1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2006 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include "xfs.h" 7 #include <linux/backing-dev.h> 8 #include <linux/dax.h> 9 10 #include "xfs_shared.h" 11 #include "xfs_format.h" 12 #include "xfs_log_format.h" 13 #include "xfs_trans_resv.h" 14 #include "xfs_mount.h" 15 #include "xfs_trace.h" 16 #include "xfs_log.h" 17 #include "xfs_log_recover.h" 18 #include "xfs_log_priv.h" 19 #include "xfs_trans.h" 20 #include "xfs_buf_item.h" 21 #include "xfs_errortag.h" 22 #include "xfs_error.h" 23 #include "xfs_ag.h" 24 #include "xfs_buf_mem.h" 25 #include "xfs_notify_failure.h" 26 27 struct kmem_cache *xfs_buf_cache; 28 29 /* 30 * Locking orders 31 * 32 * xfs_buf_ioacct_inc: 33 * xfs_buf_ioacct_dec: 34 * b_sema (caller holds) 35 * b_lock 36 * 37 * xfs_buf_stale: 38 * b_sema (caller holds) 39 * b_lock 40 * lru_lock 41 * 42 * xfs_buf_rele: 43 * b_lock 44 * lru_lock 45 * 46 * xfs_buftarg_drain_rele 47 * lru_lock 48 * b_lock (trylock due to inversion) 49 * 50 * xfs_buftarg_isolate 51 * lru_lock 52 * b_lock (trylock due to inversion) 53 */ 54 55 static void xfs_buf_submit(struct xfs_buf *bp); 56 static int xfs_buf_iowait(struct xfs_buf *bp); 57 58 static inline bool xfs_buf_is_uncached(struct xfs_buf *bp) 59 { 60 return bp->b_rhash_key == XFS_BUF_DADDR_NULL; 61 } 62 63 static inline int 64 xfs_buf_is_vmapped( 65 struct xfs_buf *bp) 66 { 67 /* 68 * Return true if the buffer is vmapped. 69 * 70 * b_addr is null if the buffer is not mapped, but the code is clever 71 * enough to know it doesn't have to map a single page, so the check has 72 * to be both for b_addr and bp->b_page_count > 1. 73 */ 74 return bp->b_addr && bp->b_page_count > 1; 75 } 76 77 static inline int 78 xfs_buf_vmap_len( 79 struct xfs_buf *bp) 80 { 81 return (bp->b_page_count * PAGE_SIZE); 82 } 83 84 /* 85 * Bump the I/O in flight count on the buftarg if we haven't yet done so for 86 * this buffer. The count is incremented once per buffer (per hold cycle) 87 * because the corresponding decrement is deferred to buffer release. Buffers 88 * can undergo I/O multiple times in a hold-release cycle and per buffer I/O 89 * tracking adds unnecessary overhead. This is used for sychronization purposes 90 * with unmount (see xfs_buftarg_drain()), so all we really need is a count of 91 * in-flight buffers. 92 * 93 * Buffers that are never released (e.g., superblock, iclog buffers) must set 94 * the XBF_NO_IOACCT flag before I/O submission. Otherwise, the buftarg count 95 * never reaches zero and unmount hangs indefinitely. 96 */ 97 static inline void 98 xfs_buf_ioacct_inc( 99 struct xfs_buf *bp) 100 { 101 if (bp->b_flags & XBF_NO_IOACCT) 102 return; 103 104 ASSERT(bp->b_flags & XBF_ASYNC); 105 spin_lock(&bp->b_lock); 106 if (!(bp->b_state & XFS_BSTATE_IN_FLIGHT)) { 107 bp->b_state |= XFS_BSTATE_IN_FLIGHT; 108 percpu_counter_inc(&bp->b_target->bt_io_count); 109 } 110 spin_unlock(&bp->b_lock); 111 } 112 113 /* 114 * Clear the in-flight state on a buffer about to be released to the LRU or 115 * freed and unaccount from the buftarg. 116 */ 117 static inline void 118 __xfs_buf_ioacct_dec( 119 struct xfs_buf *bp) 120 { 121 lockdep_assert_held(&bp->b_lock); 122 123 if (bp->b_state & XFS_BSTATE_IN_FLIGHT) { 124 bp->b_state &= ~XFS_BSTATE_IN_FLIGHT; 125 percpu_counter_dec(&bp->b_target->bt_io_count); 126 } 127 } 128 129 /* 130 * When we mark a buffer stale, we remove the buffer from the LRU and clear the 131 * b_lru_ref count so that the buffer is freed immediately when the buffer 132 * reference count falls to zero. If the buffer is already on the LRU, we need 133 * to remove the reference that LRU holds on the buffer. 134 * 135 * This prevents build-up of stale buffers on the LRU. 136 */ 137 void 138 xfs_buf_stale( 139 struct xfs_buf *bp) 140 { 141 ASSERT(xfs_buf_islocked(bp)); 142 143 bp->b_flags |= XBF_STALE; 144 145 /* 146 * Clear the delwri status so that a delwri queue walker will not 147 * flush this buffer to disk now that it is stale. The delwri queue has 148 * a reference to the buffer, so this is safe to do. 149 */ 150 bp->b_flags &= ~_XBF_DELWRI_Q; 151 152 /* 153 * Once the buffer is marked stale and unlocked, a subsequent lookup 154 * could reset b_flags. There is no guarantee that the buffer is 155 * unaccounted (released to LRU) before that occurs. Drop in-flight 156 * status now to preserve accounting consistency. 157 */ 158 spin_lock(&bp->b_lock); 159 __xfs_buf_ioacct_dec(bp); 160 161 atomic_set(&bp->b_lru_ref, 0); 162 if (!(bp->b_state & XFS_BSTATE_DISPOSE) && 163 (list_lru_del_obj(&bp->b_target->bt_lru, &bp->b_lru))) 164 bp->b_hold--; 165 166 ASSERT(bp->b_hold >= 1); 167 spin_unlock(&bp->b_lock); 168 } 169 170 static int 171 xfs_buf_get_maps( 172 struct xfs_buf *bp, 173 int map_count) 174 { 175 ASSERT(bp->b_maps == NULL); 176 bp->b_map_count = map_count; 177 178 if (map_count == 1) { 179 bp->b_maps = &bp->__b_map; 180 return 0; 181 } 182 183 bp->b_maps = kzalloc(map_count * sizeof(struct xfs_buf_map), 184 GFP_KERNEL | __GFP_NOLOCKDEP | __GFP_NOFAIL); 185 if (!bp->b_maps) 186 return -ENOMEM; 187 return 0; 188 } 189 190 static void 191 xfs_buf_free_maps( 192 struct xfs_buf *bp) 193 { 194 if (bp->b_maps != &bp->__b_map) { 195 kfree(bp->b_maps); 196 bp->b_maps = NULL; 197 } 198 } 199 200 static int 201 _xfs_buf_alloc( 202 struct xfs_buftarg *target, 203 struct xfs_buf_map *map, 204 int nmaps, 205 xfs_buf_flags_t flags, 206 struct xfs_buf **bpp) 207 { 208 struct xfs_buf *bp; 209 int error; 210 int i; 211 212 *bpp = NULL; 213 bp = kmem_cache_zalloc(xfs_buf_cache, 214 GFP_KERNEL | __GFP_NOLOCKDEP | __GFP_NOFAIL); 215 216 /* 217 * We don't want certain flags to appear in b_flags unless they are 218 * specifically set by later operations on the buffer. 219 */ 220 flags &= ~(XBF_UNMAPPED | XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD); 221 222 /* 223 * A new buffer is held and locked by the owner. This ensures that the 224 * buffer is owned by the caller and racing RCU lookups right after 225 * inserting into the hash table are safe (and will have to wait for 226 * the unlock to do anything non-trivial). 227 */ 228 bp->b_hold = 1; 229 sema_init(&bp->b_sema, 0); /* held, no waiters */ 230 231 spin_lock_init(&bp->b_lock); 232 atomic_set(&bp->b_lru_ref, 1); 233 init_completion(&bp->b_iowait); 234 INIT_LIST_HEAD(&bp->b_lru); 235 INIT_LIST_HEAD(&bp->b_list); 236 INIT_LIST_HEAD(&bp->b_li_list); 237 bp->b_target = target; 238 bp->b_mount = target->bt_mount; 239 bp->b_flags = flags; 240 241 error = xfs_buf_get_maps(bp, nmaps); 242 if (error) { 243 kmem_cache_free(xfs_buf_cache, bp); 244 return error; 245 } 246 247 bp->b_rhash_key = map[0].bm_bn; 248 bp->b_length = 0; 249 for (i = 0; i < nmaps; i++) { 250 bp->b_maps[i].bm_bn = map[i].bm_bn; 251 bp->b_maps[i].bm_len = map[i].bm_len; 252 bp->b_length += map[i].bm_len; 253 } 254 255 atomic_set(&bp->b_pin_count, 0); 256 init_waitqueue_head(&bp->b_waiters); 257 258 XFS_STATS_INC(bp->b_mount, xb_create); 259 trace_xfs_buf_init(bp, _RET_IP_); 260 261 *bpp = bp; 262 return 0; 263 } 264 265 static void 266 xfs_buf_free_pages( 267 struct xfs_buf *bp) 268 { 269 uint i; 270 271 ASSERT(bp->b_flags & _XBF_PAGES); 272 273 if (xfs_buf_is_vmapped(bp)) 274 vm_unmap_ram(bp->b_addr, bp->b_page_count); 275 276 for (i = 0; i < bp->b_page_count; i++) { 277 if (bp->b_pages[i]) 278 __free_page(bp->b_pages[i]); 279 } 280 mm_account_reclaimed_pages(bp->b_page_count); 281 282 if (bp->b_pages != bp->b_page_array) 283 kfree(bp->b_pages); 284 bp->b_pages = NULL; 285 bp->b_flags &= ~_XBF_PAGES; 286 } 287 288 static void 289 xfs_buf_free_callback( 290 struct callback_head *cb) 291 { 292 struct xfs_buf *bp = container_of(cb, struct xfs_buf, b_rcu); 293 294 xfs_buf_free_maps(bp); 295 kmem_cache_free(xfs_buf_cache, bp); 296 } 297 298 static void 299 xfs_buf_free( 300 struct xfs_buf *bp) 301 { 302 trace_xfs_buf_free(bp, _RET_IP_); 303 304 ASSERT(list_empty(&bp->b_lru)); 305 306 if (xfs_buftarg_is_mem(bp->b_target)) 307 xmbuf_unmap_page(bp); 308 else if (bp->b_flags & _XBF_PAGES) 309 xfs_buf_free_pages(bp); 310 else if (bp->b_flags & _XBF_KMEM) 311 kfree(bp->b_addr); 312 313 call_rcu(&bp->b_rcu, xfs_buf_free_callback); 314 } 315 316 static int 317 xfs_buf_alloc_kmem( 318 struct xfs_buf *bp, 319 xfs_buf_flags_t flags) 320 { 321 gfp_t gfp_mask = GFP_KERNEL | __GFP_NOLOCKDEP | __GFP_NOFAIL; 322 size_t size = BBTOB(bp->b_length); 323 324 /* Assure zeroed buffer for non-read cases. */ 325 if (!(flags & XBF_READ)) 326 gfp_mask |= __GFP_ZERO; 327 328 bp->b_addr = kmalloc(size, gfp_mask); 329 if (!bp->b_addr) 330 return -ENOMEM; 331 332 if (((unsigned long)(bp->b_addr + size - 1) & PAGE_MASK) != 333 ((unsigned long)bp->b_addr & PAGE_MASK)) { 334 /* b_addr spans two pages - use alloc_page instead */ 335 kfree(bp->b_addr); 336 bp->b_addr = NULL; 337 return -ENOMEM; 338 } 339 bp->b_offset = offset_in_page(bp->b_addr); 340 bp->b_pages = bp->b_page_array; 341 bp->b_pages[0] = kmem_to_page(bp->b_addr); 342 bp->b_page_count = 1; 343 bp->b_flags |= _XBF_KMEM; 344 return 0; 345 } 346 347 static int 348 xfs_buf_alloc_pages( 349 struct xfs_buf *bp, 350 xfs_buf_flags_t flags) 351 { 352 gfp_t gfp_mask = GFP_KERNEL | __GFP_NOLOCKDEP | __GFP_NOWARN; 353 long filled = 0; 354 355 if (flags & XBF_READ_AHEAD) 356 gfp_mask |= __GFP_NORETRY; 357 358 /* Make sure that we have a page list */ 359 bp->b_page_count = DIV_ROUND_UP(BBTOB(bp->b_length), PAGE_SIZE); 360 if (bp->b_page_count <= XB_PAGES) { 361 bp->b_pages = bp->b_page_array; 362 } else { 363 bp->b_pages = kzalloc(sizeof(struct page *) * bp->b_page_count, 364 gfp_mask); 365 if (!bp->b_pages) 366 return -ENOMEM; 367 } 368 bp->b_flags |= _XBF_PAGES; 369 370 /* Assure zeroed buffer for non-read cases. */ 371 if (!(flags & XBF_READ)) 372 gfp_mask |= __GFP_ZERO; 373 374 /* 375 * Bulk filling of pages can take multiple calls. Not filling the entire 376 * array is not an allocation failure, so don't back off if we get at 377 * least one extra page. 378 */ 379 for (;;) { 380 long last = filled; 381 382 filled = alloc_pages_bulk(gfp_mask, bp->b_page_count, 383 bp->b_pages); 384 if (filled == bp->b_page_count) { 385 XFS_STATS_INC(bp->b_mount, xb_page_found); 386 break; 387 } 388 389 if (filled != last) 390 continue; 391 392 if (flags & XBF_READ_AHEAD) { 393 xfs_buf_free_pages(bp); 394 return -ENOMEM; 395 } 396 397 XFS_STATS_INC(bp->b_mount, xb_page_retries); 398 memalloc_retry_wait(gfp_mask); 399 } 400 return 0; 401 } 402 403 /* 404 * Map buffer into kernel address-space if necessary. 405 */ 406 STATIC int 407 _xfs_buf_map_pages( 408 struct xfs_buf *bp, 409 xfs_buf_flags_t flags) 410 { 411 ASSERT(bp->b_flags & _XBF_PAGES); 412 if (bp->b_page_count == 1) { 413 /* A single page buffer is always mappable */ 414 bp->b_addr = page_address(bp->b_pages[0]); 415 } else if (flags & XBF_UNMAPPED) { 416 bp->b_addr = NULL; 417 } else { 418 int retried = 0; 419 unsigned nofs_flag; 420 421 /* 422 * vm_map_ram() will allocate auxiliary structures (e.g. 423 * pagetables) with GFP_KERNEL, yet we often under a scoped nofs 424 * context here. Mixing GFP_KERNEL with GFP_NOFS allocations 425 * from the same call site that can be run from both above and 426 * below memory reclaim causes lockdep false positives. Hence we 427 * always need to force this allocation to nofs context because 428 * we can't pass __GFP_NOLOCKDEP down to auxillary structures to 429 * prevent false positive lockdep reports. 430 * 431 * XXX(dgc): I think dquot reclaim is the only place we can get 432 * to this function from memory reclaim context now. If we fix 433 * that like we've fixed inode reclaim to avoid writeback from 434 * reclaim, this nofs wrapping can go away. 435 */ 436 nofs_flag = memalloc_nofs_save(); 437 do { 438 bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count, 439 -1); 440 if (bp->b_addr) 441 break; 442 vm_unmap_aliases(); 443 } while (retried++ <= 1); 444 memalloc_nofs_restore(nofs_flag); 445 446 if (!bp->b_addr) 447 return -ENOMEM; 448 } 449 450 return 0; 451 } 452 453 /* 454 * Finding and Reading Buffers 455 */ 456 static int 457 _xfs_buf_obj_cmp( 458 struct rhashtable_compare_arg *arg, 459 const void *obj) 460 { 461 const struct xfs_buf_map *map = arg->key; 462 const struct xfs_buf *bp = obj; 463 464 /* 465 * The key hashing in the lookup path depends on the key being the 466 * first element of the compare_arg, make sure to assert this. 467 */ 468 BUILD_BUG_ON(offsetof(struct xfs_buf_map, bm_bn) != 0); 469 470 if (bp->b_rhash_key != map->bm_bn) 471 return 1; 472 473 if (unlikely(bp->b_length != map->bm_len)) { 474 /* 475 * found a block number match. If the range doesn't 476 * match, the only way this is allowed is if the buffer 477 * in the cache is stale and the transaction that made 478 * it stale has not yet committed. i.e. we are 479 * reallocating a busy extent. Skip this buffer and 480 * continue searching for an exact match. 481 * 482 * Note: If we're scanning for incore buffers to stale, don't 483 * complain if we find non-stale buffers. 484 */ 485 if (!(map->bm_flags & XBM_LIVESCAN)) 486 ASSERT(bp->b_flags & XBF_STALE); 487 return 1; 488 } 489 return 0; 490 } 491 492 static const struct rhashtable_params xfs_buf_hash_params = { 493 .min_size = 32, /* empty AGs have minimal footprint */ 494 .nelem_hint = 16, 495 .key_len = sizeof(xfs_daddr_t), 496 .key_offset = offsetof(struct xfs_buf, b_rhash_key), 497 .head_offset = offsetof(struct xfs_buf, b_rhash_head), 498 .automatic_shrinking = true, 499 .obj_cmpfn = _xfs_buf_obj_cmp, 500 }; 501 502 int 503 xfs_buf_cache_init( 504 struct xfs_buf_cache *bch) 505 { 506 return rhashtable_init(&bch->bc_hash, &xfs_buf_hash_params); 507 } 508 509 void 510 xfs_buf_cache_destroy( 511 struct xfs_buf_cache *bch) 512 { 513 rhashtable_destroy(&bch->bc_hash); 514 } 515 516 static int 517 xfs_buf_map_verify( 518 struct xfs_buftarg *btp, 519 struct xfs_buf_map *map) 520 { 521 xfs_daddr_t eofs; 522 523 /* Check for IOs smaller than the sector size / not sector aligned */ 524 ASSERT(!(BBTOB(map->bm_len) < btp->bt_meta_sectorsize)); 525 ASSERT(!(BBTOB(map->bm_bn) & (xfs_off_t)btp->bt_meta_sectormask)); 526 527 /* 528 * Corrupted block numbers can get through to here, unfortunately, so we 529 * have to check that the buffer falls within the filesystem bounds. 530 */ 531 eofs = XFS_FSB_TO_BB(btp->bt_mount, btp->bt_mount->m_sb.sb_dblocks); 532 if (map->bm_bn < 0 || map->bm_bn >= eofs) { 533 xfs_alert(btp->bt_mount, 534 "%s: daddr 0x%llx out of range, EOFS 0x%llx", 535 __func__, map->bm_bn, eofs); 536 WARN_ON(1); 537 return -EFSCORRUPTED; 538 } 539 return 0; 540 } 541 542 static int 543 xfs_buf_find_lock( 544 struct xfs_buf *bp, 545 xfs_buf_flags_t flags) 546 { 547 if (flags & XBF_TRYLOCK) { 548 if (!xfs_buf_trylock(bp)) { 549 XFS_STATS_INC(bp->b_mount, xb_busy_locked); 550 return -EAGAIN; 551 } 552 } else { 553 xfs_buf_lock(bp); 554 XFS_STATS_INC(bp->b_mount, xb_get_locked_waited); 555 } 556 557 /* 558 * if the buffer is stale, clear all the external state associated with 559 * it. We need to keep flags such as how we allocated the buffer memory 560 * intact here. 561 */ 562 if (bp->b_flags & XBF_STALE) { 563 if (flags & XBF_LIVESCAN) { 564 xfs_buf_unlock(bp); 565 return -ENOENT; 566 } 567 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0); 568 bp->b_flags &= _XBF_KMEM | _XBF_PAGES; 569 bp->b_ops = NULL; 570 } 571 return 0; 572 } 573 574 static bool 575 xfs_buf_try_hold( 576 struct xfs_buf *bp) 577 { 578 spin_lock(&bp->b_lock); 579 if (bp->b_hold == 0) { 580 spin_unlock(&bp->b_lock); 581 return false; 582 } 583 bp->b_hold++; 584 spin_unlock(&bp->b_lock); 585 return true; 586 } 587 588 static inline int 589 xfs_buf_lookup( 590 struct xfs_buf_cache *bch, 591 struct xfs_buf_map *map, 592 xfs_buf_flags_t flags, 593 struct xfs_buf **bpp) 594 { 595 struct xfs_buf *bp; 596 int error; 597 598 rcu_read_lock(); 599 bp = rhashtable_lookup(&bch->bc_hash, map, xfs_buf_hash_params); 600 if (!bp || !xfs_buf_try_hold(bp)) { 601 rcu_read_unlock(); 602 return -ENOENT; 603 } 604 rcu_read_unlock(); 605 606 error = xfs_buf_find_lock(bp, flags); 607 if (error) { 608 xfs_buf_rele(bp); 609 return error; 610 } 611 612 trace_xfs_buf_find(bp, flags, _RET_IP_); 613 *bpp = bp; 614 return 0; 615 } 616 617 /* 618 * Insert the new_bp into the hash table. This consumes the perag reference 619 * taken for the lookup regardless of the result of the insert. 620 */ 621 static int 622 xfs_buf_find_insert( 623 struct xfs_buftarg *btp, 624 struct xfs_buf_cache *bch, 625 struct xfs_perag *pag, 626 struct xfs_buf_map *cmap, 627 struct xfs_buf_map *map, 628 int nmaps, 629 xfs_buf_flags_t flags, 630 struct xfs_buf **bpp) 631 { 632 struct xfs_buf *new_bp; 633 struct xfs_buf *bp; 634 int error; 635 636 error = _xfs_buf_alloc(btp, map, nmaps, flags, &new_bp); 637 if (error) 638 goto out_drop_pag; 639 640 if (xfs_buftarg_is_mem(new_bp->b_target)) { 641 error = xmbuf_map_page(new_bp); 642 } else if (BBTOB(new_bp->b_length) >= PAGE_SIZE || 643 xfs_buf_alloc_kmem(new_bp, flags) < 0) { 644 /* 645 * For buffers that fit entirely within a single page, first 646 * attempt to allocate the memory from the heap to minimise 647 * memory usage. If we can't get heap memory for these small 648 * buffers, we fall back to using the page allocator. 649 */ 650 error = xfs_buf_alloc_pages(new_bp, flags); 651 } 652 if (error) 653 goto out_free_buf; 654 655 /* The new buffer keeps the perag reference until it is freed. */ 656 new_bp->b_pag = pag; 657 658 rcu_read_lock(); 659 bp = rhashtable_lookup_get_insert_fast(&bch->bc_hash, 660 &new_bp->b_rhash_head, xfs_buf_hash_params); 661 if (IS_ERR(bp)) { 662 rcu_read_unlock(); 663 error = PTR_ERR(bp); 664 goto out_free_buf; 665 } 666 if (bp && xfs_buf_try_hold(bp)) { 667 /* found an existing buffer */ 668 rcu_read_unlock(); 669 error = xfs_buf_find_lock(bp, flags); 670 if (error) 671 xfs_buf_rele(bp); 672 else 673 *bpp = bp; 674 goto out_free_buf; 675 } 676 rcu_read_unlock(); 677 678 *bpp = new_bp; 679 return 0; 680 681 out_free_buf: 682 xfs_buf_free(new_bp); 683 out_drop_pag: 684 if (pag) 685 xfs_perag_put(pag); 686 return error; 687 } 688 689 static inline struct xfs_perag * 690 xfs_buftarg_get_pag( 691 struct xfs_buftarg *btp, 692 const struct xfs_buf_map *map) 693 { 694 struct xfs_mount *mp = btp->bt_mount; 695 696 if (xfs_buftarg_is_mem(btp)) 697 return NULL; 698 return xfs_perag_get(mp, xfs_daddr_to_agno(mp, map->bm_bn)); 699 } 700 701 static inline struct xfs_buf_cache * 702 xfs_buftarg_buf_cache( 703 struct xfs_buftarg *btp, 704 struct xfs_perag *pag) 705 { 706 if (pag) 707 return &pag->pag_bcache; 708 return btp->bt_cache; 709 } 710 711 /* 712 * Assembles a buffer covering the specified range. The code is optimised for 713 * cache hits, as metadata intensive workloads will see 3 orders of magnitude 714 * more hits than misses. 715 */ 716 int 717 xfs_buf_get_map( 718 struct xfs_buftarg *btp, 719 struct xfs_buf_map *map, 720 int nmaps, 721 xfs_buf_flags_t flags, 722 struct xfs_buf **bpp) 723 { 724 struct xfs_buf_cache *bch; 725 struct xfs_perag *pag; 726 struct xfs_buf *bp = NULL; 727 struct xfs_buf_map cmap = { .bm_bn = map[0].bm_bn }; 728 int error; 729 int i; 730 731 if (flags & XBF_LIVESCAN) 732 cmap.bm_flags |= XBM_LIVESCAN; 733 for (i = 0; i < nmaps; i++) 734 cmap.bm_len += map[i].bm_len; 735 736 error = xfs_buf_map_verify(btp, &cmap); 737 if (error) 738 return error; 739 740 pag = xfs_buftarg_get_pag(btp, &cmap); 741 bch = xfs_buftarg_buf_cache(btp, pag); 742 743 error = xfs_buf_lookup(bch, &cmap, flags, &bp); 744 if (error && error != -ENOENT) 745 goto out_put_perag; 746 747 /* cache hits always outnumber misses by at least 10:1 */ 748 if (unlikely(!bp)) { 749 XFS_STATS_INC(btp->bt_mount, xb_miss_locked); 750 751 if (flags & XBF_INCORE) 752 goto out_put_perag; 753 754 /* xfs_buf_find_insert() consumes the perag reference. */ 755 error = xfs_buf_find_insert(btp, bch, pag, &cmap, map, nmaps, 756 flags, &bp); 757 if (error) 758 return error; 759 } else { 760 XFS_STATS_INC(btp->bt_mount, xb_get_locked); 761 if (pag) 762 xfs_perag_put(pag); 763 } 764 765 /* We do not hold a perag reference anymore. */ 766 if (!bp->b_addr) { 767 error = _xfs_buf_map_pages(bp, flags); 768 if (unlikely(error)) { 769 xfs_warn_ratelimited(btp->bt_mount, 770 "%s: failed to map %u pages", __func__, 771 bp->b_page_count); 772 xfs_buf_relse(bp); 773 return error; 774 } 775 } 776 777 /* 778 * Clear b_error if this is a lookup from a caller that doesn't expect 779 * valid data to be found in the buffer. 780 */ 781 if (!(flags & XBF_READ)) 782 xfs_buf_ioerror(bp, 0); 783 784 XFS_STATS_INC(btp->bt_mount, xb_get); 785 trace_xfs_buf_get(bp, flags, _RET_IP_); 786 *bpp = bp; 787 return 0; 788 789 out_put_perag: 790 if (pag) 791 xfs_perag_put(pag); 792 return error; 793 } 794 795 int 796 _xfs_buf_read( 797 struct xfs_buf *bp, 798 xfs_buf_flags_t flags) 799 { 800 ASSERT(!(flags & XBF_WRITE)); 801 ASSERT(bp->b_maps[0].bm_bn != XFS_BUF_DADDR_NULL); 802 803 bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD | XBF_DONE); 804 bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD); 805 806 xfs_buf_submit(bp); 807 if (flags & XBF_ASYNC) 808 return 0; 809 return xfs_buf_iowait(bp); 810 } 811 812 /* 813 * Reverify a buffer found in cache without an attached ->b_ops. 814 * 815 * If the caller passed an ops structure and the buffer doesn't have ops 816 * assigned, set the ops and use it to verify the contents. If verification 817 * fails, clear XBF_DONE. We assume the buffer has no recorded errors and is 818 * already in XBF_DONE state on entry. 819 * 820 * Under normal operations, every in-core buffer is verified on read I/O 821 * completion. There are two scenarios that can lead to in-core buffers without 822 * an assigned ->b_ops. The first is during log recovery of buffers on a V4 823 * filesystem, though these buffers are purged at the end of recovery. The 824 * other is online repair, which intentionally reads with a NULL buffer ops to 825 * run several verifiers across an in-core buffer in order to establish buffer 826 * type. If repair can't establish that, the buffer will be left in memory 827 * with NULL buffer ops. 828 */ 829 int 830 xfs_buf_reverify( 831 struct xfs_buf *bp, 832 const struct xfs_buf_ops *ops) 833 { 834 ASSERT(bp->b_flags & XBF_DONE); 835 ASSERT(bp->b_error == 0); 836 837 if (!ops || bp->b_ops) 838 return 0; 839 840 bp->b_ops = ops; 841 bp->b_ops->verify_read(bp); 842 if (bp->b_error) 843 bp->b_flags &= ~XBF_DONE; 844 return bp->b_error; 845 } 846 847 int 848 xfs_buf_read_map( 849 struct xfs_buftarg *target, 850 struct xfs_buf_map *map, 851 int nmaps, 852 xfs_buf_flags_t flags, 853 struct xfs_buf **bpp, 854 const struct xfs_buf_ops *ops, 855 xfs_failaddr_t fa) 856 { 857 struct xfs_buf *bp; 858 int error; 859 860 flags |= XBF_READ; 861 *bpp = NULL; 862 863 error = xfs_buf_get_map(target, map, nmaps, flags, &bp); 864 if (error) 865 return error; 866 867 trace_xfs_buf_read(bp, flags, _RET_IP_); 868 869 if (!(bp->b_flags & XBF_DONE)) { 870 /* Initiate the buffer read and wait. */ 871 XFS_STATS_INC(target->bt_mount, xb_get_read); 872 bp->b_ops = ops; 873 error = _xfs_buf_read(bp, flags); 874 875 /* Readahead iodone already dropped the buffer, so exit. */ 876 if (flags & XBF_ASYNC) 877 return 0; 878 } else { 879 /* Buffer already read; all we need to do is check it. */ 880 error = xfs_buf_reverify(bp, ops); 881 882 /* Readahead already finished; drop the buffer and exit. */ 883 if (flags & XBF_ASYNC) { 884 xfs_buf_relse(bp); 885 return 0; 886 } 887 888 /* We do not want read in the flags */ 889 bp->b_flags &= ~XBF_READ; 890 ASSERT(bp->b_ops != NULL || ops == NULL); 891 } 892 893 /* 894 * If we've had a read error, then the contents of the buffer are 895 * invalid and should not be used. To ensure that a followup read tries 896 * to pull the buffer from disk again, we clear the XBF_DONE flag and 897 * mark the buffer stale. This ensures that anyone who has a current 898 * reference to the buffer will interpret it's contents correctly and 899 * future cache lookups will also treat it as an empty, uninitialised 900 * buffer. 901 */ 902 if (error) { 903 /* 904 * Check against log shutdown for error reporting because 905 * metadata writeback may require a read first and we need to 906 * report errors in metadata writeback until the log is shut 907 * down. High level transaction read functions already check 908 * against mount shutdown, anyway, so we only need to be 909 * concerned about low level IO interactions here. 910 */ 911 if (!xlog_is_shutdown(target->bt_mount->m_log)) 912 xfs_buf_ioerror_alert(bp, fa); 913 914 bp->b_flags &= ~XBF_DONE; 915 xfs_buf_stale(bp); 916 xfs_buf_relse(bp); 917 918 /* bad CRC means corrupted metadata */ 919 if (error == -EFSBADCRC) 920 error = -EFSCORRUPTED; 921 return error; 922 } 923 924 *bpp = bp; 925 return 0; 926 } 927 928 /* 929 * If we are not low on memory then do the readahead in a deadlock 930 * safe manner. 931 */ 932 void 933 xfs_buf_readahead_map( 934 struct xfs_buftarg *target, 935 struct xfs_buf_map *map, 936 int nmaps, 937 const struct xfs_buf_ops *ops) 938 { 939 struct xfs_buf *bp; 940 941 /* 942 * Currently we don't have a good means or justification for performing 943 * xmbuf_map_page asynchronously, so we don't do readahead. 944 */ 945 if (xfs_buftarg_is_mem(target)) 946 return; 947 948 xfs_buf_read_map(target, map, nmaps, 949 XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD, &bp, ops, 950 __this_address); 951 } 952 953 /* 954 * Read an uncached buffer from disk. Allocates and returns a locked 955 * buffer containing the disk contents or nothing. Uncached buffers always have 956 * a cache index of XFS_BUF_DADDR_NULL so we can easily determine if the buffer 957 * is cached or uncached during fault diagnosis. 958 */ 959 int 960 xfs_buf_read_uncached( 961 struct xfs_buftarg *target, 962 xfs_daddr_t daddr, 963 size_t numblks, 964 xfs_buf_flags_t flags, 965 struct xfs_buf **bpp, 966 const struct xfs_buf_ops *ops) 967 { 968 struct xfs_buf *bp; 969 int error; 970 971 *bpp = NULL; 972 973 error = xfs_buf_get_uncached(target, numblks, flags, &bp); 974 if (error) 975 return error; 976 977 /* set up the buffer for a read IO */ 978 ASSERT(bp->b_map_count == 1); 979 bp->b_rhash_key = XFS_BUF_DADDR_NULL; 980 bp->b_maps[0].bm_bn = daddr; 981 bp->b_flags |= XBF_READ; 982 bp->b_ops = ops; 983 984 xfs_buf_submit(bp); 985 error = xfs_buf_iowait(bp); 986 if (error) { 987 xfs_buf_relse(bp); 988 return error; 989 } 990 991 *bpp = bp; 992 return 0; 993 } 994 995 int 996 xfs_buf_get_uncached( 997 struct xfs_buftarg *target, 998 size_t numblks, 999 xfs_buf_flags_t flags, 1000 struct xfs_buf **bpp) 1001 { 1002 int error; 1003 struct xfs_buf *bp; 1004 DEFINE_SINGLE_BUF_MAP(map, XFS_BUF_DADDR_NULL, numblks); 1005 1006 *bpp = NULL; 1007 1008 /* flags might contain irrelevant bits, pass only what we care about */ 1009 error = _xfs_buf_alloc(target, &map, 1, flags & XBF_NO_IOACCT, &bp); 1010 if (error) 1011 return error; 1012 1013 if (xfs_buftarg_is_mem(bp->b_target)) 1014 error = xmbuf_map_page(bp); 1015 else 1016 error = xfs_buf_alloc_pages(bp, flags); 1017 if (error) 1018 goto fail_free_buf; 1019 1020 error = _xfs_buf_map_pages(bp, 0); 1021 if (unlikely(error)) { 1022 xfs_warn(target->bt_mount, 1023 "%s: failed to map pages", __func__); 1024 goto fail_free_buf; 1025 } 1026 1027 trace_xfs_buf_get_uncached(bp, _RET_IP_); 1028 *bpp = bp; 1029 return 0; 1030 1031 fail_free_buf: 1032 xfs_buf_free(bp); 1033 return error; 1034 } 1035 1036 /* 1037 * Increment reference count on buffer, to hold the buffer concurrently 1038 * with another thread which may release (free) the buffer asynchronously. 1039 * Must hold the buffer already to call this function. 1040 */ 1041 void 1042 xfs_buf_hold( 1043 struct xfs_buf *bp) 1044 { 1045 trace_xfs_buf_hold(bp, _RET_IP_); 1046 1047 spin_lock(&bp->b_lock); 1048 bp->b_hold++; 1049 spin_unlock(&bp->b_lock); 1050 } 1051 1052 static void 1053 xfs_buf_rele_uncached( 1054 struct xfs_buf *bp) 1055 { 1056 ASSERT(list_empty(&bp->b_lru)); 1057 1058 spin_lock(&bp->b_lock); 1059 if (--bp->b_hold) { 1060 spin_unlock(&bp->b_lock); 1061 return; 1062 } 1063 __xfs_buf_ioacct_dec(bp); 1064 spin_unlock(&bp->b_lock); 1065 xfs_buf_free(bp); 1066 } 1067 1068 static void 1069 xfs_buf_rele_cached( 1070 struct xfs_buf *bp) 1071 { 1072 struct xfs_buftarg *btp = bp->b_target; 1073 struct xfs_perag *pag = bp->b_pag; 1074 struct xfs_buf_cache *bch = xfs_buftarg_buf_cache(btp, pag); 1075 bool freebuf = false; 1076 1077 trace_xfs_buf_rele(bp, _RET_IP_); 1078 1079 spin_lock(&bp->b_lock); 1080 ASSERT(bp->b_hold >= 1); 1081 if (bp->b_hold > 1) { 1082 /* 1083 * Drop the in-flight state if the buffer is already on the LRU 1084 * and it holds the only reference. This is racy because we 1085 * haven't acquired the pag lock, but the use of _XBF_IN_FLIGHT 1086 * ensures the decrement occurs only once per-buf. 1087 */ 1088 if (--bp->b_hold == 1 && !list_empty(&bp->b_lru)) 1089 __xfs_buf_ioacct_dec(bp); 1090 goto out_unlock; 1091 } 1092 1093 /* we are asked to drop the last reference */ 1094 __xfs_buf_ioacct_dec(bp); 1095 if (!(bp->b_flags & XBF_STALE) && atomic_read(&bp->b_lru_ref)) { 1096 /* 1097 * If the buffer is added to the LRU, keep the reference to the 1098 * buffer for the LRU and clear the (now stale) dispose list 1099 * state flag, else drop the reference. 1100 */ 1101 if (list_lru_add_obj(&btp->bt_lru, &bp->b_lru)) 1102 bp->b_state &= ~XFS_BSTATE_DISPOSE; 1103 else 1104 bp->b_hold--; 1105 } else { 1106 bp->b_hold--; 1107 /* 1108 * most of the time buffers will already be removed from the 1109 * LRU, so optimise that case by checking for the 1110 * XFS_BSTATE_DISPOSE flag indicating the last list the buffer 1111 * was on was the disposal list 1112 */ 1113 if (!(bp->b_state & XFS_BSTATE_DISPOSE)) { 1114 list_lru_del_obj(&btp->bt_lru, &bp->b_lru); 1115 } else { 1116 ASSERT(list_empty(&bp->b_lru)); 1117 } 1118 1119 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q)); 1120 rhashtable_remove_fast(&bch->bc_hash, &bp->b_rhash_head, 1121 xfs_buf_hash_params); 1122 if (pag) 1123 xfs_perag_put(pag); 1124 freebuf = true; 1125 } 1126 1127 out_unlock: 1128 spin_unlock(&bp->b_lock); 1129 1130 if (freebuf) 1131 xfs_buf_free(bp); 1132 } 1133 1134 /* 1135 * Release a hold on the specified buffer. 1136 */ 1137 void 1138 xfs_buf_rele( 1139 struct xfs_buf *bp) 1140 { 1141 trace_xfs_buf_rele(bp, _RET_IP_); 1142 if (xfs_buf_is_uncached(bp)) 1143 xfs_buf_rele_uncached(bp); 1144 else 1145 xfs_buf_rele_cached(bp); 1146 } 1147 1148 /* 1149 * Lock a buffer object, if it is not already locked. 1150 * 1151 * If we come across a stale, pinned, locked buffer, we know that we are 1152 * being asked to lock a buffer that has been reallocated. Because it is 1153 * pinned, we know that the log has not been pushed to disk and hence it 1154 * will still be locked. Rather than continuing to have trylock attempts 1155 * fail until someone else pushes the log, push it ourselves before 1156 * returning. This means that the xfsaild will not get stuck trying 1157 * to push on stale inode buffers. 1158 */ 1159 int 1160 xfs_buf_trylock( 1161 struct xfs_buf *bp) 1162 { 1163 int locked; 1164 1165 locked = down_trylock(&bp->b_sema) == 0; 1166 if (locked) 1167 trace_xfs_buf_trylock(bp, _RET_IP_); 1168 else 1169 trace_xfs_buf_trylock_fail(bp, _RET_IP_); 1170 return locked; 1171 } 1172 1173 /* 1174 * Lock a buffer object. 1175 * 1176 * If we come across a stale, pinned, locked buffer, we know that we 1177 * are being asked to lock a buffer that has been reallocated. Because 1178 * it is pinned, we know that the log has not been pushed to disk and 1179 * hence it will still be locked. Rather than sleeping until someone 1180 * else pushes the log, push it ourselves before trying to get the lock. 1181 */ 1182 void 1183 xfs_buf_lock( 1184 struct xfs_buf *bp) 1185 { 1186 trace_xfs_buf_lock(bp, _RET_IP_); 1187 1188 if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE)) 1189 xfs_log_force(bp->b_mount, 0); 1190 down(&bp->b_sema); 1191 1192 trace_xfs_buf_lock_done(bp, _RET_IP_); 1193 } 1194 1195 void 1196 xfs_buf_unlock( 1197 struct xfs_buf *bp) 1198 { 1199 ASSERT(xfs_buf_islocked(bp)); 1200 1201 up(&bp->b_sema); 1202 trace_xfs_buf_unlock(bp, _RET_IP_); 1203 } 1204 1205 STATIC void 1206 xfs_buf_wait_unpin( 1207 struct xfs_buf *bp) 1208 { 1209 DECLARE_WAITQUEUE (wait, current); 1210 1211 if (atomic_read(&bp->b_pin_count) == 0) 1212 return; 1213 1214 add_wait_queue(&bp->b_waiters, &wait); 1215 for (;;) { 1216 set_current_state(TASK_UNINTERRUPTIBLE); 1217 if (atomic_read(&bp->b_pin_count) == 0) 1218 break; 1219 io_schedule(); 1220 } 1221 remove_wait_queue(&bp->b_waiters, &wait); 1222 set_current_state(TASK_RUNNING); 1223 } 1224 1225 static void 1226 xfs_buf_ioerror_alert_ratelimited( 1227 struct xfs_buf *bp) 1228 { 1229 static unsigned long lasttime; 1230 static struct xfs_buftarg *lasttarg; 1231 1232 if (bp->b_target != lasttarg || 1233 time_after(jiffies, (lasttime + 5*HZ))) { 1234 lasttime = jiffies; 1235 xfs_buf_ioerror_alert(bp, __this_address); 1236 } 1237 lasttarg = bp->b_target; 1238 } 1239 1240 /* 1241 * Account for this latest trip around the retry handler, and decide if 1242 * we've failed enough times to constitute a permanent failure. 1243 */ 1244 static bool 1245 xfs_buf_ioerror_permanent( 1246 struct xfs_buf *bp, 1247 struct xfs_error_cfg *cfg) 1248 { 1249 struct xfs_mount *mp = bp->b_mount; 1250 1251 if (cfg->max_retries != XFS_ERR_RETRY_FOREVER && 1252 ++bp->b_retries > cfg->max_retries) 1253 return true; 1254 if (cfg->retry_timeout != XFS_ERR_RETRY_FOREVER && 1255 time_after(jiffies, cfg->retry_timeout + bp->b_first_retry_time)) 1256 return true; 1257 1258 /* At unmount we may treat errors differently */ 1259 if (xfs_is_unmounting(mp) && mp->m_fail_unmount) 1260 return true; 1261 1262 return false; 1263 } 1264 1265 /* 1266 * On a sync write or shutdown we just want to stale the buffer and let the 1267 * caller handle the error in bp->b_error appropriately. 1268 * 1269 * If the write was asynchronous then no one will be looking for the error. If 1270 * this is the first failure of this type, clear the error state and write the 1271 * buffer out again. This means we always retry an async write failure at least 1272 * once, but we also need to set the buffer up to behave correctly now for 1273 * repeated failures. 1274 * 1275 * If we get repeated async write failures, then we take action according to the 1276 * error configuration we have been set up to use. 1277 * 1278 * Returns true if this function took care of error handling and the caller must 1279 * not touch the buffer again. Return false if the caller should proceed with 1280 * normal I/O completion handling. 1281 */ 1282 static bool 1283 xfs_buf_ioend_handle_error( 1284 struct xfs_buf *bp) 1285 { 1286 struct xfs_mount *mp = bp->b_mount; 1287 struct xfs_error_cfg *cfg; 1288 struct xfs_log_item *lip; 1289 1290 /* 1291 * If we've already shutdown the journal because of I/O errors, there's 1292 * no point in giving this a retry. 1293 */ 1294 if (xlog_is_shutdown(mp->m_log)) 1295 goto out_stale; 1296 1297 xfs_buf_ioerror_alert_ratelimited(bp); 1298 1299 /* 1300 * We're not going to bother about retrying this during recovery. 1301 * One strike! 1302 */ 1303 if (bp->b_flags & _XBF_LOGRECOVERY) { 1304 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR); 1305 return false; 1306 } 1307 1308 /* 1309 * Synchronous writes will have callers process the error. 1310 */ 1311 if (!(bp->b_flags & XBF_ASYNC)) 1312 goto out_stale; 1313 1314 trace_xfs_buf_iodone_async(bp, _RET_IP_); 1315 1316 cfg = xfs_error_get_cfg(mp, XFS_ERR_METADATA, bp->b_error); 1317 if (bp->b_last_error != bp->b_error || 1318 !(bp->b_flags & (XBF_STALE | XBF_WRITE_FAIL))) { 1319 bp->b_last_error = bp->b_error; 1320 if (cfg->retry_timeout != XFS_ERR_RETRY_FOREVER && 1321 !bp->b_first_retry_time) 1322 bp->b_first_retry_time = jiffies; 1323 goto resubmit; 1324 } 1325 1326 /* 1327 * Permanent error - we need to trigger a shutdown if we haven't already 1328 * to indicate that inconsistency will result from this action. 1329 */ 1330 if (xfs_buf_ioerror_permanent(bp, cfg)) { 1331 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR); 1332 goto out_stale; 1333 } 1334 1335 /* Still considered a transient error. Caller will schedule retries. */ 1336 list_for_each_entry(lip, &bp->b_li_list, li_bio_list) { 1337 set_bit(XFS_LI_FAILED, &lip->li_flags); 1338 clear_bit(XFS_LI_FLUSHING, &lip->li_flags); 1339 } 1340 1341 xfs_buf_ioerror(bp, 0); 1342 xfs_buf_relse(bp); 1343 return true; 1344 1345 resubmit: 1346 xfs_buf_ioerror(bp, 0); 1347 bp->b_flags |= (XBF_DONE | XBF_WRITE_FAIL); 1348 xfs_buf_submit(bp); 1349 return true; 1350 out_stale: 1351 xfs_buf_stale(bp); 1352 bp->b_flags |= XBF_DONE; 1353 bp->b_flags &= ~XBF_WRITE; 1354 trace_xfs_buf_error_relse(bp, _RET_IP_); 1355 return false; 1356 } 1357 1358 static void 1359 xfs_buf_ioend( 1360 struct xfs_buf *bp) 1361 { 1362 trace_xfs_buf_iodone(bp, _RET_IP_); 1363 1364 if (bp->b_flags & XBF_READ) { 1365 if (!bp->b_error && xfs_buf_is_vmapped(bp)) 1366 invalidate_kernel_vmap_range(bp->b_addr, 1367 xfs_buf_vmap_len(bp)); 1368 if (!bp->b_error && bp->b_ops) 1369 bp->b_ops->verify_read(bp); 1370 if (!bp->b_error) 1371 bp->b_flags |= XBF_DONE; 1372 } else { 1373 if (!bp->b_error) { 1374 bp->b_flags &= ~XBF_WRITE_FAIL; 1375 bp->b_flags |= XBF_DONE; 1376 } 1377 1378 if (unlikely(bp->b_error) && xfs_buf_ioend_handle_error(bp)) 1379 return; 1380 1381 /* clear the retry state */ 1382 bp->b_last_error = 0; 1383 bp->b_retries = 0; 1384 bp->b_first_retry_time = 0; 1385 1386 /* 1387 * Note that for things like remote attribute buffers, there may 1388 * not be a buffer log item here, so processing the buffer log 1389 * item must remain optional. 1390 */ 1391 if (bp->b_log_item) 1392 xfs_buf_item_done(bp); 1393 1394 if (bp->b_iodone) 1395 bp->b_iodone(bp); 1396 } 1397 1398 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD | 1399 _XBF_LOGRECOVERY); 1400 1401 if (bp->b_flags & XBF_ASYNC) 1402 xfs_buf_relse(bp); 1403 else 1404 complete(&bp->b_iowait); 1405 } 1406 1407 static void 1408 xfs_buf_ioend_work( 1409 struct work_struct *work) 1410 { 1411 struct xfs_buf *bp = 1412 container_of(work, struct xfs_buf, b_ioend_work); 1413 1414 xfs_buf_ioend(bp); 1415 } 1416 1417 static void 1418 xfs_buf_ioend_async( 1419 struct xfs_buf *bp) 1420 { 1421 INIT_WORK(&bp->b_ioend_work, xfs_buf_ioend_work); 1422 queue_work(bp->b_mount->m_buf_workqueue, &bp->b_ioend_work); 1423 } 1424 1425 void 1426 __xfs_buf_ioerror( 1427 struct xfs_buf *bp, 1428 int error, 1429 xfs_failaddr_t failaddr) 1430 { 1431 ASSERT(error <= 0 && error >= -1000); 1432 bp->b_error = error; 1433 trace_xfs_buf_ioerror(bp, error, failaddr); 1434 } 1435 1436 void 1437 xfs_buf_ioerror_alert( 1438 struct xfs_buf *bp, 1439 xfs_failaddr_t func) 1440 { 1441 xfs_buf_alert_ratelimited(bp, "XFS: metadata IO error", 1442 "metadata I/O error in \"%pS\" at daddr 0x%llx len %d error %d", 1443 func, (uint64_t)xfs_buf_daddr(bp), 1444 bp->b_length, -bp->b_error); 1445 } 1446 1447 /* 1448 * To simulate an I/O failure, the buffer must be locked and held with at least 1449 * three references. The LRU reference is dropped by the stale call. The buf 1450 * item reference is dropped via ioend processing. The third reference is owned 1451 * by the caller and is dropped on I/O completion if the buffer is XBF_ASYNC. 1452 */ 1453 void 1454 xfs_buf_ioend_fail( 1455 struct xfs_buf *bp) 1456 { 1457 bp->b_flags &= ~XBF_DONE; 1458 xfs_buf_stale(bp); 1459 xfs_buf_ioerror(bp, -EIO); 1460 xfs_buf_ioend(bp); 1461 } 1462 1463 int 1464 xfs_bwrite( 1465 struct xfs_buf *bp) 1466 { 1467 int error; 1468 1469 ASSERT(xfs_buf_islocked(bp)); 1470 1471 bp->b_flags |= XBF_WRITE; 1472 bp->b_flags &= ~(XBF_ASYNC | XBF_READ | _XBF_DELWRI_Q | 1473 XBF_DONE); 1474 1475 xfs_buf_submit(bp); 1476 error = xfs_buf_iowait(bp); 1477 if (error) 1478 xfs_force_shutdown(bp->b_mount, SHUTDOWN_META_IO_ERROR); 1479 return error; 1480 } 1481 1482 static void 1483 xfs_buf_bio_end_io( 1484 struct bio *bio) 1485 { 1486 struct xfs_buf *bp = bio->bi_private; 1487 1488 if (bio->bi_status) 1489 xfs_buf_ioerror(bp, blk_status_to_errno(bio->bi_status)); 1490 else if ((bp->b_flags & XBF_WRITE) && (bp->b_flags & XBF_ASYNC) && 1491 XFS_TEST_ERROR(false, bp->b_mount, XFS_ERRTAG_BUF_IOERROR)) 1492 xfs_buf_ioerror(bp, -EIO); 1493 1494 xfs_buf_ioend_async(bp); 1495 bio_put(bio); 1496 } 1497 1498 static inline blk_opf_t 1499 xfs_buf_bio_op( 1500 struct xfs_buf *bp) 1501 { 1502 blk_opf_t op; 1503 1504 if (bp->b_flags & XBF_WRITE) { 1505 op = REQ_OP_WRITE; 1506 } else { 1507 op = REQ_OP_READ; 1508 if (bp->b_flags & XBF_READ_AHEAD) 1509 op |= REQ_RAHEAD; 1510 } 1511 1512 return op | REQ_META; 1513 } 1514 1515 static void 1516 xfs_buf_submit_bio( 1517 struct xfs_buf *bp) 1518 { 1519 unsigned int size = BBTOB(bp->b_length); 1520 unsigned int map = 0, p; 1521 struct blk_plug plug; 1522 struct bio *bio; 1523 1524 bio = bio_alloc(bp->b_target->bt_bdev, bp->b_page_count, 1525 xfs_buf_bio_op(bp), GFP_NOIO); 1526 bio->bi_private = bp; 1527 bio->bi_end_io = xfs_buf_bio_end_io; 1528 1529 if (bp->b_flags & _XBF_KMEM) { 1530 __bio_add_page(bio, virt_to_page(bp->b_addr), size, 1531 bp->b_offset); 1532 } else { 1533 for (p = 0; p < bp->b_page_count; p++) 1534 __bio_add_page(bio, bp->b_pages[p], PAGE_SIZE, 0); 1535 bio->bi_iter.bi_size = size; /* limit to the actual size used */ 1536 1537 if (xfs_buf_is_vmapped(bp)) 1538 flush_kernel_vmap_range(bp->b_addr, 1539 xfs_buf_vmap_len(bp)); 1540 } 1541 1542 /* 1543 * If there is more than one map segment, split out a new bio for each 1544 * map except of the last one. The last map is handled by the 1545 * remainder of the original bio outside the loop. 1546 */ 1547 blk_start_plug(&plug); 1548 for (map = 0; map < bp->b_map_count - 1; map++) { 1549 struct bio *split; 1550 1551 split = bio_split(bio, bp->b_maps[map].bm_len, GFP_NOFS, 1552 &fs_bio_set); 1553 split->bi_iter.bi_sector = bp->b_maps[map].bm_bn; 1554 bio_chain(split, bio); 1555 submit_bio(split); 1556 } 1557 bio->bi_iter.bi_sector = bp->b_maps[map].bm_bn; 1558 submit_bio(bio); 1559 blk_finish_plug(&plug); 1560 } 1561 1562 /* 1563 * Wait for I/O completion of a sync buffer and return the I/O error code. 1564 */ 1565 static int 1566 xfs_buf_iowait( 1567 struct xfs_buf *bp) 1568 { 1569 ASSERT(!(bp->b_flags & XBF_ASYNC)); 1570 1571 trace_xfs_buf_iowait(bp, _RET_IP_); 1572 wait_for_completion(&bp->b_iowait); 1573 trace_xfs_buf_iowait_done(bp, _RET_IP_); 1574 1575 return bp->b_error; 1576 } 1577 1578 /* 1579 * Run the write verifier callback function if it exists. If this fails, mark 1580 * the buffer with an error and do not dispatch the I/O. 1581 */ 1582 static bool 1583 xfs_buf_verify_write( 1584 struct xfs_buf *bp) 1585 { 1586 if (bp->b_ops) { 1587 bp->b_ops->verify_write(bp); 1588 if (bp->b_error) 1589 return false; 1590 } else if (bp->b_rhash_key != XFS_BUF_DADDR_NULL) { 1591 /* 1592 * Non-crc filesystems don't attach verifiers during log 1593 * recovery, so don't warn for such filesystems. 1594 */ 1595 if (xfs_has_crc(bp->b_mount)) { 1596 xfs_warn(bp->b_mount, 1597 "%s: no buf ops on daddr 0x%llx len %d", 1598 __func__, xfs_buf_daddr(bp), 1599 bp->b_length); 1600 xfs_hex_dump(bp->b_addr, XFS_CORRUPTION_DUMP_LEN); 1601 dump_stack(); 1602 } 1603 } 1604 1605 return true; 1606 } 1607 1608 /* 1609 * Buffer I/O submission path, read or write. Asynchronous submission transfers 1610 * the buffer lock ownership and the current reference to the IO. It is not 1611 * safe to reference the buffer after a call to this function unless the caller 1612 * holds an additional reference itself. 1613 */ 1614 static void 1615 xfs_buf_submit( 1616 struct xfs_buf *bp) 1617 { 1618 trace_xfs_buf_submit(bp, _RET_IP_); 1619 1620 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q)); 1621 1622 /* 1623 * On log shutdown we stale and complete the buffer immediately. We can 1624 * be called to read the superblock before the log has been set up, so 1625 * be careful checking the log state. 1626 * 1627 * Checking the mount shutdown state here can result in the log tail 1628 * moving inappropriately on disk as the log may not yet be shut down. 1629 * i.e. failing this buffer on mount shutdown can remove it from the AIL 1630 * and move the tail of the log forwards without having written this 1631 * buffer to disk. This corrupts the log tail state in memory, and 1632 * because the log may not be shut down yet, it can then be propagated 1633 * to disk before the log is shutdown. Hence we check log shutdown 1634 * state here rather than mount state to avoid corrupting the log tail 1635 * on shutdown. 1636 */ 1637 if (bp->b_mount->m_log && xlog_is_shutdown(bp->b_mount->m_log)) { 1638 xfs_buf_ioend_fail(bp); 1639 return; 1640 } 1641 1642 if (bp->b_flags & XBF_WRITE) 1643 xfs_buf_wait_unpin(bp); 1644 1645 /* 1646 * Make sure we capture only current IO errors rather than stale errors 1647 * left over from previous use of the buffer (e.g. failed readahead). 1648 */ 1649 bp->b_error = 0; 1650 1651 if (bp->b_flags & XBF_ASYNC) 1652 xfs_buf_ioacct_inc(bp); 1653 1654 if ((bp->b_flags & XBF_WRITE) && !xfs_buf_verify_write(bp)) { 1655 xfs_force_shutdown(bp->b_mount, SHUTDOWN_CORRUPT_INCORE); 1656 xfs_buf_ioend(bp); 1657 return; 1658 } 1659 1660 /* In-memory targets are directly mapped, no I/O required. */ 1661 if (xfs_buftarg_is_mem(bp->b_target)) { 1662 xfs_buf_ioend(bp); 1663 return; 1664 } 1665 1666 xfs_buf_submit_bio(bp); 1667 } 1668 1669 void * 1670 xfs_buf_offset( 1671 struct xfs_buf *bp, 1672 size_t offset) 1673 { 1674 struct page *page; 1675 1676 if (bp->b_addr) 1677 return bp->b_addr + offset; 1678 1679 page = bp->b_pages[offset >> PAGE_SHIFT]; 1680 return page_address(page) + (offset & (PAGE_SIZE-1)); 1681 } 1682 1683 void 1684 xfs_buf_zero( 1685 struct xfs_buf *bp, 1686 size_t boff, 1687 size_t bsize) 1688 { 1689 size_t bend; 1690 1691 bend = boff + bsize; 1692 while (boff < bend) { 1693 struct page *page; 1694 int page_index, page_offset, csize; 1695 1696 page_index = (boff + bp->b_offset) >> PAGE_SHIFT; 1697 page_offset = (boff + bp->b_offset) & ~PAGE_MASK; 1698 page = bp->b_pages[page_index]; 1699 csize = min_t(size_t, PAGE_SIZE - page_offset, 1700 BBTOB(bp->b_length) - boff); 1701 1702 ASSERT((csize + page_offset) <= PAGE_SIZE); 1703 1704 memset(page_address(page) + page_offset, 0, csize); 1705 1706 boff += csize; 1707 } 1708 } 1709 1710 /* 1711 * Log a message about and stale a buffer that a caller has decided is corrupt. 1712 * 1713 * This function should be called for the kinds of metadata corruption that 1714 * cannot be detect from a verifier, such as incorrect inter-block relationship 1715 * data. Do /not/ call this function from a verifier function. 1716 * 1717 * The buffer must be XBF_DONE prior to the call. Afterwards, the buffer will 1718 * be marked stale, but b_error will not be set. The caller is responsible for 1719 * releasing the buffer or fixing it. 1720 */ 1721 void 1722 __xfs_buf_mark_corrupt( 1723 struct xfs_buf *bp, 1724 xfs_failaddr_t fa) 1725 { 1726 ASSERT(bp->b_flags & XBF_DONE); 1727 1728 xfs_buf_corruption_error(bp, fa); 1729 xfs_buf_stale(bp); 1730 } 1731 1732 /* 1733 * Handling of buffer targets (buftargs). 1734 */ 1735 1736 /* 1737 * Wait for any bufs with callbacks that have been submitted but have not yet 1738 * returned. These buffers will have an elevated hold count, so wait on those 1739 * while freeing all the buffers only held by the LRU. 1740 */ 1741 static enum lru_status 1742 xfs_buftarg_drain_rele( 1743 struct list_head *item, 1744 struct list_lru_one *lru, 1745 void *arg) 1746 1747 { 1748 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru); 1749 struct list_head *dispose = arg; 1750 1751 if (!spin_trylock(&bp->b_lock)) 1752 return LRU_SKIP; 1753 if (bp->b_hold > 1) { 1754 /* need to wait, so skip it this pass */ 1755 spin_unlock(&bp->b_lock); 1756 trace_xfs_buf_drain_buftarg(bp, _RET_IP_); 1757 return LRU_SKIP; 1758 } 1759 1760 /* 1761 * clear the LRU reference count so the buffer doesn't get 1762 * ignored in xfs_buf_rele(). 1763 */ 1764 atomic_set(&bp->b_lru_ref, 0); 1765 bp->b_state |= XFS_BSTATE_DISPOSE; 1766 list_lru_isolate_move(lru, item, dispose); 1767 spin_unlock(&bp->b_lock); 1768 return LRU_REMOVED; 1769 } 1770 1771 /* 1772 * Wait for outstanding I/O on the buftarg to complete. 1773 */ 1774 void 1775 xfs_buftarg_wait( 1776 struct xfs_buftarg *btp) 1777 { 1778 /* 1779 * First wait on the buftarg I/O count for all in-flight buffers to be 1780 * released. This is critical as new buffers do not make the LRU until 1781 * they are released. 1782 * 1783 * Next, flush the buffer workqueue to ensure all completion processing 1784 * has finished. Just waiting on buffer locks is not sufficient for 1785 * async IO as the reference count held over IO is not released until 1786 * after the buffer lock is dropped. Hence we need to ensure here that 1787 * all reference counts have been dropped before we start walking the 1788 * LRU list. 1789 */ 1790 while (percpu_counter_sum(&btp->bt_io_count)) 1791 delay(100); 1792 flush_workqueue(btp->bt_mount->m_buf_workqueue); 1793 } 1794 1795 void 1796 xfs_buftarg_drain( 1797 struct xfs_buftarg *btp) 1798 { 1799 LIST_HEAD(dispose); 1800 int loop = 0; 1801 bool write_fail = false; 1802 1803 xfs_buftarg_wait(btp); 1804 1805 /* loop until there is nothing left on the lru list. */ 1806 while (list_lru_count(&btp->bt_lru)) { 1807 list_lru_walk(&btp->bt_lru, xfs_buftarg_drain_rele, 1808 &dispose, LONG_MAX); 1809 1810 while (!list_empty(&dispose)) { 1811 struct xfs_buf *bp; 1812 bp = list_first_entry(&dispose, struct xfs_buf, b_lru); 1813 list_del_init(&bp->b_lru); 1814 if (bp->b_flags & XBF_WRITE_FAIL) { 1815 write_fail = true; 1816 xfs_buf_alert_ratelimited(bp, 1817 "XFS: Corruption Alert", 1818 "Corruption Alert: Buffer at daddr 0x%llx had permanent write failures!", 1819 (long long)xfs_buf_daddr(bp)); 1820 } 1821 xfs_buf_rele(bp); 1822 } 1823 if (loop++ != 0) 1824 delay(100); 1825 } 1826 1827 /* 1828 * If one or more failed buffers were freed, that means dirty metadata 1829 * was thrown away. This should only ever happen after I/O completion 1830 * handling has elevated I/O error(s) to permanent failures and shuts 1831 * down the journal. 1832 */ 1833 if (write_fail) { 1834 ASSERT(xlog_is_shutdown(btp->bt_mount->m_log)); 1835 xfs_alert(btp->bt_mount, 1836 "Please run xfs_repair to determine the extent of the problem."); 1837 } 1838 } 1839 1840 static enum lru_status 1841 xfs_buftarg_isolate( 1842 struct list_head *item, 1843 struct list_lru_one *lru, 1844 void *arg) 1845 { 1846 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru); 1847 struct list_head *dispose = arg; 1848 1849 /* 1850 * we are inverting the lru lock/bp->b_lock here, so use a trylock. 1851 * If we fail to get the lock, just skip it. 1852 */ 1853 if (!spin_trylock(&bp->b_lock)) 1854 return LRU_SKIP; 1855 /* 1856 * Decrement the b_lru_ref count unless the value is already 1857 * zero. If the value is already zero, we need to reclaim the 1858 * buffer, otherwise it gets another trip through the LRU. 1859 */ 1860 if (atomic_add_unless(&bp->b_lru_ref, -1, 0)) { 1861 spin_unlock(&bp->b_lock); 1862 return LRU_ROTATE; 1863 } 1864 1865 bp->b_state |= XFS_BSTATE_DISPOSE; 1866 list_lru_isolate_move(lru, item, dispose); 1867 spin_unlock(&bp->b_lock); 1868 return LRU_REMOVED; 1869 } 1870 1871 static unsigned long 1872 xfs_buftarg_shrink_scan( 1873 struct shrinker *shrink, 1874 struct shrink_control *sc) 1875 { 1876 struct xfs_buftarg *btp = shrink->private_data; 1877 LIST_HEAD(dispose); 1878 unsigned long freed; 1879 1880 freed = list_lru_shrink_walk(&btp->bt_lru, sc, 1881 xfs_buftarg_isolate, &dispose); 1882 1883 while (!list_empty(&dispose)) { 1884 struct xfs_buf *bp; 1885 bp = list_first_entry(&dispose, struct xfs_buf, b_lru); 1886 list_del_init(&bp->b_lru); 1887 xfs_buf_rele(bp); 1888 } 1889 1890 return freed; 1891 } 1892 1893 static unsigned long 1894 xfs_buftarg_shrink_count( 1895 struct shrinker *shrink, 1896 struct shrink_control *sc) 1897 { 1898 struct xfs_buftarg *btp = shrink->private_data; 1899 return list_lru_shrink_count(&btp->bt_lru, sc); 1900 } 1901 1902 void 1903 xfs_destroy_buftarg( 1904 struct xfs_buftarg *btp) 1905 { 1906 shrinker_free(btp->bt_shrinker); 1907 ASSERT(percpu_counter_sum(&btp->bt_io_count) == 0); 1908 percpu_counter_destroy(&btp->bt_io_count); 1909 list_lru_destroy(&btp->bt_lru); 1910 } 1911 1912 void 1913 xfs_free_buftarg( 1914 struct xfs_buftarg *btp) 1915 { 1916 xfs_destroy_buftarg(btp); 1917 fs_put_dax(btp->bt_daxdev, btp->bt_mount); 1918 /* the main block device is closed by kill_block_super */ 1919 if (btp->bt_bdev != btp->bt_mount->m_super->s_bdev) 1920 bdev_fput(btp->bt_bdev_file); 1921 kfree(btp); 1922 } 1923 1924 int 1925 xfs_setsize_buftarg( 1926 struct xfs_buftarg *btp, 1927 unsigned int sectorsize) 1928 { 1929 /* Set up metadata sector size info */ 1930 btp->bt_meta_sectorsize = sectorsize; 1931 btp->bt_meta_sectormask = sectorsize - 1; 1932 1933 if (set_blocksize(btp->bt_bdev_file, sectorsize)) { 1934 xfs_warn(btp->bt_mount, 1935 "Cannot set_blocksize to %u on device %pg", 1936 sectorsize, btp->bt_bdev); 1937 return -EINVAL; 1938 } 1939 1940 return 0; 1941 } 1942 1943 int 1944 xfs_init_buftarg( 1945 struct xfs_buftarg *btp, 1946 size_t logical_sectorsize, 1947 const char *descr) 1948 { 1949 /* Set up device logical sector size mask */ 1950 btp->bt_logical_sectorsize = logical_sectorsize; 1951 btp->bt_logical_sectormask = logical_sectorsize - 1; 1952 1953 /* 1954 * Buffer IO error rate limiting. Limit it to no more than 10 messages 1955 * per 30 seconds so as to not spam logs too much on repeated errors. 1956 */ 1957 ratelimit_state_init(&btp->bt_ioerror_rl, 30 * HZ, 1958 DEFAULT_RATELIMIT_BURST); 1959 1960 if (list_lru_init(&btp->bt_lru)) 1961 return -ENOMEM; 1962 if (percpu_counter_init(&btp->bt_io_count, 0, GFP_KERNEL)) 1963 goto out_destroy_lru; 1964 1965 btp->bt_shrinker = 1966 shrinker_alloc(SHRINKER_NUMA_AWARE, "xfs-buf:%s", descr); 1967 if (!btp->bt_shrinker) 1968 goto out_destroy_io_count; 1969 btp->bt_shrinker->count_objects = xfs_buftarg_shrink_count; 1970 btp->bt_shrinker->scan_objects = xfs_buftarg_shrink_scan; 1971 btp->bt_shrinker->private_data = btp; 1972 shrinker_register(btp->bt_shrinker); 1973 return 0; 1974 1975 out_destroy_io_count: 1976 percpu_counter_destroy(&btp->bt_io_count); 1977 out_destroy_lru: 1978 list_lru_destroy(&btp->bt_lru); 1979 return -ENOMEM; 1980 } 1981 1982 struct xfs_buftarg * 1983 xfs_alloc_buftarg( 1984 struct xfs_mount *mp, 1985 struct file *bdev_file) 1986 { 1987 struct xfs_buftarg *btp; 1988 const struct dax_holder_operations *ops = NULL; 1989 1990 #if defined(CONFIG_FS_DAX) && defined(CONFIG_MEMORY_FAILURE) 1991 ops = &xfs_dax_holder_operations; 1992 #endif 1993 btp = kzalloc(sizeof(*btp), GFP_KERNEL | __GFP_NOFAIL); 1994 1995 btp->bt_mount = mp; 1996 btp->bt_bdev_file = bdev_file; 1997 btp->bt_bdev = file_bdev(bdev_file); 1998 btp->bt_dev = btp->bt_bdev->bd_dev; 1999 btp->bt_daxdev = fs_dax_get_by_bdev(btp->bt_bdev, &btp->bt_dax_part_off, 2000 mp, ops); 2001 2002 if (bdev_can_atomic_write(btp->bt_bdev)) { 2003 btp->bt_bdev_awu_min = bdev_atomic_write_unit_min_bytes( 2004 btp->bt_bdev); 2005 btp->bt_bdev_awu_max = bdev_atomic_write_unit_max_bytes( 2006 btp->bt_bdev); 2007 } 2008 2009 /* 2010 * When allocating the buftargs we have not yet read the super block and 2011 * thus don't know the file system sector size yet. 2012 */ 2013 if (xfs_setsize_buftarg(btp, bdev_logical_block_size(btp->bt_bdev))) 2014 goto error_free; 2015 if (xfs_init_buftarg(btp, bdev_logical_block_size(btp->bt_bdev), 2016 mp->m_super->s_id)) 2017 goto error_free; 2018 2019 return btp; 2020 2021 error_free: 2022 kfree(btp); 2023 return NULL; 2024 } 2025 2026 static inline void 2027 xfs_buf_list_del( 2028 struct xfs_buf *bp) 2029 { 2030 list_del_init(&bp->b_list); 2031 wake_up_var(&bp->b_list); 2032 } 2033 2034 /* 2035 * Cancel a delayed write list. 2036 * 2037 * Remove each buffer from the list, clear the delwri queue flag and drop the 2038 * associated buffer reference. 2039 */ 2040 void 2041 xfs_buf_delwri_cancel( 2042 struct list_head *list) 2043 { 2044 struct xfs_buf *bp; 2045 2046 while (!list_empty(list)) { 2047 bp = list_first_entry(list, struct xfs_buf, b_list); 2048 2049 xfs_buf_lock(bp); 2050 bp->b_flags &= ~_XBF_DELWRI_Q; 2051 xfs_buf_list_del(bp); 2052 xfs_buf_relse(bp); 2053 } 2054 } 2055 2056 /* 2057 * Add a buffer to the delayed write list. 2058 * 2059 * This queues a buffer for writeout if it hasn't already been. Note that 2060 * neither this routine nor the buffer list submission functions perform 2061 * any internal synchronization. It is expected that the lists are thread-local 2062 * to the callers. 2063 * 2064 * Returns true if we queued up the buffer, or false if it already had 2065 * been on the buffer list. 2066 */ 2067 bool 2068 xfs_buf_delwri_queue( 2069 struct xfs_buf *bp, 2070 struct list_head *list) 2071 { 2072 ASSERT(xfs_buf_islocked(bp)); 2073 ASSERT(!(bp->b_flags & XBF_READ)); 2074 2075 /* 2076 * If the buffer is already marked delwri it already is queued up 2077 * by someone else for imediate writeout. Just ignore it in that 2078 * case. 2079 */ 2080 if (bp->b_flags & _XBF_DELWRI_Q) { 2081 trace_xfs_buf_delwri_queued(bp, _RET_IP_); 2082 return false; 2083 } 2084 2085 trace_xfs_buf_delwri_queue(bp, _RET_IP_); 2086 2087 /* 2088 * If a buffer gets written out synchronously or marked stale while it 2089 * is on a delwri list we lazily remove it. To do this, the other party 2090 * clears the _XBF_DELWRI_Q flag but otherwise leaves the buffer alone. 2091 * It remains referenced and on the list. In a rare corner case it 2092 * might get readded to a delwri list after the synchronous writeout, in 2093 * which case we need just need to re-add the flag here. 2094 */ 2095 bp->b_flags |= _XBF_DELWRI_Q; 2096 if (list_empty(&bp->b_list)) { 2097 xfs_buf_hold(bp); 2098 list_add_tail(&bp->b_list, list); 2099 } 2100 2101 return true; 2102 } 2103 2104 /* 2105 * Queue a buffer to this delwri list as part of a data integrity operation. 2106 * If the buffer is on any other delwri list, we'll wait for that to clear 2107 * so that the caller can submit the buffer for IO and wait for the result. 2108 * Callers must ensure the buffer is not already on the list. 2109 */ 2110 void 2111 xfs_buf_delwri_queue_here( 2112 struct xfs_buf *bp, 2113 struct list_head *buffer_list) 2114 { 2115 /* 2116 * We need this buffer to end up on the /caller's/ delwri list, not any 2117 * old list. This can happen if the buffer is marked stale (which 2118 * clears DELWRI_Q) after the AIL queues the buffer to its list but 2119 * before the AIL has a chance to submit the list. 2120 */ 2121 while (!list_empty(&bp->b_list)) { 2122 xfs_buf_unlock(bp); 2123 wait_var_event(&bp->b_list, list_empty(&bp->b_list)); 2124 xfs_buf_lock(bp); 2125 } 2126 2127 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q)); 2128 2129 xfs_buf_delwri_queue(bp, buffer_list); 2130 } 2131 2132 /* 2133 * Compare function is more complex than it needs to be because 2134 * the return value is only 32 bits and we are doing comparisons 2135 * on 64 bit values 2136 */ 2137 static int 2138 xfs_buf_cmp( 2139 void *priv, 2140 const struct list_head *a, 2141 const struct list_head *b) 2142 { 2143 struct xfs_buf *ap = container_of(a, struct xfs_buf, b_list); 2144 struct xfs_buf *bp = container_of(b, struct xfs_buf, b_list); 2145 xfs_daddr_t diff; 2146 2147 diff = ap->b_maps[0].bm_bn - bp->b_maps[0].bm_bn; 2148 if (diff < 0) 2149 return -1; 2150 if (diff > 0) 2151 return 1; 2152 return 0; 2153 } 2154 2155 static bool 2156 xfs_buf_delwri_submit_prep( 2157 struct xfs_buf *bp) 2158 { 2159 /* 2160 * Someone else might have written the buffer synchronously or marked it 2161 * stale in the meantime. In that case only the _XBF_DELWRI_Q flag got 2162 * cleared, and we have to drop the reference and remove it from the 2163 * list here. 2164 */ 2165 if (!(bp->b_flags & _XBF_DELWRI_Q)) { 2166 xfs_buf_list_del(bp); 2167 xfs_buf_relse(bp); 2168 return false; 2169 } 2170 2171 trace_xfs_buf_delwri_split(bp, _RET_IP_); 2172 bp->b_flags &= ~_XBF_DELWRI_Q; 2173 bp->b_flags |= XBF_WRITE; 2174 return true; 2175 } 2176 2177 /* 2178 * Write out a buffer list asynchronously. 2179 * 2180 * This will take the @buffer_list, write all non-locked and non-pinned buffers 2181 * out and not wait for I/O completion on any of the buffers. This interface 2182 * is only safely useable for callers that can track I/O completion by higher 2183 * level means, e.g. AIL pushing as the @buffer_list is consumed in this 2184 * function. 2185 * 2186 * Note: this function will skip buffers it would block on, and in doing so 2187 * leaves them on @buffer_list so they can be retried on a later pass. As such, 2188 * it is up to the caller to ensure that the buffer list is fully submitted or 2189 * cancelled appropriately when they are finished with the list. Failure to 2190 * cancel or resubmit the list until it is empty will result in leaked buffers 2191 * at unmount time. 2192 */ 2193 int 2194 xfs_buf_delwri_submit_nowait( 2195 struct list_head *buffer_list) 2196 { 2197 struct xfs_buf *bp, *n; 2198 int pinned = 0; 2199 struct blk_plug plug; 2200 2201 list_sort(NULL, buffer_list, xfs_buf_cmp); 2202 2203 blk_start_plug(&plug); 2204 list_for_each_entry_safe(bp, n, buffer_list, b_list) { 2205 if (!xfs_buf_trylock(bp)) 2206 continue; 2207 if (xfs_buf_ispinned(bp)) { 2208 xfs_buf_unlock(bp); 2209 pinned++; 2210 continue; 2211 } 2212 if (!xfs_buf_delwri_submit_prep(bp)) 2213 continue; 2214 bp->b_flags |= XBF_ASYNC; 2215 xfs_buf_list_del(bp); 2216 xfs_buf_submit(bp); 2217 } 2218 blk_finish_plug(&plug); 2219 2220 return pinned; 2221 } 2222 2223 /* 2224 * Write out a buffer list synchronously. 2225 * 2226 * This will take the @buffer_list, write all buffers out and wait for I/O 2227 * completion on all of the buffers. @buffer_list is consumed by the function, 2228 * so callers must have some other way of tracking buffers if they require such 2229 * functionality. 2230 */ 2231 int 2232 xfs_buf_delwri_submit( 2233 struct list_head *buffer_list) 2234 { 2235 LIST_HEAD (wait_list); 2236 int error = 0, error2; 2237 struct xfs_buf *bp, *n; 2238 struct blk_plug plug; 2239 2240 list_sort(NULL, buffer_list, xfs_buf_cmp); 2241 2242 blk_start_plug(&plug); 2243 list_for_each_entry_safe(bp, n, buffer_list, b_list) { 2244 xfs_buf_lock(bp); 2245 if (!xfs_buf_delwri_submit_prep(bp)) 2246 continue; 2247 bp->b_flags &= ~XBF_ASYNC; 2248 list_move_tail(&bp->b_list, &wait_list); 2249 xfs_buf_submit(bp); 2250 } 2251 blk_finish_plug(&plug); 2252 2253 /* Wait for IO to complete. */ 2254 while (!list_empty(&wait_list)) { 2255 bp = list_first_entry(&wait_list, struct xfs_buf, b_list); 2256 2257 xfs_buf_list_del(bp); 2258 2259 /* 2260 * Wait on the locked buffer, check for errors and unlock and 2261 * release the delwri queue reference. 2262 */ 2263 error2 = xfs_buf_iowait(bp); 2264 xfs_buf_relse(bp); 2265 if (!error) 2266 error = error2; 2267 } 2268 2269 return error; 2270 } 2271 2272 /* 2273 * Push a single buffer on a delwri queue. 2274 * 2275 * The purpose of this function is to submit a single buffer of a delwri queue 2276 * and return with the buffer still on the original queue. 2277 * 2278 * The buffer locking and queue management logic between _delwri_pushbuf() and 2279 * _delwri_queue() guarantee that the buffer cannot be queued to another list 2280 * before returning. 2281 */ 2282 int 2283 xfs_buf_delwri_pushbuf( 2284 struct xfs_buf *bp, 2285 struct list_head *buffer_list) 2286 { 2287 int error; 2288 2289 ASSERT(bp->b_flags & _XBF_DELWRI_Q); 2290 2291 trace_xfs_buf_delwri_pushbuf(bp, _RET_IP_); 2292 2293 xfs_buf_lock(bp); 2294 bp->b_flags &= ~(_XBF_DELWRI_Q | XBF_ASYNC); 2295 bp->b_flags |= XBF_WRITE; 2296 xfs_buf_submit(bp); 2297 2298 /* 2299 * The buffer is now locked, under I/O but still on the original delwri 2300 * queue. Wait for I/O completion, restore the DELWRI_Q flag and 2301 * return with the buffer unlocked and still on the original queue. 2302 */ 2303 error = xfs_buf_iowait(bp); 2304 bp->b_flags |= _XBF_DELWRI_Q; 2305 xfs_buf_unlock(bp); 2306 2307 return error; 2308 } 2309 2310 void xfs_buf_set_ref(struct xfs_buf *bp, int lru_ref) 2311 { 2312 /* 2313 * Set the lru reference count to 0 based on the error injection tag. 2314 * This allows userspace to disrupt buffer caching for debug/testing 2315 * purposes. 2316 */ 2317 if (XFS_TEST_ERROR(false, bp->b_mount, XFS_ERRTAG_BUF_LRU_REF)) 2318 lru_ref = 0; 2319 2320 atomic_set(&bp->b_lru_ref, lru_ref); 2321 } 2322 2323 /* 2324 * Verify an on-disk magic value against the magic value specified in the 2325 * verifier structure. The verifier magic is in disk byte order so the caller is 2326 * expected to pass the value directly from disk. 2327 */ 2328 bool 2329 xfs_verify_magic( 2330 struct xfs_buf *bp, 2331 __be32 dmagic) 2332 { 2333 struct xfs_mount *mp = bp->b_mount; 2334 int idx; 2335 2336 idx = xfs_has_crc(mp); 2337 if (WARN_ON(!bp->b_ops || !bp->b_ops->magic[idx])) 2338 return false; 2339 return dmagic == bp->b_ops->magic[idx]; 2340 } 2341 /* 2342 * Verify an on-disk magic value against the magic value specified in the 2343 * verifier structure. The verifier magic is in disk byte order so the caller is 2344 * expected to pass the value directly from disk. 2345 */ 2346 bool 2347 xfs_verify_magic16( 2348 struct xfs_buf *bp, 2349 __be16 dmagic) 2350 { 2351 struct xfs_mount *mp = bp->b_mount; 2352 int idx; 2353 2354 idx = xfs_has_crc(mp); 2355 if (WARN_ON(!bp->b_ops || !bp->b_ops->magic16[idx])) 2356 return false; 2357 return dmagic == bp->b_ops->magic16[idx]; 2358 } 2359