xref: /linux/fs/xfs/xfs_buf.c (revision baaa68a9796ef2cadfe5caaf4c730412eda0f31c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include <linux/backing-dev.h>
8 
9 #include "xfs_shared.h"
10 #include "xfs_format.h"
11 #include "xfs_log_format.h"
12 #include "xfs_trans_resv.h"
13 #include "xfs_mount.h"
14 #include "xfs_trace.h"
15 #include "xfs_log.h"
16 #include "xfs_log_recover.h"
17 #include "xfs_trans.h"
18 #include "xfs_buf_item.h"
19 #include "xfs_errortag.h"
20 #include "xfs_error.h"
21 #include "xfs_ag.h"
22 
23 static struct kmem_cache *xfs_buf_cache;
24 
25 /*
26  * Locking orders
27  *
28  * xfs_buf_ioacct_inc:
29  * xfs_buf_ioacct_dec:
30  *	b_sema (caller holds)
31  *	  b_lock
32  *
33  * xfs_buf_stale:
34  *	b_sema (caller holds)
35  *	  b_lock
36  *	    lru_lock
37  *
38  * xfs_buf_rele:
39  *	b_lock
40  *	  pag_buf_lock
41  *	    lru_lock
42  *
43  * xfs_buftarg_drain_rele
44  *	lru_lock
45  *	  b_lock (trylock due to inversion)
46  *
47  * xfs_buftarg_isolate
48  *	lru_lock
49  *	  b_lock (trylock due to inversion)
50  */
51 
52 static int __xfs_buf_submit(struct xfs_buf *bp, bool wait);
53 
54 static inline int
55 xfs_buf_submit(
56 	struct xfs_buf		*bp)
57 {
58 	return __xfs_buf_submit(bp, !(bp->b_flags & XBF_ASYNC));
59 }
60 
61 static inline int
62 xfs_buf_is_vmapped(
63 	struct xfs_buf	*bp)
64 {
65 	/*
66 	 * Return true if the buffer is vmapped.
67 	 *
68 	 * b_addr is null if the buffer is not mapped, but the code is clever
69 	 * enough to know it doesn't have to map a single page, so the check has
70 	 * to be both for b_addr and bp->b_page_count > 1.
71 	 */
72 	return bp->b_addr && bp->b_page_count > 1;
73 }
74 
75 static inline int
76 xfs_buf_vmap_len(
77 	struct xfs_buf	*bp)
78 {
79 	return (bp->b_page_count * PAGE_SIZE);
80 }
81 
82 /*
83  * Bump the I/O in flight count on the buftarg if we haven't yet done so for
84  * this buffer. The count is incremented once per buffer (per hold cycle)
85  * because the corresponding decrement is deferred to buffer release. Buffers
86  * can undergo I/O multiple times in a hold-release cycle and per buffer I/O
87  * tracking adds unnecessary overhead. This is used for sychronization purposes
88  * with unmount (see xfs_buftarg_drain()), so all we really need is a count of
89  * in-flight buffers.
90  *
91  * Buffers that are never released (e.g., superblock, iclog buffers) must set
92  * the XBF_NO_IOACCT flag before I/O submission. Otherwise, the buftarg count
93  * never reaches zero and unmount hangs indefinitely.
94  */
95 static inline void
96 xfs_buf_ioacct_inc(
97 	struct xfs_buf	*bp)
98 {
99 	if (bp->b_flags & XBF_NO_IOACCT)
100 		return;
101 
102 	ASSERT(bp->b_flags & XBF_ASYNC);
103 	spin_lock(&bp->b_lock);
104 	if (!(bp->b_state & XFS_BSTATE_IN_FLIGHT)) {
105 		bp->b_state |= XFS_BSTATE_IN_FLIGHT;
106 		percpu_counter_inc(&bp->b_target->bt_io_count);
107 	}
108 	spin_unlock(&bp->b_lock);
109 }
110 
111 /*
112  * Clear the in-flight state on a buffer about to be released to the LRU or
113  * freed and unaccount from the buftarg.
114  */
115 static inline void
116 __xfs_buf_ioacct_dec(
117 	struct xfs_buf	*bp)
118 {
119 	lockdep_assert_held(&bp->b_lock);
120 
121 	if (bp->b_state & XFS_BSTATE_IN_FLIGHT) {
122 		bp->b_state &= ~XFS_BSTATE_IN_FLIGHT;
123 		percpu_counter_dec(&bp->b_target->bt_io_count);
124 	}
125 }
126 
127 static inline void
128 xfs_buf_ioacct_dec(
129 	struct xfs_buf	*bp)
130 {
131 	spin_lock(&bp->b_lock);
132 	__xfs_buf_ioacct_dec(bp);
133 	spin_unlock(&bp->b_lock);
134 }
135 
136 /*
137  * When we mark a buffer stale, we remove the buffer from the LRU and clear the
138  * b_lru_ref count so that the buffer is freed immediately when the buffer
139  * reference count falls to zero. If the buffer is already on the LRU, we need
140  * to remove the reference that LRU holds on the buffer.
141  *
142  * This prevents build-up of stale buffers on the LRU.
143  */
144 void
145 xfs_buf_stale(
146 	struct xfs_buf	*bp)
147 {
148 	ASSERT(xfs_buf_islocked(bp));
149 
150 	bp->b_flags |= XBF_STALE;
151 
152 	/*
153 	 * Clear the delwri status so that a delwri queue walker will not
154 	 * flush this buffer to disk now that it is stale. The delwri queue has
155 	 * a reference to the buffer, so this is safe to do.
156 	 */
157 	bp->b_flags &= ~_XBF_DELWRI_Q;
158 
159 	/*
160 	 * Once the buffer is marked stale and unlocked, a subsequent lookup
161 	 * could reset b_flags. There is no guarantee that the buffer is
162 	 * unaccounted (released to LRU) before that occurs. Drop in-flight
163 	 * status now to preserve accounting consistency.
164 	 */
165 	spin_lock(&bp->b_lock);
166 	__xfs_buf_ioacct_dec(bp);
167 
168 	atomic_set(&bp->b_lru_ref, 0);
169 	if (!(bp->b_state & XFS_BSTATE_DISPOSE) &&
170 	    (list_lru_del(&bp->b_target->bt_lru, &bp->b_lru)))
171 		atomic_dec(&bp->b_hold);
172 
173 	ASSERT(atomic_read(&bp->b_hold) >= 1);
174 	spin_unlock(&bp->b_lock);
175 }
176 
177 static int
178 xfs_buf_get_maps(
179 	struct xfs_buf		*bp,
180 	int			map_count)
181 {
182 	ASSERT(bp->b_maps == NULL);
183 	bp->b_map_count = map_count;
184 
185 	if (map_count == 1) {
186 		bp->b_maps = &bp->__b_map;
187 		return 0;
188 	}
189 
190 	bp->b_maps = kmem_zalloc(map_count * sizeof(struct xfs_buf_map),
191 				KM_NOFS);
192 	if (!bp->b_maps)
193 		return -ENOMEM;
194 	return 0;
195 }
196 
197 /*
198  *	Frees b_pages if it was allocated.
199  */
200 static void
201 xfs_buf_free_maps(
202 	struct xfs_buf	*bp)
203 {
204 	if (bp->b_maps != &bp->__b_map) {
205 		kmem_free(bp->b_maps);
206 		bp->b_maps = NULL;
207 	}
208 }
209 
210 static int
211 _xfs_buf_alloc(
212 	struct xfs_buftarg	*target,
213 	struct xfs_buf_map	*map,
214 	int			nmaps,
215 	xfs_buf_flags_t		flags,
216 	struct xfs_buf		**bpp)
217 {
218 	struct xfs_buf		*bp;
219 	int			error;
220 	int			i;
221 
222 	*bpp = NULL;
223 	bp = kmem_cache_zalloc(xfs_buf_cache, GFP_NOFS | __GFP_NOFAIL);
224 
225 	/*
226 	 * We don't want certain flags to appear in b_flags unless they are
227 	 * specifically set by later operations on the buffer.
228 	 */
229 	flags &= ~(XBF_UNMAPPED | XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD);
230 
231 	atomic_set(&bp->b_hold, 1);
232 	atomic_set(&bp->b_lru_ref, 1);
233 	init_completion(&bp->b_iowait);
234 	INIT_LIST_HEAD(&bp->b_lru);
235 	INIT_LIST_HEAD(&bp->b_list);
236 	INIT_LIST_HEAD(&bp->b_li_list);
237 	sema_init(&bp->b_sema, 0); /* held, no waiters */
238 	spin_lock_init(&bp->b_lock);
239 	bp->b_target = target;
240 	bp->b_mount = target->bt_mount;
241 	bp->b_flags = flags;
242 
243 	/*
244 	 * Set length and io_length to the same value initially.
245 	 * I/O routines should use io_length, which will be the same in
246 	 * most cases but may be reset (e.g. XFS recovery).
247 	 */
248 	error = xfs_buf_get_maps(bp, nmaps);
249 	if (error)  {
250 		kmem_cache_free(xfs_buf_cache, bp);
251 		return error;
252 	}
253 
254 	bp->b_rhash_key = map[0].bm_bn;
255 	bp->b_length = 0;
256 	for (i = 0; i < nmaps; i++) {
257 		bp->b_maps[i].bm_bn = map[i].bm_bn;
258 		bp->b_maps[i].bm_len = map[i].bm_len;
259 		bp->b_length += map[i].bm_len;
260 	}
261 
262 	atomic_set(&bp->b_pin_count, 0);
263 	init_waitqueue_head(&bp->b_waiters);
264 
265 	XFS_STATS_INC(bp->b_mount, xb_create);
266 	trace_xfs_buf_init(bp, _RET_IP_);
267 
268 	*bpp = bp;
269 	return 0;
270 }
271 
272 static void
273 xfs_buf_free_pages(
274 	struct xfs_buf	*bp)
275 {
276 	uint		i;
277 
278 	ASSERT(bp->b_flags & _XBF_PAGES);
279 
280 	if (xfs_buf_is_vmapped(bp))
281 		vm_unmap_ram(bp->b_addr, bp->b_page_count);
282 
283 	for (i = 0; i < bp->b_page_count; i++) {
284 		if (bp->b_pages[i])
285 			__free_page(bp->b_pages[i]);
286 	}
287 	if (current->reclaim_state)
288 		current->reclaim_state->reclaimed_slab += bp->b_page_count;
289 
290 	if (bp->b_pages != bp->b_page_array)
291 		kmem_free(bp->b_pages);
292 	bp->b_pages = NULL;
293 	bp->b_flags &= ~_XBF_PAGES;
294 }
295 
296 static void
297 xfs_buf_free(
298 	struct xfs_buf		*bp)
299 {
300 	trace_xfs_buf_free(bp, _RET_IP_);
301 
302 	ASSERT(list_empty(&bp->b_lru));
303 
304 	if (bp->b_flags & _XBF_PAGES)
305 		xfs_buf_free_pages(bp);
306 	else if (bp->b_flags & _XBF_KMEM)
307 		kmem_free(bp->b_addr);
308 
309 	xfs_buf_free_maps(bp);
310 	kmem_cache_free(xfs_buf_cache, bp);
311 }
312 
313 static int
314 xfs_buf_alloc_kmem(
315 	struct xfs_buf	*bp,
316 	xfs_buf_flags_t	flags)
317 {
318 	xfs_km_flags_t	kmflag_mask = KM_NOFS;
319 	size_t		size = BBTOB(bp->b_length);
320 
321 	/* Assure zeroed buffer for non-read cases. */
322 	if (!(flags & XBF_READ))
323 		kmflag_mask |= KM_ZERO;
324 
325 	bp->b_addr = kmem_alloc(size, kmflag_mask);
326 	if (!bp->b_addr)
327 		return -ENOMEM;
328 
329 	if (((unsigned long)(bp->b_addr + size - 1) & PAGE_MASK) !=
330 	    ((unsigned long)bp->b_addr & PAGE_MASK)) {
331 		/* b_addr spans two pages - use alloc_page instead */
332 		kmem_free(bp->b_addr);
333 		bp->b_addr = NULL;
334 		return -ENOMEM;
335 	}
336 	bp->b_offset = offset_in_page(bp->b_addr);
337 	bp->b_pages = bp->b_page_array;
338 	bp->b_pages[0] = kmem_to_page(bp->b_addr);
339 	bp->b_page_count = 1;
340 	bp->b_flags |= _XBF_KMEM;
341 	return 0;
342 }
343 
344 static int
345 xfs_buf_alloc_pages(
346 	struct xfs_buf	*bp,
347 	xfs_buf_flags_t	flags)
348 {
349 	gfp_t		gfp_mask = __GFP_NOWARN;
350 	long		filled = 0;
351 
352 	if (flags & XBF_READ_AHEAD)
353 		gfp_mask |= __GFP_NORETRY;
354 	else
355 		gfp_mask |= GFP_NOFS;
356 
357 	/* Make sure that we have a page list */
358 	bp->b_page_count = DIV_ROUND_UP(BBTOB(bp->b_length), PAGE_SIZE);
359 	if (bp->b_page_count <= XB_PAGES) {
360 		bp->b_pages = bp->b_page_array;
361 	} else {
362 		bp->b_pages = kzalloc(sizeof(struct page *) * bp->b_page_count,
363 					gfp_mask);
364 		if (!bp->b_pages)
365 			return -ENOMEM;
366 	}
367 	bp->b_flags |= _XBF_PAGES;
368 
369 	/* Assure zeroed buffer for non-read cases. */
370 	if (!(flags & XBF_READ))
371 		gfp_mask |= __GFP_ZERO;
372 
373 	/*
374 	 * Bulk filling of pages can take multiple calls. Not filling the entire
375 	 * array is not an allocation failure, so don't back off if we get at
376 	 * least one extra page.
377 	 */
378 	for (;;) {
379 		long	last = filled;
380 
381 		filled = alloc_pages_bulk_array(gfp_mask, bp->b_page_count,
382 						bp->b_pages);
383 		if (filled == bp->b_page_count) {
384 			XFS_STATS_INC(bp->b_mount, xb_page_found);
385 			break;
386 		}
387 
388 		if (filled != last)
389 			continue;
390 
391 		if (flags & XBF_READ_AHEAD) {
392 			xfs_buf_free_pages(bp);
393 			return -ENOMEM;
394 		}
395 
396 		XFS_STATS_INC(bp->b_mount, xb_page_retries);
397 		memalloc_retry_wait(gfp_mask);
398 	}
399 	return 0;
400 }
401 
402 /*
403  *	Map buffer into kernel address-space if necessary.
404  */
405 STATIC int
406 _xfs_buf_map_pages(
407 	struct xfs_buf		*bp,
408 	uint			flags)
409 {
410 	ASSERT(bp->b_flags & _XBF_PAGES);
411 	if (bp->b_page_count == 1) {
412 		/* A single page buffer is always mappable */
413 		bp->b_addr = page_address(bp->b_pages[0]);
414 	} else if (flags & XBF_UNMAPPED) {
415 		bp->b_addr = NULL;
416 	} else {
417 		int retried = 0;
418 		unsigned nofs_flag;
419 
420 		/*
421 		 * vm_map_ram() will allocate auxiliary structures (e.g.
422 		 * pagetables) with GFP_KERNEL, yet we are likely to be under
423 		 * GFP_NOFS context here. Hence we need to tell memory reclaim
424 		 * that we are in such a context via PF_MEMALLOC_NOFS to prevent
425 		 * memory reclaim re-entering the filesystem here and
426 		 * potentially deadlocking.
427 		 */
428 		nofs_flag = memalloc_nofs_save();
429 		do {
430 			bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
431 						-1);
432 			if (bp->b_addr)
433 				break;
434 			vm_unmap_aliases();
435 		} while (retried++ <= 1);
436 		memalloc_nofs_restore(nofs_flag);
437 
438 		if (!bp->b_addr)
439 			return -ENOMEM;
440 	}
441 
442 	return 0;
443 }
444 
445 /*
446  *	Finding and Reading Buffers
447  */
448 static int
449 _xfs_buf_obj_cmp(
450 	struct rhashtable_compare_arg	*arg,
451 	const void			*obj)
452 {
453 	const struct xfs_buf_map	*map = arg->key;
454 	const struct xfs_buf		*bp = obj;
455 
456 	/*
457 	 * The key hashing in the lookup path depends on the key being the
458 	 * first element of the compare_arg, make sure to assert this.
459 	 */
460 	BUILD_BUG_ON(offsetof(struct xfs_buf_map, bm_bn) != 0);
461 
462 	if (bp->b_rhash_key != map->bm_bn)
463 		return 1;
464 
465 	if (unlikely(bp->b_length != map->bm_len)) {
466 		/*
467 		 * found a block number match. If the range doesn't
468 		 * match, the only way this is allowed is if the buffer
469 		 * in the cache is stale and the transaction that made
470 		 * it stale has not yet committed. i.e. we are
471 		 * reallocating a busy extent. Skip this buffer and
472 		 * continue searching for an exact match.
473 		 */
474 		ASSERT(bp->b_flags & XBF_STALE);
475 		return 1;
476 	}
477 	return 0;
478 }
479 
480 static const struct rhashtable_params xfs_buf_hash_params = {
481 	.min_size		= 32,	/* empty AGs have minimal footprint */
482 	.nelem_hint		= 16,
483 	.key_len		= sizeof(xfs_daddr_t),
484 	.key_offset		= offsetof(struct xfs_buf, b_rhash_key),
485 	.head_offset		= offsetof(struct xfs_buf, b_rhash_head),
486 	.automatic_shrinking	= true,
487 	.obj_cmpfn		= _xfs_buf_obj_cmp,
488 };
489 
490 int
491 xfs_buf_hash_init(
492 	struct xfs_perag	*pag)
493 {
494 	spin_lock_init(&pag->pag_buf_lock);
495 	return rhashtable_init(&pag->pag_buf_hash, &xfs_buf_hash_params);
496 }
497 
498 void
499 xfs_buf_hash_destroy(
500 	struct xfs_perag	*pag)
501 {
502 	rhashtable_destroy(&pag->pag_buf_hash);
503 }
504 
505 /*
506  * Look up a buffer in the buffer cache and return it referenced and locked
507  * in @found_bp.
508  *
509  * If @new_bp is supplied and we have a lookup miss, insert @new_bp into the
510  * cache.
511  *
512  * If XBF_TRYLOCK is set in @flags, only try to lock the buffer and return
513  * -EAGAIN if we fail to lock it.
514  *
515  * Return values are:
516  *	-EFSCORRUPTED if have been supplied with an invalid address
517  *	-EAGAIN on trylock failure
518  *	-ENOENT if we fail to find a match and @new_bp was NULL
519  *	0, with @found_bp:
520  *		- @new_bp if we inserted it into the cache
521  *		- the buffer we found and locked.
522  */
523 static int
524 xfs_buf_find(
525 	struct xfs_buftarg	*btp,
526 	struct xfs_buf_map	*map,
527 	int			nmaps,
528 	xfs_buf_flags_t		flags,
529 	struct xfs_buf		*new_bp,
530 	struct xfs_buf		**found_bp)
531 {
532 	struct xfs_perag	*pag;
533 	struct xfs_buf		*bp;
534 	struct xfs_buf_map	cmap = { .bm_bn = map[0].bm_bn };
535 	xfs_daddr_t		eofs;
536 	int			i;
537 
538 	*found_bp = NULL;
539 
540 	for (i = 0; i < nmaps; i++)
541 		cmap.bm_len += map[i].bm_len;
542 
543 	/* Check for IOs smaller than the sector size / not sector aligned */
544 	ASSERT(!(BBTOB(cmap.bm_len) < btp->bt_meta_sectorsize));
545 	ASSERT(!(BBTOB(cmap.bm_bn) & (xfs_off_t)btp->bt_meta_sectormask));
546 
547 	/*
548 	 * Corrupted block numbers can get through to here, unfortunately, so we
549 	 * have to check that the buffer falls within the filesystem bounds.
550 	 */
551 	eofs = XFS_FSB_TO_BB(btp->bt_mount, btp->bt_mount->m_sb.sb_dblocks);
552 	if (cmap.bm_bn < 0 || cmap.bm_bn >= eofs) {
553 		xfs_alert(btp->bt_mount,
554 			  "%s: daddr 0x%llx out of range, EOFS 0x%llx",
555 			  __func__, cmap.bm_bn, eofs);
556 		WARN_ON(1);
557 		return -EFSCORRUPTED;
558 	}
559 
560 	pag = xfs_perag_get(btp->bt_mount,
561 			    xfs_daddr_to_agno(btp->bt_mount, cmap.bm_bn));
562 
563 	spin_lock(&pag->pag_buf_lock);
564 	bp = rhashtable_lookup_fast(&pag->pag_buf_hash, &cmap,
565 				    xfs_buf_hash_params);
566 	if (bp) {
567 		atomic_inc(&bp->b_hold);
568 		goto found;
569 	}
570 
571 	/* No match found */
572 	if (!new_bp) {
573 		XFS_STATS_INC(btp->bt_mount, xb_miss_locked);
574 		spin_unlock(&pag->pag_buf_lock);
575 		xfs_perag_put(pag);
576 		return -ENOENT;
577 	}
578 
579 	/* the buffer keeps the perag reference until it is freed */
580 	new_bp->b_pag = pag;
581 	rhashtable_insert_fast(&pag->pag_buf_hash, &new_bp->b_rhash_head,
582 			       xfs_buf_hash_params);
583 	spin_unlock(&pag->pag_buf_lock);
584 	*found_bp = new_bp;
585 	return 0;
586 
587 found:
588 	spin_unlock(&pag->pag_buf_lock);
589 	xfs_perag_put(pag);
590 
591 	if (!xfs_buf_trylock(bp)) {
592 		if (flags & XBF_TRYLOCK) {
593 			xfs_buf_rele(bp);
594 			XFS_STATS_INC(btp->bt_mount, xb_busy_locked);
595 			return -EAGAIN;
596 		}
597 		xfs_buf_lock(bp);
598 		XFS_STATS_INC(btp->bt_mount, xb_get_locked_waited);
599 	}
600 
601 	/*
602 	 * if the buffer is stale, clear all the external state associated with
603 	 * it. We need to keep flags such as how we allocated the buffer memory
604 	 * intact here.
605 	 */
606 	if (bp->b_flags & XBF_STALE) {
607 		ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
608 		bp->b_flags &= _XBF_KMEM | _XBF_PAGES;
609 		bp->b_ops = NULL;
610 	}
611 
612 	trace_xfs_buf_find(bp, flags, _RET_IP_);
613 	XFS_STATS_INC(btp->bt_mount, xb_get_locked);
614 	*found_bp = bp;
615 	return 0;
616 }
617 
618 struct xfs_buf *
619 xfs_buf_incore(
620 	struct xfs_buftarg	*target,
621 	xfs_daddr_t		blkno,
622 	size_t			numblks,
623 	xfs_buf_flags_t		flags)
624 {
625 	struct xfs_buf		*bp;
626 	int			error;
627 	DEFINE_SINGLE_BUF_MAP(map, blkno, numblks);
628 
629 	error = xfs_buf_find(target, &map, 1, flags, NULL, &bp);
630 	if (error)
631 		return NULL;
632 	return bp;
633 }
634 
635 /*
636  * Assembles a buffer covering the specified range. The code is optimised for
637  * cache hits, as metadata intensive workloads will see 3 orders of magnitude
638  * more hits than misses.
639  */
640 int
641 xfs_buf_get_map(
642 	struct xfs_buftarg	*target,
643 	struct xfs_buf_map	*map,
644 	int			nmaps,
645 	xfs_buf_flags_t		flags,
646 	struct xfs_buf		**bpp)
647 {
648 	struct xfs_buf		*bp;
649 	struct xfs_buf		*new_bp;
650 	int			error;
651 
652 	*bpp = NULL;
653 	error = xfs_buf_find(target, map, nmaps, flags, NULL, &bp);
654 	if (!error)
655 		goto found;
656 	if (error != -ENOENT)
657 		return error;
658 
659 	error = _xfs_buf_alloc(target, map, nmaps, flags, &new_bp);
660 	if (error)
661 		return error;
662 
663 	/*
664 	 * For buffers that fit entirely within a single page, first attempt to
665 	 * allocate the memory from the heap to minimise memory usage. If we
666 	 * can't get heap memory for these small buffers, we fall back to using
667 	 * the page allocator.
668 	 */
669 	if (BBTOB(new_bp->b_length) >= PAGE_SIZE ||
670 	    xfs_buf_alloc_kmem(new_bp, flags) < 0) {
671 		error = xfs_buf_alloc_pages(new_bp, flags);
672 		if (error)
673 			goto out_free_buf;
674 	}
675 
676 	error = xfs_buf_find(target, map, nmaps, flags, new_bp, &bp);
677 	if (error)
678 		goto out_free_buf;
679 
680 	if (bp != new_bp)
681 		xfs_buf_free(new_bp);
682 
683 found:
684 	if (!bp->b_addr) {
685 		error = _xfs_buf_map_pages(bp, flags);
686 		if (unlikely(error)) {
687 			xfs_warn_ratelimited(target->bt_mount,
688 				"%s: failed to map %u pages", __func__,
689 				bp->b_page_count);
690 			xfs_buf_relse(bp);
691 			return error;
692 		}
693 	}
694 
695 	/*
696 	 * Clear b_error if this is a lookup from a caller that doesn't expect
697 	 * valid data to be found in the buffer.
698 	 */
699 	if (!(flags & XBF_READ))
700 		xfs_buf_ioerror(bp, 0);
701 
702 	XFS_STATS_INC(target->bt_mount, xb_get);
703 	trace_xfs_buf_get(bp, flags, _RET_IP_);
704 	*bpp = bp;
705 	return 0;
706 out_free_buf:
707 	xfs_buf_free(new_bp);
708 	return error;
709 }
710 
711 int
712 _xfs_buf_read(
713 	struct xfs_buf		*bp,
714 	xfs_buf_flags_t		flags)
715 {
716 	ASSERT(!(flags & XBF_WRITE));
717 	ASSERT(bp->b_maps[0].bm_bn != XFS_BUF_DADDR_NULL);
718 
719 	bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD | XBF_DONE);
720 	bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD);
721 
722 	return xfs_buf_submit(bp);
723 }
724 
725 /*
726  * Reverify a buffer found in cache without an attached ->b_ops.
727  *
728  * If the caller passed an ops structure and the buffer doesn't have ops
729  * assigned, set the ops and use it to verify the contents. If verification
730  * fails, clear XBF_DONE. We assume the buffer has no recorded errors and is
731  * already in XBF_DONE state on entry.
732  *
733  * Under normal operations, every in-core buffer is verified on read I/O
734  * completion. There are two scenarios that can lead to in-core buffers without
735  * an assigned ->b_ops. The first is during log recovery of buffers on a V4
736  * filesystem, though these buffers are purged at the end of recovery. The
737  * other is online repair, which intentionally reads with a NULL buffer ops to
738  * run several verifiers across an in-core buffer in order to establish buffer
739  * type.  If repair can't establish that, the buffer will be left in memory
740  * with NULL buffer ops.
741  */
742 int
743 xfs_buf_reverify(
744 	struct xfs_buf		*bp,
745 	const struct xfs_buf_ops *ops)
746 {
747 	ASSERT(bp->b_flags & XBF_DONE);
748 	ASSERT(bp->b_error == 0);
749 
750 	if (!ops || bp->b_ops)
751 		return 0;
752 
753 	bp->b_ops = ops;
754 	bp->b_ops->verify_read(bp);
755 	if (bp->b_error)
756 		bp->b_flags &= ~XBF_DONE;
757 	return bp->b_error;
758 }
759 
760 int
761 xfs_buf_read_map(
762 	struct xfs_buftarg	*target,
763 	struct xfs_buf_map	*map,
764 	int			nmaps,
765 	xfs_buf_flags_t		flags,
766 	struct xfs_buf		**bpp,
767 	const struct xfs_buf_ops *ops,
768 	xfs_failaddr_t		fa)
769 {
770 	struct xfs_buf		*bp;
771 	int			error;
772 
773 	flags |= XBF_READ;
774 	*bpp = NULL;
775 
776 	error = xfs_buf_get_map(target, map, nmaps, flags, &bp);
777 	if (error)
778 		return error;
779 
780 	trace_xfs_buf_read(bp, flags, _RET_IP_);
781 
782 	if (!(bp->b_flags & XBF_DONE)) {
783 		/* Initiate the buffer read and wait. */
784 		XFS_STATS_INC(target->bt_mount, xb_get_read);
785 		bp->b_ops = ops;
786 		error = _xfs_buf_read(bp, flags);
787 
788 		/* Readahead iodone already dropped the buffer, so exit. */
789 		if (flags & XBF_ASYNC)
790 			return 0;
791 	} else {
792 		/* Buffer already read; all we need to do is check it. */
793 		error = xfs_buf_reverify(bp, ops);
794 
795 		/* Readahead already finished; drop the buffer and exit. */
796 		if (flags & XBF_ASYNC) {
797 			xfs_buf_relse(bp);
798 			return 0;
799 		}
800 
801 		/* We do not want read in the flags */
802 		bp->b_flags &= ~XBF_READ;
803 		ASSERT(bp->b_ops != NULL || ops == NULL);
804 	}
805 
806 	/*
807 	 * If we've had a read error, then the contents of the buffer are
808 	 * invalid and should not be used. To ensure that a followup read tries
809 	 * to pull the buffer from disk again, we clear the XBF_DONE flag and
810 	 * mark the buffer stale. This ensures that anyone who has a current
811 	 * reference to the buffer will interpret it's contents correctly and
812 	 * future cache lookups will also treat it as an empty, uninitialised
813 	 * buffer.
814 	 */
815 	if (error) {
816 		if (!xfs_is_shutdown(target->bt_mount))
817 			xfs_buf_ioerror_alert(bp, fa);
818 
819 		bp->b_flags &= ~XBF_DONE;
820 		xfs_buf_stale(bp);
821 		xfs_buf_relse(bp);
822 
823 		/* bad CRC means corrupted metadata */
824 		if (error == -EFSBADCRC)
825 			error = -EFSCORRUPTED;
826 		return error;
827 	}
828 
829 	*bpp = bp;
830 	return 0;
831 }
832 
833 /*
834  *	If we are not low on memory then do the readahead in a deadlock
835  *	safe manner.
836  */
837 void
838 xfs_buf_readahead_map(
839 	struct xfs_buftarg	*target,
840 	struct xfs_buf_map	*map,
841 	int			nmaps,
842 	const struct xfs_buf_ops *ops)
843 {
844 	struct xfs_buf		*bp;
845 
846 	xfs_buf_read_map(target, map, nmaps,
847 		     XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD, &bp, ops,
848 		     __this_address);
849 }
850 
851 /*
852  * Read an uncached buffer from disk. Allocates and returns a locked
853  * buffer containing the disk contents or nothing. Uncached buffers always have
854  * a cache index of XFS_BUF_DADDR_NULL so we can easily determine if the buffer
855  * is cached or uncached during fault diagnosis.
856  */
857 int
858 xfs_buf_read_uncached(
859 	struct xfs_buftarg	*target,
860 	xfs_daddr_t		daddr,
861 	size_t			numblks,
862 	int			flags,
863 	struct xfs_buf		**bpp,
864 	const struct xfs_buf_ops *ops)
865 {
866 	struct xfs_buf		*bp;
867 	int			error;
868 
869 	*bpp = NULL;
870 
871 	error = xfs_buf_get_uncached(target, numblks, flags, &bp);
872 	if (error)
873 		return error;
874 
875 	/* set up the buffer for a read IO */
876 	ASSERT(bp->b_map_count == 1);
877 	bp->b_rhash_key = XFS_BUF_DADDR_NULL;
878 	bp->b_maps[0].bm_bn = daddr;
879 	bp->b_flags |= XBF_READ;
880 	bp->b_ops = ops;
881 
882 	xfs_buf_submit(bp);
883 	if (bp->b_error) {
884 		error = bp->b_error;
885 		xfs_buf_relse(bp);
886 		return error;
887 	}
888 
889 	*bpp = bp;
890 	return 0;
891 }
892 
893 int
894 xfs_buf_get_uncached(
895 	struct xfs_buftarg	*target,
896 	size_t			numblks,
897 	int			flags,
898 	struct xfs_buf		**bpp)
899 {
900 	int			error;
901 	struct xfs_buf		*bp;
902 	DEFINE_SINGLE_BUF_MAP(map, XFS_BUF_DADDR_NULL, numblks);
903 
904 	*bpp = NULL;
905 
906 	/* flags might contain irrelevant bits, pass only what we care about */
907 	error = _xfs_buf_alloc(target, &map, 1, flags & XBF_NO_IOACCT, &bp);
908 	if (error)
909 		return error;
910 
911 	error = xfs_buf_alloc_pages(bp, flags);
912 	if (error)
913 		goto fail_free_buf;
914 
915 	error = _xfs_buf_map_pages(bp, 0);
916 	if (unlikely(error)) {
917 		xfs_warn(target->bt_mount,
918 			"%s: failed to map pages", __func__);
919 		goto fail_free_buf;
920 	}
921 
922 	trace_xfs_buf_get_uncached(bp, _RET_IP_);
923 	*bpp = bp;
924 	return 0;
925 
926 fail_free_buf:
927 	xfs_buf_free(bp);
928 	return error;
929 }
930 
931 /*
932  *	Increment reference count on buffer, to hold the buffer concurrently
933  *	with another thread which may release (free) the buffer asynchronously.
934  *	Must hold the buffer already to call this function.
935  */
936 void
937 xfs_buf_hold(
938 	struct xfs_buf		*bp)
939 {
940 	trace_xfs_buf_hold(bp, _RET_IP_);
941 	atomic_inc(&bp->b_hold);
942 }
943 
944 /*
945  * Release a hold on the specified buffer. If the hold count is 1, the buffer is
946  * placed on LRU or freed (depending on b_lru_ref).
947  */
948 void
949 xfs_buf_rele(
950 	struct xfs_buf		*bp)
951 {
952 	struct xfs_perag	*pag = bp->b_pag;
953 	bool			release;
954 	bool			freebuf = false;
955 
956 	trace_xfs_buf_rele(bp, _RET_IP_);
957 
958 	if (!pag) {
959 		ASSERT(list_empty(&bp->b_lru));
960 		if (atomic_dec_and_test(&bp->b_hold)) {
961 			xfs_buf_ioacct_dec(bp);
962 			xfs_buf_free(bp);
963 		}
964 		return;
965 	}
966 
967 	ASSERT(atomic_read(&bp->b_hold) > 0);
968 
969 	/*
970 	 * We grab the b_lock here first to serialise racing xfs_buf_rele()
971 	 * calls. The pag_buf_lock being taken on the last reference only
972 	 * serialises against racing lookups in xfs_buf_find(). IOWs, the second
973 	 * to last reference we drop here is not serialised against the last
974 	 * reference until we take bp->b_lock. Hence if we don't grab b_lock
975 	 * first, the last "release" reference can win the race to the lock and
976 	 * free the buffer before the second-to-last reference is processed,
977 	 * leading to a use-after-free scenario.
978 	 */
979 	spin_lock(&bp->b_lock);
980 	release = atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock);
981 	if (!release) {
982 		/*
983 		 * Drop the in-flight state if the buffer is already on the LRU
984 		 * and it holds the only reference. This is racy because we
985 		 * haven't acquired the pag lock, but the use of _XBF_IN_FLIGHT
986 		 * ensures the decrement occurs only once per-buf.
987 		 */
988 		if ((atomic_read(&bp->b_hold) == 1) && !list_empty(&bp->b_lru))
989 			__xfs_buf_ioacct_dec(bp);
990 		goto out_unlock;
991 	}
992 
993 	/* the last reference has been dropped ... */
994 	__xfs_buf_ioacct_dec(bp);
995 	if (!(bp->b_flags & XBF_STALE) && atomic_read(&bp->b_lru_ref)) {
996 		/*
997 		 * If the buffer is added to the LRU take a new reference to the
998 		 * buffer for the LRU and clear the (now stale) dispose list
999 		 * state flag
1000 		 */
1001 		if (list_lru_add(&bp->b_target->bt_lru, &bp->b_lru)) {
1002 			bp->b_state &= ~XFS_BSTATE_DISPOSE;
1003 			atomic_inc(&bp->b_hold);
1004 		}
1005 		spin_unlock(&pag->pag_buf_lock);
1006 	} else {
1007 		/*
1008 		 * most of the time buffers will already be removed from the
1009 		 * LRU, so optimise that case by checking for the
1010 		 * XFS_BSTATE_DISPOSE flag indicating the last list the buffer
1011 		 * was on was the disposal list
1012 		 */
1013 		if (!(bp->b_state & XFS_BSTATE_DISPOSE)) {
1014 			list_lru_del(&bp->b_target->bt_lru, &bp->b_lru);
1015 		} else {
1016 			ASSERT(list_empty(&bp->b_lru));
1017 		}
1018 
1019 		ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1020 		rhashtable_remove_fast(&pag->pag_buf_hash, &bp->b_rhash_head,
1021 				       xfs_buf_hash_params);
1022 		spin_unlock(&pag->pag_buf_lock);
1023 		xfs_perag_put(pag);
1024 		freebuf = true;
1025 	}
1026 
1027 out_unlock:
1028 	spin_unlock(&bp->b_lock);
1029 
1030 	if (freebuf)
1031 		xfs_buf_free(bp);
1032 }
1033 
1034 
1035 /*
1036  *	Lock a buffer object, if it is not already locked.
1037  *
1038  *	If we come across a stale, pinned, locked buffer, we know that we are
1039  *	being asked to lock a buffer that has been reallocated. Because it is
1040  *	pinned, we know that the log has not been pushed to disk and hence it
1041  *	will still be locked.  Rather than continuing to have trylock attempts
1042  *	fail until someone else pushes the log, push it ourselves before
1043  *	returning.  This means that the xfsaild will not get stuck trying
1044  *	to push on stale inode buffers.
1045  */
1046 int
1047 xfs_buf_trylock(
1048 	struct xfs_buf		*bp)
1049 {
1050 	int			locked;
1051 
1052 	locked = down_trylock(&bp->b_sema) == 0;
1053 	if (locked)
1054 		trace_xfs_buf_trylock(bp, _RET_IP_);
1055 	else
1056 		trace_xfs_buf_trylock_fail(bp, _RET_IP_);
1057 	return locked;
1058 }
1059 
1060 /*
1061  *	Lock a buffer object.
1062  *
1063  *	If we come across a stale, pinned, locked buffer, we know that we
1064  *	are being asked to lock a buffer that has been reallocated. Because
1065  *	it is pinned, we know that the log has not been pushed to disk and
1066  *	hence it will still be locked. Rather than sleeping until someone
1067  *	else pushes the log, push it ourselves before trying to get the lock.
1068  */
1069 void
1070 xfs_buf_lock(
1071 	struct xfs_buf		*bp)
1072 {
1073 	trace_xfs_buf_lock(bp, _RET_IP_);
1074 
1075 	if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
1076 		xfs_log_force(bp->b_mount, 0);
1077 	down(&bp->b_sema);
1078 
1079 	trace_xfs_buf_lock_done(bp, _RET_IP_);
1080 }
1081 
1082 void
1083 xfs_buf_unlock(
1084 	struct xfs_buf		*bp)
1085 {
1086 	ASSERT(xfs_buf_islocked(bp));
1087 
1088 	up(&bp->b_sema);
1089 	trace_xfs_buf_unlock(bp, _RET_IP_);
1090 }
1091 
1092 STATIC void
1093 xfs_buf_wait_unpin(
1094 	struct xfs_buf		*bp)
1095 {
1096 	DECLARE_WAITQUEUE	(wait, current);
1097 
1098 	if (atomic_read(&bp->b_pin_count) == 0)
1099 		return;
1100 
1101 	add_wait_queue(&bp->b_waiters, &wait);
1102 	for (;;) {
1103 		set_current_state(TASK_UNINTERRUPTIBLE);
1104 		if (atomic_read(&bp->b_pin_count) == 0)
1105 			break;
1106 		io_schedule();
1107 	}
1108 	remove_wait_queue(&bp->b_waiters, &wait);
1109 	set_current_state(TASK_RUNNING);
1110 }
1111 
1112 static void
1113 xfs_buf_ioerror_alert_ratelimited(
1114 	struct xfs_buf		*bp)
1115 {
1116 	static unsigned long	lasttime;
1117 	static struct xfs_buftarg *lasttarg;
1118 
1119 	if (bp->b_target != lasttarg ||
1120 	    time_after(jiffies, (lasttime + 5*HZ))) {
1121 		lasttime = jiffies;
1122 		xfs_buf_ioerror_alert(bp, __this_address);
1123 	}
1124 	lasttarg = bp->b_target;
1125 }
1126 
1127 /*
1128  * Account for this latest trip around the retry handler, and decide if
1129  * we've failed enough times to constitute a permanent failure.
1130  */
1131 static bool
1132 xfs_buf_ioerror_permanent(
1133 	struct xfs_buf		*bp,
1134 	struct xfs_error_cfg	*cfg)
1135 {
1136 	struct xfs_mount	*mp = bp->b_mount;
1137 
1138 	if (cfg->max_retries != XFS_ERR_RETRY_FOREVER &&
1139 	    ++bp->b_retries > cfg->max_retries)
1140 		return true;
1141 	if (cfg->retry_timeout != XFS_ERR_RETRY_FOREVER &&
1142 	    time_after(jiffies, cfg->retry_timeout + bp->b_first_retry_time))
1143 		return true;
1144 
1145 	/* At unmount we may treat errors differently */
1146 	if (xfs_is_unmounting(mp) && mp->m_fail_unmount)
1147 		return true;
1148 
1149 	return false;
1150 }
1151 
1152 /*
1153  * On a sync write or shutdown we just want to stale the buffer and let the
1154  * caller handle the error in bp->b_error appropriately.
1155  *
1156  * If the write was asynchronous then no one will be looking for the error.  If
1157  * this is the first failure of this type, clear the error state and write the
1158  * buffer out again. This means we always retry an async write failure at least
1159  * once, but we also need to set the buffer up to behave correctly now for
1160  * repeated failures.
1161  *
1162  * If we get repeated async write failures, then we take action according to the
1163  * error configuration we have been set up to use.
1164  *
1165  * Returns true if this function took care of error handling and the caller must
1166  * not touch the buffer again.  Return false if the caller should proceed with
1167  * normal I/O completion handling.
1168  */
1169 static bool
1170 xfs_buf_ioend_handle_error(
1171 	struct xfs_buf		*bp)
1172 {
1173 	struct xfs_mount	*mp = bp->b_mount;
1174 	struct xfs_error_cfg	*cfg;
1175 
1176 	/*
1177 	 * If we've already decided to shutdown the filesystem because of I/O
1178 	 * errors, there's no point in giving this a retry.
1179 	 */
1180 	if (xfs_is_shutdown(mp))
1181 		goto out_stale;
1182 
1183 	xfs_buf_ioerror_alert_ratelimited(bp);
1184 
1185 	/*
1186 	 * We're not going to bother about retrying this during recovery.
1187 	 * One strike!
1188 	 */
1189 	if (bp->b_flags & _XBF_LOGRECOVERY) {
1190 		xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1191 		return false;
1192 	}
1193 
1194 	/*
1195 	 * Synchronous writes will have callers process the error.
1196 	 */
1197 	if (!(bp->b_flags & XBF_ASYNC))
1198 		goto out_stale;
1199 
1200 	trace_xfs_buf_iodone_async(bp, _RET_IP_);
1201 
1202 	cfg = xfs_error_get_cfg(mp, XFS_ERR_METADATA, bp->b_error);
1203 	if (bp->b_last_error != bp->b_error ||
1204 	    !(bp->b_flags & (XBF_STALE | XBF_WRITE_FAIL))) {
1205 		bp->b_last_error = bp->b_error;
1206 		if (cfg->retry_timeout != XFS_ERR_RETRY_FOREVER &&
1207 		    !bp->b_first_retry_time)
1208 			bp->b_first_retry_time = jiffies;
1209 		goto resubmit;
1210 	}
1211 
1212 	/*
1213 	 * Permanent error - we need to trigger a shutdown if we haven't already
1214 	 * to indicate that inconsistency will result from this action.
1215 	 */
1216 	if (xfs_buf_ioerror_permanent(bp, cfg)) {
1217 		xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1218 		goto out_stale;
1219 	}
1220 
1221 	/* Still considered a transient error. Caller will schedule retries. */
1222 	if (bp->b_flags & _XBF_INODES)
1223 		xfs_buf_inode_io_fail(bp);
1224 	else if (bp->b_flags & _XBF_DQUOTS)
1225 		xfs_buf_dquot_io_fail(bp);
1226 	else
1227 		ASSERT(list_empty(&bp->b_li_list));
1228 	xfs_buf_ioerror(bp, 0);
1229 	xfs_buf_relse(bp);
1230 	return true;
1231 
1232 resubmit:
1233 	xfs_buf_ioerror(bp, 0);
1234 	bp->b_flags |= (XBF_DONE | XBF_WRITE_FAIL);
1235 	xfs_buf_submit(bp);
1236 	return true;
1237 out_stale:
1238 	xfs_buf_stale(bp);
1239 	bp->b_flags |= XBF_DONE;
1240 	bp->b_flags &= ~XBF_WRITE;
1241 	trace_xfs_buf_error_relse(bp, _RET_IP_);
1242 	return false;
1243 }
1244 
1245 static void
1246 xfs_buf_ioend(
1247 	struct xfs_buf	*bp)
1248 {
1249 	trace_xfs_buf_iodone(bp, _RET_IP_);
1250 
1251 	/*
1252 	 * Pull in IO completion errors now. We are guaranteed to be running
1253 	 * single threaded, so we don't need the lock to read b_io_error.
1254 	 */
1255 	if (!bp->b_error && bp->b_io_error)
1256 		xfs_buf_ioerror(bp, bp->b_io_error);
1257 
1258 	if (bp->b_flags & XBF_READ) {
1259 		if (!bp->b_error && bp->b_ops)
1260 			bp->b_ops->verify_read(bp);
1261 		if (!bp->b_error)
1262 			bp->b_flags |= XBF_DONE;
1263 	} else {
1264 		if (!bp->b_error) {
1265 			bp->b_flags &= ~XBF_WRITE_FAIL;
1266 			bp->b_flags |= XBF_DONE;
1267 		}
1268 
1269 		if (unlikely(bp->b_error) && xfs_buf_ioend_handle_error(bp))
1270 			return;
1271 
1272 		/* clear the retry state */
1273 		bp->b_last_error = 0;
1274 		bp->b_retries = 0;
1275 		bp->b_first_retry_time = 0;
1276 
1277 		/*
1278 		 * Note that for things like remote attribute buffers, there may
1279 		 * not be a buffer log item here, so processing the buffer log
1280 		 * item must remain optional.
1281 		 */
1282 		if (bp->b_log_item)
1283 			xfs_buf_item_done(bp);
1284 
1285 		if (bp->b_flags & _XBF_INODES)
1286 			xfs_buf_inode_iodone(bp);
1287 		else if (bp->b_flags & _XBF_DQUOTS)
1288 			xfs_buf_dquot_iodone(bp);
1289 
1290 	}
1291 
1292 	bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD |
1293 			 _XBF_LOGRECOVERY);
1294 
1295 	if (bp->b_flags & XBF_ASYNC)
1296 		xfs_buf_relse(bp);
1297 	else
1298 		complete(&bp->b_iowait);
1299 }
1300 
1301 static void
1302 xfs_buf_ioend_work(
1303 	struct work_struct	*work)
1304 {
1305 	struct xfs_buf		*bp =
1306 		container_of(work, struct xfs_buf, b_ioend_work);
1307 
1308 	xfs_buf_ioend(bp);
1309 }
1310 
1311 static void
1312 xfs_buf_ioend_async(
1313 	struct xfs_buf	*bp)
1314 {
1315 	INIT_WORK(&bp->b_ioend_work, xfs_buf_ioend_work);
1316 	queue_work(bp->b_mount->m_buf_workqueue, &bp->b_ioend_work);
1317 }
1318 
1319 void
1320 __xfs_buf_ioerror(
1321 	struct xfs_buf		*bp,
1322 	int			error,
1323 	xfs_failaddr_t		failaddr)
1324 {
1325 	ASSERT(error <= 0 && error >= -1000);
1326 	bp->b_error = error;
1327 	trace_xfs_buf_ioerror(bp, error, failaddr);
1328 }
1329 
1330 void
1331 xfs_buf_ioerror_alert(
1332 	struct xfs_buf		*bp,
1333 	xfs_failaddr_t		func)
1334 {
1335 	xfs_buf_alert_ratelimited(bp, "XFS: metadata IO error",
1336 		"metadata I/O error in \"%pS\" at daddr 0x%llx len %d error %d",
1337 				  func, (uint64_t)xfs_buf_daddr(bp),
1338 				  bp->b_length, -bp->b_error);
1339 }
1340 
1341 /*
1342  * To simulate an I/O failure, the buffer must be locked and held with at least
1343  * three references. The LRU reference is dropped by the stale call. The buf
1344  * item reference is dropped via ioend processing. The third reference is owned
1345  * by the caller and is dropped on I/O completion if the buffer is XBF_ASYNC.
1346  */
1347 void
1348 xfs_buf_ioend_fail(
1349 	struct xfs_buf	*bp)
1350 {
1351 	bp->b_flags &= ~XBF_DONE;
1352 	xfs_buf_stale(bp);
1353 	xfs_buf_ioerror(bp, -EIO);
1354 	xfs_buf_ioend(bp);
1355 }
1356 
1357 int
1358 xfs_bwrite(
1359 	struct xfs_buf		*bp)
1360 {
1361 	int			error;
1362 
1363 	ASSERT(xfs_buf_islocked(bp));
1364 
1365 	bp->b_flags |= XBF_WRITE;
1366 	bp->b_flags &= ~(XBF_ASYNC | XBF_READ | _XBF_DELWRI_Q |
1367 			 XBF_DONE);
1368 
1369 	error = xfs_buf_submit(bp);
1370 	if (error)
1371 		xfs_force_shutdown(bp->b_mount, SHUTDOWN_META_IO_ERROR);
1372 	return error;
1373 }
1374 
1375 static void
1376 xfs_buf_bio_end_io(
1377 	struct bio		*bio)
1378 {
1379 	struct xfs_buf		*bp = (struct xfs_buf *)bio->bi_private;
1380 
1381 	if (!bio->bi_status &&
1382 	    (bp->b_flags & XBF_WRITE) && (bp->b_flags & XBF_ASYNC) &&
1383 	    XFS_TEST_ERROR(false, bp->b_mount, XFS_ERRTAG_BUF_IOERROR))
1384 		bio->bi_status = BLK_STS_IOERR;
1385 
1386 	/*
1387 	 * don't overwrite existing errors - otherwise we can lose errors on
1388 	 * buffers that require multiple bios to complete.
1389 	 */
1390 	if (bio->bi_status) {
1391 		int error = blk_status_to_errno(bio->bi_status);
1392 
1393 		cmpxchg(&bp->b_io_error, 0, error);
1394 	}
1395 
1396 	if (!bp->b_error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
1397 		invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1398 
1399 	if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1400 		xfs_buf_ioend_async(bp);
1401 	bio_put(bio);
1402 }
1403 
1404 static void
1405 xfs_buf_ioapply_map(
1406 	struct xfs_buf	*bp,
1407 	int		map,
1408 	int		*buf_offset,
1409 	int		*count,
1410 	int		op)
1411 {
1412 	int		page_index;
1413 	unsigned int	total_nr_pages = bp->b_page_count;
1414 	int		nr_pages;
1415 	struct bio	*bio;
1416 	sector_t	sector =  bp->b_maps[map].bm_bn;
1417 	int		size;
1418 	int		offset;
1419 
1420 	/* skip the pages in the buffer before the start offset */
1421 	page_index = 0;
1422 	offset = *buf_offset;
1423 	while (offset >= PAGE_SIZE) {
1424 		page_index++;
1425 		offset -= PAGE_SIZE;
1426 	}
1427 
1428 	/*
1429 	 * Limit the IO size to the length of the current vector, and update the
1430 	 * remaining IO count for the next time around.
1431 	 */
1432 	size = min_t(int, BBTOB(bp->b_maps[map].bm_len), *count);
1433 	*count -= size;
1434 	*buf_offset += size;
1435 
1436 next_chunk:
1437 	atomic_inc(&bp->b_io_remaining);
1438 	nr_pages = bio_max_segs(total_nr_pages);
1439 
1440 	bio = bio_alloc(bp->b_target->bt_bdev, nr_pages, op, GFP_NOIO);
1441 	bio->bi_iter.bi_sector = sector;
1442 	bio->bi_end_io = xfs_buf_bio_end_io;
1443 	bio->bi_private = bp;
1444 
1445 	for (; size && nr_pages; nr_pages--, page_index++) {
1446 		int	rbytes, nbytes = PAGE_SIZE - offset;
1447 
1448 		if (nbytes > size)
1449 			nbytes = size;
1450 
1451 		rbytes = bio_add_page(bio, bp->b_pages[page_index], nbytes,
1452 				      offset);
1453 		if (rbytes < nbytes)
1454 			break;
1455 
1456 		offset = 0;
1457 		sector += BTOBB(nbytes);
1458 		size -= nbytes;
1459 		total_nr_pages--;
1460 	}
1461 
1462 	if (likely(bio->bi_iter.bi_size)) {
1463 		if (xfs_buf_is_vmapped(bp)) {
1464 			flush_kernel_vmap_range(bp->b_addr,
1465 						xfs_buf_vmap_len(bp));
1466 		}
1467 		submit_bio(bio);
1468 		if (size)
1469 			goto next_chunk;
1470 	} else {
1471 		/*
1472 		 * This is guaranteed not to be the last io reference count
1473 		 * because the caller (xfs_buf_submit) holds a count itself.
1474 		 */
1475 		atomic_dec(&bp->b_io_remaining);
1476 		xfs_buf_ioerror(bp, -EIO);
1477 		bio_put(bio);
1478 	}
1479 
1480 }
1481 
1482 STATIC void
1483 _xfs_buf_ioapply(
1484 	struct xfs_buf	*bp)
1485 {
1486 	struct blk_plug	plug;
1487 	int		op;
1488 	int		offset;
1489 	int		size;
1490 	int		i;
1491 
1492 	/*
1493 	 * Make sure we capture only current IO errors rather than stale errors
1494 	 * left over from previous use of the buffer (e.g. failed readahead).
1495 	 */
1496 	bp->b_error = 0;
1497 
1498 	if (bp->b_flags & XBF_WRITE) {
1499 		op = REQ_OP_WRITE;
1500 
1501 		/*
1502 		 * Run the write verifier callback function if it exists. If
1503 		 * this function fails it will mark the buffer with an error and
1504 		 * the IO should not be dispatched.
1505 		 */
1506 		if (bp->b_ops) {
1507 			bp->b_ops->verify_write(bp);
1508 			if (bp->b_error) {
1509 				xfs_force_shutdown(bp->b_mount,
1510 						   SHUTDOWN_CORRUPT_INCORE);
1511 				return;
1512 			}
1513 		} else if (bp->b_rhash_key != XFS_BUF_DADDR_NULL) {
1514 			struct xfs_mount *mp = bp->b_mount;
1515 
1516 			/*
1517 			 * non-crc filesystems don't attach verifiers during
1518 			 * log recovery, so don't warn for such filesystems.
1519 			 */
1520 			if (xfs_has_crc(mp)) {
1521 				xfs_warn(mp,
1522 					"%s: no buf ops on daddr 0x%llx len %d",
1523 					__func__, xfs_buf_daddr(bp),
1524 					bp->b_length);
1525 				xfs_hex_dump(bp->b_addr,
1526 						XFS_CORRUPTION_DUMP_LEN);
1527 				dump_stack();
1528 			}
1529 		}
1530 	} else {
1531 		op = REQ_OP_READ;
1532 		if (bp->b_flags & XBF_READ_AHEAD)
1533 			op |= REQ_RAHEAD;
1534 	}
1535 
1536 	/* we only use the buffer cache for meta-data */
1537 	op |= REQ_META;
1538 
1539 	/*
1540 	 * Walk all the vectors issuing IO on them. Set up the initial offset
1541 	 * into the buffer and the desired IO size before we start -
1542 	 * _xfs_buf_ioapply_vec() will modify them appropriately for each
1543 	 * subsequent call.
1544 	 */
1545 	offset = bp->b_offset;
1546 	size = BBTOB(bp->b_length);
1547 	blk_start_plug(&plug);
1548 	for (i = 0; i < bp->b_map_count; i++) {
1549 		xfs_buf_ioapply_map(bp, i, &offset, &size, op);
1550 		if (bp->b_error)
1551 			break;
1552 		if (size <= 0)
1553 			break;	/* all done */
1554 	}
1555 	blk_finish_plug(&plug);
1556 }
1557 
1558 /*
1559  * Wait for I/O completion of a sync buffer and return the I/O error code.
1560  */
1561 static int
1562 xfs_buf_iowait(
1563 	struct xfs_buf	*bp)
1564 {
1565 	ASSERT(!(bp->b_flags & XBF_ASYNC));
1566 
1567 	trace_xfs_buf_iowait(bp, _RET_IP_);
1568 	wait_for_completion(&bp->b_iowait);
1569 	trace_xfs_buf_iowait_done(bp, _RET_IP_);
1570 
1571 	return bp->b_error;
1572 }
1573 
1574 /*
1575  * Buffer I/O submission path, read or write. Asynchronous submission transfers
1576  * the buffer lock ownership and the current reference to the IO. It is not
1577  * safe to reference the buffer after a call to this function unless the caller
1578  * holds an additional reference itself.
1579  */
1580 static int
1581 __xfs_buf_submit(
1582 	struct xfs_buf	*bp,
1583 	bool		wait)
1584 {
1585 	int		error = 0;
1586 
1587 	trace_xfs_buf_submit(bp, _RET_IP_);
1588 
1589 	ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1590 
1591 	/* on shutdown we stale and complete the buffer immediately */
1592 	if (xfs_is_shutdown(bp->b_mount)) {
1593 		xfs_buf_ioend_fail(bp);
1594 		return -EIO;
1595 	}
1596 
1597 	/*
1598 	 * Grab a reference so the buffer does not go away underneath us. For
1599 	 * async buffers, I/O completion drops the callers reference, which
1600 	 * could occur before submission returns.
1601 	 */
1602 	xfs_buf_hold(bp);
1603 
1604 	if (bp->b_flags & XBF_WRITE)
1605 		xfs_buf_wait_unpin(bp);
1606 
1607 	/* clear the internal error state to avoid spurious errors */
1608 	bp->b_io_error = 0;
1609 
1610 	/*
1611 	 * Set the count to 1 initially, this will stop an I/O completion
1612 	 * callout which happens before we have started all the I/O from calling
1613 	 * xfs_buf_ioend too early.
1614 	 */
1615 	atomic_set(&bp->b_io_remaining, 1);
1616 	if (bp->b_flags & XBF_ASYNC)
1617 		xfs_buf_ioacct_inc(bp);
1618 	_xfs_buf_ioapply(bp);
1619 
1620 	/*
1621 	 * If _xfs_buf_ioapply failed, we can get back here with only the IO
1622 	 * reference we took above. If we drop it to zero, run completion so
1623 	 * that we don't return to the caller with completion still pending.
1624 	 */
1625 	if (atomic_dec_and_test(&bp->b_io_remaining) == 1) {
1626 		if (bp->b_error || !(bp->b_flags & XBF_ASYNC))
1627 			xfs_buf_ioend(bp);
1628 		else
1629 			xfs_buf_ioend_async(bp);
1630 	}
1631 
1632 	if (wait)
1633 		error = xfs_buf_iowait(bp);
1634 
1635 	/*
1636 	 * Release the hold that keeps the buffer referenced for the entire
1637 	 * I/O. Note that if the buffer is async, it is not safe to reference
1638 	 * after this release.
1639 	 */
1640 	xfs_buf_rele(bp);
1641 	return error;
1642 }
1643 
1644 void *
1645 xfs_buf_offset(
1646 	struct xfs_buf		*bp,
1647 	size_t			offset)
1648 {
1649 	struct page		*page;
1650 
1651 	if (bp->b_addr)
1652 		return bp->b_addr + offset;
1653 
1654 	page = bp->b_pages[offset >> PAGE_SHIFT];
1655 	return page_address(page) + (offset & (PAGE_SIZE-1));
1656 }
1657 
1658 void
1659 xfs_buf_zero(
1660 	struct xfs_buf		*bp,
1661 	size_t			boff,
1662 	size_t			bsize)
1663 {
1664 	size_t			bend;
1665 
1666 	bend = boff + bsize;
1667 	while (boff < bend) {
1668 		struct page	*page;
1669 		int		page_index, page_offset, csize;
1670 
1671 		page_index = (boff + bp->b_offset) >> PAGE_SHIFT;
1672 		page_offset = (boff + bp->b_offset) & ~PAGE_MASK;
1673 		page = bp->b_pages[page_index];
1674 		csize = min_t(size_t, PAGE_SIZE - page_offset,
1675 				      BBTOB(bp->b_length) - boff);
1676 
1677 		ASSERT((csize + page_offset) <= PAGE_SIZE);
1678 
1679 		memset(page_address(page) + page_offset, 0, csize);
1680 
1681 		boff += csize;
1682 	}
1683 }
1684 
1685 /*
1686  * Log a message about and stale a buffer that a caller has decided is corrupt.
1687  *
1688  * This function should be called for the kinds of metadata corruption that
1689  * cannot be detect from a verifier, such as incorrect inter-block relationship
1690  * data.  Do /not/ call this function from a verifier function.
1691  *
1692  * The buffer must be XBF_DONE prior to the call.  Afterwards, the buffer will
1693  * be marked stale, but b_error will not be set.  The caller is responsible for
1694  * releasing the buffer or fixing it.
1695  */
1696 void
1697 __xfs_buf_mark_corrupt(
1698 	struct xfs_buf		*bp,
1699 	xfs_failaddr_t		fa)
1700 {
1701 	ASSERT(bp->b_flags & XBF_DONE);
1702 
1703 	xfs_buf_corruption_error(bp, fa);
1704 	xfs_buf_stale(bp);
1705 }
1706 
1707 /*
1708  *	Handling of buffer targets (buftargs).
1709  */
1710 
1711 /*
1712  * Wait for any bufs with callbacks that have been submitted but have not yet
1713  * returned. These buffers will have an elevated hold count, so wait on those
1714  * while freeing all the buffers only held by the LRU.
1715  */
1716 static enum lru_status
1717 xfs_buftarg_drain_rele(
1718 	struct list_head	*item,
1719 	struct list_lru_one	*lru,
1720 	spinlock_t		*lru_lock,
1721 	void			*arg)
1722 
1723 {
1724 	struct xfs_buf		*bp = container_of(item, struct xfs_buf, b_lru);
1725 	struct list_head	*dispose = arg;
1726 
1727 	if (atomic_read(&bp->b_hold) > 1) {
1728 		/* need to wait, so skip it this pass */
1729 		trace_xfs_buf_drain_buftarg(bp, _RET_IP_);
1730 		return LRU_SKIP;
1731 	}
1732 	if (!spin_trylock(&bp->b_lock))
1733 		return LRU_SKIP;
1734 
1735 	/*
1736 	 * clear the LRU reference count so the buffer doesn't get
1737 	 * ignored in xfs_buf_rele().
1738 	 */
1739 	atomic_set(&bp->b_lru_ref, 0);
1740 	bp->b_state |= XFS_BSTATE_DISPOSE;
1741 	list_lru_isolate_move(lru, item, dispose);
1742 	spin_unlock(&bp->b_lock);
1743 	return LRU_REMOVED;
1744 }
1745 
1746 /*
1747  * Wait for outstanding I/O on the buftarg to complete.
1748  */
1749 void
1750 xfs_buftarg_wait(
1751 	struct xfs_buftarg	*btp)
1752 {
1753 	/*
1754 	 * First wait on the buftarg I/O count for all in-flight buffers to be
1755 	 * released. This is critical as new buffers do not make the LRU until
1756 	 * they are released.
1757 	 *
1758 	 * Next, flush the buffer workqueue to ensure all completion processing
1759 	 * has finished. Just waiting on buffer locks is not sufficient for
1760 	 * async IO as the reference count held over IO is not released until
1761 	 * after the buffer lock is dropped. Hence we need to ensure here that
1762 	 * all reference counts have been dropped before we start walking the
1763 	 * LRU list.
1764 	 */
1765 	while (percpu_counter_sum(&btp->bt_io_count))
1766 		delay(100);
1767 	flush_workqueue(btp->bt_mount->m_buf_workqueue);
1768 }
1769 
1770 void
1771 xfs_buftarg_drain(
1772 	struct xfs_buftarg	*btp)
1773 {
1774 	LIST_HEAD(dispose);
1775 	int			loop = 0;
1776 	bool			write_fail = false;
1777 
1778 	xfs_buftarg_wait(btp);
1779 
1780 	/* loop until there is nothing left on the lru list. */
1781 	while (list_lru_count(&btp->bt_lru)) {
1782 		list_lru_walk(&btp->bt_lru, xfs_buftarg_drain_rele,
1783 			      &dispose, LONG_MAX);
1784 
1785 		while (!list_empty(&dispose)) {
1786 			struct xfs_buf *bp;
1787 			bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1788 			list_del_init(&bp->b_lru);
1789 			if (bp->b_flags & XBF_WRITE_FAIL) {
1790 				write_fail = true;
1791 				xfs_buf_alert_ratelimited(bp,
1792 					"XFS: Corruption Alert",
1793 "Corruption Alert: Buffer at daddr 0x%llx had permanent write failures!",
1794 					(long long)xfs_buf_daddr(bp));
1795 			}
1796 			xfs_buf_rele(bp);
1797 		}
1798 		if (loop++ != 0)
1799 			delay(100);
1800 	}
1801 
1802 	/*
1803 	 * If one or more failed buffers were freed, that means dirty metadata
1804 	 * was thrown away. This should only ever happen after I/O completion
1805 	 * handling has elevated I/O error(s) to permanent failures and shuts
1806 	 * down the fs.
1807 	 */
1808 	if (write_fail) {
1809 		ASSERT(xfs_is_shutdown(btp->bt_mount));
1810 		xfs_alert(btp->bt_mount,
1811 	      "Please run xfs_repair to determine the extent of the problem.");
1812 	}
1813 }
1814 
1815 static enum lru_status
1816 xfs_buftarg_isolate(
1817 	struct list_head	*item,
1818 	struct list_lru_one	*lru,
1819 	spinlock_t		*lru_lock,
1820 	void			*arg)
1821 {
1822 	struct xfs_buf		*bp = container_of(item, struct xfs_buf, b_lru);
1823 	struct list_head	*dispose = arg;
1824 
1825 	/*
1826 	 * we are inverting the lru lock/bp->b_lock here, so use a trylock.
1827 	 * If we fail to get the lock, just skip it.
1828 	 */
1829 	if (!spin_trylock(&bp->b_lock))
1830 		return LRU_SKIP;
1831 	/*
1832 	 * Decrement the b_lru_ref count unless the value is already
1833 	 * zero. If the value is already zero, we need to reclaim the
1834 	 * buffer, otherwise it gets another trip through the LRU.
1835 	 */
1836 	if (atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
1837 		spin_unlock(&bp->b_lock);
1838 		return LRU_ROTATE;
1839 	}
1840 
1841 	bp->b_state |= XFS_BSTATE_DISPOSE;
1842 	list_lru_isolate_move(lru, item, dispose);
1843 	spin_unlock(&bp->b_lock);
1844 	return LRU_REMOVED;
1845 }
1846 
1847 static unsigned long
1848 xfs_buftarg_shrink_scan(
1849 	struct shrinker		*shrink,
1850 	struct shrink_control	*sc)
1851 {
1852 	struct xfs_buftarg	*btp = container_of(shrink,
1853 					struct xfs_buftarg, bt_shrinker);
1854 	LIST_HEAD(dispose);
1855 	unsigned long		freed;
1856 
1857 	freed = list_lru_shrink_walk(&btp->bt_lru, sc,
1858 				     xfs_buftarg_isolate, &dispose);
1859 
1860 	while (!list_empty(&dispose)) {
1861 		struct xfs_buf *bp;
1862 		bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1863 		list_del_init(&bp->b_lru);
1864 		xfs_buf_rele(bp);
1865 	}
1866 
1867 	return freed;
1868 }
1869 
1870 static unsigned long
1871 xfs_buftarg_shrink_count(
1872 	struct shrinker		*shrink,
1873 	struct shrink_control	*sc)
1874 {
1875 	struct xfs_buftarg	*btp = container_of(shrink,
1876 					struct xfs_buftarg, bt_shrinker);
1877 	return list_lru_shrink_count(&btp->bt_lru, sc);
1878 }
1879 
1880 void
1881 xfs_free_buftarg(
1882 	struct xfs_buftarg	*btp)
1883 {
1884 	unregister_shrinker(&btp->bt_shrinker);
1885 	ASSERT(percpu_counter_sum(&btp->bt_io_count) == 0);
1886 	percpu_counter_destroy(&btp->bt_io_count);
1887 	list_lru_destroy(&btp->bt_lru);
1888 
1889 	blkdev_issue_flush(btp->bt_bdev);
1890 	fs_put_dax(btp->bt_daxdev);
1891 
1892 	kmem_free(btp);
1893 }
1894 
1895 int
1896 xfs_setsize_buftarg(
1897 	xfs_buftarg_t		*btp,
1898 	unsigned int		sectorsize)
1899 {
1900 	/* Set up metadata sector size info */
1901 	btp->bt_meta_sectorsize = sectorsize;
1902 	btp->bt_meta_sectormask = sectorsize - 1;
1903 
1904 	if (set_blocksize(btp->bt_bdev, sectorsize)) {
1905 		xfs_warn(btp->bt_mount,
1906 			"Cannot set_blocksize to %u on device %pg",
1907 			sectorsize, btp->bt_bdev);
1908 		return -EINVAL;
1909 	}
1910 
1911 	/* Set up device logical sector size mask */
1912 	btp->bt_logical_sectorsize = bdev_logical_block_size(btp->bt_bdev);
1913 	btp->bt_logical_sectormask = bdev_logical_block_size(btp->bt_bdev) - 1;
1914 
1915 	return 0;
1916 }
1917 
1918 /*
1919  * When allocating the initial buffer target we have not yet
1920  * read in the superblock, so don't know what sized sectors
1921  * are being used at this early stage.  Play safe.
1922  */
1923 STATIC int
1924 xfs_setsize_buftarg_early(
1925 	xfs_buftarg_t		*btp,
1926 	struct block_device	*bdev)
1927 {
1928 	return xfs_setsize_buftarg(btp, bdev_logical_block_size(bdev));
1929 }
1930 
1931 struct xfs_buftarg *
1932 xfs_alloc_buftarg(
1933 	struct xfs_mount	*mp,
1934 	struct block_device	*bdev)
1935 {
1936 	xfs_buftarg_t		*btp;
1937 
1938 	btp = kmem_zalloc(sizeof(*btp), KM_NOFS);
1939 
1940 	btp->bt_mount = mp;
1941 	btp->bt_dev =  bdev->bd_dev;
1942 	btp->bt_bdev = bdev;
1943 	btp->bt_daxdev = fs_dax_get_by_bdev(bdev, &btp->bt_dax_part_off);
1944 
1945 	/*
1946 	 * Buffer IO error rate limiting. Limit it to no more than 10 messages
1947 	 * per 30 seconds so as to not spam logs too much on repeated errors.
1948 	 */
1949 	ratelimit_state_init(&btp->bt_ioerror_rl, 30 * HZ,
1950 			     DEFAULT_RATELIMIT_BURST);
1951 
1952 	if (xfs_setsize_buftarg_early(btp, bdev))
1953 		goto error_free;
1954 
1955 	if (list_lru_init(&btp->bt_lru))
1956 		goto error_free;
1957 
1958 	if (percpu_counter_init(&btp->bt_io_count, 0, GFP_KERNEL))
1959 		goto error_lru;
1960 
1961 	btp->bt_shrinker.count_objects = xfs_buftarg_shrink_count;
1962 	btp->bt_shrinker.scan_objects = xfs_buftarg_shrink_scan;
1963 	btp->bt_shrinker.seeks = DEFAULT_SEEKS;
1964 	btp->bt_shrinker.flags = SHRINKER_NUMA_AWARE;
1965 	if (register_shrinker(&btp->bt_shrinker))
1966 		goto error_pcpu;
1967 	return btp;
1968 
1969 error_pcpu:
1970 	percpu_counter_destroy(&btp->bt_io_count);
1971 error_lru:
1972 	list_lru_destroy(&btp->bt_lru);
1973 error_free:
1974 	kmem_free(btp);
1975 	return NULL;
1976 }
1977 
1978 /*
1979  * Cancel a delayed write list.
1980  *
1981  * Remove each buffer from the list, clear the delwri queue flag and drop the
1982  * associated buffer reference.
1983  */
1984 void
1985 xfs_buf_delwri_cancel(
1986 	struct list_head	*list)
1987 {
1988 	struct xfs_buf		*bp;
1989 
1990 	while (!list_empty(list)) {
1991 		bp = list_first_entry(list, struct xfs_buf, b_list);
1992 
1993 		xfs_buf_lock(bp);
1994 		bp->b_flags &= ~_XBF_DELWRI_Q;
1995 		list_del_init(&bp->b_list);
1996 		xfs_buf_relse(bp);
1997 	}
1998 }
1999 
2000 /*
2001  * Add a buffer to the delayed write list.
2002  *
2003  * This queues a buffer for writeout if it hasn't already been.  Note that
2004  * neither this routine nor the buffer list submission functions perform
2005  * any internal synchronization.  It is expected that the lists are thread-local
2006  * to the callers.
2007  *
2008  * Returns true if we queued up the buffer, or false if it already had
2009  * been on the buffer list.
2010  */
2011 bool
2012 xfs_buf_delwri_queue(
2013 	struct xfs_buf		*bp,
2014 	struct list_head	*list)
2015 {
2016 	ASSERT(xfs_buf_islocked(bp));
2017 	ASSERT(!(bp->b_flags & XBF_READ));
2018 
2019 	/*
2020 	 * If the buffer is already marked delwri it already is queued up
2021 	 * by someone else for imediate writeout.  Just ignore it in that
2022 	 * case.
2023 	 */
2024 	if (bp->b_flags & _XBF_DELWRI_Q) {
2025 		trace_xfs_buf_delwri_queued(bp, _RET_IP_);
2026 		return false;
2027 	}
2028 
2029 	trace_xfs_buf_delwri_queue(bp, _RET_IP_);
2030 
2031 	/*
2032 	 * If a buffer gets written out synchronously or marked stale while it
2033 	 * is on a delwri list we lazily remove it. To do this, the other party
2034 	 * clears the  _XBF_DELWRI_Q flag but otherwise leaves the buffer alone.
2035 	 * It remains referenced and on the list.  In a rare corner case it
2036 	 * might get readded to a delwri list after the synchronous writeout, in
2037 	 * which case we need just need to re-add the flag here.
2038 	 */
2039 	bp->b_flags |= _XBF_DELWRI_Q;
2040 	if (list_empty(&bp->b_list)) {
2041 		atomic_inc(&bp->b_hold);
2042 		list_add_tail(&bp->b_list, list);
2043 	}
2044 
2045 	return true;
2046 }
2047 
2048 /*
2049  * Compare function is more complex than it needs to be because
2050  * the return value is only 32 bits and we are doing comparisons
2051  * on 64 bit values
2052  */
2053 static int
2054 xfs_buf_cmp(
2055 	void			*priv,
2056 	const struct list_head	*a,
2057 	const struct list_head	*b)
2058 {
2059 	struct xfs_buf	*ap = container_of(a, struct xfs_buf, b_list);
2060 	struct xfs_buf	*bp = container_of(b, struct xfs_buf, b_list);
2061 	xfs_daddr_t		diff;
2062 
2063 	diff = ap->b_maps[0].bm_bn - bp->b_maps[0].bm_bn;
2064 	if (diff < 0)
2065 		return -1;
2066 	if (diff > 0)
2067 		return 1;
2068 	return 0;
2069 }
2070 
2071 /*
2072  * Submit buffers for write. If wait_list is specified, the buffers are
2073  * submitted using sync I/O and placed on the wait list such that the caller can
2074  * iowait each buffer. Otherwise async I/O is used and the buffers are released
2075  * at I/O completion time. In either case, buffers remain locked until I/O
2076  * completes and the buffer is released from the queue.
2077  */
2078 static int
2079 xfs_buf_delwri_submit_buffers(
2080 	struct list_head	*buffer_list,
2081 	struct list_head	*wait_list)
2082 {
2083 	struct xfs_buf		*bp, *n;
2084 	int			pinned = 0;
2085 	struct blk_plug		plug;
2086 
2087 	list_sort(NULL, buffer_list, xfs_buf_cmp);
2088 
2089 	blk_start_plug(&plug);
2090 	list_for_each_entry_safe(bp, n, buffer_list, b_list) {
2091 		if (!wait_list) {
2092 			if (xfs_buf_ispinned(bp)) {
2093 				pinned++;
2094 				continue;
2095 			}
2096 			if (!xfs_buf_trylock(bp))
2097 				continue;
2098 		} else {
2099 			xfs_buf_lock(bp);
2100 		}
2101 
2102 		/*
2103 		 * Someone else might have written the buffer synchronously or
2104 		 * marked it stale in the meantime.  In that case only the
2105 		 * _XBF_DELWRI_Q flag got cleared, and we have to drop the
2106 		 * reference and remove it from the list here.
2107 		 */
2108 		if (!(bp->b_flags & _XBF_DELWRI_Q)) {
2109 			list_del_init(&bp->b_list);
2110 			xfs_buf_relse(bp);
2111 			continue;
2112 		}
2113 
2114 		trace_xfs_buf_delwri_split(bp, _RET_IP_);
2115 
2116 		/*
2117 		 * If we have a wait list, each buffer (and associated delwri
2118 		 * queue reference) transfers to it and is submitted
2119 		 * synchronously. Otherwise, drop the buffer from the delwri
2120 		 * queue and submit async.
2121 		 */
2122 		bp->b_flags &= ~_XBF_DELWRI_Q;
2123 		bp->b_flags |= XBF_WRITE;
2124 		if (wait_list) {
2125 			bp->b_flags &= ~XBF_ASYNC;
2126 			list_move_tail(&bp->b_list, wait_list);
2127 		} else {
2128 			bp->b_flags |= XBF_ASYNC;
2129 			list_del_init(&bp->b_list);
2130 		}
2131 		__xfs_buf_submit(bp, false);
2132 	}
2133 	blk_finish_plug(&plug);
2134 
2135 	return pinned;
2136 }
2137 
2138 /*
2139  * Write out a buffer list asynchronously.
2140  *
2141  * This will take the @buffer_list, write all non-locked and non-pinned buffers
2142  * out and not wait for I/O completion on any of the buffers.  This interface
2143  * is only safely useable for callers that can track I/O completion by higher
2144  * level means, e.g. AIL pushing as the @buffer_list is consumed in this
2145  * function.
2146  *
2147  * Note: this function will skip buffers it would block on, and in doing so
2148  * leaves them on @buffer_list so they can be retried on a later pass. As such,
2149  * it is up to the caller to ensure that the buffer list is fully submitted or
2150  * cancelled appropriately when they are finished with the list. Failure to
2151  * cancel or resubmit the list until it is empty will result in leaked buffers
2152  * at unmount time.
2153  */
2154 int
2155 xfs_buf_delwri_submit_nowait(
2156 	struct list_head	*buffer_list)
2157 {
2158 	return xfs_buf_delwri_submit_buffers(buffer_list, NULL);
2159 }
2160 
2161 /*
2162  * Write out a buffer list synchronously.
2163  *
2164  * This will take the @buffer_list, write all buffers out and wait for I/O
2165  * completion on all of the buffers. @buffer_list is consumed by the function,
2166  * so callers must have some other way of tracking buffers if they require such
2167  * functionality.
2168  */
2169 int
2170 xfs_buf_delwri_submit(
2171 	struct list_head	*buffer_list)
2172 {
2173 	LIST_HEAD		(wait_list);
2174 	int			error = 0, error2;
2175 	struct xfs_buf		*bp;
2176 
2177 	xfs_buf_delwri_submit_buffers(buffer_list, &wait_list);
2178 
2179 	/* Wait for IO to complete. */
2180 	while (!list_empty(&wait_list)) {
2181 		bp = list_first_entry(&wait_list, struct xfs_buf, b_list);
2182 
2183 		list_del_init(&bp->b_list);
2184 
2185 		/*
2186 		 * Wait on the locked buffer, check for errors and unlock and
2187 		 * release the delwri queue reference.
2188 		 */
2189 		error2 = xfs_buf_iowait(bp);
2190 		xfs_buf_relse(bp);
2191 		if (!error)
2192 			error = error2;
2193 	}
2194 
2195 	return error;
2196 }
2197 
2198 /*
2199  * Push a single buffer on a delwri queue.
2200  *
2201  * The purpose of this function is to submit a single buffer of a delwri queue
2202  * and return with the buffer still on the original queue. The waiting delwri
2203  * buffer submission infrastructure guarantees transfer of the delwri queue
2204  * buffer reference to a temporary wait list. We reuse this infrastructure to
2205  * transfer the buffer back to the original queue.
2206  *
2207  * Note the buffer transitions from the queued state, to the submitted and wait
2208  * listed state and back to the queued state during this call. The buffer
2209  * locking and queue management logic between _delwri_pushbuf() and
2210  * _delwri_queue() guarantee that the buffer cannot be queued to another list
2211  * before returning.
2212  */
2213 int
2214 xfs_buf_delwri_pushbuf(
2215 	struct xfs_buf		*bp,
2216 	struct list_head	*buffer_list)
2217 {
2218 	LIST_HEAD		(submit_list);
2219 	int			error;
2220 
2221 	ASSERT(bp->b_flags & _XBF_DELWRI_Q);
2222 
2223 	trace_xfs_buf_delwri_pushbuf(bp, _RET_IP_);
2224 
2225 	/*
2226 	 * Isolate the buffer to a new local list so we can submit it for I/O
2227 	 * independently from the rest of the original list.
2228 	 */
2229 	xfs_buf_lock(bp);
2230 	list_move(&bp->b_list, &submit_list);
2231 	xfs_buf_unlock(bp);
2232 
2233 	/*
2234 	 * Delwri submission clears the DELWRI_Q buffer flag and returns with
2235 	 * the buffer on the wait list with the original reference. Rather than
2236 	 * bounce the buffer from a local wait list back to the original list
2237 	 * after I/O completion, reuse the original list as the wait list.
2238 	 */
2239 	xfs_buf_delwri_submit_buffers(&submit_list, buffer_list);
2240 
2241 	/*
2242 	 * The buffer is now locked, under I/O and wait listed on the original
2243 	 * delwri queue. Wait for I/O completion, restore the DELWRI_Q flag and
2244 	 * return with the buffer unlocked and on the original queue.
2245 	 */
2246 	error = xfs_buf_iowait(bp);
2247 	bp->b_flags |= _XBF_DELWRI_Q;
2248 	xfs_buf_unlock(bp);
2249 
2250 	return error;
2251 }
2252 
2253 int __init
2254 xfs_buf_init(void)
2255 {
2256 	xfs_buf_cache = kmem_cache_create("xfs_buf", sizeof(struct xfs_buf), 0,
2257 					 SLAB_HWCACHE_ALIGN |
2258 					 SLAB_RECLAIM_ACCOUNT |
2259 					 SLAB_MEM_SPREAD,
2260 					 NULL);
2261 	if (!xfs_buf_cache)
2262 		goto out;
2263 
2264 	return 0;
2265 
2266  out:
2267 	return -ENOMEM;
2268 }
2269 
2270 void
2271 xfs_buf_terminate(void)
2272 {
2273 	kmem_cache_destroy(xfs_buf_cache);
2274 }
2275 
2276 void xfs_buf_set_ref(struct xfs_buf *bp, int lru_ref)
2277 {
2278 	/*
2279 	 * Set the lru reference count to 0 based on the error injection tag.
2280 	 * This allows userspace to disrupt buffer caching for debug/testing
2281 	 * purposes.
2282 	 */
2283 	if (XFS_TEST_ERROR(false, bp->b_mount, XFS_ERRTAG_BUF_LRU_REF))
2284 		lru_ref = 0;
2285 
2286 	atomic_set(&bp->b_lru_ref, lru_ref);
2287 }
2288 
2289 /*
2290  * Verify an on-disk magic value against the magic value specified in the
2291  * verifier structure. The verifier magic is in disk byte order so the caller is
2292  * expected to pass the value directly from disk.
2293  */
2294 bool
2295 xfs_verify_magic(
2296 	struct xfs_buf		*bp,
2297 	__be32			dmagic)
2298 {
2299 	struct xfs_mount	*mp = bp->b_mount;
2300 	int			idx;
2301 
2302 	idx = xfs_has_crc(mp);
2303 	if (WARN_ON(!bp->b_ops || !bp->b_ops->magic[idx]))
2304 		return false;
2305 	return dmagic == bp->b_ops->magic[idx];
2306 }
2307 /*
2308  * Verify an on-disk magic value against the magic value specified in the
2309  * verifier structure. The verifier magic is in disk byte order so the caller is
2310  * expected to pass the value directly from disk.
2311  */
2312 bool
2313 xfs_verify_magic16(
2314 	struct xfs_buf		*bp,
2315 	__be16			dmagic)
2316 {
2317 	struct xfs_mount	*mp = bp->b_mount;
2318 	int			idx;
2319 
2320 	idx = xfs_has_crc(mp);
2321 	if (WARN_ON(!bp->b_ops || !bp->b_ops->magic16[idx]))
2322 		return false;
2323 	return dmagic == bp->b_ops->magic16[idx];
2324 }
2325