfs_buf_lock(bp);
560 		XFS_STATS_INC(bp->b_mount, xb_get_locked_waited);
561 	}
562 
563 	/*
564 	 * if the buffer is stale, clear all the external state associated with
565 	 * it. We need to keep flags such as how we allocated the buffer memory
566 	 * intact here.
567 	 */
568 	if (bp->b_flags & XBF_STALE) {
569 		if (flags & XBF_LIVESCAN) {
570 			xfs_buf_unlock(bp);
571 			return -ENOENT;
572 		}
573 		ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
574 		bp->b_flags &= _XBF_KMEM | _XBF_PAGES;
575 		bp->b_ops = NULL;
576 	}
577 	return 0;
578 }
579 
580 static inline int
581 xfs_buf_lookup(
582 	struct xfs_perag	*pag,
583 	struct xfs_buf_map	*map,
584 	xfs_buf_flags_t		flags,
585 	struct xfs_buf		**bpp)
586 {
587 	struct xfs_buf          *bp;
588 	int			error;
589 
590 	rcu_read_lock();
591 	bp = rhashtable_lookup(&pag->pag_buf_hash, map, xfs_buf_hash_params);
592 	if (!bp || !atomic_inc_not_zero(&bp->b_hold)) {
593 		rcu_read_unlock();
594 		return -ENOENT;
595 	}
596 	rcu_read_unlock();
597 
598 	error = xfs_buf_find_lock(bp, flags);
599 	if (error) {
600 		xfs_buf_rele(bp);
601 		return error;
602 	}
603 
604 	trace_xfs_buf_find(bp, flags, _RET_IP_);
605 	*bpp = bp;
606 	return 0;
607 }
608 
609 /*
610  * Insert the new_bp into the hash table. This consumes the perag reference
611  * taken for the lookup regardless of the result of the insert.
612  */
613 static int
614 xfs_buf_find_insert(
615 	struct xfs_buftarg	*btp,
616 	struct xfs_perag	*pag,
617 	struct xfs_buf_map	*cmap,
618 	struct xfs_buf_map	*map,
619 	int			nmaps,
620 	xfs_buf_flags_t		flags,
621 	struct xfs_buf		**bpp)
622 {
623 	struct xfs_buf		*new_bp;
624 	struct xfs_buf		*bp;
625 	int			error;
626 
627 	error = _xfs_buf_alloc(btp, map, nmaps, flags, &new_bp);
628 	if (error)
629 		goto out_drop_pag;
630 
631 	/*
632 	 * For buffers that fit entirely within a single page, first attempt to
633 	 * allocate the memory from the heap to minimise memory usage. If we
634 	 * can't get heap memory for these small buffers, we fall back to using
635 	 * the page allocator.
636 	 */
637 	if (BBTOB(new_bp->b_length) >= PAGE_SIZE ||
638 	    xfs_buf_alloc_kmem(new_bp, flags) < 0) {
639 		error = xfs_buf_alloc_pages(new_bp, flags);
640 		if (error)
641 			goto out_free_buf;
642 	}
643 
644 	spin_lock(&pag->pag_buf_lock);
645 	bp = rhashtable_lookup_get_insert_fast(&pag->pag_buf_hash,
646 			&new_bp->b_rhash_head, xfs_buf_hash_params);
647 	if (IS_ERR(bp)) {
648 		error = PTR_ERR(bp);
649 		spin_unlock(&pag->pag_buf_lock);
650 		goto out_free_buf;
651 	}
652 	if (bp) {
653 		/* found an existing buffer */
654 		atomic_inc(&bp->b_hold);
655 		spin_unlock(&pag->pag_buf_lock);
656 		error = xfs_buf_find_lock(bp, flags);
657 		if (error)
658 			xfs_buf_rele(bp);
659 		else
660 			*bpp = bp;
661 		goto out_free_buf;
662 	}
663 
664 	/* The new buffer keeps the perag reference until it is freed. */
665 	new_bp->b_pag = pag;
666 	spin_unlock(&pag->pag_buf_lock);
667 	*bpp = new_bp;
668 	return 0;
669 
670 out_free_buf:
671 	xfs_buf_free(new_bp);
672 out_drop_pag:
673 	xfs_perag_put(pag);
674 	return error;
675 }
676 
677 /*
678  * Assembles a buffer covering the specified range. The code is optimised for
679  * cache hits, as metadata intensive workloads will see 3 orders of magnitude
680  * more hits than misses.
681  */
682 int
683 xfs_buf_get_map(
684 	struct xfs_buftarg	*btp,
685 	struct xfs_buf_map	*map,
686 	int			nmaps,
687 	xfs_buf_flags_t		flags,
688 	struct xfs_buf		**bpp)
689 {
690 	struct xfs_perag	*pag;
691 	struct xfs_buf		*bp = NULL;
692 	struct xfs_buf_map	cmap = { .bm_bn = map[0].bm_bn };
693 	int			error;
694 	int			i;
695 
696 	if (flags & XBF_LIVESCAN)
697 		cmap.bm_flags |= XBM_LIVESCAN;
698 	for (i = 0; i < nmaps; i++)
699 		cmap.bm_len += map[i].bm_len;
700 
701 	error = xfs_buf_map_verify(btp, &cmap);
702 	if (error)
703 		return error;
704 
705 	pag = xfs_perag_get(btp->bt_mount,
706 			    xfs_daddr_to_agno(btp->bt_mount, cmap.bm_bn));
707 
708 	error = xfs_buf_lookup(pag, &cmap, flags, &bp);
709 	if (error && error != -ENOENT)
710 		goto out_put_perag;
711 
712 	/* cache hits always outnumber misses by at least 10:1 */
713 	if (unlikely(!bp)) {
714 		XFS_STATS_INC(btp->bt_mount, xb_miss_locked);
715 
716 		if (flags & XBF_INCORE)
717 			goto out_put_perag;
718 
719 		/* xfs_buf_find_insert() consumes the perag reference. */
720 		error = xfs_buf_find_insert(btp, pag, &cmap, map, nmaps,
721 				flags, &bp);
722 		if (error)
723 			return error;
724 	} else {
725 		XFS_STATS_INC(btp->bt_mount, xb_get_locked);
726 		xfs_perag_put(pag);
727 	}
728 
729 	/* We do not hold a perag reference anymore. */
730 	if (!bp->b_addr) {
731 		error = _xfs_buf_map_pages(bp, flags);
732 		if (unlikely(error)) {
733 			xfs_warn_ratelimited(btp->bt_mount,
734 				"%s: failed to map %u pages", __func__,
735 				bp->b_page_count);
736 			xfs_buf_relse(bp);
737 			return error;
738 		}
739 	}
740 
741 	/*
742 	 * Clear b_error if this is a lookup from a caller that doesn't expect
743 	 * valid data to be found in the buffer.
744 	 */
745 	if (!(flags & XBF_READ))
746 		xfs_buf_ioerror(bp, 0);
747 
748 	XFS_STATS_INC(btp->bt_mount, xb_get);
749 	trace_xfs_buf_get(bp, flags, _RET_IP_);
750 	*bpp = bp;
751 	return 0;
752 
753 out_put_perag:
754 	xfs_perag_put(pag);
755 	return error;
756 }
757 
758 int
759 _xfs_buf_read(
760 	struct xfs_buf		*bp,
761 	xfs_buf_flags_t		flags)
762 {
763 	ASSERT(!(flags & XBF_WRITE));
764 	ASSERT(bp->b_maps[0].bm_bn != XFS_BUF_DADDR_NULL);
765 
766 	bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD | XBF_DONE);
767 	bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD);
768 
769 	return xfs_buf_submit(bp);
770 }
771 
772 /*
773  * Reverify a buffer found in cache without an attached ->b_ops.
774  *
775  * If the caller passed an ops structure and the buffer doesn't have ops
776  * assigned, set the ops and use it to verify the contents. If verification
777  * fails, clear XBF_DONE. We assume the buffer has no recorded errors and is
778  * already in XBF_DONE state on entry.
779  *
780  * Under normal operations, every in-core buffer is verified on read I/O
781  * completion. There are two scenarios that can lead to in-core buffers without
782  * an assigned ->b_ops. The first is during log recovery of buffers on a V4
783  * filesystem, though these buffers are purged at the end of recovery. The
784  * other is online repair, which intentionally reads with a NULL buffer ops to
785  * run several verifiers across an in-core buffer in order to establish buffer
786  * type.  If repair can't establish that, the buffer will be left in memory
787  * with NULL buffer ops.
788  */
789 int
790 xfs_buf_reverify(
791 	struct xfs_buf		*bp,
792 	const struct xfs_buf_ops *ops)
793 {
794 	ASSERT(bp->b_flags & XBF_DONE);
795 	ASSERT(bp->b_error == 0);
796 
797 	if (!ops || bp->b_ops)
798 		return 0;
799 
800 	bp->b_ops = ops;
801 	bp->b_ops->verify_read(bp);
802 	if (bp->b_error)
803 		bp->b_flags &= ~XBF_DONE;
804 	return bp->b_error;
805 }
806 
807 int
808 xfs_buf_read_map(
809 	struct xfs_buftarg	*target,
810 	struct xfs_buf_map	*map,
811 	int			nmaps,
812 	xfs_buf_flags_t		flags,
813 	struct xfs_buf		**bpp,
814 	const struct xfs_buf_ops *ops,
815 	xfs_failaddr_t		fa)
816 {
817 	struct xfs_buf		*bp;
818 	int			error;
819 
820 	flags |= XBF_READ;
821 	*bpp = NULL;
822 
823 	error = xfs_buf_get_map(target, map, nmaps, flags, &bp);
824 	if (error)
825 		return error;
826 
827 	trace_xfs_buf_read(bp, flags, _RET_IP_);
828 
829 	if (!(bp->b_flags & XBF_DONE)) {
830 		/* Initiate the buffer read and wait. */
831 		XFS_STATS_INC(target->bt_mount, xb_get_read);
832 		bp->b_ops = ops;
833 		error = _xfs_buf_read(bp, flags);
834 
835 		/* Readahead iodone already dropped the buffer, so exit. */
836 		if (flags & XBF_ASYNC)
837 			return 0;
838 	} else {
839 		/* Buffer already read; all we need to do is check it. */
840 		error = xfs_buf_reverify(bp, ops);
841 
842 		/* Readahead already finished; drop the buffer and exit. */
843 		if (flags & XBF_ASYNC) {
844 			xfs_buf_relse(bp);
845 			return 0;
846 		}
847 
848 		/* We do not want read in the flags */
849 		bp->b_flags &= ~XBF_READ;
850 		ASSERT(bp->b_ops != NULL || ops == NULL);
851 	}
852 
853 	/*
854 	 * If we've had a read error, then the contents of the buffer are
855 	 * invalid and should not be used. To ensure that a followup read tries
856 	 * to pull the buffer from disk again, we clear the XBF_DONE flag and
857 	 * mark the buffer stale. This ensures that anyone who has a current
858 	 * reference to the buffer will interpret it's contents correctly and
859 	 * future cache lookups will also treat it as an empty, uninitialised
860 	 * buffer.
861 	 */
862 	if (error) {
863 		/*
864 		 * Check against log shutdown for error reporting because
865 		 * metadata writeback may require a read first and we need to
866 		 * report errors in metadata writeback until the log is shut
867 		 * down. High level transaction read functions already check
868 		 * against mount shutdown, anyway, so we only need to be
869 		 * concerned about low level IO interactions here.
870 		 */
871 		if (!xlog_is_shutdown(target->bt_mount->m_log))
872 			xfs_buf_ioerror_alert(bp, fa);
873 
874 		bp->b_flags &= ~XBF_DONE;
875 		xfs_buf_stale(bp);
876 		xfs_buf_relse(bp);
877 
878 		/* bad CRC means corrupted metadata */
879 		if (error == -EFSBADCRC)
880 			error = -EFSCORRUPTED;
881 		return error;
882 	}
883 
884 	*bpp = bp;
885 	return 0;
886 }
887 
888 /*
889  *	If we are not low on memory then do the readahead in a deadlock
890  *	safe manner.
891  */
892 void
893 xfs_buf_readahead_map(
894 	struct xfs_buftarg	*target,
895 	struct xfs_buf_map	*map,
896 	int			nmaps,
897 	const struct xfs_buf_ops *ops)
898 {
899 	struct xfs_buf		*bp;
900 
901 	xfs_buf_read_map(target, map, nmaps,
902 		     XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD, &bp, ops,
903 		     __this_address);
904 }
905 
906 /*
907  * Read an uncached buffer from disk. Allocates and returns a locked
908  * buffer containing the disk contents or nothing. Uncached buffers always have
909  * a cache index of XFS_BUF_DADDR_NULL so we can easily determine if the buffer
910  * is cached or uncached during fault diagnosis.
911  */
912 int
913 xfs_buf_read_uncached(
914 	struct xfs_buftarg	*target,
915 	xfs_daddr_t		daddr,
916 	size_t			numblks,
917 	xfs_buf_flags_t		flags,
918 	struct xfs_buf		**bpp,
919 	const struct xfs_buf_ops *ops)
920 {
921 	struct xfs_buf		*bp;
922 	int			error;
923 
924 	*bpp = NULL;
925 
926 	error = xfs_buf_get_uncached(target, numblks, flags, &bp);
927 	if (error)
928 		return error;
929 
930 	/* set up the buffer for a read IO */
931 	ASSERT(bp->b_map_count == 1);
932 	bp->b_rhash_key = XFS_BUF_DADDR_NULL;
933 	bp->b_maps[0].bm_bn = daddr;
934 	bp->b_flags |= XBF_READ;
935 	bp->b_ops = ops;
936 
937 	xfs_buf_submit(bp);
938 	if (bp->b_error) {
939 		error = bp->b_error;
940 		xfs_buf_relse(bp);
941 		return error;
942 	}
943 
944 	*bpp = bp;
945 	return 0;
946 }
947 
948 int
949 xfs_buf_get_uncached(
950 	struct xfs_buftarg	*target,
951 	size_t			numblks,
952 	xfs_buf_flags_t		flags,
953 	struct xfs_buf		**bpp)
954 {
955 	int			error;
956 	struct xfs_buf		*bp;
957 	DEFINE_SINGLE_BUF_MAP(map, XFS_BUF_DADDR_NULL, numblks);
958 
959 	*bpp = NULL;
960 
961 	/* flags might contain irrelevant bits, pass only what we care about */
962 	error = _xfs_buf_alloc(target, &map, 1, flags & XBF_NO_IOACCT, &bp);
963 	if (error)
964 		return error;
965 
966 	error = xfs_buf_alloc_pages(bp, flags);
967 	if (error)
968 		goto fail_free_buf;
969 
970 	error = _xfs_buf_map_pages(bp, 0);
971 	if (unlikely(error)) {
972 		xfs_warn(target->bt_mount,
973 			"%s: failed to map pages", __func__);
974 		goto fail_free_buf;
975 	}
976 
977 	trace_xfs_buf_get_uncached(bp, _RET_IP_);
978 	*bpp = bp;
979 	return 0;
980 
981 fail_free_buf:
982 	xfs_buf_free(bp);
983 	return error;
984 }
985 
986 /*
987  *	Increment reference count on buffer, to hold the buffer concurrently
988  *	with another thread which may release (free) the buffer asynchronously.
989  *	Must hold the buffer already to call this function.
990  */
991 void
992 xfs_buf_hold(
993 	struct xfs_buf		*bp)
994 {
995 	trace_xfs_buf_hold(bp, _RET_IP_);
996 	atomic_inc(&bp->b_hold);
997 }
998 
999 /*
1000  * Release a hold on the specified buffer. If the hold count is 1, the buffer is
1001  * placed on LRU or freed (depending on b_lru_ref).
1002  */
1003 void
1004 xfs_buf_rele(
1005 	struct xfs_buf		*bp)
1006 {
1007 	struct xfs_perag	*pag = bp->b_pag;
1008 	bool			release;
1009 	bool			freebuf = false;
1010 
1011 	trace_xfs_buf_rele(bp, _RET_IP_);
1012 
1013 	if (!pag) {
1014 		ASSERT(list_empty(&bp->b_lru));
1015 		if (atomic_dec_and_test(&bp->b_hold)) {
1016 			xfs_buf_ioacct_dec(bp);
1017 			xfs_buf_free(bp);
1018 		}
1019 		return;
1020 	}
1021 
1022 	ASSERT(atomic_read(&bp->b_hold) > 0);
1023 
1024 	/*
1025 	 * We grab the b_lock here first to serialise racing xfs_buf_rele()
1026 	 * calls. The pag_buf_lock being taken on the last reference only
1027 	 * serialises against racing lookups in xfs_buf_find(). IOWs, the second
1028 	 * to last reference we drop here is not serialised against the last
1029 	 * reference until we take bp->b_lock. Hence if we don't grab b_lock
1030 	 * first, the last "release" reference can win the race to the lock and
1031 	 * free the buffer before the second-to-last reference is processed,
1032 	 * leading to a use-after-free scenario.
1033 	 */
1034 	spin_lock(&bp->b_lock);
1035 	release = atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock);
1036 	if (!release) {
1037 		/*
1038 		 * Drop the in-flight state if the buffer is already on the LRU
1039 		 * and it holds the only reference. This is racy because we
1040 		 * haven't acquired the pag lock, but the use of _XBF_IN_FLIGHT
1041 		 * ensures the decrement occurs only once per-buf.
1042 		 */
1043 		if ((atomic_read(&bp->b_hold) == 1) && !list_empty(&bp->b_lru))
1044 			__xfs_buf_ioacct_dec(bp);
1045 		goto out_unlock;
1046 	}
1047 
1048 	/* the last reference has been dropped ... */
1049 	__xfs_buf_ioacct_dec(bp);
1050 	if (!(bp->b_flags & XBF_STALE) && atomic_read(&bp->b_lru_ref)) {
1051 		/*
1052 		 * If the buffer is added to the LRU take a new reference to the
1053 		 * buffer for the LRU and clear the (now stale) dispose list
1054 		 * state flag
1055 		 */
1056 		if (list_lru_add_obj(&bp->b_target->bt_lru, &bp->b_lru)) {
1057 			bp->b_state &= ~XFS_BSTATE_DISPOSE;
1058 			atomic_inc(&bp->b_hold);
1059 		}
1060 		spin_unlock(&pag->pag_buf_lock);
1061 	} else {
1062 		/*
1063 		 * most of the time buffers will already be removed from the
1064 		 * LRU, so optimise that case by checking for the
1065 		 * XFS_BSTATE_DISPOSE flag indicating the last list the buffer
1066 		 * was on was the disposal list
1067 		 */
1068 		if (!(bp->b_state & XFS_BSTATE_DISPOSE)) {
1069 			list_lru_del_obj(&bp->b_target->bt_lru, &bp->b_lru);
1070 		} else {
1071 			ASSERT(list_empty(&bp->b_lru));
1072 		}
1073 
1074 		ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1075 		rhashtable_remove_fast(&pag->pag_buf_hash, &bp->b_rhash_head,
1076 				       xfs_buf_hash_params);
1077 		spin_unlock(&pag->pag_buf_lock);
1078 		xfs_perag_put(pag);
1079 		freebuf = true;
1080 	}
1081 
1082 out_unlock:
1083 	spin_unlock(&bp->b_lock);
1084 
1085 	if (freebuf)
1086 		xfs_buf_free(bp);
1087 }
1088 
1089 
1090 /*
1091  *	Lock a buffer object, if it is not already locked.
1092  *
1093  *	If we come across a stale, pinned, locked buffer, we know that we are
1094  *	being asked to lock a buffer that has been reallocated. Because it is
1095  *	pinned, we know that the log has not been pushed to disk and hence it
1096  *	will still be locked.  Rather than continuing to have trylock attempts
1097  *	fail until someone else pushes the log, push it ourselves before
1098  *	returning.  This means that the xfsaild will not get stuck trying
1099  *	to push on stale inode buffers.
1100  */
1101 int
1102 xfs_buf_trylock(
1103 	struct xfs_buf		*bp)
1104 {
1105 	int			locked;
1106 
1107 	locked = down_trylock(&bp->b_sema) == 0;
1108 	if (locked)
1109 		trace_xfs_buf_trylock(bp, _RET_IP_);
1110 	else
1111 		trace_xfs_buf_trylock_fail(bp, _RET_IP_);
1112 	return locked;
1113 }
1114 
1115 /*
1116  *	Lock a buffer object.
1117  *
1118  *	If we come across a stale, pinned, locked buffer, we know that we
1119  *	are being asked to lock a buffer that has been reallocated. Because
1120  *	it is pinned, we know that the log has not been pushed to disk and
1121  *	hence it will still be locked. Rather than sleeping until someone
1122  *	else pushes the log, push it ourselves before trying to get the lock.
1123  */
1124 void
1125 xfs_buf_lock(
1126 	struct xfs_buf		*bp)
1127 {
1128 	trace_xfs_buf_lock(bp, _RET_IP_);
1129 
1130 	if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
1131 		xfs_log_force(bp->b_mount, 0);
1132 	down(&bp->b_sema);
1133 
1134 	trace_xfs_buf_lock_done(bp, _RET_IP_);
1135 }
1136 
1137 void
1138 xfs_buf_unlock(
1139 	struct xfs_buf		*bp)
1140 {
1141 	ASSERT(xfs_buf_islocked(bp));
1142 
1143 	up(&bp->b_sema);
1144 	trace_xfs_buf_unlock(bp, _RET_IP_);
1145 }
1146 
1147 STATIC void
1148 xfs_buf_wait_unpin(
1149 	struct xfs_buf		*bp)
1150 {
1151 	DECLARE_WAITQUEUE	(wait, current);
1152 
1153 	if (atomic_read(&bp->b_pin_count) == 0)
1154 		return;
1155 
1156 	add_wait_queue(&bp->b_waiters, &wait);
1157 	for (;;) {
1158 		set_current_state(TASK_UNINTERRUPTIBLE);
1159 		if (atomic_read(&bp->b_pin_count) == 0)
1160 			break;
1161 		io_schedule();
1162 	}
1163 	remove_wait_queue(&bp->b_waiters, &wait);
1164 	set_current_state(TASK_RUNNING);
1165 }
1166 
1167 static void
1168 xfs_buf_ioerror_alert_ratelimited(
1169 	struct xfs_buf		*bp)
1170 {
1171 	static unsigned long	lasttime;
1172 	static struct xfs_buftarg *lasttarg;
1173 
1174 	if (bp->b_target != lasttarg ||
1175 	    time_after(jiffies, (lasttime + 5*HZ))) {
1176 		lasttime = jiffies;
1177 		xfs_buf_ioerror_alert(bp, __this_address);
1178 	}
1179 	lasttarg = bp->b_target;
1180 }
1181 
1182 /*
1183  * Account for this latest trip around the retry handler, and decide if
1184  * we've failed enough times to constitute a permanent failure.
1185  */
1186 static bool
1187 xfs_buf_ioerror_permanent(
1188 	struct xfs_buf		*bp,
1189 	struct xfs_error_cfg	*cfg)
1190 {
1191 	struct xfs_mount	*mp = bp->b_mount;
1192 
1193 	if (cfg->max_retries != XFS_ERR_RETRY_FOREVER &&
1194 	    ++bp->b_retries > cfg->max_retries)
1195 		return true;
1196 	if (cfg->retry_timeout != XFS_ERR_RETRY_FOREVER &&
1197 	    time_after(jiffies, cfg->retry_timeout + bp->b_first_retry_time))
1198 		return true;
1199 
1200 	/* At unmount we may treat errors differently */
1201 	if (xfs_is_unmounting(mp) && mp->m_fail_unmount)
1202 		return true;
1203 
1204 	return false;
1205 }
1206 
1207 /*
1208  * On a sync write or shutdown we just want to stale the buffer and let the
1209  * caller handle the error in bp->b_error appropriately.
1210  *
1211  * If the write was asynchronous then no one will be looking for the error.  If
1212  * this is the first failure of this type, clear the error state and write the
1213  * buffer out again. This means we always retry an async write failure at least
1214  * once, but we also need to set the buffer up to behave correctly now for
1215  * repeated failures.
1216  *
1217  * If we get repeated async write failures, then we take action according to the
1218  * error configuration we have been set up to use.
1219  *
1220  * Returns true if this function took care of error handling and the caller must
1221  * not touch the buffer again.  Return false if the caller should proceed with
1222  * normal I/O completion handling.
1223  */
1224 static bool
1225 xfs_buf_ioend_handle_error(
1226 	struct xfs_buf		*bp)
1227 {
1228 	struct xfs_mount	*mp = bp->b_mount;
1229 	struct xfs_error_cfg	*cfg;
1230 
1231 	/*
1232 	 * If we've already shutdown the journal because of I/O errors, there's
1233 	 * no point in giving this a retry.
1234 	 */
1235 	if (xlog_is_shutdown(mp->m_log))
1236 		goto out_stale;
1237 
1238 	xfs_buf_ioerror_alert_ratelimited(bp);
1239 
1240 	/*
1241 	 * We're not going to bother about retrying this during recovery.
1242 	 * One strike!
1243 	 */
1244 	if (bp->b_flags & _XBF_LOGRECOVERY) {
1245 		xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1246 		return false;
1247 	}
1248 
1249 	/*
1250 	 * Synchronous writes will have callers process the error.
1251 	 */
1252 	if (!(bp->b_flags & XBF_ASYNC))
1253 		goto out_stale;
1254 
1255 	trace_xfs_buf_iodone_async(bp, _RET_IP_);
1256 
1257 	cfg = xfs_error_get_cfg(mp, XFS_ERR_METADATA, bp->b_error);
1258 	if (bp->b_last_error != bp->b_error ||
1259 	    !(bp->b_flags & (XBF_STALE | XBF_WRITE_FAIL))) {
1260 		bp->b_last_error = bp->b_error;
1261 		if (cfg->retry_timeout != XFS_ERR_RETRY_FOREVER &&
1262 		    !bp->b_first_retry_time)
1263 			bp->b_first_retry_time = jiffies;
1264 		goto resubmit;
1265 	}
1266 
1267 	/*
1268 	 * Permanent error - we need to trigger a shutdown if we haven't already
1269 	 * to indicate that inconsistency will result from this action.
1270 	 */
1271 	if (xfs_buf_ioerror_permanent(bp, cfg)) {
1272 		xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1273 		goto out_stale;
1274 	}
1275 
1276 	/* Still considered a transient error. Caller will schedule retries. */
1277 	if (bp->b_flags & _XBF_INODES)
1278 		xfs_buf_inode_io_fail(bp);
1279 	else if (bp->b_flags & _XBF_DQUOTS)
1280 		xfs_buf_dquot_io_fail(bp);
1281 	else
1282 		ASSERT(list_empty(&bp->b_li_list));
1283 	xfs_buf_ioerror(bp, 0);
1284 	xfs_buf_relse(bp);
1285 	return true;
1286 
1287 resubmit:
1288 	xfs_buf_ioerror(bp, 0);
1289 	bp->b_flags |= (XBF_DONE | XBF_WRITE_FAIL);
1290 	xfs_buf_submit(bp);
1291 	return true;
1292 out_stale:
1293 	xfs_buf_stale(bp);
1294 	bp->b_flags |= XBF_DONE;
1295 	bp->b_flags &= ~XBF_WRITE;
1296 	trace_xfs_buf_error_relse(bp, _RET_IP_);
1297 	return false;
1298 }
1299 
1300 static void
1301 xfs_buf_ioend(
1302 	struct xfs_buf	*bp)
1303 {
1304 	trace_xfs_buf_iodone(bp, _RET_IP_);
1305 
1306 	/*
1307 	 * Pull in IO completion errors now. We are guaranteed to be running
1308 	 * single threaded, so we don't need the lock to read b_io_error.
1309 	 */
1310 	if (!bp->b_error && bp->b_io_error)
1311 		xfs_buf_ioerror(bp, bp->b_io_error);
1312 
1313 	if (bp->b_flags & XBF_READ) {
1314 		if (!bp->b_error && bp->b_ops)
1315 			bp->b_ops->verify_read(bp);
1316 		if (!bp->b_error)
1317 			bp->b_flags |= XBF_DONE;
1318 	} else {
1319 		if (!bp->b_error) {
1320 			bp->b_flags &= ~XBF_WRITE_FAIL;
1321 			bp->b_flags |= XBF_DONE;
1322 		}
1323 
1324 		if (unlikely(bp->b_error) && xfs_buf_ioend_handle_error(bp))
1325 			return;
1326 
1327 		/* clear the retry state */
1328 		bp->b_last_error = 0;
1329 		bp->b_retries = 0;
1330 		bp->b_first_retry_time = 0;
1331 
1332 		/*
1333 		 * Note that for things like remote attribute buffers, there may
1334 		 * not be a buffer log item here, so processing the buffer log
1335 		 * item must remain optional.
1336 		 */
1337 		if (bp->b_log_item)
1338 			xfs_buf_item_done(bp);
1339 
1340 		if (bp->b_flags & _XBF_INODES)
1341 			xfs_buf_inode_iodone(bp);
1342 		else if (bp->b_flags & _XBF_DQUOTS)
1343 			xfs_buf_dquot_iodone(bp);
1344 
1345 	}
1346 
1347 	bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD |
1348 			 _XBF_LOGRECOVERY);
1349 
1350 	if (bp->b_flags & XBF_ASYNC)
1351 		xfs_buf_relse(bp);
1352 	else
1353 		complete(&bp->b_iowait);
1354 }
1355 
1356 static void
1357 xfs_buf_ioend_work(
1358 	struct work_struct	*work)
1359 {
1360 	struct xfs_buf		*bp =
1361 		container_of(work, struct xfs_buf, b_ioend_work);
1362 
1363 	xfs_buf_ioend(bp);
1364 }
1365 
1366 static void
1367 xfs_buf_ioend_async(
1368 	struct xfs_buf	*bp)
1369 {
1370 	INIT_WORK(&bp->b_ioend_work, xfs_buf_ioend_work);
1371 	queue_work(bp->b_mount->m_buf_workqueue, &bp->b_ioend_work);
1372 }
1373 
1374 void
1375 __xfs_buf_ioerror(
1376 	struct xfs_buf		*bp,
1377 	int			error,
1378 	xfs_failaddr_t		failaddr)
1379 {
1380 	ASSERT(error <= 0 && error >= -1000);
1381 	bp->b_error = error;
1382 	trace_xfs_buf_ioerror(bp, error, failaddr);
1383 }
1384 
1385 void
1386 xfs_buf_ioerror_alert(
1387 	struct xfs_buf		*bp,
1388 	xfs_failaddr_t		func)
1389 {
1390 	xfs_buf_alert_ratelimited(bp, "XFS: metadata IO error",
1391 		"metadata I/O error in \"%pS\" at daddr 0x%llx len %d error %d",
1392 				  func, (uint64_t)xfs_buf_daddr(bp),
1393 				  bp->b_length, -bp->b_error);
1394 }
1395 
1396 /*
1397  * To simulate an I/O failure, the buffer must be locked and held with at least
1398  * three references. The LRU reference is dropped by the stale call. The buf
1399  * item reference is dropped via ioend processing. The third reference is owned
1400  * by the caller and is dropped on I/O completion if the buffer is XBF_ASYNC.
1401  */
1402 void
1403 xfs_buf_ioend_fail(
1404 	struct xfs_buf	*bp)
1405 {
1406 	bp->b_flags &= ~XBF_DONE;
1407 	xfs_buf_stale(bp);
1408 	xfs_buf_ioerror(bp, -EIO);
1409 	xfs_buf_ioend(bp);
1410 }
1411 
1412 int
1413 xfs_bwrite(
1414 	struct xfs_buf		*bp)
1415 {
1416 	int			error;
1417 
1418 	ASSERT(xfs_buf_islocked(bp));
1419 
1420 	bp->b_flags |= XBF_WRITE;
1421 	bp->b_flags &= ~(XBF_ASYNC | XBF_READ | _XBF_DELWRI_Q |
1422 			 XBF_DONE);
1423 
1424 	error = xfs_buf_submit(bp);
1425 	if (error)
1426 		xfs_force_shutdown(bp->b_mount, SHUTDOWN_META_IO_ERROR);
1427 	return error;
1428 }
1429 
1430 static void
1431 xfs_buf_bio_end_io(
1432 	struct bio		*bio)
1433 {
1434 	struct xfs_buf		*bp = (struct xfs_buf *)bio->bi_private;
1435 
1436 	if (!bio->bi_status &&
1437 	    (bp->b_flags & XBF_WRITE) && (bp->b_flags & XBF_ASYNC) &&
1438 	    XFS_TEST_ERROR(false, bp->b_mount, XFS_ERRTAG_BUF_IOERROR))
1439 		bio->bi_status = BLK_STS_IOERR;
1440 
1441 	/*
1442 	 * don't overwrite existing errors - otherwise we can lose errors on
1443 	 * buffers that require multiple bios to complete.
1444 	 */
1445 	if (bio->bi_status) {
1446 		int error = blk_status_to_errno(bio->bi_status);
1447 
1448 		cmpxchg(&bp->b_io_error, 0, error);
1449 	}
1450 
1451 	if (!bp->b_error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
1452 		invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1453 
1454 	if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1455 		xfs_buf_ioend_async(bp);
1456 	bio_put(bio);
1457 }
1458 
1459 static void
1460 xfs_buf_ioapply_map(
1461 	struct xfs_buf	*bp,
1462 	int		map,
1463 	int		*buf_offset,
1464 	int		*count,
1465 	blk_opf_t	op)
1466 {
1467 	int		page_index;
1468 	unsigned int	total_nr_pages = bp->b_page_count;
1469 	int		nr_pages;
1470 	struct bio	*bio;
1471 	sector_t	sector =  bp->b_maps[map].bm_bn;
1472 	int		size;
1473 	int		offset;
1474 
1475 	/* skip the pages in the buffer before the start offset */
1476 	page_index = 0;
1477 	offset = *buf_offset;
1478 	while (offset >= PAGE_SIZE) {
1479 		page_index++;
1480 		offset -= PAGE_SIZE;
1481 	}
1482 
1483 	/*
1484 	 * Limit the IO size to the length of the current vector, and update the
1485 	 * remaining IO count for the next time around.
1486 	 */
1487 	size = min_t(int, BBTOB(bp->b_maps[map].bm_len), *count);
1488 	*count -= size;
1489 	*buf_offset += size;
1490 
1491 next_chunk:
1492 	atomic_inc(&bp->b_io_remaining);
1493 	nr_pages = bio_max_segs(total_nr_pages);
1494 
1495 	bio = bio_alloc(bp->b_target->bt_bdev, nr_pages, op, GFP_NOIO);
1496 	bio->bi_iter.bi_sector = sector;
1497 	bio->bi_end_io = xfs_buf_bio_end_io;
1498 	bio->bi_private = bp;
1499 
1500 	for (; size && nr_pages; nr_pages--, page_index++) {
1501 		int	rbytes, nbytes = PAGE_SIZE - offset;
1502 
1503 		if (nbytes > size)
1504 			nbytes = size;
1505 
1506 		rbytes = bio_add_page(bio, bp->b_pages[page_index], nbytes,
1507 				      offset);
1508 		if (rbytes < nbytes)
1509 			break;
1510 
1511 		offset = 0;
1512 		sector += BTOBB(nbytes);
1513 		size -= nbytes;
1514 		total_nr_pages--;
1515 	}
1516 
1517 	if (likely(bio->bi_iter.bi_size)) {
1518 		if (xfs_buf_is_vmapped(bp)) {
1519 			flush_kernel_vmap_range(bp->b_addr,
1520 						xfs_buf_vmap_len(bp));
1521 		}
1522 		submit_bio(bio);
1523 		if (size)
1524 			goto next_chunk;
1525 	} else {
1526 		/*
1527 		 * This is guaranteed not to be the last io reference count
1528 		 * because the caller (xfs_buf_submit) holds a count itself.
1529 		 */
1530 		atomic_dec(&bp->b_io_remaining);
1531 		xfs_buf_ioerror(bp, -EIO);
1532 		bio_put(bio);
1533 	}
1534 
1535 }
1536 
1537 STATIC void
1538 _xfs_buf_ioapply(
1539 	struct xfs_buf	*bp)
1540 {
1541 	struct blk_plug	plug;
1542 	blk_opf_t	op;
1543 	int		offset;
1544 	int		size;
1545 	int		i;
1546 
1547 	/*
1548 	 * Make sure we capture only current IO errors rather than stale errors
1549 	 * left over from previous use of the buffer (e.g. failed readahead).
1550 	 */
1551 	bp->b_error = 0;
1552 
1553 	if (bp->b_flags & XBF_WRITE) {
1554 		op = REQ_OP_WRITE;
1555 
1556 		/*
1557 		 * Run the write verifier callback function if it exists. If
1558 		 * this function fails it will mark the buffer with an error and
1559 		 * the IO should not be dispatched.
1560 		 */
1561 		if (bp->b_ops) {
1562 			bp->b_ops->verify_write(bp);
1563 			if (bp->b_error) {
1564 				xfs_force_shutdown(bp->b_mount,
1565 						   SHUTDOWN_CORRUPT_INCORE);
1566 				return;
1567 			}
1568 		} else if (bp->b_rhash_key != XFS_BUF_DADDR_NULL) {
1569 			struct xfs_mount *mp = bp->b_mount;
1570 
1571 			/*
1572 			 * non-crc filesystems don't attach verifiers during
1573 			 * log recovery, so don't warn for such filesystems.
1574 			 */
1575 			if (xfs_has_crc(mp)) {
1576 				xfs_warn(mp,
1577 					"%s: no buf ops on daddr 0x%llx len %d",
1578 					__func__, xfs_buf_daddr(bp),
1579 					bp->b_length);
1580 				xfs_hex_dump(bp->b_addr,
1581 						XFS_CORRUPTION_DUMP_LEN);
1582 				dump_stack();
1583 			}
1584 		}
1585 	} else {
1586 		op = REQ_OP_READ;
1587 		if (bp->b_flags & XBF_READ_AHEAD)
1588 			op |= REQ_RAHEAD;
1589 	}
1590 
1591 	/* we only use the buffer cache for meta-data */
1592 	op |= REQ_META;
1593 
1594 	/*
1595 	 * Walk all the vectors issuing IO on them. Set up the initial offset
1596 	 * into the buffer and the desired IO size before we start -
1597 	 * _xfs_buf_ioapply_vec() will modify them appropriately for each
1598 	 * subsequent call.
1599 	 */
1600 	offset = bp->b_offset;
1601 	size = BBTOB(bp->b_length);
1602 	blk_start_plug(&plug);
1603 	for (i = 0; i < bp->b_map_count; i++) {
1604 		xfs_buf_ioapply_map(bp, i, &offset, &size, op);
1605 		if (bp->b_error)
1606 			break;
1607 		if (size <= 0)
1608 			break;	/* all done */
1609 	}
1610 	blk_finish_plug(&plug);
1611 }
1612 
1613 /*
1614  * Wait for I/O completion of a sync buffer and return the I/O error code.
1615  */
1616 static int
1617 xfs_buf_iowait(
1618 	struct xfs_buf	*bp)
1619 {
1620 	ASSERT(!(bp->b_flags & XBF_ASYNC));
1621 
1622 	trace_xfs_buf_iowait(bp, _RET_IP_);
1623 	wait_for_completion(&bp->b_iowait);
1624 	trace_xfs_buf_iowait_done(bp, _RET_IP_);
1625 
1626 	return bp->b_error;
1627 }
1628 
1629 /*
1630  * Buffer I/O submission path, read or write. Asynchronous submission transfers
1631  * the buffer lock ownership and the current reference to the IO. It is not
1632  * safe to reference the buffer after a call to this function unless the caller
1633  * holds an additional reference itself.
1634  */
1635 static int
1636 __xfs_buf_submit(
1637 	struct xfs_buf	*bp,
1638 	bool		wait)
1639 {
1640 	int		error = 0;
1641 
1642 	trace_xfs_buf_submit(bp, _RET_IP_);
1643 
1644 	ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1645 
1646 	/*
1647 	 * On log shutdown we stale and complete the buffer immediately. We can
1648 	 * be called to read the superblock before the log has been set up, so
1649 	 * be careful checking the log state.
1650 	 *
1651 	 * Checking the mount shutdown state here can result in the log tail
1652 	 * moving inappropriately on disk as the log may not yet be shut down.
1653 	 * i.e. failing this buffer on mount shutdown can remove it from the AIL
1654 	 * and move the tail of the log forwards without having written this
1655 	 * buffer to disk. This corrupts the log tail state in memory, and
1656 	 * because the log may not be shut down yet, it can then be propagated
1657 	 * to disk before the log is shutdown. Hence we check log shutdown
1658 	 * state here rather than mount state to avoid corrupting the log tail
1659 	 * on shutdown.
1660 	 */
1661 	if (bp->b_mount->m_log &&
1662 	    xlog_is_shutdown(bp->b_mount->m_log)) {
1663 		xfs_buf_ioend_fail(bp);
1664 		return -EIO;
1665 	}
1666 
1667 	/*
1668 	 * Grab a reference so the buffer does not go away underneath us. For
1669 	 * async buffers, I/O completion drops the callers reference, which
1670 	 * could occur before submission returns.
1671 	 */
1672 	xfs_buf_hold(bp);
1673 
1674 	if (bp->b_flags & XBF_WRITE)
1675 		xfs_buf_wait_unpin(bp);
1676 
1677 	/* clear the internal error state to avoid spurious errors */
1678 	bp->b_io_error = 0;
1679 
1680 	/*
1681 	 * Set the count to 1 initially, this will stop an I/O completion
1682 	 * callout which happens before we have started all the I/O from calling
1683 	 * xfs_buf_ioend too early.
1684 	 */
1685 	atomic_set(&bp->b_io_remaining, 1);
1686 	if (bp->b_flags & XBF_ASYNC)
1687 		xfs_buf_ioacct_inc(bp);
1688 	_xfs_buf_ioapply(bp);
1689 
1690 	/*
1691 	 * If _xfs_buf_ioapply failed, we can get back here with only the IO
1692 	 * reference we took above. If we drop it to zero, run completion so
1693 	 * that we don't return to the caller with completion still pending.
1694 	 */
1695 	if (atomic_dec_and_test(&bp->b_io_remaining) == 1) {
1696 		if (bp->b_error || !(bp->b_flags & XBF_ASYNC))
1697 			xfs_buf_ioend(bp);
1698 		else
1699 			xfs_buf_ioend_async(bp);
1700 	}
1701 
1702 	if (wait)
1703 		error = xfs_buf_iowait(bp);
1704 
1705 	/*
1706 	 * Release the hold that keeps the buffer referenced for the entire
1707 	 * I/O. Note that if the buffer is async, it is not safe to reference
1708 	 * after this release.
1709 	 */
1710 	xfs_buf_rele(bp);
1711 	return error;
1712 }
1713 
1714 void *
1715 xfs_buf_offset(
1716 	struct xfs_buf		*bp,
1717 	size_t			offset)
1718 {
1719 	struct page		*page;
1720 
1721 	if (bp->b_addr)
1722 		return bp->b_addr + offset;
1723 
1724 	page = bp->b_pages[offset >> PAGE_SHIFT];
1725 	return page_address(page) + (offset & (PAGE_SIZE-1));
1726 }
1727 
1728 void
1729 xfs_buf_zero(
1730 	struct xfs_buf		*bp,
1731 	size_t			boff,
1732 	size_t			bsize)
1733 {
1734 	size_t			bend;
1735 
1736 	bend = boff + bsize;
1737 	while (boff < bend) {
1738 		struct page	*page;
1739 		int		page_index, page_offset, csize;
1740 
1741 		page_index = (boff + bp->b_offset) >> PAGE_SHIFT;
1742 		page_offset = (boff + bp->b_offset) & ~PAGE_MASK;
1743 		page = bp->b_pages[page_index];
1744 		csize = min_t(size_t, PAGE_SIZE - page_offset,
1745 				      BBTOB(bp->b_length) - boff);
1746 
1747 		ASSERT((csize + page_offset) <= PAGE_SIZE);
1748 
1749 		memset(page_address(page) + page_offset, 0, csize);
1750 
1751 		boff += csize;
1752 	}
1753 }
1754 
1755 /*
1756  * Log a message about and stale a buffer that a caller has decided is corrupt.
1757  *
1758  * This function should be called for the kinds of metadata corruption that
1759  * cannot be detect from a verifier, such as incorrect inter-block relationship
1760  * data.  Do /not/ call this function from a verifier function.
1761  *
1762  * The buffer must be XBF_DONE prior to the call.  Afterwards, the buffer will
1763  * be marked stale, but b_error will not be set.  The caller is responsible for
1764  * releasing the buffer or fixing it.
1765  */
1766 void
1767 __xfs_buf_mark_corrupt(
1768 	struct xfs_buf		*bp,
1769 	xfs_failaddr_t		fa)
1770 {
1771 	ASSERT(bp->b_flags & XBF_DONE);
1772 
1773 	xfs_buf_corruption_error(bp, fa);
1774 	xfs_buf_stale(bp);
1775 }
1776 
1777 /*
1778  *	Handling of buffer targets (buftargs).
1779  */
1780 
1781 /*
1782  * Wait for any bufs with callbacks that have been submitted but have not yet
1783  * returned. These buffers will have an elevated hold count, so wait on those
1784  * while freeing all the buffers only held by the LRU.
1785  */
1786 static enum lru_status
1787 xfs_buftarg_drain_rele(
1788 	struct list_head	*item,
1789 	struct list_lru_one	*lru,
1790 	spinlock_t		*lru_lock,
1791 	void			*arg)
1792 
1793 {
1794 	struct xfs_buf		*bp = container_of(item, struct xfs_buf, b_lru);
1795 	struct list_head	*dispose = arg;
1796 
1797 	if (atomic_read(&bp->b_hold) > 1) {
1798 		/* need to wait, so skip it this pass */
1799 		trace_xfs_buf_drain_buftarg(bp, _RET_IP_);
1800 		return LRU_SKIP;
1801 	}
1802 	if (!spin_trylock(&bp->b_lock))
1803 		return LRU_SKIP;
1804 
1805 	/*
1806 	 * clear the LRU reference count so the buffer doesn't get
1807 	 * ignored in xfs_buf_rele().
1808 	 */
1809 	atomic_set(&bp->b_lru_ref, 0);
1810 	bp->b_state |= XFS_BSTATE_DISPOSE;
1811 	list_lru_isolate_move(lru, item, dispose);
1812 	spin_unlock(&bp->b_lock);
1813 	return LRU_REMOVED;
1814 }
1815 
1816 /*
1817  * Wait for outstanding I/O on the buftarg to complete.
1818  */
1819 void
1820 xfs_buftarg_wait(
1821 	struct xfs_buftarg	*btp)
1822 {
1823 	/*
1824 	 * First wait on the buftarg I/O count for all in-flight buffers to be
1825 	 * released. This is critical as new buffers do not make the LRU until
1826 	 * they are released.
1827 	 *
1828 	 * Next, flush the buffer workqueue to ensure all completion processing
1829 	 * has finished. Just waiting on buffer locks is not sufficient for
1830 	 * async IO as the reference count held over IO is not released until
1831 	 * after the buffer lock is dropped. Hence we need to ensure here that
1832 	 * all reference counts have been dropped before we start walking the
1833 	 * LRU list.
1834 	 */
1835 	while (percpu_counter_sum(&btp->bt_io_count))
1836 		delay(100);
1837 	flush_workqueue(btp->bt_mount->m_buf_workqueue);
1838 }
1839 
1840 void
1841 xfs_buftarg_drain(
1842 	struct xfs_buftarg	*btp)
1843 {
1844 	LIST_HEAD(dispose);
1845 	int			loop = 0;
1846 	bool			write_fail = false;
1847 
1848 	xfs_buftarg_wait(btp);
1849 
1850 	/* loop until there is nothing left on the lru list. */
1851 	while (list_lru_count(&btp->bt_lru)) {
1852 		list_lru_walk(&btp->bt_lru, xfs_buftarg_drain_rele,
1853 			      &dispose, LONG_MAX);
1854 
1855 		while (!list_empty(&dispose)) {
1856 			struct xfs_buf *bp;
1857 			bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1858 			list_del_init(&bp->b_lru);
1859 			if (bp->b_flags & XBF_WRITE_FAIL) {
1860 				write_fail = true;
1861 				xfs_buf_alert_ratelimited(bp,
1862 					"XFS: Corruption Alert",
1863 "Corruption Alert: Buffer at daddr 0x%llx had permanent write failures!",
1864 					(long long)xfs_buf_daddr(bp));
1865 			}
1866 			xfs_buf_rele(bp);
1867 		}
1868 		if (loop++ != 0)
1869 			delay(100);
1870 	}
1871 
1872 	/*
1873 	 * If one or more failed buffers were freed, that means dirty metadata
1874 	 * was thrown away. This should only ever happen after I/O completion
1875 	 * handling has elevated I/O error(s) to permanent failures and shuts
1876 	 * down the journal.
1877 	 */
1878 	if (write_fail) {
1879 		ASSERT(xlog_is_shutdown(btp->bt_mount->m_log));
1880 		xfs_alert(btp->bt_mount,
1881 	      "Please run xfs_repair to determine the extent of the problem.");
1882 	}
1883 }
1884 
1885 static enum lru_status
1886 xfs_buftarg_isolate(
1887 	struct list_head	*item,
1888 	struct list_lru_one	*lru,
1889 	spinlock_t		*lru_lock,
1890 	void			*arg)
1891 {
1892 	struct xfs_buf		*bp = container_of(item, struct xfs_buf, b_lru);
1893 	struct list_head	*dispose = arg;
1894 
1895 	/*
1896 	 * we are inverting the lru lock/bp->b_lock here, so use a trylock.
1897 	 * If we fail to get the lock, just skip it.
1898 	 */
1899 	if (!spin_trylock(&bp->b_lock))
1900 		return LRU_SKIP;
1901 	/*
1902 	 * Decrement the b_lru_ref count unless the value is already
1903 	 * zero. If the value is already zero, we need to reclaim the
1904 	 * buffer, otherwise it gets another trip through the LRU.
1905 	 */
1906 	if (atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
1907 		spin_unlock(&bp->b_lock);
1908 		return LRU_ROTATE;
1909 	}
1910 
1911 	bp->b_state |= XFS_BSTATE_DISPOSE;
1912 	list_lru_isolate_move(lru, item, dispose);
1913 	spin_unlock(&bp->b_lock);
1914 	return LRU_REMOVED;
1915 }
1916 
1917 static unsigned long
1918 xfs_buftarg_shrink_scan(
1919 	struct shrinker		*shrink,
1920 	struct shrink_control	*sc)
1921 {
1922 	struct xfs_buftarg	*btp = shrink->private_data;
1923 	LIST_HEAD(dispose);
1924 	unsigned long		freed;
1925 
1926 	freed = list_lru_shrink_walk(&btp->bt_lru, sc,
1927 				     xfs_buftarg_isolate, &dispose);
1928 
1929 	while (!list_empty(&dispose)) {
1930 		struct xfs_buf *bp;
1931 		bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1932 		list_del_init(&bp->b_lru);
1933 		xfs_buf_rele(bp);
1934 	}
1935 
1936 	return freed;
1937 }
1938 
1939 static unsigned long
1940 xfs_buftarg_shrink_count(
1941 	struct shrinker		*shrink,
1942 	struct shrink_control	*sc)
1943 {
1944 	struct xfs_buftarg	*btp = shrink->private_data;
1945 	return list_lru_shrink_count(&btp->bt_lru, sc);
1946 }
1947 
1948 void
1949 xfs_free_buftarg(
1950 	struct xfs_buftarg	*btp)
1951 {
1952 	shrinker_free(btp->bt_shrinker);
1953 	ASSERT(percpu_counter_sum(&btp->bt_io_count) == 0);
1954 	percpu_counter_destroy(&btp->bt_io_count);
1955 	list_lru_destroy(&btp->bt_lru);
1956 
1957 	fs_put_dax(btp->bt_daxdev, btp->bt_mount);
1958 	/* the main block device is closed by kill_block_super */
1959 	if (btp->bt_bdev != btp->bt_mount->m_super->s_bdev)
1960 		bdev_release(btp->bt_bdev_handle);
1961 
1962 	kfree(btp);
1963 }
1964 
1965 int
1966 xfs_setsize_buftarg(
1967 	xfs_buftarg_t		*btp,
1968 	unsigned int		sectorsize)
1969 {
1970 	/* Set up metadata sector size info */
1971 	btp->bt_meta_sectorsize = sectorsize;
1972 	btp->bt_meta_sectormask = sectorsize - 1;
1973 
1974 	if (set_blocksize(btp->bt_bdev, sectorsize)) {
1975 		xfs_warn(btp->bt_mount,
1976 			"Cannot set_blocksize to %u on device %pg",
1977 			sectorsize, btp->bt_bdev);
1978 		return -EINVAL;
1979 	}
1980 
1981 	/* Set up device logical sector size mask */
1982 	btp->bt_logical_sectorsize = bdev_logical_block_size(btp->bt_bdev);
1983 	btp->bt_logical_sectormask = bdev_logical_block_size(btp->bt_bdev) - 1;
1984 
1985 	return 0;
1986 }
1987 
1988 /*
1989  * When allocating the initial buffer target we have not yet
1990  * read in the superblock, so don't know what sized sectors
1991  * are being used at this early stage.  Play safe.
1992  */
1993 STATIC int
1994 xfs_setsize_buftarg_early(
1995 	xfs_buftarg_t		*btp)
1996 {
1997 	return xfs_setsize_buftarg(btp, bdev_logical_block_size(btp->bt_bdev));
1998 }
1999 
2000 struct xfs_buftarg *
2001 xfs_alloc_buftarg(
2002 	struct xfs_mount	*mp,
2003 	struct bdev_handle	*bdev_handle)
2004 {
2005 	xfs_buftarg_t		*btp;
2006 	const struct dax_holder_operations *ops = NULL;
2007 
2008 #if defined(CONFIG_FS_DAX) && defined(CONFIG_MEMORY_FAILURE)
2009 	ops = &xfs_dax_holder_operations;
2010 #endif
2011 	btp = kzalloc(sizeof(*btp), GFP_KERNEL | __GFP_NOFAIL);
2012 
2013 	btp->bt_mount = mp;
2014 	btp->bt_bdev_handle = bdev_handle;
2015 	btp->bt_dev = bdev_handle->bdev->bd_dev;
2016 	btp->bt_bdev = bdev_handle->bdev;
2017 	btp->bt_daxdev = fs_dax_get_by_bdev(btp->bt_bdev, &btp->bt_dax_part_off,
2018 					    mp, ops);
2019 
2020 	/*
2021 	 * Buffer IO error rate limiting. Limit it to no more than 10 messages
2022 	 * per 30 seconds so as to not spam logs too much on repeated errors.
2023 	 */
2024 	ratelimit_state_init(&btp->bt_ioerror_rl, 30 * HZ,
2025 			     DEFAULT_RATELIMIT_BURST);
2026 
2027 	if (xfs_setsize_buftarg_early(btp))
2028 		goto error_free;
2029 
2030 	if (list_lru_init(&btp->bt_lru))
2031 		goto error_free;
2032 
2033 	if (percpu_counter_init(&btp->bt_io_count, 0, GFP_KERNEL))
2034 		goto error_lru;
2035 
2036 	btp->bt_shrinker = shrinker_alloc(SHRINKER_NUMA_AWARE, "xfs-buf:%s",
2037 					  mp->m_super->s_id);
2038 	if (!btp->bt_shrinker)
2039 		goto error_pcpu;
2040 
2041 	btp->bt_shrinker->count_objects = xfs_buftarg_shrink_count;
2042 	btp->bt_shrinker->scan_objects = xfs_buftarg_shrink_scan;
2043 	btp->bt_shrinker->private_data = btp;
2044 
2045 	shrinker_register(btp->bt_shrinker);
2046 
2047 	return btp;
2048 
2049 error_pcpu:
2050 	percpu_counter_destroy(&btp->bt_io_count);
2051 error_lru:
2052 	list_lru_destroy(&btp->bt_lru);
2053 error_free:
2054 	kfree(btp);
2055 	return NULL;
2056 }
2057 
2058 static inline void
2059 xfs_buf_list_del(
2060 	struct xfs_buf		*bp)
2061 {
2062 	list_del_init(&bp->b_list);
2063 	wake_up_var(&bp->b_list);
2064 }
2065 
2066 /*
2067  * Cancel a delayed write list.
2068  *
2069  * Remove each buffer from the list, clear the delwri queue flag and drop the
2070  * associated buffer reference.
2071  */
2072 void
2073 xfs_buf_delwri_cancel(
2074 	struct list_head	*list)
2075 {
2076 	struct xfs_buf		*bp;
2077 
2078 	while (!list_empty(list)) {
2079 		bp = list_first_entry(list, struct xfs_buf, b_list);
2080 
2081 		xfs_buf_lock(bp);
2082 		bp->b_flags &= ~_XBF_DELWRI_Q;
2083 		xfs_buf_list_del(bp);
2084 		xfs_buf_relse(bp);
2085 	}
2086 }
2087 
2088 /*
2089  * Add a buffer to the delayed write list.
2090  *
2091  * This queues a buffer for writeout if it hasn't already been.  Note that
2092  * neither this routine nor the buffer list submission functions perform
2093  * any internal synchronization.  It is expected that the lists are thread-local
2094  * to the callers.
2095  *
2096  * Returns true if we queued up the buffer, or false if it already had
2097  * been on the buffer list.
2098  */
2099 bool
2100 xfs_buf_delwri_queue(
2101 	struct xfs_buf		*bp,
2102 	struct list_head	*list)
2103 {
2104 	ASSERT(xfs_buf_islocked(bp));
2105 	ASSERT(!(bp->b_flags & XBF_READ));
2106 
2107 	/*
2108 	 * If the buffer is already marked delwri it already is queued up
2109 	 * by someone else for imediate writeout.  Just ignore it in that
2110 	 * case.
2111 	 */
2112 	if (bp->b_flags & _XBF_DELWRI_Q) {
2113 		trace_xfs_buf_delwri_queued(bp, _RET_IP_);
2114 		return false;
2115 	}
2116 
2117 	trace_xfs_buf_delwri_queue(bp, _RET_IP_);
2118 
2119 	/*
2120 	 * If a buffer gets written out synchronously or marked stale while it
2121 	 * is on a delwri list we lazily remove it. To do this, the other party
2122 	 * clears the  _XBF_DELWRI_Q flag but otherwise leaves the buffer alone.
2123 	 * It remains referenced and on the list.  In a rare corner case it
2124 	 * might get readded to a delwri list after the synchronous writeout, in
2125 	 * which case we need just need to re-add the flag here.
2126 	 */
2127 	bp->b_flags |= _XBF_DELWRI_Q;
2128 	if (list_empty(&bp->b_list)) {
2129 		atomic_inc(&bp->b_hold);
2130 		list_add_tail(&bp->b_list, list);
2131 	}
2132 
2133 	return true;
2134 }
2135 
2136 /*
2137  * Queue a buffer to this delwri list as part of a data integrity operation.
2138  * If the buffer is on any other delwri list, we'll wait for that to clear
2139  * so that the caller can submit the buffer for IO and wait for the result.
2140  * Callers must ensure the buffer is not already on the list.
2141  */
2142 void
2143 xfs_buf_delwri_queue_here(
2144 	struct xfs_buf		*bp,
2145 	struct list_head	*buffer_list)
2146 {
2147 	/*
2148 	 * We need this buffer to end up on the /caller's/ delwri list, not any
2149 	 * old list.  This can happen if the buffer is marked stale (which
2150 	 * clears DELWRI_Q) after the AIL queues the buffer to its list but
2151 	 * before the AIL has a chance to submit the list.
2152 	 */
2153 	while (!list_empty(&bp->b_list)) {
2154 		xfs_buf_unlock(bp);
2155 		wait_var_event(&bp->b_list, list_empty(&bp->b_list));
2156 		xfs_buf_lock(bp);
2157 	}
2158 
2159 	ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
2160 
2161 	xfs_buf_delwri_queue(bp, buffer_list);
2162 }
2163 
2164 /*
2165  * Compare function is more complex than it needs to be because
2166  * the return value is only 32 bits and we are doing comparisons
2167  * on 64 bit values
2168  */
2169 static int
2170 xfs_buf_cmp(
2171 	void			*priv,
2172 	const struct list_head	*a,
2173 	const struct list_head	*b)
2174 {
2175 	struct xfs_buf	*ap = container_of(a, struct xfs_buf, b_list);
2176 	struct xfs_buf	*bp = container_of(b, struct xfs_buf, b_list);
2177 	xfs_daddr_t		diff;
2178 
2179 	diff = ap->b_maps[0].bm_bn - bp->b_maps[0].bm_bn;
2180 	if (diff < 0)
2181 		return -1;
2182 	if (diff > 0)
2183 		return 1;
2184 	return 0;
2185 }
2186 
2187 /*
2188  * Submit buffers for write. If wait_list is specified, the buffers are
2189  * submitted using sync I/O and placed on the wait list such that the caller can
2190  * iowait each buffer. Otherwise async I/O is used and the buffers are released
2191  * at I/O completion time. In either case, buffers remain locked until I/O
2192  * completes and the buffer is released from the queue.
2193  */
2194 static int
2195 xfs_buf_delwri_submit_buffers(
2196 	struct list_head	*buffer_list,
2197 	struct list_head	*wait_list)
2198 {
2199 	struct xfs_buf		*bp, *n;
2200 	int			pinned = 0;
2201 	struct blk_plug		plug;
2202 
2203 	list_sort(NULL, buffer_list, xfs_buf_cmp);
2204 
2205 	blk_start_plug(&plug);
2206 	list_for_each_entry_safe(bp, n, buffer_list, b_list) {
2207 		if (!wait_list) {
2208 			if (!xfs_buf_trylock(bp))
2209 				continue;
2210 			if (xfs_buf_ispinned(bp)) {
2211 				xfs_buf_unlock(bp);
2212 				pinned++;
2213 				continue;
2214 			}
2215 		} else {
2216 			xfs_buf_lock(bp);
2217 		}
2218 
2219 		/*
2220 		 * Someone else might have written the buffer synchronously or
2221 		 * marked it stale in the meantime.  In that case only the
2222 		 * _XBF_DELWRI_Q flag got cleared, and we have to drop the
2223 		 * reference and remove it from the list here.
2224 		 */
2225 		if (!(bp->b_flags & _XBF_DELWRI_Q)) {
2226 			xfs_buf_list_del(bp);
2227 			xfs_buf_relse(bp);
2228 			continue;
2229 		}
2230 
2231 		trace_xfs_buf_delwri_split(bp, _RET_IP_);
2232 
2233 		/*
2234 		 * If we have a wait list, each buffer (and associated delwri
2235 		 * queue reference) transfers to it and is submitted
2236 		 * synchronously. Otherwise, drop the buffer from the delwri
2237 		 * queue and submit async.
2238 		 */
2239 		bp->b_flags &= ~_XBF_DELWRI_Q;
2240 		bp->b_flags |= XBF_WRITE;
2241 		if (wait_list) {
2242 			bp->b_flags &= ~XBF_ASYNC;
2243 			list_move_tail(&bp->b_list, wait_list);
2244 		} else {
2245 			bp->b_flags |= XBF_ASYNC;
2246 			xfs_buf_list_del(bp);
2247 		}
2248 		__xfs_buf_submit(bp, false);
2249 	}
2250 	blk_finish_plug(&plug);
2251 
2252 	return pinned;
2253 }
2254 
2255 /*
2256  * Write out a buffer list asynchronously.
2257  *
2258  * This will take the @buffer_list, write all non-locked and non-pinned buffers
2259  * out and not wait for I/O completion on any of the buffers.  This interface
2260  * is only safely useable for callers that can track I/O completion by higher
2261  * level means, e.g. AIL pushing as the @buffer_list is consumed in this
2262  * function.
2263  *
2264  * Note: this function will skip buffers it would block on, and in doing so
2265  * leaves them on @buffer_list so they can be retried on a later pass. As such,
2266  * it is up to the caller to ensure that the buffer list is fully submitted or
2267  * cancelled appropriately when they are finished with the list. Failure to
2268  * cancel or resubmit the list until it is empty will result in leaked buffers
2269  * at unmount time.
2270  */
2271 int
2272 xfs_buf_delwri_submit_nowait(
2273 	struct list_head	*buffer_list)
2274 {
2275 	return xfs_buf_delwri_submit_buffers(buffer_list, NULL);
2276 }
2277 
2278 /*
2279  * Write out a buffer list synchronously.
2280  *
2281  * This will take the @buffer_list, write all buffers out and wait for I/O
2282  * completion on all of the buffers. @buffer_list is consumed by the function,
2283  * so callers must have some other way of tracking buffers if they require such
2284  * functionality.
2285  */
2286 int
2287 xfs_buf_delwri_submit(
2288 	struct list_head	*buffer_list)
2289 {
2290 	LIST_HEAD		(wait_list);
2291 	int			error = 0, error2;
2292 	struct xfs_buf		*bp;
2293 
2294 	xfs_buf_delwri_submit_buffers(buffer_list, &wait_list);
2295 
2296 	/* Wait for IO to complete. */
2297 	while (!list_empty(&wait_list)) {
2298 		bp = list_first_entry(&wait_list, struct xfs_buf, b_list);
2299 
2300 		xfs_buf_list_del(bp);
2301 
2302 		/*
2303 		 * Wait on the locked buffer, check for errors and unlock and
2304 		 * release the delwri queue reference.
2305 		 */
2306 		error2 = xfs_buf_iowait(bp);
2307 		xfs_buf_relse(bp);
2308 		if (!error)
2309 			error = error2;
2310 	}
2311 
2312 	return error;
2313 }
2314 
2315 /*
2316  * Push a single buffer on a delwri queue.
2317  *
2318  * The purpose of this function is to submit a single buffer of a delwri queue
2319  * and return with the buffer still on the original queue. The waiting delwri
2320  * buffer submission infrastructure guarantees transfer of the delwri queue
2321  * buffer reference to a temporary wait list. We reuse this infrastructure to
2322  * transfer the buffer back to the original queue.
2323  *
2324  * Note the buffer transitions from the queued state, to the submitted and wait
2325  * listed state and back to the queued state during this call. The buffer
2326  * locking and queue management logic between _delwri_pushbuf() and
2327  * _delwri_queue() guarantee that the buffer cannot be queued to another list
2328  * before returning.
2329  */
2330 int
2331 xfs_buf_delwri_pushbuf(
2332 	struct xfs_buf		*bp,
2333 	struct list_head	*buffer_list)
2334 {
2335 	LIST_HEAD		(submit_list);
2336 	int			error;
2337 
2338 	ASSERT(bp->b_flags & _XBF_DELWRI_Q);
2339 
2340 	trace_xfs_buf_delwri_pushbuf(bp, _RET_IP_);
2341 
2342 	/*
2343 	 * Isolate the buffer to a new local list so we can submit it for I/O
2344 	 * independently from the rest of the original list.
2345 	 */
2346 	xfs_buf_lock(bp);
2347 	list_move(&bp->b_list, &submit_list);
2348 	xfs_buf_unlock(bp);
2349 
2350 	/*
2351 	 * Delwri submission clears the DELWRI_Q buffer flag and returns with
2352 	 * the buffer on the wait list with the original reference. Rather than
2353 	 * bounce the buffer from a local wait list back to the original list
2354 	 * after I/O completion, reuse the original list as the wait list.
2355 	 */
2356 	xfs_buf_delwri_submit_buffers(&submit_list, buffer_list);
2357 
2358 	/*
2359 	 * The buffer is now locked, under I/O and wait listed on the original
2360 	 * delwri queue. Wait for I/O completion, restore the DELWRI_Q flag and
2361 	 * return with the buffer unlocked and on the original queue.
2362 	 */
2363 	error = xfs_buf_iowait(bp);
2364 	bp->b_flags |= _XBF_DELWRI_Q;
2365 	xfs_buf_unlock(bp);
2366 
2367 	return error;
2368 }
2369 
2370 void xfs_buf_set_ref(struct xfs_buf *bp, int lru_ref)
2371 {
2372 	/*
2373 	 * Set the lru reference count to 0 based on the error injection tag.
2374 	 * This allows userspace to disrupt buffer caching for debug/testing
2375 	 * purposes.
2376 	 */
2377 	if (XFS_TEST_ERROR(false, bp->b_mount, XFS_ERRTAG_BUF_LRU_REF))
2378 		lru_ref = 0;
2379 
2380 	atomic_set(&bp->b_lru_ref, lru_ref);
2381 }
2382 
2383 /*
2384  * Verify an on-disk magic value against the magic value specified in the
2385  * verifier structure. The verifier magic is in disk byte order so the caller is
2386  * expected to pass the value directly from disk.
2387  */
2388 bool
2389 xfs_verify_magic(
2390 	struct xfs_buf		*bp,
2391 	__be32			dmagic)
2392 {
2393 	struct xfs_mount	*mp = bp->b_mount;
2394 	int			idx;
2395 
2396 	idx = xfs_has_crc(mp);
2397 	if (WARN_ON(!bp->b_ops || !bp->b_ops->magic[idx]))
2398 		return false;
2399 	return dmagic == bp->b_ops->magic[idx];
2400 }
2401 /*
2402  * Verify an on-disk magic value against the magic value specified in the
2403  * verifier structure. The verifier magic is in disk byte order so the caller is
2404  * expected to pass the value directly from disk.
2405  */
2406 bool
2407 xfs_verify_magic16(
2408 	struct xfs_buf		*bp,
2409 	__be16			dmagic)
2410 {
2411 	struct xfs_mount	*mp = bp->b_mount;
2412 	int			idx;
2413 
2414 	idx = xfs_has_crc(mp);
2415 	if (WARN_ON(!bp->b_ops || !bp->b_ops->magic16[idx]))
2416 		return false;
2417 	return dmagic == bp->b_ops->magic16[idx];
2418 }
2419