xref: /linux/fs/xfs/xfs_buf.c (revision bb5b94f5bbe75470912b70fb08880fc5273aa62d)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include <linux/backing-dev.h>
8 
9 #include "xfs_shared.h"
10 #include "xfs_format.h"
11 #include "xfs_log_format.h"
12 #include "xfs_trans_resv.h"
13 #include "xfs_mount.h"
14 #include "xfs_trace.h"
15 #include "xfs_log.h"
16 #include "xfs_log_recover.h"
17 #include "xfs_trans.h"
18 #include "xfs_buf_item.h"
19 #include "xfs_errortag.h"
20 #include "xfs_error.h"
21 #include "xfs_ag.h"
22 
23 static kmem_zone_t *xfs_buf_zone;
24 
25 /*
26  * Locking orders
27  *
28  * xfs_buf_ioacct_inc:
29  * xfs_buf_ioacct_dec:
30  *	b_sema (caller holds)
31  *	  b_lock
32  *
33  * xfs_buf_stale:
34  *	b_sema (caller holds)
35  *	  b_lock
36  *	    lru_lock
37  *
38  * xfs_buf_rele:
39  *	b_lock
40  *	  pag_buf_lock
41  *	    lru_lock
42  *
43  * xfs_buftarg_drain_rele
44  *	lru_lock
45  *	  b_lock (trylock due to inversion)
46  *
47  * xfs_buftarg_isolate
48  *	lru_lock
49  *	  b_lock (trylock due to inversion)
50  */
51 
52 static int __xfs_buf_submit(struct xfs_buf *bp, bool wait);
53 
54 static inline int
55 xfs_buf_submit(
56 	struct xfs_buf		*bp)
57 {
58 	return __xfs_buf_submit(bp, !(bp->b_flags & XBF_ASYNC));
59 }
60 
61 static inline int
62 xfs_buf_is_vmapped(
63 	struct xfs_buf	*bp)
64 {
65 	/*
66 	 * Return true if the buffer is vmapped.
67 	 *
68 	 * b_addr is null if the buffer is not mapped, but the code is clever
69 	 * enough to know it doesn't have to map a single page, so the check has
70 	 * to be both for b_addr and bp->b_page_count > 1.
71 	 */
72 	return bp->b_addr && bp->b_page_count > 1;
73 }
74 
75 static inline int
76 xfs_buf_vmap_len(
77 	struct xfs_buf	*bp)
78 {
79 	return (bp->b_page_count * PAGE_SIZE);
80 }
81 
82 /*
83  * Bump the I/O in flight count on the buftarg if we haven't yet done so for
84  * this buffer. The count is incremented once per buffer (per hold cycle)
85  * because the corresponding decrement is deferred to buffer release. Buffers
86  * can undergo I/O multiple times in a hold-release cycle and per buffer I/O
87  * tracking adds unnecessary overhead. This is used for sychronization purposes
88  * with unmount (see xfs_buftarg_drain()), so all we really need is a count of
89  * in-flight buffers.
90  *
91  * Buffers that are never released (e.g., superblock, iclog buffers) must set
92  * the XBF_NO_IOACCT flag before I/O submission. Otherwise, the buftarg count
93  * never reaches zero and unmount hangs indefinitely.
94  */
95 static inline void
96 xfs_buf_ioacct_inc(
97 	struct xfs_buf	*bp)
98 {
99 	if (bp->b_flags & XBF_NO_IOACCT)
100 		return;
101 
102 	ASSERT(bp->b_flags & XBF_ASYNC);
103 	spin_lock(&bp->b_lock);
104 	if (!(bp->b_state & XFS_BSTATE_IN_FLIGHT)) {
105 		bp->b_state |= XFS_BSTATE_IN_FLIGHT;
106 		percpu_counter_inc(&bp->b_target->bt_io_count);
107 	}
108 	spin_unlock(&bp->b_lock);
109 }
110 
111 /*
112  * Clear the in-flight state on a buffer about to be released to the LRU or
113  * freed and unaccount from the buftarg.
114  */
115 static inline void
116 __xfs_buf_ioacct_dec(
117 	struct xfs_buf	*bp)
118 {
119 	lockdep_assert_held(&bp->b_lock);
120 
121 	if (bp->b_state & XFS_BSTATE_IN_FLIGHT) {
122 		bp->b_state &= ~XFS_BSTATE_IN_FLIGHT;
123 		percpu_counter_dec(&bp->b_target->bt_io_count);
124 	}
125 }
126 
127 static inline void
128 xfs_buf_ioacct_dec(
129 	struct xfs_buf	*bp)
130 {
131 	spin_lock(&bp->b_lock);
132 	__xfs_buf_ioacct_dec(bp);
133 	spin_unlock(&bp->b_lock);
134 }
135 
136 /*
137  * When we mark a buffer stale, we remove the buffer from the LRU and clear the
138  * b_lru_ref count so that the buffer is freed immediately when the buffer
139  * reference count falls to zero. If the buffer is already on the LRU, we need
140  * to remove the reference that LRU holds on the buffer.
141  *
142  * This prevents build-up of stale buffers on the LRU.
143  */
144 void
145 xfs_buf_stale(
146 	struct xfs_buf	*bp)
147 {
148 	ASSERT(xfs_buf_islocked(bp));
149 
150 	bp->b_flags |= XBF_STALE;
151 
152 	/*
153 	 * Clear the delwri status so that a delwri queue walker will not
154 	 * flush this buffer to disk now that it is stale. The delwri queue has
155 	 * a reference to the buffer, so this is safe to do.
156 	 */
157 	bp->b_flags &= ~_XBF_DELWRI_Q;
158 
159 	/*
160 	 * Once the buffer is marked stale and unlocked, a subsequent lookup
161 	 * could reset b_flags. There is no guarantee that the buffer is
162 	 * unaccounted (released to LRU) before that occurs. Drop in-flight
163 	 * status now to preserve accounting consistency.
164 	 */
165 	spin_lock(&bp->b_lock);
166 	__xfs_buf_ioacct_dec(bp);
167 
168 	atomic_set(&bp->b_lru_ref, 0);
169 	if (!(bp->b_state & XFS_BSTATE_DISPOSE) &&
170 	    (list_lru_del(&bp->b_target->bt_lru, &bp->b_lru)))
171 		atomic_dec(&bp->b_hold);
172 
173 	ASSERT(atomic_read(&bp->b_hold) >= 1);
174 	spin_unlock(&bp->b_lock);
175 }
176 
177 static int
178 xfs_buf_get_maps(
179 	struct xfs_buf		*bp,
180 	int			map_count)
181 {
182 	ASSERT(bp->b_maps == NULL);
183 	bp->b_map_count = map_count;
184 
185 	if (map_count == 1) {
186 		bp->b_maps = &bp->__b_map;
187 		return 0;
188 	}
189 
190 	bp->b_maps = kmem_zalloc(map_count * sizeof(struct xfs_buf_map),
191 				KM_NOFS);
192 	if (!bp->b_maps)
193 		return -ENOMEM;
194 	return 0;
195 }
196 
197 /*
198  *	Frees b_pages if it was allocated.
199  */
200 static void
201 xfs_buf_free_maps(
202 	struct xfs_buf	*bp)
203 {
204 	if (bp->b_maps != &bp->__b_map) {
205 		kmem_free(bp->b_maps);
206 		bp->b_maps = NULL;
207 	}
208 }
209 
210 static int
211 _xfs_buf_alloc(
212 	struct xfs_buftarg	*target,
213 	struct xfs_buf_map	*map,
214 	int			nmaps,
215 	xfs_buf_flags_t		flags,
216 	struct xfs_buf		**bpp)
217 {
218 	struct xfs_buf		*bp;
219 	int			error;
220 	int			i;
221 
222 	*bpp = NULL;
223 	bp = kmem_cache_zalloc(xfs_buf_zone, GFP_NOFS | __GFP_NOFAIL);
224 
225 	/*
226 	 * We don't want certain flags to appear in b_flags unless they are
227 	 * specifically set by later operations on the buffer.
228 	 */
229 	flags &= ~(XBF_UNMAPPED | XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD);
230 
231 	atomic_set(&bp->b_hold, 1);
232 	atomic_set(&bp->b_lru_ref, 1);
233 	init_completion(&bp->b_iowait);
234 	INIT_LIST_HEAD(&bp->b_lru);
235 	INIT_LIST_HEAD(&bp->b_list);
236 	INIT_LIST_HEAD(&bp->b_li_list);
237 	sema_init(&bp->b_sema, 0); /* held, no waiters */
238 	spin_lock_init(&bp->b_lock);
239 	bp->b_target = target;
240 	bp->b_mount = target->bt_mount;
241 	bp->b_flags = flags;
242 
243 	/*
244 	 * Set length and io_length to the same value initially.
245 	 * I/O routines should use io_length, which will be the same in
246 	 * most cases but may be reset (e.g. XFS recovery).
247 	 */
248 	error = xfs_buf_get_maps(bp, nmaps);
249 	if (error)  {
250 		kmem_cache_free(xfs_buf_zone, bp);
251 		return error;
252 	}
253 
254 	bp->b_bn = map[0].bm_bn;
255 	bp->b_length = 0;
256 	for (i = 0; i < nmaps; i++) {
257 		bp->b_maps[i].bm_bn = map[i].bm_bn;
258 		bp->b_maps[i].bm_len = map[i].bm_len;
259 		bp->b_length += map[i].bm_len;
260 	}
261 
262 	atomic_set(&bp->b_pin_count, 0);
263 	init_waitqueue_head(&bp->b_waiters);
264 
265 	XFS_STATS_INC(bp->b_mount, xb_create);
266 	trace_xfs_buf_init(bp, _RET_IP_);
267 
268 	*bpp = bp;
269 	return 0;
270 }
271 
272 static void
273 xfs_buf_free_pages(
274 	struct xfs_buf	*bp)
275 {
276 	uint		i;
277 
278 	ASSERT(bp->b_flags & _XBF_PAGES);
279 
280 	if (xfs_buf_is_vmapped(bp))
281 		vm_unmap_ram(bp->b_addr, bp->b_page_count);
282 
283 	for (i = 0; i < bp->b_page_count; i++) {
284 		if (bp->b_pages[i])
285 			__free_page(bp->b_pages[i]);
286 	}
287 	if (current->reclaim_state)
288 		current->reclaim_state->reclaimed_slab += bp->b_page_count;
289 
290 	if (bp->b_pages != bp->b_page_array)
291 		kmem_free(bp->b_pages);
292 	bp->b_pages = NULL;
293 	bp->b_flags &= ~_XBF_PAGES;
294 }
295 
296 static void
297 xfs_buf_free(
298 	struct xfs_buf		*bp)
299 {
300 	trace_xfs_buf_free(bp, _RET_IP_);
301 
302 	ASSERT(list_empty(&bp->b_lru));
303 
304 	if (bp->b_flags & _XBF_PAGES)
305 		xfs_buf_free_pages(bp);
306 	else if (bp->b_flags & _XBF_KMEM)
307 		kmem_free(bp->b_addr);
308 
309 	xfs_buf_free_maps(bp);
310 	kmem_cache_free(xfs_buf_zone, bp);
311 }
312 
313 static int
314 xfs_buf_alloc_kmem(
315 	struct xfs_buf	*bp,
316 	xfs_buf_flags_t	flags)
317 {
318 	int		align_mask = xfs_buftarg_dma_alignment(bp->b_target);
319 	xfs_km_flags_t	kmflag_mask = KM_NOFS;
320 	size_t		size = BBTOB(bp->b_length);
321 
322 	/* Assure zeroed buffer for non-read cases. */
323 	if (!(flags & XBF_READ))
324 		kmflag_mask |= KM_ZERO;
325 
326 	bp->b_addr = kmem_alloc_io(size, align_mask, kmflag_mask);
327 	if (!bp->b_addr)
328 		return -ENOMEM;
329 
330 	if (((unsigned long)(bp->b_addr + size - 1) & PAGE_MASK) !=
331 	    ((unsigned long)bp->b_addr & PAGE_MASK)) {
332 		/* b_addr spans two pages - use alloc_page instead */
333 		kmem_free(bp->b_addr);
334 		bp->b_addr = NULL;
335 		return -ENOMEM;
336 	}
337 	bp->b_offset = offset_in_page(bp->b_addr);
338 	bp->b_pages = bp->b_page_array;
339 	bp->b_pages[0] = kmem_to_page(bp->b_addr);
340 	bp->b_page_count = 1;
341 	bp->b_flags |= _XBF_KMEM;
342 	return 0;
343 }
344 
345 static int
346 xfs_buf_alloc_pages(
347 	struct xfs_buf	*bp,
348 	xfs_buf_flags_t	flags)
349 {
350 	gfp_t		gfp_mask = __GFP_NOWARN;
351 	long		filled = 0;
352 
353 	if (flags & XBF_READ_AHEAD)
354 		gfp_mask |= __GFP_NORETRY;
355 	else
356 		gfp_mask |= GFP_NOFS;
357 
358 	/* Make sure that we have a page list */
359 	bp->b_page_count = DIV_ROUND_UP(BBTOB(bp->b_length), PAGE_SIZE);
360 	if (bp->b_page_count <= XB_PAGES) {
361 		bp->b_pages = bp->b_page_array;
362 	} else {
363 		bp->b_pages = kzalloc(sizeof(struct page *) * bp->b_page_count,
364 					gfp_mask);
365 		if (!bp->b_pages)
366 			return -ENOMEM;
367 	}
368 	bp->b_flags |= _XBF_PAGES;
369 
370 	/* Assure zeroed buffer for non-read cases. */
371 	if (!(flags & XBF_READ))
372 		gfp_mask |= __GFP_ZERO;
373 
374 	/*
375 	 * Bulk filling of pages can take multiple calls. Not filling the entire
376 	 * array is not an allocation failure, so don't back off if we get at
377 	 * least one extra page.
378 	 */
379 	for (;;) {
380 		long	last = filled;
381 
382 		filled = alloc_pages_bulk_array(gfp_mask, bp->b_page_count,
383 						bp->b_pages);
384 		if (filled == bp->b_page_count) {
385 			XFS_STATS_INC(bp->b_mount, xb_page_found);
386 			break;
387 		}
388 
389 		if (filled != last)
390 			continue;
391 
392 		if (flags & XBF_READ_AHEAD) {
393 			xfs_buf_free_pages(bp);
394 			return -ENOMEM;
395 		}
396 
397 		XFS_STATS_INC(bp->b_mount, xb_page_retries);
398 		congestion_wait(BLK_RW_ASYNC, HZ / 50);
399 	}
400 	return 0;
401 }
402 
403 /*
404  *	Map buffer into kernel address-space if necessary.
405  */
406 STATIC int
407 _xfs_buf_map_pages(
408 	struct xfs_buf		*bp,
409 	uint			flags)
410 {
411 	ASSERT(bp->b_flags & _XBF_PAGES);
412 	if (bp->b_page_count == 1) {
413 		/* A single page buffer is always mappable */
414 		bp->b_addr = page_address(bp->b_pages[0]);
415 	} else if (flags & XBF_UNMAPPED) {
416 		bp->b_addr = NULL;
417 	} else {
418 		int retried = 0;
419 		unsigned nofs_flag;
420 
421 		/*
422 		 * vm_map_ram() will allocate auxiliary structures (e.g.
423 		 * pagetables) with GFP_KERNEL, yet we are likely to be under
424 		 * GFP_NOFS context here. Hence we need to tell memory reclaim
425 		 * that we are in such a context via PF_MEMALLOC_NOFS to prevent
426 		 * memory reclaim re-entering the filesystem here and
427 		 * potentially deadlocking.
428 		 */
429 		nofs_flag = memalloc_nofs_save();
430 		do {
431 			bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
432 						-1);
433 			if (bp->b_addr)
434 				break;
435 			vm_unmap_aliases();
436 		} while (retried++ <= 1);
437 		memalloc_nofs_restore(nofs_flag);
438 
439 		if (!bp->b_addr)
440 			return -ENOMEM;
441 	}
442 
443 	return 0;
444 }
445 
446 /*
447  *	Finding and Reading Buffers
448  */
449 static int
450 _xfs_buf_obj_cmp(
451 	struct rhashtable_compare_arg	*arg,
452 	const void			*obj)
453 {
454 	const struct xfs_buf_map	*map = arg->key;
455 	const struct xfs_buf		*bp = obj;
456 
457 	/*
458 	 * The key hashing in the lookup path depends on the key being the
459 	 * first element of the compare_arg, make sure to assert this.
460 	 */
461 	BUILD_BUG_ON(offsetof(struct xfs_buf_map, bm_bn) != 0);
462 
463 	if (bp->b_bn != map->bm_bn)
464 		return 1;
465 
466 	if (unlikely(bp->b_length != map->bm_len)) {
467 		/*
468 		 * found a block number match. If the range doesn't
469 		 * match, the only way this is allowed is if the buffer
470 		 * in the cache is stale and the transaction that made
471 		 * it stale has not yet committed. i.e. we are
472 		 * reallocating a busy extent. Skip this buffer and
473 		 * continue searching for an exact match.
474 		 */
475 		ASSERT(bp->b_flags & XBF_STALE);
476 		return 1;
477 	}
478 	return 0;
479 }
480 
481 static const struct rhashtable_params xfs_buf_hash_params = {
482 	.min_size		= 32,	/* empty AGs have minimal footprint */
483 	.nelem_hint		= 16,
484 	.key_len		= sizeof(xfs_daddr_t),
485 	.key_offset		= offsetof(struct xfs_buf, b_bn),
486 	.head_offset		= offsetof(struct xfs_buf, b_rhash_head),
487 	.automatic_shrinking	= true,
488 	.obj_cmpfn		= _xfs_buf_obj_cmp,
489 };
490 
491 int
492 xfs_buf_hash_init(
493 	struct xfs_perag	*pag)
494 {
495 	spin_lock_init(&pag->pag_buf_lock);
496 	return rhashtable_init(&pag->pag_buf_hash, &xfs_buf_hash_params);
497 }
498 
499 void
500 xfs_buf_hash_destroy(
501 	struct xfs_perag	*pag)
502 {
503 	rhashtable_destroy(&pag->pag_buf_hash);
504 }
505 
506 /*
507  * Look up a buffer in the buffer cache and return it referenced and locked
508  * in @found_bp.
509  *
510  * If @new_bp is supplied and we have a lookup miss, insert @new_bp into the
511  * cache.
512  *
513  * If XBF_TRYLOCK is set in @flags, only try to lock the buffer and return
514  * -EAGAIN if we fail to lock it.
515  *
516  * Return values are:
517  *	-EFSCORRUPTED if have been supplied with an invalid address
518  *	-EAGAIN on trylock failure
519  *	-ENOENT if we fail to find a match and @new_bp was NULL
520  *	0, with @found_bp:
521  *		- @new_bp if we inserted it into the cache
522  *		- the buffer we found and locked.
523  */
524 static int
525 xfs_buf_find(
526 	struct xfs_buftarg	*btp,
527 	struct xfs_buf_map	*map,
528 	int			nmaps,
529 	xfs_buf_flags_t		flags,
530 	struct xfs_buf		*new_bp,
531 	struct xfs_buf		**found_bp)
532 {
533 	struct xfs_perag	*pag;
534 	struct xfs_buf		*bp;
535 	struct xfs_buf_map	cmap = { .bm_bn = map[0].bm_bn };
536 	xfs_daddr_t		eofs;
537 	int			i;
538 
539 	*found_bp = NULL;
540 
541 	for (i = 0; i < nmaps; i++)
542 		cmap.bm_len += map[i].bm_len;
543 
544 	/* Check for IOs smaller than the sector size / not sector aligned */
545 	ASSERT(!(BBTOB(cmap.bm_len) < btp->bt_meta_sectorsize));
546 	ASSERT(!(BBTOB(cmap.bm_bn) & (xfs_off_t)btp->bt_meta_sectormask));
547 
548 	/*
549 	 * Corrupted block numbers can get through to here, unfortunately, so we
550 	 * have to check that the buffer falls within the filesystem bounds.
551 	 */
552 	eofs = XFS_FSB_TO_BB(btp->bt_mount, btp->bt_mount->m_sb.sb_dblocks);
553 	if (cmap.bm_bn < 0 || cmap.bm_bn >= eofs) {
554 		xfs_alert(btp->bt_mount,
555 			  "%s: daddr 0x%llx out of range, EOFS 0x%llx",
556 			  __func__, cmap.bm_bn, eofs);
557 		WARN_ON(1);
558 		return -EFSCORRUPTED;
559 	}
560 
561 	pag = xfs_perag_get(btp->bt_mount,
562 			    xfs_daddr_to_agno(btp->bt_mount, cmap.bm_bn));
563 
564 	spin_lock(&pag->pag_buf_lock);
565 	bp = rhashtable_lookup_fast(&pag->pag_buf_hash, &cmap,
566 				    xfs_buf_hash_params);
567 	if (bp) {
568 		atomic_inc(&bp->b_hold);
569 		goto found;
570 	}
571 
572 	/* No match found */
573 	if (!new_bp) {
574 		XFS_STATS_INC(btp->bt_mount, xb_miss_locked);
575 		spin_unlock(&pag->pag_buf_lock);
576 		xfs_perag_put(pag);
577 		return -ENOENT;
578 	}
579 
580 	/* the buffer keeps the perag reference until it is freed */
581 	new_bp->b_pag = pag;
582 	rhashtable_insert_fast(&pag->pag_buf_hash, &new_bp->b_rhash_head,
583 			       xfs_buf_hash_params);
584 	spin_unlock(&pag->pag_buf_lock);
585 	*found_bp = new_bp;
586 	return 0;
587 
588 found:
589 	spin_unlock(&pag->pag_buf_lock);
590 	xfs_perag_put(pag);
591 
592 	if (!xfs_buf_trylock(bp)) {
593 		if (flags & XBF_TRYLOCK) {
594 			xfs_buf_rele(bp);
595 			XFS_STATS_INC(btp->bt_mount, xb_busy_locked);
596 			return -EAGAIN;
597 		}
598 		xfs_buf_lock(bp);
599 		XFS_STATS_INC(btp->bt_mount, xb_get_locked_waited);
600 	}
601 
602 	/*
603 	 * if the buffer is stale, clear all the external state associated with
604 	 * it. We need to keep flags such as how we allocated the buffer memory
605 	 * intact here.
606 	 */
607 	if (bp->b_flags & XBF_STALE) {
608 		ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
609 		bp->b_flags &= _XBF_KMEM | _XBF_PAGES;
610 		bp->b_ops = NULL;
611 	}
612 
613 	trace_xfs_buf_find(bp, flags, _RET_IP_);
614 	XFS_STATS_INC(btp->bt_mount, xb_get_locked);
615 	*found_bp = bp;
616 	return 0;
617 }
618 
619 struct xfs_buf *
620 xfs_buf_incore(
621 	struct xfs_buftarg	*target,
622 	xfs_daddr_t		blkno,
623 	size_t			numblks,
624 	xfs_buf_flags_t		flags)
625 {
626 	struct xfs_buf		*bp;
627 	int			error;
628 	DEFINE_SINGLE_BUF_MAP(map, blkno, numblks);
629 
630 	error = xfs_buf_find(target, &map, 1, flags, NULL, &bp);
631 	if (error)
632 		return NULL;
633 	return bp;
634 }
635 
636 /*
637  * Assembles a buffer covering the specified range. The code is optimised for
638  * cache hits, as metadata intensive workloads will see 3 orders of magnitude
639  * more hits than misses.
640  */
641 int
642 xfs_buf_get_map(
643 	struct xfs_buftarg	*target,
644 	struct xfs_buf_map	*map,
645 	int			nmaps,
646 	xfs_buf_flags_t		flags,
647 	struct xfs_buf		**bpp)
648 {
649 	struct xfs_buf		*bp;
650 	struct xfs_buf		*new_bp;
651 	int			error;
652 
653 	*bpp = NULL;
654 	error = xfs_buf_find(target, map, nmaps, flags, NULL, &bp);
655 	if (!error)
656 		goto found;
657 	if (error != -ENOENT)
658 		return error;
659 
660 	error = _xfs_buf_alloc(target, map, nmaps, flags, &new_bp);
661 	if (error)
662 		return error;
663 
664 	/*
665 	 * For buffers that fit entirely within a single page, first attempt to
666 	 * allocate the memory from the heap to minimise memory usage. If we
667 	 * can't get heap memory for these small buffers, we fall back to using
668 	 * the page allocator.
669 	 */
670 	if (BBTOB(new_bp->b_length) >= PAGE_SIZE ||
671 	    xfs_buf_alloc_kmem(new_bp, flags) < 0) {
672 		error = xfs_buf_alloc_pages(new_bp, flags);
673 		if (error)
674 			goto out_free_buf;
675 	}
676 
677 	error = xfs_buf_find(target, map, nmaps, flags, new_bp, &bp);
678 	if (error)
679 		goto out_free_buf;
680 
681 	if (bp != new_bp)
682 		xfs_buf_free(new_bp);
683 
684 found:
685 	if (!bp->b_addr) {
686 		error = _xfs_buf_map_pages(bp, flags);
687 		if (unlikely(error)) {
688 			xfs_warn_ratelimited(target->bt_mount,
689 				"%s: failed to map %u pages", __func__,
690 				bp->b_page_count);
691 			xfs_buf_relse(bp);
692 			return error;
693 		}
694 	}
695 
696 	/*
697 	 * Clear b_error if this is a lookup from a caller that doesn't expect
698 	 * valid data to be found in the buffer.
699 	 */
700 	if (!(flags & XBF_READ))
701 		xfs_buf_ioerror(bp, 0);
702 
703 	XFS_STATS_INC(target->bt_mount, xb_get);
704 	trace_xfs_buf_get(bp, flags, _RET_IP_);
705 	*bpp = bp;
706 	return 0;
707 out_free_buf:
708 	xfs_buf_free(new_bp);
709 	return error;
710 }
711 
712 int
713 _xfs_buf_read(
714 	struct xfs_buf		*bp,
715 	xfs_buf_flags_t		flags)
716 {
717 	ASSERT(!(flags & XBF_WRITE));
718 	ASSERT(bp->b_maps[0].bm_bn != XFS_BUF_DADDR_NULL);
719 
720 	bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD | XBF_DONE);
721 	bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD);
722 
723 	return xfs_buf_submit(bp);
724 }
725 
726 /*
727  * Reverify a buffer found in cache without an attached ->b_ops.
728  *
729  * If the caller passed an ops structure and the buffer doesn't have ops
730  * assigned, set the ops and use it to verify the contents. If verification
731  * fails, clear XBF_DONE. We assume the buffer has no recorded errors and is
732  * already in XBF_DONE state on entry.
733  *
734  * Under normal operations, every in-core buffer is verified on read I/O
735  * completion. There are two scenarios that can lead to in-core buffers without
736  * an assigned ->b_ops. The first is during log recovery of buffers on a V4
737  * filesystem, though these buffers are purged at the end of recovery. The
738  * other is online repair, which intentionally reads with a NULL buffer ops to
739  * run several verifiers across an in-core buffer in order to establish buffer
740  * type.  If repair can't establish that, the buffer will be left in memory
741  * with NULL buffer ops.
742  */
743 int
744 xfs_buf_reverify(
745 	struct xfs_buf		*bp,
746 	const struct xfs_buf_ops *ops)
747 {
748 	ASSERT(bp->b_flags & XBF_DONE);
749 	ASSERT(bp->b_error == 0);
750 
751 	if (!ops || bp->b_ops)
752 		return 0;
753 
754 	bp->b_ops = ops;
755 	bp->b_ops->verify_read(bp);
756 	if (bp->b_error)
757 		bp->b_flags &= ~XBF_DONE;
758 	return bp->b_error;
759 }
760 
761 int
762 xfs_buf_read_map(
763 	struct xfs_buftarg	*target,
764 	struct xfs_buf_map	*map,
765 	int			nmaps,
766 	xfs_buf_flags_t		flags,
767 	struct xfs_buf		**bpp,
768 	const struct xfs_buf_ops *ops,
769 	xfs_failaddr_t		fa)
770 {
771 	struct xfs_buf		*bp;
772 	int			error;
773 
774 	flags |= XBF_READ;
775 	*bpp = NULL;
776 
777 	error = xfs_buf_get_map(target, map, nmaps, flags, &bp);
778 	if (error)
779 		return error;
780 
781 	trace_xfs_buf_read(bp, flags, _RET_IP_);
782 
783 	if (!(bp->b_flags & XBF_DONE)) {
784 		/* Initiate the buffer read and wait. */
785 		XFS_STATS_INC(target->bt_mount, xb_get_read);
786 		bp->b_ops = ops;
787 		error = _xfs_buf_read(bp, flags);
788 
789 		/* Readahead iodone already dropped the buffer, so exit. */
790 		if (flags & XBF_ASYNC)
791 			return 0;
792 	} else {
793 		/* Buffer already read; all we need to do is check it. */
794 		error = xfs_buf_reverify(bp, ops);
795 
796 		/* Readahead already finished; drop the buffer and exit. */
797 		if (flags & XBF_ASYNC) {
798 			xfs_buf_relse(bp);
799 			return 0;
800 		}
801 
802 		/* We do not want read in the flags */
803 		bp->b_flags &= ~XBF_READ;
804 		ASSERT(bp->b_ops != NULL || ops == NULL);
805 	}
806 
807 	/*
808 	 * If we've had a read error, then the contents of the buffer are
809 	 * invalid and should not be used. To ensure that a followup read tries
810 	 * to pull the buffer from disk again, we clear the XBF_DONE flag and
811 	 * mark the buffer stale. This ensures that anyone who has a current
812 	 * reference to the buffer will interpret it's contents correctly and
813 	 * future cache lookups will also treat it as an empty, uninitialised
814 	 * buffer.
815 	 */
816 	if (error) {
817 		if (!XFS_FORCED_SHUTDOWN(target->bt_mount))
818 			xfs_buf_ioerror_alert(bp, fa);
819 
820 		bp->b_flags &= ~XBF_DONE;
821 		xfs_buf_stale(bp);
822 		xfs_buf_relse(bp);
823 
824 		/* bad CRC means corrupted metadata */
825 		if (error == -EFSBADCRC)
826 			error = -EFSCORRUPTED;
827 		return error;
828 	}
829 
830 	*bpp = bp;
831 	return 0;
832 }
833 
834 /*
835  *	If we are not low on memory then do the readahead in a deadlock
836  *	safe manner.
837  */
838 void
839 xfs_buf_readahead_map(
840 	struct xfs_buftarg	*target,
841 	struct xfs_buf_map	*map,
842 	int			nmaps,
843 	const struct xfs_buf_ops *ops)
844 {
845 	struct xfs_buf		*bp;
846 
847 	if (bdi_read_congested(target->bt_bdev->bd_bdi))
848 		return;
849 
850 	xfs_buf_read_map(target, map, nmaps,
851 		     XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD, &bp, ops,
852 		     __this_address);
853 }
854 
855 /*
856  * Read an uncached buffer from disk. Allocates and returns a locked
857  * buffer containing the disk contents or nothing.
858  */
859 int
860 xfs_buf_read_uncached(
861 	struct xfs_buftarg	*target,
862 	xfs_daddr_t		daddr,
863 	size_t			numblks,
864 	int			flags,
865 	struct xfs_buf		**bpp,
866 	const struct xfs_buf_ops *ops)
867 {
868 	struct xfs_buf		*bp;
869 	int			error;
870 
871 	*bpp = NULL;
872 
873 	error = xfs_buf_get_uncached(target, numblks, flags, &bp);
874 	if (error)
875 		return error;
876 
877 	/* set up the buffer for a read IO */
878 	ASSERT(bp->b_map_count == 1);
879 	bp->b_bn = XFS_BUF_DADDR_NULL;  /* always null for uncached buffers */
880 	bp->b_maps[0].bm_bn = daddr;
881 	bp->b_flags |= XBF_READ;
882 	bp->b_ops = ops;
883 
884 	xfs_buf_submit(bp);
885 	if (bp->b_error) {
886 		error = bp->b_error;
887 		xfs_buf_relse(bp);
888 		return error;
889 	}
890 
891 	*bpp = bp;
892 	return 0;
893 }
894 
895 int
896 xfs_buf_get_uncached(
897 	struct xfs_buftarg	*target,
898 	size_t			numblks,
899 	int			flags,
900 	struct xfs_buf		**bpp)
901 {
902 	int			error;
903 	struct xfs_buf		*bp;
904 	DEFINE_SINGLE_BUF_MAP(map, XFS_BUF_DADDR_NULL, numblks);
905 
906 	*bpp = NULL;
907 
908 	/* flags might contain irrelevant bits, pass only what we care about */
909 	error = _xfs_buf_alloc(target, &map, 1, flags & XBF_NO_IOACCT, &bp);
910 	if (error)
911 		return error;
912 
913 	error = xfs_buf_alloc_pages(bp, flags);
914 	if (error)
915 		goto fail_free_buf;
916 
917 	error = _xfs_buf_map_pages(bp, 0);
918 	if (unlikely(error)) {
919 		xfs_warn(target->bt_mount,
920 			"%s: failed to map pages", __func__);
921 		goto fail_free_buf;
922 	}
923 
924 	trace_xfs_buf_get_uncached(bp, _RET_IP_);
925 	*bpp = bp;
926 	return 0;
927 
928 fail_free_buf:
929 	xfs_buf_free(bp);
930 	return error;
931 }
932 
933 /*
934  *	Increment reference count on buffer, to hold the buffer concurrently
935  *	with another thread which may release (free) the buffer asynchronously.
936  *	Must hold the buffer already to call this function.
937  */
938 void
939 xfs_buf_hold(
940 	struct xfs_buf		*bp)
941 {
942 	trace_xfs_buf_hold(bp, _RET_IP_);
943 	atomic_inc(&bp->b_hold);
944 }
945 
946 /*
947  * Release a hold on the specified buffer. If the hold count is 1, the buffer is
948  * placed on LRU or freed (depending on b_lru_ref).
949  */
950 void
951 xfs_buf_rele(
952 	struct xfs_buf		*bp)
953 {
954 	struct xfs_perag	*pag = bp->b_pag;
955 	bool			release;
956 	bool			freebuf = false;
957 
958 	trace_xfs_buf_rele(bp, _RET_IP_);
959 
960 	if (!pag) {
961 		ASSERT(list_empty(&bp->b_lru));
962 		if (atomic_dec_and_test(&bp->b_hold)) {
963 			xfs_buf_ioacct_dec(bp);
964 			xfs_buf_free(bp);
965 		}
966 		return;
967 	}
968 
969 	ASSERT(atomic_read(&bp->b_hold) > 0);
970 
971 	/*
972 	 * We grab the b_lock here first to serialise racing xfs_buf_rele()
973 	 * calls. The pag_buf_lock being taken on the last reference only
974 	 * serialises against racing lookups in xfs_buf_find(). IOWs, the second
975 	 * to last reference we drop here is not serialised against the last
976 	 * reference until we take bp->b_lock. Hence if we don't grab b_lock
977 	 * first, the last "release" reference can win the race to the lock and
978 	 * free the buffer before the second-to-last reference is processed,
979 	 * leading to a use-after-free scenario.
980 	 */
981 	spin_lock(&bp->b_lock);
982 	release = atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock);
983 	if (!release) {
984 		/*
985 		 * Drop the in-flight state if the buffer is already on the LRU
986 		 * and it holds the only reference. This is racy because we
987 		 * haven't acquired the pag lock, but the use of _XBF_IN_FLIGHT
988 		 * ensures the decrement occurs only once per-buf.
989 		 */
990 		if ((atomic_read(&bp->b_hold) == 1) && !list_empty(&bp->b_lru))
991 			__xfs_buf_ioacct_dec(bp);
992 		goto out_unlock;
993 	}
994 
995 	/* the last reference has been dropped ... */
996 	__xfs_buf_ioacct_dec(bp);
997 	if (!(bp->b_flags & XBF_STALE) && atomic_read(&bp->b_lru_ref)) {
998 		/*
999 		 * If the buffer is added to the LRU take a new reference to the
1000 		 * buffer for the LRU and clear the (now stale) dispose list
1001 		 * state flag
1002 		 */
1003 		if (list_lru_add(&bp->b_target->bt_lru, &bp->b_lru)) {
1004 			bp->b_state &= ~XFS_BSTATE_DISPOSE;
1005 			atomic_inc(&bp->b_hold);
1006 		}
1007 		spin_unlock(&pag->pag_buf_lock);
1008 	} else {
1009 		/*
1010 		 * most of the time buffers will already be removed from the
1011 		 * LRU, so optimise that case by checking for the
1012 		 * XFS_BSTATE_DISPOSE flag indicating the last list the buffer
1013 		 * was on was the disposal list
1014 		 */
1015 		if (!(bp->b_state & XFS_BSTATE_DISPOSE)) {
1016 			list_lru_del(&bp->b_target->bt_lru, &bp->b_lru);
1017 		} else {
1018 			ASSERT(list_empty(&bp->b_lru));
1019 		}
1020 
1021 		ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1022 		rhashtable_remove_fast(&pag->pag_buf_hash, &bp->b_rhash_head,
1023 				       xfs_buf_hash_params);
1024 		spin_unlock(&pag->pag_buf_lock);
1025 		xfs_perag_put(pag);
1026 		freebuf = true;
1027 	}
1028 
1029 out_unlock:
1030 	spin_unlock(&bp->b_lock);
1031 
1032 	if (freebuf)
1033 		xfs_buf_free(bp);
1034 }
1035 
1036 
1037 /*
1038  *	Lock a buffer object, if it is not already locked.
1039  *
1040  *	If we come across a stale, pinned, locked buffer, we know that we are
1041  *	being asked to lock a buffer that has been reallocated. Because it is
1042  *	pinned, we know that the log has not been pushed to disk and hence it
1043  *	will still be locked.  Rather than continuing to have trylock attempts
1044  *	fail until someone else pushes the log, push it ourselves before
1045  *	returning.  This means that the xfsaild will not get stuck trying
1046  *	to push on stale inode buffers.
1047  */
1048 int
1049 xfs_buf_trylock(
1050 	struct xfs_buf		*bp)
1051 {
1052 	int			locked;
1053 
1054 	locked = down_trylock(&bp->b_sema) == 0;
1055 	if (locked)
1056 		trace_xfs_buf_trylock(bp, _RET_IP_);
1057 	else
1058 		trace_xfs_buf_trylock_fail(bp, _RET_IP_);
1059 	return locked;
1060 }
1061 
1062 /*
1063  *	Lock a buffer object.
1064  *
1065  *	If we come across a stale, pinned, locked buffer, we know that we
1066  *	are being asked to lock a buffer that has been reallocated. Because
1067  *	it is pinned, we know that the log has not been pushed to disk and
1068  *	hence it will still be locked. Rather than sleeping until someone
1069  *	else pushes the log, push it ourselves before trying to get the lock.
1070  */
1071 void
1072 xfs_buf_lock(
1073 	struct xfs_buf		*bp)
1074 {
1075 	trace_xfs_buf_lock(bp, _RET_IP_);
1076 
1077 	if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
1078 		xfs_log_force(bp->b_mount, 0);
1079 	down(&bp->b_sema);
1080 
1081 	trace_xfs_buf_lock_done(bp, _RET_IP_);
1082 }
1083 
1084 void
1085 xfs_buf_unlock(
1086 	struct xfs_buf		*bp)
1087 {
1088 	ASSERT(xfs_buf_islocked(bp));
1089 
1090 	up(&bp->b_sema);
1091 	trace_xfs_buf_unlock(bp, _RET_IP_);
1092 }
1093 
1094 STATIC void
1095 xfs_buf_wait_unpin(
1096 	struct xfs_buf		*bp)
1097 {
1098 	DECLARE_WAITQUEUE	(wait, current);
1099 
1100 	if (atomic_read(&bp->b_pin_count) == 0)
1101 		return;
1102 
1103 	add_wait_queue(&bp->b_waiters, &wait);
1104 	for (;;) {
1105 		set_current_state(TASK_UNINTERRUPTIBLE);
1106 		if (atomic_read(&bp->b_pin_count) == 0)
1107 			break;
1108 		io_schedule();
1109 	}
1110 	remove_wait_queue(&bp->b_waiters, &wait);
1111 	set_current_state(TASK_RUNNING);
1112 }
1113 
1114 static void
1115 xfs_buf_ioerror_alert_ratelimited(
1116 	struct xfs_buf		*bp)
1117 {
1118 	static unsigned long	lasttime;
1119 	static struct xfs_buftarg *lasttarg;
1120 
1121 	if (bp->b_target != lasttarg ||
1122 	    time_after(jiffies, (lasttime + 5*HZ))) {
1123 		lasttime = jiffies;
1124 		xfs_buf_ioerror_alert(bp, __this_address);
1125 	}
1126 	lasttarg = bp->b_target;
1127 }
1128 
1129 /*
1130  * Account for this latest trip around the retry handler, and decide if
1131  * we've failed enough times to constitute a permanent failure.
1132  */
1133 static bool
1134 xfs_buf_ioerror_permanent(
1135 	struct xfs_buf		*bp,
1136 	struct xfs_error_cfg	*cfg)
1137 {
1138 	struct xfs_mount	*mp = bp->b_mount;
1139 
1140 	if (cfg->max_retries != XFS_ERR_RETRY_FOREVER &&
1141 	    ++bp->b_retries > cfg->max_retries)
1142 		return true;
1143 	if (cfg->retry_timeout != XFS_ERR_RETRY_FOREVER &&
1144 	    time_after(jiffies, cfg->retry_timeout + bp->b_first_retry_time))
1145 		return true;
1146 
1147 	/* At unmount we may treat errors differently */
1148 	if ((mp->m_flags & XFS_MOUNT_UNMOUNTING) && mp->m_fail_unmount)
1149 		return true;
1150 
1151 	return false;
1152 }
1153 
1154 /*
1155  * On a sync write or shutdown we just want to stale the buffer and let the
1156  * caller handle the error in bp->b_error appropriately.
1157  *
1158  * If the write was asynchronous then no one will be looking for the error.  If
1159  * this is the first failure of this type, clear the error state and write the
1160  * buffer out again. This means we always retry an async write failure at least
1161  * once, but we also need to set the buffer up to behave correctly now for
1162  * repeated failures.
1163  *
1164  * If we get repeated async write failures, then we take action according to the
1165  * error configuration we have been set up to use.
1166  *
1167  * Returns true if this function took care of error handling and the caller must
1168  * not touch the buffer again.  Return false if the caller should proceed with
1169  * normal I/O completion handling.
1170  */
1171 static bool
1172 xfs_buf_ioend_handle_error(
1173 	struct xfs_buf		*bp)
1174 {
1175 	struct xfs_mount	*mp = bp->b_mount;
1176 	struct xfs_error_cfg	*cfg;
1177 
1178 	/*
1179 	 * If we've already decided to shutdown the filesystem because of I/O
1180 	 * errors, there's no point in giving this a retry.
1181 	 */
1182 	if (XFS_FORCED_SHUTDOWN(mp))
1183 		goto out_stale;
1184 
1185 	xfs_buf_ioerror_alert_ratelimited(bp);
1186 
1187 	/*
1188 	 * We're not going to bother about retrying this during recovery.
1189 	 * One strike!
1190 	 */
1191 	if (bp->b_flags & _XBF_LOGRECOVERY) {
1192 		xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1193 		return false;
1194 	}
1195 
1196 	/*
1197 	 * Synchronous writes will have callers process the error.
1198 	 */
1199 	if (!(bp->b_flags & XBF_ASYNC))
1200 		goto out_stale;
1201 
1202 	trace_xfs_buf_iodone_async(bp, _RET_IP_);
1203 
1204 	cfg = xfs_error_get_cfg(mp, XFS_ERR_METADATA, bp->b_error);
1205 	if (bp->b_last_error != bp->b_error ||
1206 	    !(bp->b_flags & (XBF_STALE | XBF_WRITE_FAIL))) {
1207 		bp->b_last_error = bp->b_error;
1208 		if (cfg->retry_timeout != XFS_ERR_RETRY_FOREVER &&
1209 		    !bp->b_first_retry_time)
1210 			bp->b_first_retry_time = jiffies;
1211 		goto resubmit;
1212 	}
1213 
1214 	/*
1215 	 * Permanent error - we need to trigger a shutdown if we haven't already
1216 	 * to indicate that inconsistency will result from this action.
1217 	 */
1218 	if (xfs_buf_ioerror_permanent(bp, cfg)) {
1219 		xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1220 		goto out_stale;
1221 	}
1222 
1223 	/* Still considered a transient error. Caller will schedule retries. */
1224 	if (bp->b_flags & _XBF_INODES)
1225 		xfs_buf_inode_io_fail(bp);
1226 	else if (bp->b_flags & _XBF_DQUOTS)
1227 		xfs_buf_dquot_io_fail(bp);
1228 	else
1229 		ASSERT(list_empty(&bp->b_li_list));
1230 	xfs_buf_ioerror(bp, 0);
1231 	xfs_buf_relse(bp);
1232 	return true;
1233 
1234 resubmit:
1235 	xfs_buf_ioerror(bp, 0);
1236 	bp->b_flags |= (XBF_DONE | XBF_WRITE_FAIL);
1237 	xfs_buf_submit(bp);
1238 	return true;
1239 out_stale:
1240 	xfs_buf_stale(bp);
1241 	bp->b_flags |= XBF_DONE;
1242 	bp->b_flags &= ~XBF_WRITE;
1243 	trace_xfs_buf_error_relse(bp, _RET_IP_);
1244 	return false;
1245 }
1246 
1247 static void
1248 xfs_buf_ioend(
1249 	struct xfs_buf	*bp)
1250 {
1251 	trace_xfs_buf_iodone(bp, _RET_IP_);
1252 
1253 	/*
1254 	 * Pull in IO completion errors now. We are guaranteed to be running
1255 	 * single threaded, so we don't need the lock to read b_io_error.
1256 	 */
1257 	if (!bp->b_error && bp->b_io_error)
1258 		xfs_buf_ioerror(bp, bp->b_io_error);
1259 
1260 	if (bp->b_flags & XBF_READ) {
1261 		if (!bp->b_error && bp->b_ops)
1262 			bp->b_ops->verify_read(bp);
1263 		if (!bp->b_error)
1264 			bp->b_flags |= XBF_DONE;
1265 	} else {
1266 		if (!bp->b_error) {
1267 			bp->b_flags &= ~XBF_WRITE_FAIL;
1268 			bp->b_flags |= XBF_DONE;
1269 		}
1270 
1271 		if (unlikely(bp->b_error) && xfs_buf_ioend_handle_error(bp))
1272 			return;
1273 
1274 		/* clear the retry state */
1275 		bp->b_last_error = 0;
1276 		bp->b_retries = 0;
1277 		bp->b_first_retry_time = 0;
1278 
1279 		/*
1280 		 * Note that for things like remote attribute buffers, there may
1281 		 * not be a buffer log item here, so processing the buffer log
1282 		 * item must remain optional.
1283 		 */
1284 		if (bp->b_log_item)
1285 			xfs_buf_item_done(bp);
1286 
1287 		if (bp->b_flags & _XBF_INODES)
1288 			xfs_buf_inode_iodone(bp);
1289 		else if (bp->b_flags & _XBF_DQUOTS)
1290 			xfs_buf_dquot_iodone(bp);
1291 
1292 	}
1293 
1294 	bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD |
1295 			 _XBF_LOGRECOVERY);
1296 
1297 	if (bp->b_flags & XBF_ASYNC)
1298 		xfs_buf_relse(bp);
1299 	else
1300 		complete(&bp->b_iowait);
1301 }
1302 
1303 static void
1304 xfs_buf_ioend_work(
1305 	struct work_struct	*work)
1306 {
1307 	struct xfs_buf		*bp =
1308 		container_of(work, struct xfs_buf, b_ioend_work);
1309 
1310 	xfs_buf_ioend(bp);
1311 }
1312 
1313 static void
1314 xfs_buf_ioend_async(
1315 	struct xfs_buf	*bp)
1316 {
1317 	INIT_WORK(&bp->b_ioend_work, xfs_buf_ioend_work);
1318 	queue_work(bp->b_mount->m_buf_workqueue, &bp->b_ioend_work);
1319 }
1320 
1321 void
1322 __xfs_buf_ioerror(
1323 	struct xfs_buf		*bp,
1324 	int			error,
1325 	xfs_failaddr_t		failaddr)
1326 {
1327 	ASSERT(error <= 0 && error >= -1000);
1328 	bp->b_error = error;
1329 	trace_xfs_buf_ioerror(bp, error, failaddr);
1330 }
1331 
1332 void
1333 xfs_buf_ioerror_alert(
1334 	struct xfs_buf		*bp,
1335 	xfs_failaddr_t		func)
1336 {
1337 	xfs_buf_alert_ratelimited(bp, "XFS: metadata IO error",
1338 		"metadata I/O error in \"%pS\" at daddr 0x%llx len %d error %d",
1339 				  func, (uint64_t)XFS_BUF_ADDR(bp),
1340 				  bp->b_length, -bp->b_error);
1341 }
1342 
1343 /*
1344  * To simulate an I/O failure, the buffer must be locked and held with at least
1345  * three references. The LRU reference is dropped by the stale call. The buf
1346  * item reference is dropped via ioend processing. The third reference is owned
1347  * by the caller and is dropped on I/O completion if the buffer is XBF_ASYNC.
1348  */
1349 void
1350 xfs_buf_ioend_fail(
1351 	struct xfs_buf	*bp)
1352 {
1353 	bp->b_flags &= ~XBF_DONE;
1354 	xfs_buf_stale(bp);
1355 	xfs_buf_ioerror(bp, -EIO);
1356 	xfs_buf_ioend(bp);
1357 }
1358 
1359 int
1360 xfs_bwrite(
1361 	struct xfs_buf		*bp)
1362 {
1363 	int			error;
1364 
1365 	ASSERT(xfs_buf_islocked(bp));
1366 
1367 	bp->b_flags |= XBF_WRITE;
1368 	bp->b_flags &= ~(XBF_ASYNC | XBF_READ | _XBF_DELWRI_Q |
1369 			 XBF_DONE);
1370 
1371 	error = xfs_buf_submit(bp);
1372 	if (error)
1373 		xfs_force_shutdown(bp->b_mount, SHUTDOWN_META_IO_ERROR);
1374 	return error;
1375 }
1376 
1377 static void
1378 xfs_buf_bio_end_io(
1379 	struct bio		*bio)
1380 {
1381 	struct xfs_buf		*bp = (struct xfs_buf *)bio->bi_private;
1382 
1383 	if (!bio->bi_status &&
1384 	    (bp->b_flags & XBF_WRITE) && (bp->b_flags & XBF_ASYNC) &&
1385 	    XFS_TEST_ERROR(false, bp->b_mount, XFS_ERRTAG_BUF_IOERROR))
1386 		bio->bi_status = BLK_STS_IOERR;
1387 
1388 	/*
1389 	 * don't overwrite existing errors - otherwise we can lose errors on
1390 	 * buffers that require multiple bios to complete.
1391 	 */
1392 	if (bio->bi_status) {
1393 		int error = blk_status_to_errno(bio->bi_status);
1394 
1395 		cmpxchg(&bp->b_io_error, 0, error);
1396 	}
1397 
1398 	if (!bp->b_error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
1399 		invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1400 
1401 	if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1402 		xfs_buf_ioend_async(bp);
1403 	bio_put(bio);
1404 }
1405 
1406 static void
1407 xfs_buf_ioapply_map(
1408 	struct xfs_buf	*bp,
1409 	int		map,
1410 	int		*buf_offset,
1411 	int		*count,
1412 	int		op)
1413 {
1414 	int		page_index;
1415 	unsigned int	total_nr_pages = bp->b_page_count;
1416 	int		nr_pages;
1417 	struct bio	*bio;
1418 	sector_t	sector =  bp->b_maps[map].bm_bn;
1419 	int		size;
1420 	int		offset;
1421 
1422 	/* skip the pages in the buffer before the start offset */
1423 	page_index = 0;
1424 	offset = *buf_offset;
1425 	while (offset >= PAGE_SIZE) {
1426 		page_index++;
1427 		offset -= PAGE_SIZE;
1428 	}
1429 
1430 	/*
1431 	 * Limit the IO size to the length of the current vector, and update the
1432 	 * remaining IO count for the next time around.
1433 	 */
1434 	size = min_t(int, BBTOB(bp->b_maps[map].bm_len), *count);
1435 	*count -= size;
1436 	*buf_offset += size;
1437 
1438 next_chunk:
1439 	atomic_inc(&bp->b_io_remaining);
1440 	nr_pages = bio_max_segs(total_nr_pages);
1441 
1442 	bio = bio_alloc(GFP_NOIO, nr_pages);
1443 	bio_set_dev(bio, bp->b_target->bt_bdev);
1444 	bio->bi_iter.bi_sector = sector;
1445 	bio->bi_end_io = xfs_buf_bio_end_io;
1446 	bio->bi_private = bp;
1447 	bio->bi_opf = op;
1448 
1449 	for (; size && nr_pages; nr_pages--, page_index++) {
1450 		int	rbytes, nbytes = PAGE_SIZE - offset;
1451 
1452 		if (nbytes > size)
1453 			nbytes = size;
1454 
1455 		rbytes = bio_add_page(bio, bp->b_pages[page_index], nbytes,
1456 				      offset);
1457 		if (rbytes < nbytes)
1458 			break;
1459 
1460 		offset = 0;
1461 		sector += BTOBB(nbytes);
1462 		size -= nbytes;
1463 		total_nr_pages--;
1464 	}
1465 
1466 	if (likely(bio->bi_iter.bi_size)) {
1467 		if (xfs_buf_is_vmapped(bp)) {
1468 			flush_kernel_vmap_range(bp->b_addr,
1469 						xfs_buf_vmap_len(bp));
1470 		}
1471 		submit_bio(bio);
1472 		if (size)
1473 			goto next_chunk;
1474 	} else {
1475 		/*
1476 		 * This is guaranteed not to be the last io reference count
1477 		 * because the caller (xfs_buf_submit) holds a count itself.
1478 		 */
1479 		atomic_dec(&bp->b_io_remaining);
1480 		xfs_buf_ioerror(bp, -EIO);
1481 		bio_put(bio);
1482 	}
1483 
1484 }
1485 
1486 STATIC void
1487 _xfs_buf_ioapply(
1488 	struct xfs_buf	*bp)
1489 {
1490 	struct blk_plug	plug;
1491 	int		op;
1492 	int		offset;
1493 	int		size;
1494 	int		i;
1495 
1496 	/*
1497 	 * Make sure we capture only current IO errors rather than stale errors
1498 	 * left over from previous use of the buffer (e.g. failed readahead).
1499 	 */
1500 	bp->b_error = 0;
1501 
1502 	if (bp->b_flags & XBF_WRITE) {
1503 		op = REQ_OP_WRITE;
1504 
1505 		/*
1506 		 * Run the write verifier callback function if it exists. If
1507 		 * this function fails it will mark the buffer with an error and
1508 		 * the IO should not be dispatched.
1509 		 */
1510 		if (bp->b_ops) {
1511 			bp->b_ops->verify_write(bp);
1512 			if (bp->b_error) {
1513 				xfs_force_shutdown(bp->b_mount,
1514 						   SHUTDOWN_CORRUPT_INCORE);
1515 				return;
1516 			}
1517 		} else if (bp->b_bn != XFS_BUF_DADDR_NULL) {
1518 			struct xfs_mount *mp = bp->b_mount;
1519 
1520 			/*
1521 			 * non-crc filesystems don't attach verifiers during
1522 			 * log recovery, so don't warn for such filesystems.
1523 			 */
1524 			if (xfs_sb_version_hascrc(&mp->m_sb)) {
1525 				xfs_warn(mp,
1526 					"%s: no buf ops on daddr 0x%llx len %d",
1527 					__func__, bp->b_bn, bp->b_length);
1528 				xfs_hex_dump(bp->b_addr,
1529 						XFS_CORRUPTION_DUMP_LEN);
1530 				dump_stack();
1531 			}
1532 		}
1533 	} else {
1534 		op = REQ_OP_READ;
1535 		if (bp->b_flags & XBF_READ_AHEAD)
1536 			op |= REQ_RAHEAD;
1537 	}
1538 
1539 	/* we only use the buffer cache for meta-data */
1540 	op |= REQ_META;
1541 
1542 	/*
1543 	 * Walk all the vectors issuing IO on them. Set up the initial offset
1544 	 * into the buffer and the desired IO size before we start -
1545 	 * _xfs_buf_ioapply_vec() will modify them appropriately for each
1546 	 * subsequent call.
1547 	 */
1548 	offset = bp->b_offset;
1549 	size = BBTOB(bp->b_length);
1550 	blk_start_plug(&plug);
1551 	for (i = 0; i < bp->b_map_count; i++) {
1552 		xfs_buf_ioapply_map(bp, i, &offset, &size, op);
1553 		if (bp->b_error)
1554 			break;
1555 		if (size <= 0)
1556 			break;	/* all done */
1557 	}
1558 	blk_finish_plug(&plug);
1559 }
1560 
1561 /*
1562  * Wait for I/O completion of a sync buffer and return the I/O error code.
1563  */
1564 static int
1565 xfs_buf_iowait(
1566 	struct xfs_buf	*bp)
1567 {
1568 	ASSERT(!(bp->b_flags & XBF_ASYNC));
1569 
1570 	trace_xfs_buf_iowait(bp, _RET_IP_);
1571 	wait_for_completion(&bp->b_iowait);
1572 	trace_xfs_buf_iowait_done(bp, _RET_IP_);
1573 
1574 	return bp->b_error;
1575 }
1576 
1577 /*
1578  * Buffer I/O submission path, read or write. Asynchronous submission transfers
1579  * the buffer lock ownership and the current reference to the IO. It is not
1580  * safe to reference the buffer after a call to this function unless the caller
1581  * holds an additional reference itself.
1582  */
1583 static int
1584 __xfs_buf_submit(
1585 	struct xfs_buf	*bp,
1586 	bool		wait)
1587 {
1588 	int		error = 0;
1589 
1590 	trace_xfs_buf_submit(bp, _RET_IP_);
1591 
1592 	ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1593 
1594 	/* on shutdown we stale and complete the buffer immediately */
1595 	if (XFS_FORCED_SHUTDOWN(bp->b_mount)) {
1596 		xfs_buf_ioend_fail(bp);
1597 		return -EIO;
1598 	}
1599 
1600 	/*
1601 	 * Grab a reference so the buffer does not go away underneath us. For
1602 	 * async buffers, I/O completion drops the callers reference, which
1603 	 * could occur before submission returns.
1604 	 */
1605 	xfs_buf_hold(bp);
1606 
1607 	if (bp->b_flags & XBF_WRITE)
1608 		xfs_buf_wait_unpin(bp);
1609 
1610 	/* clear the internal error state to avoid spurious errors */
1611 	bp->b_io_error = 0;
1612 
1613 	/*
1614 	 * Set the count to 1 initially, this will stop an I/O completion
1615 	 * callout which happens before we have started all the I/O from calling
1616 	 * xfs_buf_ioend too early.
1617 	 */
1618 	atomic_set(&bp->b_io_remaining, 1);
1619 	if (bp->b_flags & XBF_ASYNC)
1620 		xfs_buf_ioacct_inc(bp);
1621 	_xfs_buf_ioapply(bp);
1622 
1623 	/*
1624 	 * If _xfs_buf_ioapply failed, we can get back here with only the IO
1625 	 * reference we took above. If we drop it to zero, run completion so
1626 	 * that we don't return to the caller with completion still pending.
1627 	 */
1628 	if (atomic_dec_and_test(&bp->b_io_remaining) == 1) {
1629 		if (bp->b_error || !(bp->b_flags & XBF_ASYNC))
1630 			xfs_buf_ioend(bp);
1631 		else
1632 			xfs_buf_ioend_async(bp);
1633 	}
1634 
1635 	if (wait)
1636 		error = xfs_buf_iowait(bp);
1637 
1638 	/*
1639 	 * Release the hold that keeps the buffer referenced for the entire
1640 	 * I/O. Note that if the buffer is async, it is not safe to reference
1641 	 * after this release.
1642 	 */
1643 	xfs_buf_rele(bp);
1644 	return error;
1645 }
1646 
1647 void *
1648 xfs_buf_offset(
1649 	struct xfs_buf		*bp,
1650 	size_t			offset)
1651 {
1652 	struct page		*page;
1653 
1654 	if (bp->b_addr)
1655 		return bp->b_addr + offset;
1656 
1657 	page = bp->b_pages[offset >> PAGE_SHIFT];
1658 	return page_address(page) + (offset & (PAGE_SIZE-1));
1659 }
1660 
1661 void
1662 xfs_buf_zero(
1663 	struct xfs_buf		*bp,
1664 	size_t			boff,
1665 	size_t			bsize)
1666 {
1667 	size_t			bend;
1668 
1669 	bend = boff + bsize;
1670 	while (boff < bend) {
1671 		struct page	*page;
1672 		int		page_index, page_offset, csize;
1673 
1674 		page_index = (boff + bp->b_offset) >> PAGE_SHIFT;
1675 		page_offset = (boff + bp->b_offset) & ~PAGE_MASK;
1676 		page = bp->b_pages[page_index];
1677 		csize = min_t(size_t, PAGE_SIZE - page_offset,
1678 				      BBTOB(bp->b_length) - boff);
1679 
1680 		ASSERT((csize + page_offset) <= PAGE_SIZE);
1681 
1682 		memset(page_address(page) + page_offset, 0, csize);
1683 
1684 		boff += csize;
1685 	}
1686 }
1687 
1688 /*
1689  * Log a message about and stale a buffer that a caller has decided is corrupt.
1690  *
1691  * This function should be called for the kinds of metadata corruption that
1692  * cannot be detect from a verifier, such as incorrect inter-block relationship
1693  * data.  Do /not/ call this function from a verifier function.
1694  *
1695  * The buffer must be XBF_DONE prior to the call.  Afterwards, the buffer will
1696  * be marked stale, but b_error will not be set.  The caller is responsible for
1697  * releasing the buffer or fixing it.
1698  */
1699 void
1700 __xfs_buf_mark_corrupt(
1701 	struct xfs_buf		*bp,
1702 	xfs_failaddr_t		fa)
1703 {
1704 	ASSERT(bp->b_flags & XBF_DONE);
1705 
1706 	xfs_buf_corruption_error(bp, fa);
1707 	xfs_buf_stale(bp);
1708 }
1709 
1710 /*
1711  *	Handling of buffer targets (buftargs).
1712  */
1713 
1714 /*
1715  * Wait for any bufs with callbacks that have been submitted but have not yet
1716  * returned. These buffers will have an elevated hold count, so wait on those
1717  * while freeing all the buffers only held by the LRU.
1718  */
1719 static enum lru_status
1720 xfs_buftarg_drain_rele(
1721 	struct list_head	*item,
1722 	struct list_lru_one	*lru,
1723 	spinlock_t		*lru_lock,
1724 	void			*arg)
1725 
1726 {
1727 	struct xfs_buf		*bp = container_of(item, struct xfs_buf, b_lru);
1728 	struct list_head	*dispose = arg;
1729 
1730 	if (atomic_read(&bp->b_hold) > 1) {
1731 		/* need to wait, so skip it this pass */
1732 		trace_xfs_buf_drain_buftarg(bp, _RET_IP_);
1733 		return LRU_SKIP;
1734 	}
1735 	if (!spin_trylock(&bp->b_lock))
1736 		return LRU_SKIP;
1737 
1738 	/*
1739 	 * clear the LRU reference count so the buffer doesn't get
1740 	 * ignored in xfs_buf_rele().
1741 	 */
1742 	atomic_set(&bp->b_lru_ref, 0);
1743 	bp->b_state |= XFS_BSTATE_DISPOSE;
1744 	list_lru_isolate_move(lru, item, dispose);
1745 	spin_unlock(&bp->b_lock);
1746 	return LRU_REMOVED;
1747 }
1748 
1749 /*
1750  * Wait for outstanding I/O on the buftarg to complete.
1751  */
1752 void
1753 xfs_buftarg_wait(
1754 	struct xfs_buftarg	*btp)
1755 {
1756 	/*
1757 	 * First wait on the buftarg I/O count for all in-flight buffers to be
1758 	 * released. This is critical as new buffers do not make the LRU until
1759 	 * they are released.
1760 	 *
1761 	 * Next, flush the buffer workqueue to ensure all completion processing
1762 	 * has finished. Just waiting on buffer locks is not sufficient for
1763 	 * async IO as the reference count held over IO is not released until
1764 	 * after the buffer lock is dropped. Hence we need to ensure here that
1765 	 * all reference counts have been dropped before we start walking the
1766 	 * LRU list.
1767 	 */
1768 	while (percpu_counter_sum(&btp->bt_io_count))
1769 		delay(100);
1770 	flush_workqueue(btp->bt_mount->m_buf_workqueue);
1771 }
1772 
1773 void
1774 xfs_buftarg_drain(
1775 	struct xfs_buftarg	*btp)
1776 {
1777 	LIST_HEAD(dispose);
1778 	int			loop = 0;
1779 	bool			write_fail = false;
1780 
1781 	xfs_buftarg_wait(btp);
1782 
1783 	/* loop until there is nothing left on the lru list. */
1784 	while (list_lru_count(&btp->bt_lru)) {
1785 		list_lru_walk(&btp->bt_lru, xfs_buftarg_drain_rele,
1786 			      &dispose, LONG_MAX);
1787 
1788 		while (!list_empty(&dispose)) {
1789 			struct xfs_buf *bp;
1790 			bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1791 			list_del_init(&bp->b_lru);
1792 			if (bp->b_flags & XBF_WRITE_FAIL) {
1793 				write_fail = true;
1794 				xfs_buf_alert_ratelimited(bp,
1795 					"XFS: Corruption Alert",
1796 "Corruption Alert: Buffer at daddr 0x%llx had permanent write failures!",
1797 					(long long)bp->b_bn);
1798 			}
1799 			xfs_buf_rele(bp);
1800 		}
1801 		if (loop++ != 0)
1802 			delay(100);
1803 	}
1804 
1805 	/*
1806 	 * If one or more failed buffers were freed, that means dirty metadata
1807 	 * was thrown away. This should only ever happen after I/O completion
1808 	 * handling has elevated I/O error(s) to permanent failures and shuts
1809 	 * down the fs.
1810 	 */
1811 	if (write_fail) {
1812 		ASSERT(XFS_FORCED_SHUTDOWN(btp->bt_mount));
1813 		xfs_alert(btp->bt_mount,
1814 	      "Please run xfs_repair to determine the extent of the problem.");
1815 	}
1816 }
1817 
1818 static enum lru_status
1819 xfs_buftarg_isolate(
1820 	struct list_head	*item,
1821 	struct list_lru_one	*lru,
1822 	spinlock_t		*lru_lock,
1823 	void			*arg)
1824 {
1825 	struct xfs_buf		*bp = container_of(item, struct xfs_buf, b_lru);
1826 	struct list_head	*dispose = arg;
1827 
1828 	/*
1829 	 * we are inverting the lru lock/bp->b_lock here, so use a trylock.
1830 	 * If we fail to get the lock, just skip it.
1831 	 */
1832 	if (!spin_trylock(&bp->b_lock))
1833 		return LRU_SKIP;
1834 	/*
1835 	 * Decrement the b_lru_ref count unless the value is already
1836 	 * zero. If the value is already zero, we need to reclaim the
1837 	 * buffer, otherwise it gets another trip through the LRU.
1838 	 */
1839 	if (atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
1840 		spin_unlock(&bp->b_lock);
1841 		return LRU_ROTATE;
1842 	}
1843 
1844 	bp->b_state |= XFS_BSTATE_DISPOSE;
1845 	list_lru_isolate_move(lru, item, dispose);
1846 	spin_unlock(&bp->b_lock);
1847 	return LRU_REMOVED;
1848 }
1849 
1850 static unsigned long
1851 xfs_buftarg_shrink_scan(
1852 	struct shrinker		*shrink,
1853 	struct shrink_control	*sc)
1854 {
1855 	struct xfs_buftarg	*btp = container_of(shrink,
1856 					struct xfs_buftarg, bt_shrinker);
1857 	LIST_HEAD(dispose);
1858 	unsigned long		freed;
1859 
1860 	freed = list_lru_shrink_walk(&btp->bt_lru, sc,
1861 				     xfs_buftarg_isolate, &dispose);
1862 
1863 	while (!list_empty(&dispose)) {
1864 		struct xfs_buf *bp;
1865 		bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1866 		list_del_init(&bp->b_lru);
1867 		xfs_buf_rele(bp);
1868 	}
1869 
1870 	return freed;
1871 }
1872 
1873 static unsigned long
1874 xfs_buftarg_shrink_count(
1875 	struct shrinker		*shrink,
1876 	struct shrink_control	*sc)
1877 {
1878 	struct xfs_buftarg	*btp = container_of(shrink,
1879 					struct xfs_buftarg, bt_shrinker);
1880 	return list_lru_shrink_count(&btp->bt_lru, sc);
1881 }
1882 
1883 void
1884 xfs_free_buftarg(
1885 	struct xfs_buftarg	*btp)
1886 {
1887 	unregister_shrinker(&btp->bt_shrinker);
1888 	ASSERT(percpu_counter_sum(&btp->bt_io_count) == 0);
1889 	percpu_counter_destroy(&btp->bt_io_count);
1890 	list_lru_destroy(&btp->bt_lru);
1891 
1892 	blkdev_issue_flush(btp->bt_bdev);
1893 
1894 	kmem_free(btp);
1895 }
1896 
1897 int
1898 xfs_setsize_buftarg(
1899 	xfs_buftarg_t		*btp,
1900 	unsigned int		sectorsize)
1901 {
1902 	/* Set up metadata sector size info */
1903 	btp->bt_meta_sectorsize = sectorsize;
1904 	btp->bt_meta_sectormask = sectorsize - 1;
1905 
1906 	if (set_blocksize(btp->bt_bdev, sectorsize)) {
1907 		xfs_warn(btp->bt_mount,
1908 			"Cannot set_blocksize to %u on device %pg",
1909 			sectorsize, btp->bt_bdev);
1910 		return -EINVAL;
1911 	}
1912 
1913 	/* Set up device logical sector size mask */
1914 	btp->bt_logical_sectorsize = bdev_logical_block_size(btp->bt_bdev);
1915 	btp->bt_logical_sectormask = bdev_logical_block_size(btp->bt_bdev) - 1;
1916 
1917 	return 0;
1918 }
1919 
1920 /*
1921  * When allocating the initial buffer target we have not yet
1922  * read in the superblock, so don't know what sized sectors
1923  * are being used at this early stage.  Play safe.
1924  */
1925 STATIC int
1926 xfs_setsize_buftarg_early(
1927 	xfs_buftarg_t		*btp,
1928 	struct block_device	*bdev)
1929 {
1930 	return xfs_setsize_buftarg(btp, bdev_logical_block_size(bdev));
1931 }
1932 
1933 xfs_buftarg_t *
1934 xfs_alloc_buftarg(
1935 	struct xfs_mount	*mp,
1936 	struct block_device	*bdev,
1937 	struct dax_device	*dax_dev)
1938 {
1939 	xfs_buftarg_t		*btp;
1940 
1941 	btp = kmem_zalloc(sizeof(*btp), KM_NOFS);
1942 
1943 	btp->bt_mount = mp;
1944 	btp->bt_dev =  bdev->bd_dev;
1945 	btp->bt_bdev = bdev;
1946 	btp->bt_daxdev = dax_dev;
1947 
1948 	/*
1949 	 * Buffer IO error rate limiting. Limit it to no more than 10 messages
1950 	 * per 30 seconds so as to not spam logs too much on repeated errors.
1951 	 */
1952 	ratelimit_state_init(&btp->bt_ioerror_rl, 30 * HZ,
1953 			     DEFAULT_RATELIMIT_BURST);
1954 
1955 	if (xfs_setsize_buftarg_early(btp, bdev))
1956 		goto error_free;
1957 
1958 	if (list_lru_init(&btp->bt_lru))
1959 		goto error_free;
1960 
1961 	if (percpu_counter_init(&btp->bt_io_count, 0, GFP_KERNEL))
1962 		goto error_lru;
1963 
1964 	btp->bt_shrinker.count_objects = xfs_buftarg_shrink_count;
1965 	btp->bt_shrinker.scan_objects = xfs_buftarg_shrink_scan;
1966 	btp->bt_shrinker.seeks = DEFAULT_SEEKS;
1967 	btp->bt_shrinker.flags = SHRINKER_NUMA_AWARE;
1968 	if (register_shrinker(&btp->bt_shrinker))
1969 		goto error_pcpu;
1970 	return btp;
1971 
1972 error_pcpu:
1973 	percpu_counter_destroy(&btp->bt_io_count);
1974 error_lru:
1975 	list_lru_destroy(&btp->bt_lru);
1976 error_free:
1977 	kmem_free(btp);
1978 	return NULL;
1979 }
1980 
1981 /*
1982  * Cancel a delayed write list.
1983  *
1984  * Remove each buffer from the list, clear the delwri queue flag and drop the
1985  * associated buffer reference.
1986  */
1987 void
1988 xfs_buf_delwri_cancel(
1989 	struct list_head	*list)
1990 {
1991 	struct xfs_buf		*bp;
1992 
1993 	while (!list_empty(list)) {
1994 		bp = list_first_entry(list, struct xfs_buf, b_list);
1995 
1996 		xfs_buf_lock(bp);
1997 		bp->b_flags &= ~_XBF_DELWRI_Q;
1998 		list_del_init(&bp->b_list);
1999 		xfs_buf_relse(bp);
2000 	}
2001 }
2002 
2003 /*
2004  * Add a buffer to the delayed write list.
2005  *
2006  * This queues a buffer for writeout if it hasn't already been.  Note that
2007  * neither this routine nor the buffer list submission functions perform
2008  * any internal synchronization.  It is expected that the lists are thread-local
2009  * to the callers.
2010  *
2011  * Returns true if we queued up the buffer, or false if it already had
2012  * been on the buffer list.
2013  */
2014 bool
2015 xfs_buf_delwri_queue(
2016 	struct xfs_buf		*bp,
2017 	struct list_head	*list)
2018 {
2019 	ASSERT(xfs_buf_islocked(bp));
2020 	ASSERT(!(bp->b_flags & XBF_READ));
2021 
2022 	/*
2023 	 * If the buffer is already marked delwri it already is queued up
2024 	 * by someone else for imediate writeout.  Just ignore it in that
2025 	 * case.
2026 	 */
2027 	if (bp->b_flags & _XBF_DELWRI_Q) {
2028 		trace_xfs_buf_delwri_queued(bp, _RET_IP_);
2029 		return false;
2030 	}
2031 
2032 	trace_xfs_buf_delwri_queue(bp, _RET_IP_);
2033 
2034 	/*
2035 	 * If a buffer gets written out synchronously or marked stale while it
2036 	 * is on a delwri list we lazily remove it. To do this, the other party
2037 	 * clears the  _XBF_DELWRI_Q flag but otherwise leaves the buffer alone.
2038 	 * It remains referenced and on the list.  In a rare corner case it
2039 	 * might get readded to a delwri list after the synchronous writeout, in
2040 	 * which case we need just need to re-add the flag here.
2041 	 */
2042 	bp->b_flags |= _XBF_DELWRI_Q;
2043 	if (list_empty(&bp->b_list)) {
2044 		atomic_inc(&bp->b_hold);
2045 		list_add_tail(&bp->b_list, list);
2046 	}
2047 
2048 	return true;
2049 }
2050 
2051 /*
2052  * Compare function is more complex than it needs to be because
2053  * the return value is only 32 bits and we are doing comparisons
2054  * on 64 bit values
2055  */
2056 static int
2057 xfs_buf_cmp(
2058 	void			*priv,
2059 	const struct list_head	*a,
2060 	const struct list_head	*b)
2061 {
2062 	struct xfs_buf	*ap = container_of(a, struct xfs_buf, b_list);
2063 	struct xfs_buf	*bp = container_of(b, struct xfs_buf, b_list);
2064 	xfs_daddr_t		diff;
2065 
2066 	diff = ap->b_maps[0].bm_bn - bp->b_maps[0].bm_bn;
2067 	if (diff < 0)
2068 		return -1;
2069 	if (diff > 0)
2070 		return 1;
2071 	return 0;
2072 }
2073 
2074 /*
2075  * Submit buffers for write. If wait_list is specified, the buffers are
2076  * submitted using sync I/O and placed on the wait list such that the caller can
2077  * iowait each buffer. Otherwise async I/O is used and the buffers are released
2078  * at I/O completion time. In either case, buffers remain locked until I/O
2079  * completes and the buffer is released from the queue.
2080  */
2081 static int
2082 xfs_buf_delwri_submit_buffers(
2083 	struct list_head	*buffer_list,
2084 	struct list_head	*wait_list)
2085 {
2086 	struct xfs_buf		*bp, *n;
2087 	int			pinned = 0;
2088 	struct blk_plug		plug;
2089 
2090 	list_sort(NULL, buffer_list, xfs_buf_cmp);
2091 
2092 	blk_start_plug(&plug);
2093 	list_for_each_entry_safe(bp, n, buffer_list, b_list) {
2094 		if (!wait_list) {
2095 			if (xfs_buf_ispinned(bp)) {
2096 				pinned++;
2097 				continue;
2098 			}
2099 			if (!xfs_buf_trylock(bp))
2100 				continue;
2101 		} else {
2102 			xfs_buf_lock(bp);
2103 		}
2104 
2105 		/*
2106 		 * Someone else might have written the buffer synchronously or
2107 		 * marked it stale in the meantime.  In that case only the
2108 		 * _XBF_DELWRI_Q flag got cleared, and we have to drop the
2109 		 * reference and remove it from the list here.
2110 		 */
2111 		if (!(bp->b_flags & _XBF_DELWRI_Q)) {
2112 			list_del_init(&bp->b_list);
2113 			xfs_buf_relse(bp);
2114 			continue;
2115 		}
2116 
2117 		trace_xfs_buf_delwri_split(bp, _RET_IP_);
2118 
2119 		/*
2120 		 * If we have a wait list, each buffer (and associated delwri
2121 		 * queue reference) transfers to it and is submitted
2122 		 * synchronously. Otherwise, drop the buffer from the delwri
2123 		 * queue and submit async.
2124 		 */
2125 		bp->b_flags &= ~_XBF_DELWRI_Q;
2126 		bp->b_flags |= XBF_WRITE;
2127 		if (wait_list) {
2128 			bp->b_flags &= ~XBF_ASYNC;
2129 			list_move_tail(&bp->b_list, wait_list);
2130 		} else {
2131 			bp->b_flags |= XBF_ASYNC;
2132 			list_del_init(&bp->b_list);
2133 		}
2134 		__xfs_buf_submit(bp, false);
2135 	}
2136 	blk_finish_plug(&plug);
2137 
2138 	return pinned;
2139 }
2140 
2141 /*
2142  * Write out a buffer list asynchronously.
2143  *
2144  * This will take the @buffer_list, write all non-locked and non-pinned buffers
2145  * out and not wait for I/O completion on any of the buffers.  This interface
2146  * is only safely useable for callers that can track I/O completion by higher
2147  * level means, e.g. AIL pushing as the @buffer_list is consumed in this
2148  * function.
2149  *
2150  * Note: this function will skip buffers it would block on, and in doing so
2151  * leaves them on @buffer_list so they can be retried on a later pass. As such,
2152  * it is up to the caller to ensure that the buffer list is fully submitted or
2153  * cancelled appropriately when they are finished with the list. Failure to
2154  * cancel or resubmit the list until it is empty will result in leaked buffers
2155  * at unmount time.
2156  */
2157 int
2158 xfs_buf_delwri_submit_nowait(
2159 	struct list_head	*buffer_list)
2160 {
2161 	return xfs_buf_delwri_submit_buffers(buffer_list, NULL);
2162 }
2163 
2164 /*
2165  * Write out a buffer list synchronously.
2166  *
2167  * This will take the @buffer_list, write all buffers out and wait for I/O
2168  * completion on all of the buffers. @buffer_list is consumed by the function,
2169  * so callers must have some other way of tracking buffers if they require such
2170  * functionality.
2171  */
2172 int
2173 xfs_buf_delwri_submit(
2174 	struct list_head	*buffer_list)
2175 {
2176 	LIST_HEAD		(wait_list);
2177 	int			error = 0, error2;
2178 	struct xfs_buf		*bp;
2179 
2180 	xfs_buf_delwri_submit_buffers(buffer_list, &wait_list);
2181 
2182 	/* Wait for IO to complete. */
2183 	while (!list_empty(&wait_list)) {
2184 		bp = list_first_entry(&wait_list, struct xfs_buf, b_list);
2185 
2186 		list_del_init(&bp->b_list);
2187 
2188 		/*
2189 		 * Wait on the locked buffer, check for errors and unlock and
2190 		 * release the delwri queue reference.
2191 		 */
2192 		error2 = xfs_buf_iowait(bp);
2193 		xfs_buf_relse(bp);
2194 		if (!error)
2195 			error = error2;
2196 	}
2197 
2198 	return error;
2199 }
2200 
2201 /*
2202  * Push a single buffer on a delwri queue.
2203  *
2204  * The purpose of this function is to submit a single buffer of a delwri queue
2205  * and return with the buffer still on the original queue. The waiting delwri
2206  * buffer submission infrastructure guarantees transfer of the delwri queue
2207  * buffer reference to a temporary wait list. We reuse this infrastructure to
2208  * transfer the buffer back to the original queue.
2209  *
2210  * Note the buffer transitions from the queued state, to the submitted and wait
2211  * listed state and back to the queued state during this call. The buffer
2212  * locking and queue management logic between _delwri_pushbuf() and
2213  * _delwri_queue() guarantee that the buffer cannot be queued to another list
2214  * before returning.
2215  */
2216 int
2217 xfs_buf_delwri_pushbuf(
2218 	struct xfs_buf		*bp,
2219 	struct list_head	*buffer_list)
2220 {
2221 	LIST_HEAD		(submit_list);
2222 	int			error;
2223 
2224 	ASSERT(bp->b_flags & _XBF_DELWRI_Q);
2225 
2226 	trace_xfs_buf_delwri_pushbuf(bp, _RET_IP_);
2227 
2228 	/*
2229 	 * Isolate the buffer to a new local list so we can submit it for I/O
2230 	 * independently from the rest of the original list.
2231 	 */
2232 	xfs_buf_lock(bp);
2233 	list_move(&bp->b_list, &submit_list);
2234 	xfs_buf_unlock(bp);
2235 
2236 	/*
2237 	 * Delwri submission clears the DELWRI_Q buffer flag and returns with
2238 	 * the buffer on the wait list with the original reference. Rather than
2239 	 * bounce the buffer from a local wait list back to the original list
2240 	 * after I/O completion, reuse the original list as the wait list.
2241 	 */
2242 	xfs_buf_delwri_submit_buffers(&submit_list, buffer_list);
2243 
2244 	/*
2245 	 * The buffer is now locked, under I/O and wait listed on the original
2246 	 * delwri queue. Wait for I/O completion, restore the DELWRI_Q flag and
2247 	 * return with the buffer unlocked and on the original queue.
2248 	 */
2249 	error = xfs_buf_iowait(bp);
2250 	bp->b_flags |= _XBF_DELWRI_Q;
2251 	xfs_buf_unlock(bp);
2252 
2253 	return error;
2254 }
2255 
2256 int __init
2257 xfs_buf_init(void)
2258 {
2259 	xfs_buf_zone = kmem_cache_create("xfs_buf", sizeof(struct xfs_buf), 0,
2260 					 SLAB_HWCACHE_ALIGN |
2261 					 SLAB_RECLAIM_ACCOUNT |
2262 					 SLAB_MEM_SPREAD,
2263 					 NULL);
2264 	if (!xfs_buf_zone)
2265 		goto out;
2266 
2267 	return 0;
2268 
2269  out:
2270 	return -ENOMEM;
2271 }
2272 
2273 void
2274 xfs_buf_terminate(void)
2275 {
2276 	kmem_cache_destroy(xfs_buf_zone);
2277 }
2278 
2279 void xfs_buf_set_ref(struct xfs_buf *bp, int lru_ref)
2280 {
2281 	/*
2282 	 * Set the lru reference count to 0 based on the error injection tag.
2283 	 * This allows userspace to disrupt buffer caching for debug/testing
2284 	 * purposes.
2285 	 */
2286 	if (XFS_TEST_ERROR(false, bp->b_mount, XFS_ERRTAG_BUF_LRU_REF))
2287 		lru_ref = 0;
2288 
2289 	atomic_set(&bp->b_lru_ref, lru_ref);
2290 }
2291 
2292 /*
2293  * Verify an on-disk magic value against the magic value specified in the
2294  * verifier structure. The verifier magic is in disk byte order so the caller is
2295  * expected to pass the value directly from disk.
2296  */
2297 bool
2298 xfs_verify_magic(
2299 	struct xfs_buf		*bp,
2300 	__be32			dmagic)
2301 {
2302 	struct xfs_mount	*mp = bp->b_mount;
2303 	int			idx;
2304 
2305 	idx = xfs_sb_version_hascrc(&mp->m_sb);
2306 	if (WARN_ON(!bp->b_ops || !bp->b_ops->magic[idx]))
2307 		return false;
2308 	return dmagic == bp->b_ops->magic[idx];
2309 }
2310 /*
2311  * Verify an on-disk magic value against the magic value specified in the
2312  * verifier structure. The verifier magic is in disk byte order so the caller is
2313  * expected to pass the value directly from disk.
2314  */
2315 bool
2316 xfs_verify_magic16(
2317 	struct xfs_buf		*bp,
2318 	__be16			dmagic)
2319 {
2320 	struct xfs_mount	*mp = bp->b_mount;
2321 	int			idx;
2322 
2323 	idx = xfs_sb_version_hascrc(&mp->m_sb);
2324 	if (WARN_ON(!bp->b_ops || !bp->b_ops->magic16[idx]))
2325 		return false;
2326 	return dmagic == bp->b_ops->magic16[idx];
2327 }
2328