xref: /linux/fs/xfs/xfs_buf.c (revision d1e879ec600f9b3bdd253167533959facfefb17b)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include <linux/backing-dev.h>
8 #include <linux/dax.h>
9 
10 #include "xfs_shared.h"
11 #include "xfs_format.h"
12 #include "xfs_log_format.h"
13 #include "xfs_trans_resv.h"
14 #include "xfs_mount.h"
15 #include "xfs_trace.h"
16 #include "xfs_log.h"
17 #include "xfs_log_recover.h"
18 #include "xfs_log_priv.h"
19 #include "xfs_trans.h"
20 #include "xfs_buf_item.h"
21 #include "xfs_errortag.h"
22 #include "xfs_error.h"
23 #include "xfs_ag.h"
24 #include "xfs_buf_mem.h"
25 #include "xfs_notify_failure.h"
26 
27 struct kmem_cache *xfs_buf_cache;
28 
29 /*
30  * Locking orders
31  *
32  * xfs_buf_ioacct_inc:
33  * xfs_buf_ioacct_dec:
34  *	b_sema (caller holds)
35  *	  b_lock
36  *
37  * xfs_buf_stale:
38  *	b_sema (caller holds)
39  *	  b_lock
40  *	    lru_lock
41  *
42  * xfs_buf_rele:
43  *	b_lock
44  *	  lru_lock
45  *
46  * xfs_buftarg_drain_rele
47  *	lru_lock
48  *	  b_lock (trylock due to inversion)
49  *
50  * xfs_buftarg_isolate
51  *	lru_lock
52  *	  b_lock (trylock due to inversion)
53  */
54 
55 static void xfs_buf_submit(struct xfs_buf *bp);
56 static int xfs_buf_iowait(struct xfs_buf *bp);
57 
58 static inline bool xfs_buf_is_uncached(struct xfs_buf *bp)
59 {
60 	return bp->b_rhash_key == XFS_BUF_DADDR_NULL;
61 }
62 
63 static inline int
64 xfs_buf_is_vmapped(
65 	struct xfs_buf	*bp)
66 {
67 	/*
68 	 * Return true if the buffer is vmapped.
69 	 *
70 	 * b_addr is null if the buffer is not mapped, but the code is clever
71 	 * enough to know it doesn't have to map a single page, so the check has
72 	 * to be both for b_addr and bp->b_page_count > 1.
73 	 */
74 	return bp->b_addr && bp->b_page_count > 1;
75 }
76 
77 static inline int
78 xfs_buf_vmap_len(
79 	struct xfs_buf	*bp)
80 {
81 	return (bp->b_page_count * PAGE_SIZE);
82 }
83 
84 /*
85  * Bump the I/O in flight count on the buftarg if we haven't yet done so for
86  * this buffer. The count is incremented once per buffer (per hold cycle)
87  * because the corresponding decrement is deferred to buffer release. Buffers
88  * can undergo I/O multiple times in a hold-release cycle and per buffer I/O
89  * tracking adds unnecessary overhead. This is used for sychronization purposes
90  * with unmount (see xfs_buftarg_drain()), so all we really need is a count of
91  * in-flight buffers.
92  *
93  * Buffers that are never released (e.g., superblock, iclog buffers) must set
94  * the XBF_NO_IOACCT flag before I/O submission. Otherwise, the buftarg count
95  * never reaches zero and unmount hangs indefinitely.
96  */
97 static inline void
98 xfs_buf_ioacct_inc(
99 	struct xfs_buf	*bp)
100 {
101 	if (bp->b_flags & XBF_NO_IOACCT)
102 		return;
103 
104 	ASSERT(bp->b_flags & XBF_ASYNC);
105 	spin_lock(&bp->b_lock);
106 	if (!(bp->b_state & XFS_BSTATE_IN_FLIGHT)) {
107 		bp->b_state |= XFS_BSTATE_IN_FLIGHT;
108 		percpu_counter_inc(&bp->b_target->bt_io_count);
109 	}
110 	spin_unlock(&bp->b_lock);
111 }
112 
113 /*
114  * Clear the in-flight state on a buffer about to be released to the LRU or
115  * freed and unaccount from the buftarg.
116  */
117 static inline void
118 __xfs_buf_ioacct_dec(
119 	struct xfs_buf	*bp)
120 {
121 	lockdep_assert_held(&bp->b_lock);
122 
123 	if (bp->b_state & XFS_BSTATE_IN_FLIGHT) {
124 		bp->b_state &= ~XFS_BSTATE_IN_FLIGHT;
125 		percpu_counter_dec(&bp->b_target->bt_io_count);
126 	}
127 }
128 
129 /*
130  * When we mark a buffer stale, we remove the buffer from the LRU and clear the
131  * b_lru_ref count so that the buffer is freed immediately when the buffer
132  * reference count falls to zero. If the buffer is already on the LRU, we need
133  * to remove the reference that LRU holds on the buffer.
134  *
135  * This prevents build-up of stale buffers on the LRU.
136  */
137 void
138 xfs_buf_stale(
139 	struct xfs_buf	*bp)
140 {
141 	ASSERT(xfs_buf_islocked(bp));
142 
143 	bp->b_flags |= XBF_STALE;
144 
145 	/*
146 	 * Clear the delwri status so that a delwri queue walker will not
147 	 * flush this buffer to disk now that it is stale. The delwri queue has
148 	 * a reference to the buffer, so this is safe to do.
149 	 */
150 	bp->b_flags &= ~_XBF_DELWRI_Q;
151 
152 	/*
153 	 * Once the buffer is marked stale and unlocked, a subsequent lookup
154 	 * could reset b_flags. There is no guarantee that the buffer is
155 	 * unaccounted (released to LRU) before that occurs. Drop in-flight
156 	 * status now to preserve accounting consistency.
157 	 */
158 	spin_lock(&bp->b_lock);
159 	__xfs_buf_ioacct_dec(bp);
160 
161 	atomic_set(&bp->b_lru_ref, 0);
162 	if (!(bp->b_state & XFS_BSTATE_DISPOSE) &&
163 	    (list_lru_del_obj(&bp->b_target->bt_lru, &bp->b_lru)))
164 		bp->b_hold--;
165 
166 	ASSERT(bp->b_hold >= 1);
167 	spin_unlock(&bp->b_lock);
168 }
169 
170 static int
171 xfs_buf_get_maps(
172 	struct xfs_buf		*bp,
173 	int			map_count)
174 {
175 	ASSERT(bp->b_maps == NULL);
176 	bp->b_map_count = map_count;
177 
178 	if (map_count == 1) {
179 		bp->b_maps = &bp->__b_map;
180 		return 0;
181 	}
182 
183 	bp->b_maps = kzalloc(map_count * sizeof(struct xfs_buf_map),
184 			GFP_KERNEL | __GFP_NOLOCKDEP | __GFP_NOFAIL);
185 	if (!bp->b_maps)
186 		return -ENOMEM;
187 	return 0;
188 }
189 
190 static void
191 xfs_buf_free_maps(
192 	struct xfs_buf	*bp)
193 {
194 	if (bp->b_maps != &bp->__b_map) {
195 		kfree(bp->b_maps);
196 		bp->b_maps = NULL;
197 	}
198 }
199 
200 static int
201 _xfs_buf_alloc(
202 	struct xfs_buftarg	*target,
203 	struct xfs_buf_map	*map,
204 	int			nmaps,
205 	xfs_buf_flags_t		flags,
206 	struct xfs_buf		**bpp)
207 {
208 	struct xfs_buf		*bp;
209 	int			error;
210 	int			i;
211 
212 	*bpp = NULL;
213 	bp = kmem_cache_zalloc(xfs_buf_cache,
214 			GFP_KERNEL | __GFP_NOLOCKDEP | __GFP_NOFAIL);
215 
216 	/*
217 	 * We don't want certain flags to appear in b_flags unless they are
218 	 * specifically set by later operations on the buffer.
219 	 */
220 	flags &= ~(XBF_UNMAPPED | XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD);
221 
222 	/*
223 	 * A new buffer is held and locked by the owner.  This ensures that the
224 	 * buffer is owned by the caller and racing RCU lookups right after
225 	 * inserting into the hash table are safe (and will have to wait for
226 	 * the unlock to do anything non-trivial).
227 	 */
228 	bp->b_hold = 1;
229 	sema_init(&bp->b_sema, 0); /* held, no waiters */
230 
231 	spin_lock_init(&bp->b_lock);
232 	atomic_set(&bp->b_lru_ref, 1);
233 	init_completion(&bp->b_iowait);
234 	INIT_LIST_HEAD(&bp->b_lru);
235 	INIT_LIST_HEAD(&bp->b_list);
236 	INIT_LIST_HEAD(&bp->b_li_list);
237 	bp->b_target = target;
238 	bp->b_mount = target->bt_mount;
239 	bp->b_flags = flags;
240 
241 	error = xfs_buf_get_maps(bp, nmaps);
242 	if (error)  {
243 		kmem_cache_free(xfs_buf_cache, bp);
244 		return error;
245 	}
246 
247 	bp->b_rhash_key = map[0].bm_bn;
248 	bp->b_length = 0;
249 	for (i = 0; i < nmaps; i++) {
250 		bp->b_maps[i].bm_bn = map[i].bm_bn;
251 		bp->b_maps[i].bm_len = map[i].bm_len;
252 		bp->b_length += map[i].bm_len;
253 	}
254 
255 	atomic_set(&bp->b_pin_count, 0);
256 	init_waitqueue_head(&bp->b_waiters);
257 
258 	XFS_STATS_INC(bp->b_mount, xb_create);
259 	trace_xfs_buf_init(bp, _RET_IP_);
260 
261 	*bpp = bp;
262 	return 0;
263 }
264 
265 static void
266 xfs_buf_free_pages(
267 	struct xfs_buf	*bp)
268 {
269 	uint		i;
270 
271 	ASSERT(bp->b_flags & _XBF_PAGES);
272 
273 	if (xfs_buf_is_vmapped(bp))
274 		vm_unmap_ram(bp->b_addr, bp->b_page_count);
275 
276 	for (i = 0; i < bp->b_page_count; i++) {
277 		if (bp->b_pages[i])
278 			__free_page(bp->b_pages[i]);
279 	}
280 	mm_account_reclaimed_pages(bp->b_page_count);
281 
282 	if (bp->b_pages != bp->b_page_array)
283 		kfree(bp->b_pages);
284 	bp->b_pages = NULL;
285 	bp->b_flags &= ~_XBF_PAGES;
286 }
287 
288 static void
289 xfs_buf_free_callback(
290 	struct callback_head	*cb)
291 {
292 	struct xfs_buf		*bp = container_of(cb, struct xfs_buf, b_rcu);
293 
294 	xfs_buf_free_maps(bp);
295 	kmem_cache_free(xfs_buf_cache, bp);
296 }
297 
298 static void
299 xfs_buf_free(
300 	struct xfs_buf		*bp)
301 {
302 	trace_xfs_buf_free(bp, _RET_IP_);
303 
304 	ASSERT(list_empty(&bp->b_lru));
305 
306 	if (xfs_buftarg_is_mem(bp->b_target))
307 		xmbuf_unmap_page(bp);
308 	else if (bp->b_flags & _XBF_PAGES)
309 		xfs_buf_free_pages(bp);
310 	else if (bp->b_flags & _XBF_KMEM)
311 		kfree(bp->b_addr);
312 
313 	call_rcu(&bp->b_rcu, xfs_buf_free_callback);
314 }
315 
316 static int
317 xfs_buf_alloc_kmem(
318 	struct xfs_buf	*bp,
319 	xfs_buf_flags_t	flags)
320 {
321 	gfp_t		gfp_mask = GFP_KERNEL | __GFP_NOLOCKDEP | __GFP_NOFAIL;
322 	size_t		size = BBTOB(bp->b_length);
323 
324 	/* Assure zeroed buffer for non-read cases. */
325 	if (!(flags & XBF_READ))
326 		gfp_mask |= __GFP_ZERO;
327 
328 	bp->b_addr = kmalloc(size, gfp_mask);
329 	if (!bp->b_addr)
330 		return -ENOMEM;
331 
332 	if (((unsigned long)(bp->b_addr + size - 1) & PAGE_MASK) !=
333 	    ((unsigned long)bp->b_addr & PAGE_MASK)) {
334 		/* b_addr spans two pages - use alloc_page instead */
335 		kfree(bp->b_addr);
336 		bp->b_addr = NULL;
337 		return -ENOMEM;
338 	}
339 	bp->b_offset = offset_in_page(bp->b_addr);
340 	bp->b_pages = bp->b_page_array;
341 	bp->b_pages[0] = kmem_to_page(bp->b_addr);
342 	bp->b_page_count = 1;
343 	bp->b_flags |= _XBF_KMEM;
344 	return 0;
345 }
346 
347 static int
348 xfs_buf_alloc_pages(
349 	struct xfs_buf	*bp,
350 	xfs_buf_flags_t	flags)
351 {
352 	gfp_t		gfp_mask = GFP_KERNEL | __GFP_NOLOCKDEP | __GFP_NOWARN;
353 	long		filled = 0;
354 
355 	if (flags & XBF_READ_AHEAD)
356 		gfp_mask |= __GFP_NORETRY;
357 
358 	/* Make sure that we have a page list */
359 	bp->b_page_count = DIV_ROUND_UP(BBTOB(bp->b_length), PAGE_SIZE);
360 	if (bp->b_page_count <= XB_PAGES) {
361 		bp->b_pages = bp->b_page_array;
362 	} else {
363 		bp->b_pages = kzalloc(sizeof(struct page *) * bp->b_page_count,
364 					gfp_mask);
365 		if (!bp->b_pages)
366 			return -ENOMEM;
367 	}
368 	bp->b_flags |= _XBF_PAGES;
369 
370 	/* Assure zeroed buffer for non-read cases. */
371 	if (!(flags & XBF_READ))
372 		gfp_mask |= __GFP_ZERO;
373 
374 	/*
375 	 * Bulk filling of pages can take multiple calls. Not filling the entire
376 	 * array is not an allocation failure, so don't back off if we get at
377 	 * least one extra page.
378 	 */
379 	for (;;) {
380 		long	last = filled;
381 
382 		filled = alloc_pages_bulk(gfp_mask, bp->b_page_count,
383 					  bp->b_pages);
384 		if (filled == bp->b_page_count) {
385 			XFS_STATS_INC(bp->b_mount, xb_page_found);
386 			break;
387 		}
388 
389 		if (filled != last)
390 			continue;
391 
392 		if (flags & XBF_READ_AHEAD) {
393 			xfs_buf_free_pages(bp);
394 			return -ENOMEM;
395 		}
396 
397 		XFS_STATS_INC(bp->b_mount, xb_page_retries);
398 		memalloc_retry_wait(gfp_mask);
399 	}
400 	return 0;
401 }
402 
403 /*
404  *	Map buffer into kernel address-space if necessary.
405  */
406 STATIC int
407 _xfs_buf_map_pages(
408 	struct xfs_buf		*bp,
409 	xfs_buf_flags_t		flags)
410 {
411 	ASSERT(bp->b_flags & _XBF_PAGES);
412 	if (bp->b_page_count == 1) {
413 		/* A single page buffer is always mappable */
414 		bp->b_addr = page_address(bp->b_pages[0]);
415 	} else if (flags & XBF_UNMAPPED) {
416 		bp->b_addr = NULL;
417 	} else {
418 		int retried = 0;
419 		unsigned nofs_flag;
420 
421 		/*
422 		 * vm_map_ram() will allocate auxiliary structures (e.g.
423 		 * pagetables) with GFP_KERNEL, yet we often under a scoped nofs
424 		 * context here. Mixing GFP_KERNEL with GFP_NOFS allocations
425 		 * from the same call site that can be run from both above and
426 		 * below memory reclaim causes lockdep false positives. Hence we
427 		 * always need to force this allocation to nofs context because
428 		 * we can't pass __GFP_NOLOCKDEP down to auxillary structures to
429 		 * prevent false positive lockdep reports.
430 		 *
431 		 * XXX(dgc): I think dquot reclaim is the only place we can get
432 		 * to this function from memory reclaim context now. If we fix
433 		 * that like we've fixed inode reclaim to avoid writeback from
434 		 * reclaim, this nofs wrapping can go away.
435 		 */
436 		nofs_flag = memalloc_nofs_save();
437 		do {
438 			bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
439 						-1);
440 			if (bp->b_addr)
441 				break;
442 			vm_unmap_aliases();
443 		} while (retried++ <= 1);
444 		memalloc_nofs_restore(nofs_flag);
445 
446 		if (!bp->b_addr)
447 			return -ENOMEM;
448 	}
449 
450 	return 0;
451 }
452 
453 /*
454  *	Finding and Reading Buffers
455  */
456 static int
457 _xfs_buf_obj_cmp(
458 	struct rhashtable_compare_arg	*arg,
459 	const void			*obj)
460 {
461 	const struct xfs_buf_map	*map = arg->key;
462 	const struct xfs_buf		*bp = obj;
463 
464 	/*
465 	 * The key hashing in the lookup path depends on the key being the
466 	 * first element of the compare_arg, make sure to assert this.
467 	 */
468 	BUILD_BUG_ON(offsetof(struct xfs_buf_map, bm_bn) != 0);
469 
470 	if (bp->b_rhash_key != map->bm_bn)
471 		return 1;
472 
473 	if (unlikely(bp->b_length != map->bm_len)) {
474 		/*
475 		 * found a block number match. If the range doesn't
476 		 * match, the only way this is allowed is if the buffer
477 		 * in the cache is stale and the transaction that made
478 		 * it stale has not yet committed. i.e. we are
479 		 * reallocating a busy extent. Skip this buffer and
480 		 * continue searching for an exact match.
481 		 *
482 		 * Note: If we're scanning for incore buffers to stale, don't
483 		 * complain if we find non-stale buffers.
484 		 */
485 		if (!(map->bm_flags & XBM_LIVESCAN))
486 			ASSERT(bp->b_flags & XBF_STALE);
487 		return 1;
488 	}
489 	return 0;
490 }
491 
492 static const struct rhashtable_params xfs_buf_hash_params = {
493 	.min_size		= 32,	/* empty AGs have minimal footprint */
494 	.nelem_hint		= 16,
495 	.key_len		= sizeof(xfs_daddr_t),
496 	.key_offset		= offsetof(struct xfs_buf, b_rhash_key),
497 	.head_offset		= offsetof(struct xfs_buf, b_rhash_head),
498 	.automatic_shrinking	= true,
499 	.obj_cmpfn		= _xfs_buf_obj_cmp,
500 };
501 
502 int
503 xfs_buf_cache_init(
504 	struct xfs_buf_cache	*bch)
505 {
506 	return rhashtable_init(&bch->bc_hash, &xfs_buf_hash_params);
507 }
508 
509 void
510 xfs_buf_cache_destroy(
511 	struct xfs_buf_cache	*bch)
512 {
513 	rhashtable_destroy(&bch->bc_hash);
514 }
515 
516 static int
517 xfs_buf_map_verify(
518 	struct xfs_buftarg	*btp,
519 	struct xfs_buf_map	*map)
520 {
521 	xfs_daddr_t		eofs;
522 
523 	/* Check for IOs smaller than the sector size / not sector aligned */
524 	ASSERT(!(BBTOB(map->bm_len) < btp->bt_meta_sectorsize));
525 	ASSERT(!(BBTOB(map->bm_bn) & (xfs_off_t)btp->bt_meta_sectormask));
526 
527 	/*
528 	 * Corrupted block numbers can get through to here, unfortunately, so we
529 	 * have to check that the buffer falls within the filesystem bounds.
530 	 */
531 	eofs = XFS_FSB_TO_BB(btp->bt_mount, btp->bt_mount->m_sb.sb_dblocks);
532 	if (map->bm_bn < 0 || map->bm_bn >= eofs) {
533 		xfs_alert(btp->bt_mount,
534 			  "%s: daddr 0x%llx out of range, EOFS 0x%llx",
535 			  __func__, map->bm_bn, eofs);
536 		WARN_ON(1);
537 		return -EFSCORRUPTED;
538 	}
539 	return 0;
540 }
541 
542 static int
543 xfs_buf_find_lock(
544 	struct xfs_buf          *bp,
545 	xfs_buf_flags_t		flags)
546 {
547 	if (flags & XBF_TRYLOCK) {
548 		if (!xfs_buf_trylock(bp)) {
549 			XFS_STATS_INC(bp->b_mount, xb_busy_locked);
550 			return -EAGAIN;
551 		}
552 	} else {
553 		xfs_buf_lock(bp);
554 		XFS_STATS_INC(bp->b_mount, xb_get_locked_waited);
555 	}
556 
557 	/*
558 	 * if the buffer is stale, clear all the external state associated with
559 	 * it. We need to keep flags such as how we allocated the buffer memory
560 	 * intact here.
561 	 */
562 	if (bp->b_flags & XBF_STALE) {
563 		if (flags & XBF_LIVESCAN) {
564 			xfs_buf_unlock(bp);
565 			return -ENOENT;
566 		}
567 		ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
568 		bp->b_flags &= _XBF_KMEM | _XBF_PAGES;
569 		bp->b_ops = NULL;
570 	}
571 	return 0;
572 }
573 
574 static bool
575 xfs_buf_try_hold(
576 	struct xfs_buf		*bp)
577 {
578 	spin_lock(&bp->b_lock);
579 	if (bp->b_hold == 0) {
580 		spin_unlock(&bp->b_lock);
581 		return false;
582 	}
583 	bp->b_hold++;
584 	spin_unlock(&bp->b_lock);
585 	return true;
586 }
587 
588 static inline int
589 xfs_buf_lookup(
590 	struct xfs_buf_cache	*bch,
591 	struct xfs_buf_map	*map,
592 	xfs_buf_flags_t		flags,
593 	struct xfs_buf		**bpp)
594 {
595 	struct xfs_buf          *bp;
596 	int			error;
597 
598 	rcu_read_lock();
599 	bp = rhashtable_lookup(&bch->bc_hash, map, xfs_buf_hash_params);
600 	if (!bp || !xfs_buf_try_hold(bp)) {
601 		rcu_read_unlock();
602 		return -ENOENT;
603 	}
604 	rcu_read_unlock();
605 
606 	error = xfs_buf_find_lock(bp, flags);
607 	if (error) {
608 		xfs_buf_rele(bp);
609 		return error;
610 	}
611 
612 	trace_xfs_buf_find(bp, flags, _RET_IP_);
613 	*bpp = bp;
614 	return 0;
615 }
616 
617 /*
618  * Insert the new_bp into the hash table. This consumes the perag reference
619  * taken for the lookup regardless of the result of the insert.
620  */
621 static int
622 xfs_buf_find_insert(
623 	struct xfs_buftarg	*btp,
624 	struct xfs_buf_cache	*bch,
625 	struct xfs_perag	*pag,
626 	struct xfs_buf_map	*cmap,
627 	struct xfs_buf_map	*map,
628 	int			nmaps,
629 	xfs_buf_flags_t		flags,
630 	struct xfs_buf		**bpp)
631 {
632 	struct xfs_buf		*new_bp;
633 	struct xfs_buf		*bp;
634 	int			error;
635 
636 	error = _xfs_buf_alloc(btp, map, nmaps, flags, &new_bp);
637 	if (error)
638 		goto out_drop_pag;
639 
640 	if (xfs_buftarg_is_mem(new_bp->b_target)) {
641 		error = xmbuf_map_page(new_bp);
642 	} else if (BBTOB(new_bp->b_length) >= PAGE_SIZE ||
643 		   xfs_buf_alloc_kmem(new_bp, flags) < 0) {
644 		/*
645 		 * For buffers that fit entirely within a single page, first
646 		 * attempt to allocate the memory from the heap to minimise
647 		 * memory usage. If we can't get heap memory for these small
648 		 * buffers, we fall back to using the page allocator.
649 		 */
650 		error = xfs_buf_alloc_pages(new_bp, flags);
651 	}
652 	if (error)
653 		goto out_free_buf;
654 
655 	/* The new buffer keeps the perag reference until it is freed. */
656 	new_bp->b_pag = pag;
657 
658 	rcu_read_lock();
659 	bp = rhashtable_lookup_get_insert_fast(&bch->bc_hash,
660 			&new_bp->b_rhash_head, xfs_buf_hash_params);
661 	if (IS_ERR(bp)) {
662 		rcu_read_unlock();
663 		error = PTR_ERR(bp);
664 		goto out_free_buf;
665 	}
666 	if (bp && xfs_buf_try_hold(bp)) {
667 		/* found an existing buffer */
668 		rcu_read_unlock();
669 		error = xfs_buf_find_lock(bp, flags);
670 		if (error)
671 			xfs_buf_rele(bp);
672 		else
673 			*bpp = bp;
674 		goto out_free_buf;
675 	}
676 	rcu_read_unlock();
677 
678 	*bpp = new_bp;
679 	return 0;
680 
681 out_free_buf:
682 	xfs_buf_free(new_bp);
683 out_drop_pag:
684 	if (pag)
685 		xfs_perag_put(pag);
686 	return error;
687 }
688 
689 static inline struct xfs_perag *
690 xfs_buftarg_get_pag(
691 	struct xfs_buftarg		*btp,
692 	const struct xfs_buf_map	*map)
693 {
694 	struct xfs_mount		*mp = btp->bt_mount;
695 
696 	if (xfs_buftarg_is_mem(btp))
697 		return NULL;
698 	return xfs_perag_get(mp, xfs_daddr_to_agno(mp, map->bm_bn));
699 }
700 
701 static inline struct xfs_buf_cache *
702 xfs_buftarg_buf_cache(
703 	struct xfs_buftarg		*btp,
704 	struct xfs_perag		*pag)
705 {
706 	if (pag)
707 		return &pag->pag_bcache;
708 	return btp->bt_cache;
709 }
710 
711 /*
712  * Assembles a buffer covering the specified range. The code is optimised for
713  * cache hits, as metadata intensive workloads will see 3 orders of magnitude
714  * more hits than misses.
715  */
716 int
717 xfs_buf_get_map(
718 	struct xfs_buftarg	*btp,
719 	struct xfs_buf_map	*map,
720 	int			nmaps,
721 	xfs_buf_flags_t		flags,
722 	struct xfs_buf		**bpp)
723 {
724 	struct xfs_buf_cache	*bch;
725 	struct xfs_perag	*pag;
726 	struct xfs_buf		*bp = NULL;
727 	struct xfs_buf_map	cmap = { .bm_bn = map[0].bm_bn };
728 	int			error;
729 	int			i;
730 
731 	if (flags & XBF_LIVESCAN)
732 		cmap.bm_flags |= XBM_LIVESCAN;
733 	for (i = 0; i < nmaps; i++)
734 		cmap.bm_len += map[i].bm_len;
735 
736 	error = xfs_buf_map_verify(btp, &cmap);
737 	if (error)
738 		return error;
739 
740 	pag = xfs_buftarg_get_pag(btp, &cmap);
741 	bch = xfs_buftarg_buf_cache(btp, pag);
742 
743 	error = xfs_buf_lookup(bch, &cmap, flags, &bp);
744 	if (error && error != -ENOENT)
745 		goto out_put_perag;
746 
747 	/* cache hits always outnumber misses by at least 10:1 */
748 	if (unlikely(!bp)) {
749 		XFS_STATS_INC(btp->bt_mount, xb_miss_locked);
750 
751 		if (flags & XBF_INCORE)
752 			goto out_put_perag;
753 
754 		/* xfs_buf_find_insert() consumes the perag reference. */
755 		error = xfs_buf_find_insert(btp, bch, pag, &cmap, map, nmaps,
756 				flags, &bp);
757 		if (error)
758 			return error;
759 	} else {
760 		XFS_STATS_INC(btp->bt_mount, xb_get_locked);
761 		if (pag)
762 			xfs_perag_put(pag);
763 	}
764 
765 	/* We do not hold a perag reference anymore. */
766 	if (!bp->b_addr) {
767 		error = _xfs_buf_map_pages(bp, flags);
768 		if (unlikely(error)) {
769 			xfs_warn_ratelimited(btp->bt_mount,
770 				"%s: failed to map %u pages", __func__,
771 				bp->b_page_count);
772 			xfs_buf_relse(bp);
773 			return error;
774 		}
775 	}
776 
777 	/*
778 	 * Clear b_error if this is a lookup from a caller that doesn't expect
779 	 * valid data to be found in the buffer.
780 	 */
781 	if (!(flags & XBF_READ))
782 		xfs_buf_ioerror(bp, 0);
783 
784 	XFS_STATS_INC(btp->bt_mount, xb_get);
785 	trace_xfs_buf_get(bp, flags, _RET_IP_);
786 	*bpp = bp;
787 	return 0;
788 
789 out_put_perag:
790 	if (pag)
791 		xfs_perag_put(pag);
792 	return error;
793 }
794 
795 int
796 _xfs_buf_read(
797 	struct xfs_buf		*bp,
798 	xfs_buf_flags_t		flags)
799 {
800 	ASSERT(!(flags & XBF_WRITE));
801 	ASSERT(bp->b_maps[0].bm_bn != XFS_BUF_DADDR_NULL);
802 
803 	bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD | XBF_DONE);
804 	bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD);
805 
806 	xfs_buf_submit(bp);
807 	if (flags & XBF_ASYNC)
808 		return 0;
809 	return xfs_buf_iowait(bp);
810 }
811 
812 /*
813  * Reverify a buffer found in cache without an attached ->b_ops.
814  *
815  * If the caller passed an ops structure and the buffer doesn't have ops
816  * assigned, set the ops and use it to verify the contents. If verification
817  * fails, clear XBF_DONE. We assume the buffer has no recorded errors and is
818  * already in XBF_DONE state on entry.
819  *
820  * Under normal operations, every in-core buffer is verified on read I/O
821  * completion. There are two scenarios that can lead to in-core buffers without
822  * an assigned ->b_ops. The first is during log recovery of buffers on a V4
823  * filesystem, though these buffers are purged at the end of recovery. The
824  * other is online repair, which intentionally reads with a NULL buffer ops to
825  * run several verifiers across an in-core buffer in order to establish buffer
826  * type.  If repair can't establish that, the buffer will be left in memory
827  * with NULL buffer ops.
828  */
829 int
830 xfs_buf_reverify(
831 	struct xfs_buf		*bp,
832 	const struct xfs_buf_ops *ops)
833 {
834 	ASSERT(bp->b_flags & XBF_DONE);
835 	ASSERT(bp->b_error == 0);
836 
837 	if (!ops || bp->b_ops)
838 		return 0;
839 
840 	bp->b_ops = ops;
841 	bp->b_ops->verify_read(bp);
842 	if (bp->b_error)
843 		bp->b_flags &= ~XBF_DONE;
844 	return bp->b_error;
845 }
846 
847 int
848 xfs_buf_read_map(
849 	struct xfs_buftarg	*target,
850 	struct xfs_buf_map	*map,
851 	int			nmaps,
852 	xfs_buf_flags_t		flags,
853 	struct xfs_buf		**bpp,
854 	const struct xfs_buf_ops *ops,
855 	xfs_failaddr_t		fa)
856 {
857 	struct xfs_buf		*bp;
858 	int			error;
859 
860 	flags |= XBF_READ;
861 	*bpp = NULL;
862 
863 	error = xfs_buf_get_map(target, map, nmaps, flags, &bp);
864 	if (error)
865 		return error;
866 
867 	trace_xfs_buf_read(bp, flags, _RET_IP_);
868 
869 	if (!(bp->b_flags & XBF_DONE)) {
870 		/* Initiate the buffer read and wait. */
871 		XFS_STATS_INC(target->bt_mount, xb_get_read);
872 		bp->b_ops = ops;
873 		error = _xfs_buf_read(bp, flags);
874 
875 		/* Readahead iodone already dropped the buffer, so exit. */
876 		if (flags & XBF_ASYNC)
877 			return 0;
878 	} else {
879 		/* Buffer already read; all we need to do is check it. */
880 		error = xfs_buf_reverify(bp, ops);
881 
882 		/* Readahead already finished; drop the buffer and exit. */
883 		if (flags & XBF_ASYNC) {
884 			xfs_buf_relse(bp);
885 			return 0;
886 		}
887 
888 		/* We do not want read in the flags */
889 		bp->b_flags &= ~XBF_READ;
890 		ASSERT(bp->b_ops != NULL || ops == NULL);
891 	}
892 
893 	/*
894 	 * If we've had a read error, then the contents of the buffer are
895 	 * invalid and should not be used. To ensure that a followup read tries
896 	 * to pull the buffer from disk again, we clear the XBF_DONE flag and
897 	 * mark the buffer stale. This ensures that anyone who has a current
898 	 * reference to the buffer will interpret it's contents correctly and
899 	 * future cache lookups will also treat it as an empty, uninitialised
900 	 * buffer.
901 	 */
902 	if (error) {
903 		/*
904 		 * Check against log shutdown for error reporting because
905 		 * metadata writeback may require a read first and we need to
906 		 * report errors in metadata writeback until the log is shut
907 		 * down. High level transaction read functions already check
908 		 * against mount shutdown, anyway, so we only need to be
909 		 * concerned about low level IO interactions here.
910 		 */
911 		if (!xlog_is_shutdown(target->bt_mount->m_log))
912 			xfs_buf_ioerror_alert(bp, fa);
913 
914 		bp->b_flags &= ~XBF_DONE;
915 		xfs_buf_stale(bp);
916 		xfs_buf_relse(bp);
917 
918 		/* bad CRC means corrupted metadata */
919 		if (error == -EFSBADCRC)
920 			error = -EFSCORRUPTED;
921 		return error;
922 	}
923 
924 	*bpp = bp;
925 	return 0;
926 }
927 
928 /*
929  *	If we are not low on memory then do the readahead in a deadlock
930  *	safe manner.
931  */
932 void
933 xfs_buf_readahead_map(
934 	struct xfs_buftarg	*target,
935 	struct xfs_buf_map	*map,
936 	int			nmaps,
937 	const struct xfs_buf_ops *ops)
938 {
939 	struct xfs_buf		*bp;
940 
941 	/*
942 	 * Currently we don't have a good means or justification for performing
943 	 * xmbuf_map_page asynchronously, so we don't do readahead.
944 	 */
945 	if (xfs_buftarg_is_mem(target))
946 		return;
947 
948 	xfs_buf_read_map(target, map, nmaps,
949 		     XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD, &bp, ops,
950 		     __this_address);
951 }
952 
953 /*
954  * Read an uncached buffer from disk. Allocates and returns a locked
955  * buffer containing the disk contents or nothing. Uncached buffers always have
956  * a cache index of XFS_BUF_DADDR_NULL so we can easily determine if the buffer
957  * is cached or uncached during fault diagnosis.
958  */
959 int
960 xfs_buf_read_uncached(
961 	struct xfs_buftarg	*target,
962 	xfs_daddr_t		daddr,
963 	size_t			numblks,
964 	xfs_buf_flags_t		flags,
965 	struct xfs_buf		**bpp,
966 	const struct xfs_buf_ops *ops)
967 {
968 	struct xfs_buf		*bp;
969 	int			error;
970 
971 	*bpp = NULL;
972 
973 	error = xfs_buf_get_uncached(target, numblks, flags, &bp);
974 	if (error)
975 		return error;
976 
977 	/* set up the buffer for a read IO */
978 	ASSERT(bp->b_map_count == 1);
979 	bp->b_rhash_key = XFS_BUF_DADDR_NULL;
980 	bp->b_maps[0].bm_bn = daddr;
981 	bp->b_flags |= XBF_READ;
982 	bp->b_ops = ops;
983 
984 	xfs_buf_submit(bp);
985 	error = xfs_buf_iowait(bp);
986 	if (error) {
987 		xfs_buf_relse(bp);
988 		return error;
989 	}
990 
991 	*bpp = bp;
992 	return 0;
993 }
994 
995 int
996 xfs_buf_get_uncached(
997 	struct xfs_buftarg	*target,
998 	size_t			numblks,
999 	xfs_buf_flags_t		flags,
1000 	struct xfs_buf		**bpp)
1001 {
1002 	int			error;
1003 	struct xfs_buf		*bp;
1004 	DEFINE_SINGLE_BUF_MAP(map, XFS_BUF_DADDR_NULL, numblks);
1005 
1006 	*bpp = NULL;
1007 
1008 	/* flags might contain irrelevant bits, pass only what we care about */
1009 	error = _xfs_buf_alloc(target, &map, 1, flags & XBF_NO_IOACCT, &bp);
1010 	if (error)
1011 		return error;
1012 
1013 	if (xfs_buftarg_is_mem(bp->b_target))
1014 		error = xmbuf_map_page(bp);
1015 	else
1016 		error = xfs_buf_alloc_pages(bp, flags);
1017 	if (error)
1018 		goto fail_free_buf;
1019 
1020 	error = _xfs_buf_map_pages(bp, 0);
1021 	if (unlikely(error)) {
1022 		xfs_warn(target->bt_mount,
1023 			"%s: failed to map pages", __func__);
1024 		goto fail_free_buf;
1025 	}
1026 
1027 	trace_xfs_buf_get_uncached(bp, _RET_IP_);
1028 	*bpp = bp;
1029 	return 0;
1030 
1031 fail_free_buf:
1032 	xfs_buf_free(bp);
1033 	return error;
1034 }
1035 
1036 /*
1037  *	Increment reference count on buffer, to hold the buffer concurrently
1038  *	with another thread which may release (free) the buffer asynchronously.
1039  *	Must hold the buffer already to call this function.
1040  */
1041 void
1042 xfs_buf_hold(
1043 	struct xfs_buf		*bp)
1044 {
1045 	trace_xfs_buf_hold(bp, _RET_IP_);
1046 
1047 	spin_lock(&bp->b_lock);
1048 	bp->b_hold++;
1049 	spin_unlock(&bp->b_lock);
1050 }
1051 
1052 static void
1053 xfs_buf_rele_uncached(
1054 	struct xfs_buf		*bp)
1055 {
1056 	ASSERT(list_empty(&bp->b_lru));
1057 
1058 	spin_lock(&bp->b_lock);
1059 	if (--bp->b_hold) {
1060 		spin_unlock(&bp->b_lock);
1061 		return;
1062 	}
1063 	__xfs_buf_ioacct_dec(bp);
1064 	spin_unlock(&bp->b_lock);
1065 	xfs_buf_free(bp);
1066 }
1067 
1068 static void
1069 xfs_buf_rele_cached(
1070 	struct xfs_buf		*bp)
1071 {
1072 	struct xfs_buftarg	*btp = bp->b_target;
1073 	struct xfs_perag	*pag = bp->b_pag;
1074 	struct xfs_buf_cache	*bch = xfs_buftarg_buf_cache(btp, pag);
1075 	bool			freebuf = false;
1076 
1077 	trace_xfs_buf_rele(bp, _RET_IP_);
1078 
1079 	spin_lock(&bp->b_lock);
1080 	ASSERT(bp->b_hold >= 1);
1081 	if (bp->b_hold > 1) {
1082 		/*
1083 		 * Drop the in-flight state if the buffer is already on the LRU
1084 		 * and it holds the only reference. This is racy because we
1085 		 * haven't acquired the pag lock, but the use of _XBF_IN_FLIGHT
1086 		 * ensures the decrement occurs only once per-buf.
1087 		 */
1088 		if (--bp->b_hold == 1 && !list_empty(&bp->b_lru))
1089 			__xfs_buf_ioacct_dec(bp);
1090 		goto out_unlock;
1091 	}
1092 
1093 	/* we are asked to drop the last reference */
1094 	__xfs_buf_ioacct_dec(bp);
1095 	if (!(bp->b_flags & XBF_STALE) && atomic_read(&bp->b_lru_ref)) {
1096 		/*
1097 		 * If the buffer is added to the LRU, keep the reference to the
1098 		 * buffer for the LRU and clear the (now stale) dispose list
1099 		 * state flag, else drop the reference.
1100 		 */
1101 		if (list_lru_add_obj(&btp->bt_lru, &bp->b_lru))
1102 			bp->b_state &= ~XFS_BSTATE_DISPOSE;
1103 		else
1104 			bp->b_hold--;
1105 	} else {
1106 		bp->b_hold--;
1107 		/*
1108 		 * most of the time buffers will already be removed from the
1109 		 * LRU, so optimise that case by checking for the
1110 		 * XFS_BSTATE_DISPOSE flag indicating the last list the buffer
1111 		 * was on was the disposal list
1112 		 */
1113 		if (!(bp->b_state & XFS_BSTATE_DISPOSE)) {
1114 			list_lru_del_obj(&btp->bt_lru, &bp->b_lru);
1115 		} else {
1116 			ASSERT(list_empty(&bp->b_lru));
1117 		}
1118 
1119 		ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1120 		rhashtable_remove_fast(&bch->bc_hash, &bp->b_rhash_head,
1121 				xfs_buf_hash_params);
1122 		if (pag)
1123 			xfs_perag_put(pag);
1124 		freebuf = true;
1125 	}
1126 
1127 out_unlock:
1128 	spin_unlock(&bp->b_lock);
1129 
1130 	if (freebuf)
1131 		xfs_buf_free(bp);
1132 }
1133 
1134 /*
1135  * Release a hold on the specified buffer.
1136  */
1137 void
1138 xfs_buf_rele(
1139 	struct xfs_buf		*bp)
1140 {
1141 	trace_xfs_buf_rele(bp, _RET_IP_);
1142 	if (xfs_buf_is_uncached(bp))
1143 		xfs_buf_rele_uncached(bp);
1144 	else
1145 		xfs_buf_rele_cached(bp);
1146 }
1147 
1148 /*
1149  *	Lock a buffer object, if it is not already locked.
1150  *
1151  *	If we come across a stale, pinned, locked buffer, we know that we are
1152  *	being asked to lock a buffer that has been reallocated. Because it is
1153  *	pinned, we know that the log has not been pushed to disk and hence it
1154  *	will still be locked.  Rather than continuing to have trylock attempts
1155  *	fail until someone else pushes the log, push it ourselves before
1156  *	returning.  This means that the xfsaild will not get stuck trying
1157  *	to push on stale inode buffers.
1158  */
1159 int
1160 xfs_buf_trylock(
1161 	struct xfs_buf		*bp)
1162 {
1163 	int			locked;
1164 
1165 	locked = down_trylock(&bp->b_sema) == 0;
1166 	if (locked)
1167 		trace_xfs_buf_trylock(bp, _RET_IP_);
1168 	else
1169 		trace_xfs_buf_trylock_fail(bp, _RET_IP_);
1170 	return locked;
1171 }
1172 
1173 /*
1174  *	Lock a buffer object.
1175  *
1176  *	If we come across a stale, pinned, locked buffer, we know that we
1177  *	are being asked to lock a buffer that has been reallocated. Because
1178  *	it is pinned, we know that the log has not been pushed to disk and
1179  *	hence it will still be locked. Rather than sleeping until someone
1180  *	else pushes the log, push it ourselves before trying to get the lock.
1181  */
1182 void
1183 xfs_buf_lock(
1184 	struct xfs_buf		*bp)
1185 {
1186 	trace_xfs_buf_lock(bp, _RET_IP_);
1187 
1188 	if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
1189 		xfs_log_force(bp->b_mount, 0);
1190 	down(&bp->b_sema);
1191 
1192 	trace_xfs_buf_lock_done(bp, _RET_IP_);
1193 }
1194 
1195 void
1196 xfs_buf_unlock(
1197 	struct xfs_buf		*bp)
1198 {
1199 	ASSERT(xfs_buf_islocked(bp));
1200 
1201 	up(&bp->b_sema);
1202 	trace_xfs_buf_unlock(bp, _RET_IP_);
1203 }
1204 
1205 STATIC void
1206 xfs_buf_wait_unpin(
1207 	struct xfs_buf		*bp)
1208 {
1209 	DECLARE_WAITQUEUE	(wait, current);
1210 
1211 	if (atomic_read(&bp->b_pin_count) == 0)
1212 		return;
1213 
1214 	add_wait_queue(&bp->b_waiters, &wait);
1215 	for (;;) {
1216 		set_current_state(TASK_UNINTERRUPTIBLE);
1217 		if (atomic_read(&bp->b_pin_count) == 0)
1218 			break;
1219 		io_schedule();
1220 	}
1221 	remove_wait_queue(&bp->b_waiters, &wait);
1222 	set_current_state(TASK_RUNNING);
1223 }
1224 
1225 static void
1226 xfs_buf_ioerror_alert_ratelimited(
1227 	struct xfs_buf		*bp)
1228 {
1229 	static unsigned long	lasttime;
1230 	static struct xfs_buftarg *lasttarg;
1231 
1232 	if (bp->b_target != lasttarg ||
1233 	    time_after(jiffies, (lasttime + 5*HZ))) {
1234 		lasttime = jiffies;
1235 		xfs_buf_ioerror_alert(bp, __this_address);
1236 	}
1237 	lasttarg = bp->b_target;
1238 }
1239 
1240 /*
1241  * Account for this latest trip around the retry handler, and decide if
1242  * we've failed enough times to constitute a permanent failure.
1243  */
1244 static bool
1245 xfs_buf_ioerror_permanent(
1246 	struct xfs_buf		*bp,
1247 	struct xfs_error_cfg	*cfg)
1248 {
1249 	struct xfs_mount	*mp = bp->b_mount;
1250 
1251 	if (cfg->max_retries != XFS_ERR_RETRY_FOREVER &&
1252 	    ++bp->b_retries > cfg->max_retries)
1253 		return true;
1254 	if (cfg->retry_timeout != XFS_ERR_RETRY_FOREVER &&
1255 	    time_after(jiffies, cfg->retry_timeout + bp->b_first_retry_time))
1256 		return true;
1257 
1258 	/* At unmount we may treat errors differently */
1259 	if (xfs_is_unmounting(mp) && mp->m_fail_unmount)
1260 		return true;
1261 
1262 	return false;
1263 }
1264 
1265 /*
1266  * On a sync write or shutdown we just want to stale the buffer and let the
1267  * caller handle the error in bp->b_error appropriately.
1268  *
1269  * If the write was asynchronous then no one will be looking for the error.  If
1270  * this is the first failure of this type, clear the error state and write the
1271  * buffer out again. This means we always retry an async write failure at least
1272  * once, but we also need to set the buffer up to behave correctly now for
1273  * repeated failures.
1274  *
1275  * If we get repeated async write failures, then we take action according to the
1276  * error configuration we have been set up to use.
1277  *
1278  * Returns true if this function took care of error handling and the caller must
1279  * not touch the buffer again.  Return false if the caller should proceed with
1280  * normal I/O completion handling.
1281  */
1282 static bool
1283 xfs_buf_ioend_handle_error(
1284 	struct xfs_buf		*bp)
1285 {
1286 	struct xfs_mount	*mp = bp->b_mount;
1287 	struct xfs_error_cfg	*cfg;
1288 	struct xfs_log_item	*lip;
1289 
1290 	/*
1291 	 * If we've already shutdown the journal because of I/O errors, there's
1292 	 * no point in giving this a retry.
1293 	 */
1294 	if (xlog_is_shutdown(mp->m_log))
1295 		goto out_stale;
1296 
1297 	xfs_buf_ioerror_alert_ratelimited(bp);
1298 
1299 	/*
1300 	 * We're not going to bother about retrying this during recovery.
1301 	 * One strike!
1302 	 */
1303 	if (bp->b_flags & _XBF_LOGRECOVERY) {
1304 		xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1305 		return false;
1306 	}
1307 
1308 	/*
1309 	 * Synchronous writes will have callers process the error.
1310 	 */
1311 	if (!(bp->b_flags & XBF_ASYNC))
1312 		goto out_stale;
1313 
1314 	trace_xfs_buf_iodone_async(bp, _RET_IP_);
1315 
1316 	cfg = xfs_error_get_cfg(mp, XFS_ERR_METADATA, bp->b_error);
1317 	if (bp->b_last_error != bp->b_error ||
1318 	    !(bp->b_flags & (XBF_STALE | XBF_WRITE_FAIL))) {
1319 		bp->b_last_error = bp->b_error;
1320 		if (cfg->retry_timeout != XFS_ERR_RETRY_FOREVER &&
1321 		    !bp->b_first_retry_time)
1322 			bp->b_first_retry_time = jiffies;
1323 		goto resubmit;
1324 	}
1325 
1326 	/*
1327 	 * Permanent error - we need to trigger a shutdown if we haven't already
1328 	 * to indicate that inconsistency will result from this action.
1329 	 */
1330 	if (xfs_buf_ioerror_permanent(bp, cfg)) {
1331 		xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1332 		goto out_stale;
1333 	}
1334 
1335 	/* Still considered a transient error. Caller will schedule retries. */
1336 	list_for_each_entry(lip, &bp->b_li_list, li_bio_list) {
1337 		set_bit(XFS_LI_FAILED, &lip->li_flags);
1338 		clear_bit(XFS_LI_FLUSHING, &lip->li_flags);
1339 	}
1340 
1341 	xfs_buf_ioerror(bp, 0);
1342 	xfs_buf_relse(bp);
1343 	return true;
1344 
1345 resubmit:
1346 	xfs_buf_ioerror(bp, 0);
1347 	bp->b_flags |= (XBF_DONE | XBF_WRITE_FAIL);
1348 	xfs_buf_submit(bp);
1349 	return true;
1350 out_stale:
1351 	xfs_buf_stale(bp);
1352 	bp->b_flags |= XBF_DONE;
1353 	bp->b_flags &= ~XBF_WRITE;
1354 	trace_xfs_buf_error_relse(bp, _RET_IP_);
1355 	return false;
1356 }
1357 
1358 static void
1359 xfs_buf_ioend(
1360 	struct xfs_buf	*bp)
1361 {
1362 	trace_xfs_buf_iodone(bp, _RET_IP_);
1363 
1364 	if (bp->b_flags & XBF_READ) {
1365 		if (!bp->b_error && xfs_buf_is_vmapped(bp))
1366 			invalidate_kernel_vmap_range(bp->b_addr,
1367 					xfs_buf_vmap_len(bp));
1368 		if (!bp->b_error && bp->b_ops)
1369 			bp->b_ops->verify_read(bp);
1370 		if (!bp->b_error)
1371 			bp->b_flags |= XBF_DONE;
1372 	} else {
1373 		if (!bp->b_error) {
1374 			bp->b_flags &= ~XBF_WRITE_FAIL;
1375 			bp->b_flags |= XBF_DONE;
1376 		}
1377 
1378 		if (unlikely(bp->b_error) && xfs_buf_ioend_handle_error(bp))
1379 			return;
1380 
1381 		/* clear the retry state */
1382 		bp->b_last_error = 0;
1383 		bp->b_retries = 0;
1384 		bp->b_first_retry_time = 0;
1385 
1386 		/*
1387 		 * Note that for things like remote attribute buffers, there may
1388 		 * not be a buffer log item here, so processing the buffer log
1389 		 * item must remain optional.
1390 		 */
1391 		if (bp->b_log_item)
1392 			xfs_buf_item_done(bp);
1393 
1394 		if (bp->b_iodone)
1395 			bp->b_iodone(bp);
1396 	}
1397 
1398 	bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD |
1399 			 _XBF_LOGRECOVERY);
1400 
1401 	if (bp->b_flags & XBF_ASYNC)
1402 		xfs_buf_relse(bp);
1403 	else
1404 		complete(&bp->b_iowait);
1405 }
1406 
1407 static void
1408 xfs_buf_ioend_work(
1409 	struct work_struct	*work)
1410 {
1411 	struct xfs_buf		*bp =
1412 		container_of(work, struct xfs_buf, b_ioend_work);
1413 
1414 	xfs_buf_ioend(bp);
1415 }
1416 
1417 static void
1418 xfs_buf_ioend_async(
1419 	struct xfs_buf	*bp)
1420 {
1421 	INIT_WORK(&bp->b_ioend_work, xfs_buf_ioend_work);
1422 	queue_work(bp->b_mount->m_buf_workqueue, &bp->b_ioend_work);
1423 }
1424 
1425 void
1426 __xfs_buf_ioerror(
1427 	struct xfs_buf		*bp,
1428 	int			error,
1429 	xfs_failaddr_t		failaddr)
1430 {
1431 	ASSERT(error <= 0 && error >= -1000);
1432 	bp->b_error = error;
1433 	trace_xfs_buf_ioerror(bp, error, failaddr);
1434 }
1435 
1436 void
1437 xfs_buf_ioerror_alert(
1438 	struct xfs_buf		*bp,
1439 	xfs_failaddr_t		func)
1440 {
1441 	xfs_buf_alert_ratelimited(bp, "XFS: metadata IO error",
1442 		"metadata I/O error in \"%pS\" at daddr 0x%llx len %d error %d",
1443 				  func, (uint64_t)xfs_buf_daddr(bp),
1444 				  bp->b_length, -bp->b_error);
1445 }
1446 
1447 /*
1448  * To simulate an I/O failure, the buffer must be locked and held with at least
1449  * three references. The LRU reference is dropped by the stale call. The buf
1450  * item reference is dropped via ioend processing. The third reference is owned
1451  * by the caller and is dropped on I/O completion if the buffer is XBF_ASYNC.
1452  */
1453 void
1454 xfs_buf_ioend_fail(
1455 	struct xfs_buf	*bp)
1456 {
1457 	bp->b_flags &= ~XBF_DONE;
1458 	xfs_buf_stale(bp);
1459 	xfs_buf_ioerror(bp, -EIO);
1460 	xfs_buf_ioend(bp);
1461 }
1462 
1463 int
1464 xfs_bwrite(
1465 	struct xfs_buf		*bp)
1466 {
1467 	int			error;
1468 
1469 	ASSERT(xfs_buf_islocked(bp));
1470 
1471 	bp->b_flags |= XBF_WRITE;
1472 	bp->b_flags &= ~(XBF_ASYNC | XBF_READ | _XBF_DELWRI_Q |
1473 			 XBF_DONE);
1474 
1475 	xfs_buf_submit(bp);
1476 	error = xfs_buf_iowait(bp);
1477 	if (error)
1478 		xfs_force_shutdown(bp->b_mount, SHUTDOWN_META_IO_ERROR);
1479 	return error;
1480 }
1481 
1482 static void
1483 xfs_buf_bio_end_io(
1484 	struct bio		*bio)
1485 {
1486 	struct xfs_buf		*bp = bio->bi_private;
1487 
1488 	if (bio->bi_status)
1489 		xfs_buf_ioerror(bp, blk_status_to_errno(bio->bi_status));
1490 	else if ((bp->b_flags & XBF_WRITE) && (bp->b_flags & XBF_ASYNC) &&
1491 		 XFS_TEST_ERROR(false, bp->b_mount, XFS_ERRTAG_BUF_IOERROR))
1492 		xfs_buf_ioerror(bp, -EIO);
1493 
1494 	xfs_buf_ioend_async(bp);
1495 	bio_put(bio);
1496 }
1497 
1498 static inline blk_opf_t
1499 xfs_buf_bio_op(
1500 	struct xfs_buf		*bp)
1501 {
1502 	blk_opf_t		op;
1503 
1504 	if (bp->b_flags & XBF_WRITE) {
1505 		op = REQ_OP_WRITE;
1506 	} else {
1507 		op = REQ_OP_READ;
1508 		if (bp->b_flags & XBF_READ_AHEAD)
1509 			op |= REQ_RAHEAD;
1510 	}
1511 
1512 	return op | REQ_META;
1513 }
1514 
1515 static void
1516 xfs_buf_submit_bio(
1517 	struct xfs_buf		*bp)
1518 {
1519 	unsigned int		size = BBTOB(bp->b_length);
1520 	unsigned int		map = 0, p;
1521 	struct blk_plug		plug;
1522 	struct bio		*bio;
1523 
1524 	bio = bio_alloc(bp->b_target->bt_bdev, bp->b_page_count,
1525 			xfs_buf_bio_op(bp), GFP_NOIO);
1526 	bio->bi_private = bp;
1527 	bio->bi_end_io = xfs_buf_bio_end_io;
1528 
1529 	if (bp->b_flags & _XBF_KMEM) {
1530 		__bio_add_page(bio, virt_to_page(bp->b_addr), size,
1531 				bp->b_offset);
1532 	} else {
1533 		for (p = 0; p < bp->b_page_count; p++)
1534 			__bio_add_page(bio, bp->b_pages[p], PAGE_SIZE, 0);
1535 		bio->bi_iter.bi_size = size; /* limit to the actual size used */
1536 
1537 		if (xfs_buf_is_vmapped(bp))
1538 			flush_kernel_vmap_range(bp->b_addr,
1539 					xfs_buf_vmap_len(bp));
1540 	}
1541 
1542 	/*
1543 	 * If there is more than one map segment, split out a new bio for each
1544 	 * map except of the last one.  The last map is handled by the
1545 	 * remainder of the original bio outside the loop.
1546 	 */
1547 	blk_start_plug(&plug);
1548 	for (map = 0; map < bp->b_map_count - 1; map++) {
1549 		struct bio	*split;
1550 
1551 		split = bio_split(bio, bp->b_maps[map].bm_len, GFP_NOFS,
1552 				&fs_bio_set);
1553 		split->bi_iter.bi_sector = bp->b_maps[map].bm_bn;
1554 		bio_chain(split, bio);
1555 		submit_bio(split);
1556 	}
1557 	bio->bi_iter.bi_sector = bp->b_maps[map].bm_bn;
1558 	submit_bio(bio);
1559 	blk_finish_plug(&plug);
1560 }
1561 
1562 /*
1563  * Wait for I/O completion of a sync buffer and return the I/O error code.
1564  */
1565 static int
1566 xfs_buf_iowait(
1567 	struct xfs_buf	*bp)
1568 {
1569 	ASSERT(!(bp->b_flags & XBF_ASYNC));
1570 
1571 	trace_xfs_buf_iowait(bp, _RET_IP_);
1572 	wait_for_completion(&bp->b_iowait);
1573 	trace_xfs_buf_iowait_done(bp, _RET_IP_);
1574 
1575 	return bp->b_error;
1576 }
1577 
1578 /*
1579  * Run the write verifier callback function if it exists. If this fails, mark
1580  * the buffer with an error and do not dispatch the I/O.
1581  */
1582 static bool
1583 xfs_buf_verify_write(
1584 	struct xfs_buf		*bp)
1585 {
1586 	if (bp->b_ops) {
1587 		bp->b_ops->verify_write(bp);
1588 		if (bp->b_error)
1589 			return false;
1590 	} else if (bp->b_rhash_key != XFS_BUF_DADDR_NULL) {
1591 		/*
1592 		 * Non-crc filesystems don't attach verifiers during log
1593 		 * recovery, so don't warn for such filesystems.
1594 		 */
1595 		if (xfs_has_crc(bp->b_mount)) {
1596 			xfs_warn(bp->b_mount,
1597 				"%s: no buf ops on daddr 0x%llx len %d",
1598 				__func__, xfs_buf_daddr(bp),
1599 				bp->b_length);
1600 			xfs_hex_dump(bp->b_addr, XFS_CORRUPTION_DUMP_LEN);
1601 			dump_stack();
1602 		}
1603 	}
1604 
1605 	return true;
1606 }
1607 
1608 /*
1609  * Buffer I/O submission path, read or write. Asynchronous submission transfers
1610  * the buffer lock ownership and the current reference to the IO. It is not
1611  * safe to reference the buffer after a call to this function unless the caller
1612  * holds an additional reference itself.
1613  */
1614 static void
1615 xfs_buf_submit(
1616 	struct xfs_buf	*bp)
1617 {
1618 	trace_xfs_buf_submit(bp, _RET_IP_);
1619 
1620 	ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1621 
1622 	/*
1623 	 * On log shutdown we stale and complete the buffer immediately. We can
1624 	 * be called to read the superblock before the log has been set up, so
1625 	 * be careful checking the log state.
1626 	 *
1627 	 * Checking the mount shutdown state here can result in the log tail
1628 	 * moving inappropriately on disk as the log may not yet be shut down.
1629 	 * i.e. failing this buffer on mount shutdown can remove it from the AIL
1630 	 * and move the tail of the log forwards without having written this
1631 	 * buffer to disk. This corrupts the log tail state in memory, and
1632 	 * because the log may not be shut down yet, it can then be propagated
1633 	 * to disk before the log is shutdown. Hence we check log shutdown
1634 	 * state here rather than mount state to avoid corrupting the log tail
1635 	 * on shutdown.
1636 	 */
1637 	if (bp->b_mount->m_log && xlog_is_shutdown(bp->b_mount->m_log)) {
1638 		xfs_buf_ioend_fail(bp);
1639 		return;
1640 	}
1641 
1642 	if (bp->b_flags & XBF_WRITE)
1643 		xfs_buf_wait_unpin(bp);
1644 
1645 	/*
1646 	 * Make sure we capture only current IO errors rather than stale errors
1647 	 * left over from previous use of the buffer (e.g. failed readahead).
1648 	 */
1649 	bp->b_error = 0;
1650 
1651 	if (bp->b_flags & XBF_ASYNC)
1652 		xfs_buf_ioacct_inc(bp);
1653 
1654 	if ((bp->b_flags & XBF_WRITE) && !xfs_buf_verify_write(bp)) {
1655 		xfs_force_shutdown(bp->b_mount, SHUTDOWN_CORRUPT_INCORE);
1656 		xfs_buf_ioend(bp);
1657 		return;
1658 	}
1659 
1660 	/* In-memory targets are directly mapped, no I/O required. */
1661 	if (xfs_buftarg_is_mem(bp->b_target)) {
1662 		xfs_buf_ioend(bp);
1663 		return;
1664 	}
1665 
1666 	xfs_buf_submit_bio(bp);
1667 }
1668 
1669 void *
1670 xfs_buf_offset(
1671 	struct xfs_buf		*bp,
1672 	size_t			offset)
1673 {
1674 	struct page		*page;
1675 
1676 	if (bp->b_addr)
1677 		return bp->b_addr + offset;
1678 
1679 	page = bp->b_pages[offset >> PAGE_SHIFT];
1680 	return page_address(page) + (offset & (PAGE_SIZE-1));
1681 }
1682 
1683 void
1684 xfs_buf_zero(
1685 	struct xfs_buf		*bp,
1686 	size_t			boff,
1687 	size_t			bsize)
1688 {
1689 	size_t			bend;
1690 
1691 	bend = boff + bsize;
1692 	while (boff < bend) {
1693 		struct page	*page;
1694 		int		page_index, page_offset, csize;
1695 
1696 		page_index = (boff + bp->b_offset) >> PAGE_SHIFT;
1697 		page_offset = (boff + bp->b_offset) & ~PAGE_MASK;
1698 		page = bp->b_pages[page_index];
1699 		csize = min_t(size_t, PAGE_SIZE - page_offset,
1700 				      BBTOB(bp->b_length) - boff);
1701 
1702 		ASSERT((csize + page_offset) <= PAGE_SIZE);
1703 
1704 		memset(page_address(page) + page_offset, 0, csize);
1705 
1706 		boff += csize;
1707 	}
1708 }
1709 
1710 /*
1711  * Log a message about and stale a buffer that a caller has decided is corrupt.
1712  *
1713  * This function should be called for the kinds of metadata corruption that
1714  * cannot be detect from a verifier, such as incorrect inter-block relationship
1715  * data.  Do /not/ call this function from a verifier function.
1716  *
1717  * The buffer must be XBF_DONE prior to the call.  Afterwards, the buffer will
1718  * be marked stale, but b_error will not be set.  The caller is responsible for
1719  * releasing the buffer or fixing it.
1720  */
1721 void
1722 __xfs_buf_mark_corrupt(
1723 	struct xfs_buf		*bp,
1724 	xfs_failaddr_t		fa)
1725 {
1726 	ASSERT(bp->b_flags & XBF_DONE);
1727 
1728 	xfs_buf_corruption_error(bp, fa);
1729 	xfs_buf_stale(bp);
1730 }
1731 
1732 /*
1733  *	Handling of buffer targets (buftargs).
1734  */
1735 
1736 /*
1737  * Wait for any bufs with callbacks that have been submitted but have not yet
1738  * returned. These buffers will have an elevated hold count, so wait on those
1739  * while freeing all the buffers only held by the LRU.
1740  */
1741 static enum lru_status
1742 xfs_buftarg_drain_rele(
1743 	struct list_head	*item,
1744 	struct list_lru_one	*lru,
1745 	void			*arg)
1746 
1747 {
1748 	struct xfs_buf		*bp = container_of(item, struct xfs_buf, b_lru);
1749 	struct list_head	*dispose = arg;
1750 
1751 	if (!spin_trylock(&bp->b_lock))
1752 		return LRU_SKIP;
1753 	if (bp->b_hold > 1) {
1754 		/* need to wait, so skip it this pass */
1755 		spin_unlock(&bp->b_lock);
1756 		trace_xfs_buf_drain_buftarg(bp, _RET_IP_);
1757 		return LRU_SKIP;
1758 	}
1759 
1760 	/*
1761 	 * clear the LRU reference count so the buffer doesn't get
1762 	 * ignored in xfs_buf_rele().
1763 	 */
1764 	atomic_set(&bp->b_lru_ref, 0);
1765 	bp->b_state |= XFS_BSTATE_DISPOSE;
1766 	list_lru_isolate_move(lru, item, dispose);
1767 	spin_unlock(&bp->b_lock);
1768 	return LRU_REMOVED;
1769 }
1770 
1771 /*
1772  * Wait for outstanding I/O on the buftarg to complete.
1773  */
1774 void
1775 xfs_buftarg_wait(
1776 	struct xfs_buftarg	*btp)
1777 {
1778 	/*
1779 	 * First wait on the buftarg I/O count for all in-flight buffers to be
1780 	 * released. This is critical as new buffers do not make the LRU until
1781 	 * they are released.
1782 	 *
1783 	 * Next, flush the buffer workqueue to ensure all completion processing
1784 	 * has finished. Just waiting on buffer locks is not sufficient for
1785 	 * async IO as the reference count held over IO is not released until
1786 	 * after the buffer lock is dropped. Hence we need to ensure here that
1787 	 * all reference counts have been dropped before we start walking the
1788 	 * LRU list.
1789 	 */
1790 	while (percpu_counter_sum(&btp->bt_io_count))
1791 		delay(100);
1792 	flush_workqueue(btp->bt_mount->m_buf_workqueue);
1793 }
1794 
1795 void
1796 xfs_buftarg_drain(
1797 	struct xfs_buftarg	*btp)
1798 {
1799 	LIST_HEAD(dispose);
1800 	int			loop = 0;
1801 	bool			write_fail = false;
1802 
1803 	xfs_buftarg_wait(btp);
1804 
1805 	/* loop until there is nothing left on the lru list. */
1806 	while (list_lru_count(&btp->bt_lru)) {
1807 		list_lru_walk(&btp->bt_lru, xfs_buftarg_drain_rele,
1808 			      &dispose, LONG_MAX);
1809 
1810 		while (!list_empty(&dispose)) {
1811 			struct xfs_buf *bp;
1812 			bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1813 			list_del_init(&bp->b_lru);
1814 			if (bp->b_flags & XBF_WRITE_FAIL) {
1815 				write_fail = true;
1816 				xfs_buf_alert_ratelimited(bp,
1817 					"XFS: Corruption Alert",
1818 "Corruption Alert: Buffer at daddr 0x%llx had permanent write failures!",
1819 					(long long)xfs_buf_daddr(bp));
1820 			}
1821 			xfs_buf_rele(bp);
1822 		}
1823 		if (loop++ != 0)
1824 			delay(100);
1825 	}
1826 
1827 	/*
1828 	 * If one or more failed buffers were freed, that means dirty metadata
1829 	 * was thrown away. This should only ever happen after I/O completion
1830 	 * handling has elevated I/O error(s) to permanent failures and shuts
1831 	 * down the journal.
1832 	 */
1833 	if (write_fail) {
1834 		ASSERT(xlog_is_shutdown(btp->bt_mount->m_log));
1835 		xfs_alert(btp->bt_mount,
1836 	      "Please run xfs_repair to determine the extent of the problem.");
1837 	}
1838 }
1839 
1840 static enum lru_status
1841 xfs_buftarg_isolate(
1842 	struct list_head	*item,
1843 	struct list_lru_one	*lru,
1844 	void			*arg)
1845 {
1846 	struct xfs_buf		*bp = container_of(item, struct xfs_buf, b_lru);
1847 	struct list_head	*dispose = arg;
1848 
1849 	/*
1850 	 * we are inverting the lru lock/bp->b_lock here, so use a trylock.
1851 	 * If we fail to get the lock, just skip it.
1852 	 */
1853 	if (!spin_trylock(&bp->b_lock))
1854 		return LRU_SKIP;
1855 	/*
1856 	 * Decrement the b_lru_ref count unless the value is already
1857 	 * zero. If the value is already zero, we need to reclaim the
1858 	 * buffer, otherwise it gets another trip through the LRU.
1859 	 */
1860 	if (atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
1861 		spin_unlock(&bp->b_lock);
1862 		return LRU_ROTATE;
1863 	}
1864 
1865 	bp->b_state |= XFS_BSTATE_DISPOSE;
1866 	list_lru_isolate_move(lru, item, dispose);
1867 	spin_unlock(&bp->b_lock);
1868 	return LRU_REMOVED;
1869 }
1870 
1871 static unsigned long
1872 xfs_buftarg_shrink_scan(
1873 	struct shrinker		*shrink,
1874 	struct shrink_control	*sc)
1875 {
1876 	struct xfs_buftarg	*btp = shrink->private_data;
1877 	LIST_HEAD(dispose);
1878 	unsigned long		freed;
1879 
1880 	freed = list_lru_shrink_walk(&btp->bt_lru, sc,
1881 				     xfs_buftarg_isolate, &dispose);
1882 
1883 	while (!list_empty(&dispose)) {
1884 		struct xfs_buf *bp;
1885 		bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1886 		list_del_init(&bp->b_lru);
1887 		xfs_buf_rele(bp);
1888 	}
1889 
1890 	return freed;
1891 }
1892 
1893 static unsigned long
1894 xfs_buftarg_shrink_count(
1895 	struct shrinker		*shrink,
1896 	struct shrink_control	*sc)
1897 {
1898 	struct xfs_buftarg	*btp = shrink->private_data;
1899 	return list_lru_shrink_count(&btp->bt_lru, sc);
1900 }
1901 
1902 void
1903 xfs_destroy_buftarg(
1904 	struct xfs_buftarg	*btp)
1905 {
1906 	shrinker_free(btp->bt_shrinker);
1907 	ASSERT(percpu_counter_sum(&btp->bt_io_count) == 0);
1908 	percpu_counter_destroy(&btp->bt_io_count);
1909 	list_lru_destroy(&btp->bt_lru);
1910 }
1911 
1912 void
1913 xfs_free_buftarg(
1914 	struct xfs_buftarg	*btp)
1915 {
1916 	xfs_destroy_buftarg(btp);
1917 	fs_put_dax(btp->bt_daxdev, btp->bt_mount);
1918 	/* the main block device is closed by kill_block_super */
1919 	if (btp->bt_bdev != btp->bt_mount->m_super->s_bdev)
1920 		bdev_fput(btp->bt_bdev_file);
1921 	kfree(btp);
1922 }
1923 
1924 int
1925 xfs_setsize_buftarg(
1926 	struct xfs_buftarg	*btp,
1927 	unsigned int		sectorsize)
1928 {
1929 	/* Set up metadata sector size info */
1930 	btp->bt_meta_sectorsize = sectorsize;
1931 	btp->bt_meta_sectormask = sectorsize - 1;
1932 
1933 	if (set_blocksize(btp->bt_bdev_file, sectorsize)) {
1934 		xfs_warn(btp->bt_mount,
1935 			"Cannot set_blocksize to %u on device %pg",
1936 			sectorsize, btp->bt_bdev);
1937 		return -EINVAL;
1938 	}
1939 
1940 	return 0;
1941 }
1942 
1943 int
1944 xfs_init_buftarg(
1945 	struct xfs_buftarg		*btp,
1946 	size_t				logical_sectorsize,
1947 	const char			*descr)
1948 {
1949 	/* Set up device logical sector size mask */
1950 	btp->bt_logical_sectorsize = logical_sectorsize;
1951 	btp->bt_logical_sectormask = logical_sectorsize - 1;
1952 
1953 	/*
1954 	 * Buffer IO error rate limiting. Limit it to no more than 10 messages
1955 	 * per 30 seconds so as to not spam logs too much on repeated errors.
1956 	 */
1957 	ratelimit_state_init(&btp->bt_ioerror_rl, 30 * HZ,
1958 			     DEFAULT_RATELIMIT_BURST);
1959 
1960 	if (list_lru_init(&btp->bt_lru))
1961 		return -ENOMEM;
1962 	if (percpu_counter_init(&btp->bt_io_count, 0, GFP_KERNEL))
1963 		goto out_destroy_lru;
1964 
1965 	btp->bt_shrinker =
1966 		shrinker_alloc(SHRINKER_NUMA_AWARE, "xfs-buf:%s", descr);
1967 	if (!btp->bt_shrinker)
1968 		goto out_destroy_io_count;
1969 	btp->bt_shrinker->count_objects = xfs_buftarg_shrink_count;
1970 	btp->bt_shrinker->scan_objects = xfs_buftarg_shrink_scan;
1971 	btp->bt_shrinker->private_data = btp;
1972 	shrinker_register(btp->bt_shrinker);
1973 	return 0;
1974 
1975 out_destroy_io_count:
1976 	percpu_counter_destroy(&btp->bt_io_count);
1977 out_destroy_lru:
1978 	list_lru_destroy(&btp->bt_lru);
1979 	return -ENOMEM;
1980 }
1981 
1982 struct xfs_buftarg *
1983 xfs_alloc_buftarg(
1984 	struct xfs_mount	*mp,
1985 	struct file		*bdev_file)
1986 {
1987 	struct xfs_buftarg	*btp;
1988 	const struct dax_holder_operations *ops = NULL;
1989 
1990 #if defined(CONFIG_FS_DAX) && defined(CONFIG_MEMORY_FAILURE)
1991 	ops = &xfs_dax_holder_operations;
1992 #endif
1993 	btp = kzalloc(sizeof(*btp), GFP_KERNEL | __GFP_NOFAIL);
1994 
1995 	btp->bt_mount = mp;
1996 	btp->bt_bdev_file = bdev_file;
1997 	btp->bt_bdev = file_bdev(bdev_file);
1998 	btp->bt_dev = btp->bt_bdev->bd_dev;
1999 	btp->bt_daxdev = fs_dax_get_by_bdev(btp->bt_bdev, &btp->bt_dax_part_off,
2000 					    mp, ops);
2001 
2002 	if (bdev_can_atomic_write(btp->bt_bdev)) {
2003 		btp->bt_bdev_awu_min = bdev_atomic_write_unit_min_bytes(
2004 						btp->bt_bdev);
2005 		btp->bt_bdev_awu_max = bdev_atomic_write_unit_max_bytes(
2006 						btp->bt_bdev);
2007 	}
2008 
2009 	/*
2010 	 * When allocating the buftargs we have not yet read the super block and
2011 	 * thus don't know the file system sector size yet.
2012 	 */
2013 	if (xfs_setsize_buftarg(btp, bdev_logical_block_size(btp->bt_bdev)))
2014 		goto error_free;
2015 	if (xfs_init_buftarg(btp, bdev_logical_block_size(btp->bt_bdev),
2016 			mp->m_super->s_id))
2017 		goto error_free;
2018 
2019 	return btp;
2020 
2021 error_free:
2022 	kfree(btp);
2023 	return NULL;
2024 }
2025 
2026 static inline void
2027 xfs_buf_list_del(
2028 	struct xfs_buf		*bp)
2029 {
2030 	list_del_init(&bp->b_list);
2031 	wake_up_var(&bp->b_list);
2032 }
2033 
2034 /*
2035  * Cancel a delayed write list.
2036  *
2037  * Remove each buffer from the list, clear the delwri queue flag and drop the
2038  * associated buffer reference.
2039  */
2040 void
2041 xfs_buf_delwri_cancel(
2042 	struct list_head	*list)
2043 {
2044 	struct xfs_buf		*bp;
2045 
2046 	while (!list_empty(list)) {
2047 		bp = list_first_entry(list, struct xfs_buf, b_list);
2048 
2049 		xfs_buf_lock(bp);
2050 		bp->b_flags &= ~_XBF_DELWRI_Q;
2051 		xfs_buf_list_del(bp);
2052 		xfs_buf_relse(bp);
2053 	}
2054 }
2055 
2056 /*
2057  * Add a buffer to the delayed write list.
2058  *
2059  * This queues a buffer for writeout if it hasn't already been.  Note that
2060  * neither this routine nor the buffer list submission functions perform
2061  * any internal synchronization.  It is expected that the lists are thread-local
2062  * to the callers.
2063  *
2064  * Returns true if we queued up the buffer, or false if it already had
2065  * been on the buffer list.
2066  */
2067 bool
2068 xfs_buf_delwri_queue(
2069 	struct xfs_buf		*bp,
2070 	struct list_head	*list)
2071 {
2072 	ASSERT(xfs_buf_islocked(bp));
2073 	ASSERT(!(bp->b_flags & XBF_READ));
2074 
2075 	/*
2076 	 * If the buffer is already marked delwri it already is queued up
2077 	 * by someone else for imediate writeout.  Just ignore it in that
2078 	 * case.
2079 	 */
2080 	if (bp->b_flags & _XBF_DELWRI_Q) {
2081 		trace_xfs_buf_delwri_queued(bp, _RET_IP_);
2082 		return false;
2083 	}
2084 
2085 	trace_xfs_buf_delwri_queue(bp, _RET_IP_);
2086 
2087 	/*
2088 	 * If a buffer gets written out synchronously or marked stale while it
2089 	 * is on a delwri list we lazily remove it. To do this, the other party
2090 	 * clears the  _XBF_DELWRI_Q flag but otherwise leaves the buffer alone.
2091 	 * It remains referenced and on the list.  In a rare corner case it
2092 	 * might get readded to a delwri list after the synchronous writeout, in
2093 	 * which case we need just need to re-add the flag here.
2094 	 */
2095 	bp->b_flags |= _XBF_DELWRI_Q;
2096 	if (list_empty(&bp->b_list)) {
2097 		xfs_buf_hold(bp);
2098 		list_add_tail(&bp->b_list, list);
2099 	}
2100 
2101 	return true;
2102 }
2103 
2104 /*
2105  * Queue a buffer to this delwri list as part of a data integrity operation.
2106  * If the buffer is on any other delwri list, we'll wait for that to clear
2107  * so that the caller can submit the buffer for IO and wait for the result.
2108  * Callers must ensure the buffer is not already on the list.
2109  */
2110 void
2111 xfs_buf_delwri_queue_here(
2112 	struct xfs_buf		*bp,
2113 	struct list_head	*buffer_list)
2114 {
2115 	/*
2116 	 * We need this buffer to end up on the /caller's/ delwri list, not any
2117 	 * old list.  This can happen if the buffer is marked stale (which
2118 	 * clears DELWRI_Q) after the AIL queues the buffer to its list but
2119 	 * before the AIL has a chance to submit the list.
2120 	 */
2121 	while (!list_empty(&bp->b_list)) {
2122 		xfs_buf_unlock(bp);
2123 		wait_var_event(&bp->b_list, list_empty(&bp->b_list));
2124 		xfs_buf_lock(bp);
2125 	}
2126 
2127 	ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
2128 
2129 	xfs_buf_delwri_queue(bp, buffer_list);
2130 }
2131 
2132 /*
2133  * Compare function is more complex than it needs to be because
2134  * the return value is only 32 bits and we are doing comparisons
2135  * on 64 bit values
2136  */
2137 static int
2138 xfs_buf_cmp(
2139 	void			*priv,
2140 	const struct list_head	*a,
2141 	const struct list_head	*b)
2142 {
2143 	struct xfs_buf	*ap = container_of(a, struct xfs_buf, b_list);
2144 	struct xfs_buf	*bp = container_of(b, struct xfs_buf, b_list);
2145 	xfs_daddr_t		diff;
2146 
2147 	diff = ap->b_maps[0].bm_bn - bp->b_maps[0].bm_bn;
2148 	if (diff < 0)
2149 		return -1;
2150 	if (diff > 0)
2151 		return 1;
2152 	return 0;
2153 }
2154 
2155 static bool
2156 xfs_buf_delwri_submit_prep(
2157 	struct xfs_buf		*bp)
2158 {
2159 	/*
2160 	 * Someone else might have written the buffer synchronously or marked it
2161 	 * stale in the meantime.  In that case only the _XBF_DELWRI_Q flag got
2162 	 * cleared, and we have to drop the reference and remove it from the
2163 	 * list here.
2164 	 */
2165 	if (!(bp->b_flags & _XBF_DELWRI_Q)) {
2166 		xfs_buf_list_del(bp);
2167 		xfs_buf_relse(bp);
2168 		return false;
2169 	}
2170 
2171 	trace_xfs_buf_delwri_split(bp, _RET_IP_);
2172 	bp->b_flags &= ~_XBF_DELWRI_Q;
2173 	bp->b_flags |= XBF_WRITE;
2174 	return true;
2175 }
2176 
2177 /*
2178  * Write out a buffer list asynchronously.
2179  *
2180  * This will take the @buffer_list, write all non-locked and non-pinned buffers
2181  * out and not wait for I/O completion on any of the buffers.  This interface
2182  * is only safely useable for callers that can track I/O completion by higher
2183  * level means, e.g. AIL pushing as the @buffer_list is consumed in this
2184  * function.
2185  *
2186  * Note: this function will skip buffers it would block on, and in doing so
2187  * leaves them on @buffer_list so they can be retried on a later pass. As such,
2188  * it is up to the caller to ensure that the buffer list is fully submitted or
2189  * cancelled appropriately when they are finished with the list. Failure to
2190  * cancel or resubmit the list until it is empty will result in leaked buffers
2191  * at unmount time.
2192  */
2193 int
2194 xfs_buf_delwri_submit_nowait(
2195 	struct list_head	*buffer_list)
2196 {
2197 	struct xfs_buf		*bp, *n;
2198 	int			pinned = 0;
2199 	struct blk_plug		plug;
2200 
2201 	list_sort(NULL, buffer_list, xfs_buf_cmp);
2202 
2203 	blk_start_plug(&plug);
2204 	list_for_each_entry_safe(bp, n, buffer_list, b_list) {
2205 		if (!xfs_buf_trylock(bp))
2206 			continue;
2207 		if (xfs_buf_ispinned(bp)) {
2208 			xfs_buf_unlock(bp);
2209 			pinned++;
2210 			continue;
2211 		}
2212 		if (!xfs_buf_delwri_submit_prep(bp))
2213 			continue;
2214 		bp->b_flags |= XBF_ASYNC;
2215 		xfs_buf_list_del(bp);
2216 		xfs_buf_submit(bp);
2217 	}
2218 	blk_finish_plug(&plug);
2219 
2220 	return pinned;
2221 }
2222 
2223 /*
2224  * Write out a buffer list synchronously.
2225  *
2226  * This will take the @buffer_list, write all buffers out and wait for I/O
2227  * completion on all of the buffers. @buffer_list is consumed by the function,
2228  * so callers must have some other way of tracking buffers if they require such
2229  * functionality.
2230  */
2231 int
2232 xfs_buf_delwri_submit(
2233 	struct list_head	*buffer_list)
2234 {
2235 	LIST_HEAD		(wait_list);
2236 	int			error = 0, error2;
2237 	struct xfs_buf		*bp, *n;
2238 	struct blk_plug		plug;
2239 
2240 	list_sort(NULL, buffer_list, xfs_buf_cmp);
2241 
2242 	blk_start_plug(&plug);
2243 	list_for_each_entry_safe(bp, n, buffer_list, b_list) {
2244 		xfs_buf_lock(bp);
2245 		if (!xfs_buf_delwri_submit_prep(bp))
2246 			continue;
2247 		bp->b_flags &= ~XBF_ASYNC;
2248 		list_move_tail(&bp->b_list, &wait_list);
2249 		xfs_buf_submit(bp);
2250 	}
2251 	blk_finish_plug(&plug);
2252 
2253 	/* Wait for IO to complete. */
2254 	while (!list_empty(&wait_list)) {
2255 		bp = list_first_entry(&wait_list, struct xfs_buf, b_list);
2256 
2257 		xfs_buf_list_del(bp);
2258 
2259 		/*
2260 		 * Wait on the locked buffer, check for errors and unlock and
2261 		 * release the delwri queue reference.
2262 		 */
2263 		error2 = xfs_buf_iowait(bp);
2264 		xfs_buf_relse(bp);
2265 		if (!error)
2266 			error = error2;
2267 	}
2268 
2269 	return error;
2270 }
2271 
2272 /*
2273  * Push a single buffer on a delwri queue.
2274  *
2275  * The purpose of this function is to submit a single buffer of a delwri queue
2276  * and return with the buffer still on the original queue.
2277  *
2278  * The buffer locking and queue management logic between _delwri_pushbuf() and
2279  * _delwri_queue() guarantee that the buffer cannot be queued to another list
2280  * before returning.
2281  */
2282 int
2283 xfs_buf_delwri_pushbuf(
2284 	struct xfs_buf		*bp,
2285 	struct list_head	*buffer_list)
2286 {
2287 	int			error;
2288 
2289 	ASSERT(bp->b_flags & _XBF_DELWRI_Q);
2290 
2291 	trace_xfs_buf_delwri_pushbuf(bp, _RET_IP_);
2292 
2293 	xfs_buf_lock(bp);
2294 	bp->b_flags &= ~(_XBF_DELWRI_Q | XBF_ASYNC);
2295 	bp->b_flags |= XBF_WRITE;
2296 	xfs_buf_submit(bp);
2297 
2298 	/*
2299 	 * The buffer is now locked, under I/O but still on the original delwri
2300 	 * queue. Wait for I/O completion, restore the DELWRI_Q flag and
2301 	 * return with the buffer unlocked and still on the original queue.
2302 	 */
2303 	error = xfs_buf_iowait(bp);
2304 	bp->b_flags |= _XBF_DELWRI_Q;
2305 	xfs_buf_unlock(bp);
2306 
2307 	return error;
2308 }
2309 
2310 void xfs_buf_set_ref(struct xfs_buf *bp, int lru_ref)
2311 {
2312 	/*
2313 	 * Set the lru reference count to 0 based on the error injection tag.
2314 	 * This allows userspace to disrupt buffer caching for debug/testing
2315 	 * purposes.
2316 	 */
2317 	if (XFS_TEST_ERROR(false, bp->b_mount, XFS_ERRTAG_BUF_LRU_REF))
2318 		lru_ref = 0;
2319 
2320 	atomic_set(&bp->b_lru_ref, lru_ref);
2321 }
2322 
2323 /*
2324  * Verify an on-disk magic value against the magic value specified in the
2325  * verifier structure. The verifier magic is in disk byte order so the caller is
2326  * expected to pass the value directly from disk.
2327  */
2328 bool
2329 xfs_verify_magic(
2330 	struct xfs_buf		*bp,
2331 	__be32			dmagic)
2332 {
2333 	struct xfs_mount	*mp = bp->b_mount;
2334 	int			idx;
2335 
2336 	idx = xfs_has_crc(mp);
2337 	if (WARN_ON(!bp->b_ops || !bp->b_ops->magic[idx]))
2338 		return false;
2339 	return dmagic == bp->b_ops->magic[idx];
2340 }
2341 /*
2342  * Verify an on-disk magic value against the magic value specified in the
2343  * verifier structure. The verifier magic is in disk byte order so the caller is
2344  * expected to pass the value directly from disk.
2345  */
2346 bool
2347 xfs_verify_magic16(
2348 	struct xfs_buf		*bp,
2349 	__be16			dmagic)
2350 {
2351 	struct xfs_mount	*mp = bp->b_mount;
2352 	int			idx;
2353 
2354 	idx = xfs_has_crc(mp);
2355 	if (WARN_ON(!bp->b_ops || !bp->b_ops->magic16[idx]))
2356 		return false;
2357 	return dmagic == bp->b_ops->magic16[idx];
2358 }
2359