xref: /linux/fs/xfs/xfs_buf.c (revision b9ccfda293ee6fca9a89a1584f0900e0627b975e)
1 /*
2  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include <linux/stddef.h>
20 #include <linux/errno.h>
21 #include <linux/gfp.h>
22 #include <linux/pagemap.h>
23 #include <linux/init.h>
24 #include <linux/vmalloc.h>
25 #include <linux/bio.h>
26 #include <linux/sysctl.h>
27 #include <linux/proc_fs.h>
28 #include <linux/workqueue.h>
29 #include <linux/percpu.h>
30 #include <linux/blkdev.h>
31 #include <linux/hash.h>
32 #include <linux/kthread.h>
33 #include <linux/migrate.h>
34 #include <linux/backing-dev.h>
35 #include <linux/freezer.h>
36 
37 #include "xfs_sb.h"
38 #include "xfs_log.h"
39 #include "xfs_ag.h"
40 #include "xfs_mount.h"
41 #include "xfs_trace.h"
42 
43 static kmem_zone_t *xfs_buf_zone;
44 
45 static struct workqueue_struct *xfslogd_workqueue;
46 
47 #ifdef XFS_BUF_LOCK_TRACKING
48 # define XB_SET_OWNER(bp)	((bp)->b_last_holder = current->pid)
49 # define XB_CLEAR_OWNER(bp)	((bp)->b_last_holder = -1)
50 # define XB_GET_OWNER(bp)	((bp)->b_last_holder)
51 #else
52 # define XB_SET_OWNER(bp)	do { } while (0)
53 # define XB_CLEAR_OWNER(bp)	do { } while (0)
54 # define XB_GET_OWNER(bp)	do { } while (0)
55 #endif
56 
57 #define xb_to_gfp(flags) \
58 	((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : GFP_NOFS) | __GFP_NOWARN)
59 
60 
61 static inline int
62 xfs_buf_is_vmapped(
63 	struct xfs_buf	*bp)
64 {
65 	/*
66 	 * Return true if the buffer is vmapped.
67 	 *
68 	 * b_addr is null if the buffer is not mapped, but the code is clever
69 	 * enough to know it doesn't have to map a single page, so the check has
70 	 * to be both for b_addr and bp->b_page_count > 1.
71 	 */
72 	return bp->b_addr && bp->b_page_count > 1;
73 }
74 
75 static inline int
76 xfs_buf_vmap_len(
77 	struct xfs_buf	*bp)
78 {
79 	return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
80 }
81 
82 /*
83  * xfs_buf_lru_add - add a buffer to the LRU.
84  *
85  * The LRU takes a new reference to the buffer so that it will only be freed
86  * once the shrinker takes the buffer off the LRU.
87  */
88 STATIC void
89 xfs_buf_lru_add(
90 	struct xfs_buf	*bp)
91 {
92 	struct xfs_buftarg *btp = bp->b_target;
93 
94 	spin_lock(&btp->bt_lru_lock);
95 	if (list_empty(&bp->b_lru)) {
96 		atomic_inc(&bp->b_hold);
97 		list_add_tail(&bp->b_lru, &btp->bt_lru);
98 		btp->bt_lru_nr++;
99 	}
100 	spin_unlock(&btp->bt_lru_lock);
101 }
102 
103 /*
104  * xfs_buf_lru_del - remove a buffer from the LRU
105  *
106  * The unlocked check is safe here because it only occurs when there are not
107  * b_lru_ref counts left on the inode under the pag->pag_buf_lock. it is there
108  * to optimise the shrinker removing the buffer from the LRU and calling
109  * xfs_buf_free(). i.e. it removes an unnecessary round trip on the
110  * bt_lru_lock.
111  */
112 STATIC void
113 xfs_buf_lru_del(
114 	struct xfs_buf	*bp)
115 {
116 	struct xfs_buftarg *btp = bp->b_target;
117 
118 	if (list_empty(&bp->b_lru))
119 		return;
120 
121 	spin_lock(&btp->bt_lru_lock);
122 	if (!list_empty(&bp->b_lru)) {
123 		list_del_init(&bp->b_lru);
124 		btp->bt_lru_nr--;
125 	}
126 	spin_unlock(&btp->bt_lru_lock);
127 }
128 
129 /*
130  * When we mark a buffer stale, we remove the buffer from the LRU and clear the
131  * b_lru_ref count so that the buffer is freed immediately when the buffer
132  * reference count falls to zero. If the buffer is already on the LRU, we need
133  * to remove the reference that LRU holds on the buffer.
134  *
135  * This prevents build-up of stale buffers on the LRU.
136  */
137 void
138 xfs_buf_stale(
139 	struct xfs_buf	*bp)
140 {
141 	ASSERT(xfs_buf_islocked(bp));
142 
143 	bp->b_flags |= XBF_STALE;
144 
145 	/*
146 	 * Clear the delwri status so that a delwri queue walker will not
147 	 * flush this buffer to disk now that it is stale. The delwri queue has
148 	 * a reference to the buffer, so this is safe to do.
149 	 */
150 	bp->b_flags &= ~_XBF_DELWRI_Q;
151 
152 	atomic_set(&(bp)->b_lru_ref, 0);
153 	if (!list_empty(&bp->b_lru)) {
154 		struct xfs_buftarg *btp = bp->b_target;
155 
156 		spin_lock(&btp->bt_lru_lock);
157 		if (!list_empty(&bp->b_lru)) {
158 			list_del_init(&bp->b_lru);
159 			btp->bt_lru_nr--;
160 			atomic_dec(&bp->b_hold);
161 		}
162 		spin_unlock(&btp->bt_lru_lock);
163 	}
164 	ASSERT(atomic_read(&bp->b_hold) >= 1);
165 }
166 
167 struct xfs_buf *
168 xfs_buf_alloc(
169 	struct xfs_buftarg	*target,
170 	xfs_daddr_t		blkno,
171 	size_t			numblks,
172 	xfs_buf_flags_t		flags)
173 {
174 	struct xfs_buf		*bp;
175 
176 	bp = kmem_zone_zalloc(xfs_buf_zone, KM_NOFS);
177 	if (unlikely(!bp))
178 		return NULL;
179 
180 	/*
181 	 * We don't want certain flags to appear in b_flags unless they are
182 	 * specifically set by later operations on the buffer.
183 	 */
184 	flags &= ~(XBF_UNMAPPED | XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD);
185 
186 	atomic_set(&bp->b_hold, 1);
187 	atomic_set(&bp->b_lru_ref, 1);
188 	init_completion(&bp->b_iowait);
189 	INIT_LIST_HEAD(&bp->b_lru);
190 	INIT_LIST_HEAD(&bp->b_list);
191 	RB_CLEAR_NODE(&bp->b_rbnode);
192 	sema_init(&bp->b_sema, 0); /* held, no waiters */
193 	XB_SET_OWNER(bp);
194 	bp->b_target = target;
195 
196 	/*
197 	 * Set length and io_length to the same value initially.
198 	 * I/O routines should use io_length, which will be the same in
199 	 * most cases but may be reset (e.g. XFS recovery).
200 	 */
201 	bp->b_length = numblks;
202 	bp->b_io_length = numblks;
203 	bp->b_flags = flags;
204 	bp->b_bn = blkno;
205 	atomic_set(&bp->b_pin_count, 0);
206 	init_waitqueue_head(&bp->b_waiters);
207 
208 	XFS_STATS_INC(xb_create);
209 	trace_xfs_buf_init(bp, _RET_IP_);
210 
211 	return bp;
212 }
213 
214 /*
215  *	Allocate a page array capable of holding a specified number
216  *	of pages, and point the page buf at it.
217  */
218 STATIC int
219 _xfs_buf_get_pages(
220 	xfs_buf_t		*bp,
221 	int			page_count,
222 	xfs_buf_flags_t		flags)
223 {
224 	/* Make sure that we have a page list */
225 	if (bp->b_pages == NULL) {
226 		bp->b_page_count = page_count;
227 		if (page_count <= XB_PAGES) {
228 			bp->b_pages = bp->b_page_array;
229 		} else {
230 			bp->b_pages = kmem_alloc(sizeof(struct page *) *
231 						 page_count, KM_NOFS);
232 			if (bp->b_pages == NULL)
233 				return -ENOMEM;
234 		}
235 		memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
236 	}
237 	return 0;
238 }
239 
240 /*
241  *	Frees b_pages if it was allocated.
242  */
243 STATIC void
244 _xfs_buf_free_pages(
245 	xfs_buf_t	*bp)
246 {
247 	if (bp->b_pages != bp->b_page_array) {
248 		kmem_free(bp->b_pages);
249 		bp->b_pages = NULL;
250 	}
251 }
252 
253 /*
254  *	Releases the specified buffer.
255  *
256  * 	The modification state of any associated pages is left unchanged.
257  * 	The buffer most not be on any hash - use xfs_buf_rele instead for
258  * 	hashed and refcounted buffers
259  */
260 void
261 xfs_buf_free(
262 	xfs_buf_t		*bp)
263 {
264 	trace_xfs_buf_free(bp, _RET_IP_);
265 
266 	ASSERT(list_empty(&bp->b_lru));
267 
268 	if (bp->b_flags & _XBF_PAGES) {
269 		uint		i;
270 
271 		if (xfs_buf_is_vmapped(bp))
272 			vm_unmap_ram(bp->b_addr - bp->b_offset,
273 					bp->b_page_count);
274 
275 		for (i = 0; i < bp->b_page_count; i++) {
276 			struct page	*page = bp->b_pages[i];
277 
278 			__free_page(page);
279 		}
280 	} else if (bp->b_flags & _XBF_KMEM)
281 		kmem_free(bp->b_addr);
282 	_xfs_buf_free_pages(bp);
283 	kmem_zone_free(xfs_buf_zone, bp);
284 }
285 
286 /*
287  * Allocates all the pages for buffer in question and builds it's page list.
288  */
289 STATIC int
290 xfs_buf_allocate_memory(
291 	xfs_buf_t		*bp,
292 	uint			flags)
293 {
294 	size_t			size;
295 	size_t			nbytes, offset;
296 	gfp_t			gfp_mask = xb_to_gfp(flags);
297 	unsigned short		page_count, i;
298 	xfs_off_t		start, end;
299 	int			error;
300 
301 	/*
302 	 * for buffers that are contained within a single page, just allocate
303 	 * the memory from the heap - there's no need for the complexity of
304 	 * page arrays to keep allocation down to order 0.
305 	 */
306 	size = BBTOB(bp->b_length);
307 	if (size < PAGE_SIZE) {
308 		bp->b_addr = kmem_alloc(size, KM_NOFS);
309 		if (!bp->b_addr) {
310 			/* low memory - use alloc_page loop instead */
311 			goto use_alloc_page;
312 		}
313 
314 		if (((unsigned long)(bp->b_addr + size - 1) & PAGE_MASK) !=
315 		    ((unsigned long)bp->b_addr & PAGE_MASK)) {
316 			/* b_addr spans two pages - use alloc_page instead */
317 			kmem_free(bp->b_addr);
318 			bp->b_addr = NULL;
319 			goto use_alloc_page;
320 		}
321 		bp->b_offset = offset_in_page(bp->b_addr);
322 		bp->b_pages = bp->b_page_array;
323 		bp->b_pages[0] = virt_to_page(bp->b_addr);
324 		bp->b_page_count = 1;
325 		bp->b_flags |= _XBF_KMEM;
326 		return 0;
327 	}
328 
329 use_alloc_page:
330 	start = BBTOB(bp->b_bn) >> PAGE_SHIFT;
331 	end = (BBTOB(bp->b_bn + bp->b_length) + PAGE_SIZE - 1) >> PAGE_SHIFT;
332 	page_count = end - start;
333 	error = _xfs_buf_get_pages(bp, page_count, flags);
334 	if (unlikely(error))
335 		return error;
336 
337 	offset = bp->b_offset;
338 	bp->b_flags |= _XBF_PAGES;
339 
340 	for (i = 0; i < bp->b_page_count; i++) {
341 		struct page	*page;
342 		uint		retries = 0;
343 retry:
344 		page = alloc_page(gfp_mask);
345 		if (unlikely(page == NULL)) {
346 			if (flags & XBF_READ_AHEAD) {
347 				bp->b_page_count = i;
348 				error = ENOMEM;
349 				goto out_free_pages;
350 			}
351 
352 			/*
353 			 * This could deadlock.
354 			 *
355 			 * But until all the XFS lowlevel code is revamped to
356 			 * handle buffer allocation failures we can't do much.
357 			 */
358 			if (!(++retries % 100))
359 				xfs_err(NULL,
360 		"possible memory allocation deadlock in %s (mode:0x%x)",
361 					__func__, gfp_mask);
362 
363 			XFS_STATS_INC(xb_page_retries);
364 			congestion_wait(BLK_RW_ASYNC, HZ/50);
365 			goto retry;
366 		}
367 
368 		XFS_STATS_INC(xb_page_found);
369 
370 		nbytes = min_t(size_t, size, PAGE_SIZE - offset);
371 		size -= nbytes;
372 		bp->b_pages[i] = page;
373 		offset = 0;
374 	}
375 	return 0;
376 
377 out_free_pages:
378 	for (i = 0; i < bp->b_page_count; i++)
379 		__free_page(bp->b_pages[i]);
380 	return error;
381 }
382 
383 /*
384  *	Map buffer into kernel address-space if necessary.
385  */
386 STATIC int
387 _xfs_buf_map_pages(
388 	xfs_buf_t		*bp,
389 	uint			flags)
390 {
391 	ASSERT(bp->b_flags & _XBF_PAGES);
392 	if (bp->b_page_count == 1) {
393 		/* A single page buffer is always mappable */
394 		bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
395 	} else if (flags & XBF_UNMAPPED) {
396 		bp->b_addr = NULL;
397 	} else {
398 		int retried = 0;
399 
400 		do {
401 			bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
402 						-1, PAGE_KERNEL);
403 			if (bp->b_addr)
404 				break;
405 			vm_unmap_aliases();
406 		} while (retried++ <= 1);
407 
408 		if (!bp->b_addr)
409 			return -ENOMEM;
410 		bp->b_addr += bp->b_offset;
411 	}
412 
413 	return 0;
414 }
415 
416 /*
417  *	Finding and Reading Buffers
418  */
419 
420 /*
421  *	Look up, and creates if absent, a lockable buffer for
422  *	a given range of an inode.  The buffer is returned
423  *	locked.	No I/O is implied by this call.
424  */
425 xfs_buf_t *
426 _xfs_buf_find(
427 	struct xfs_buftarg	*btp,
428 	xfs_daddr_t		blkno,
429 	size_t			numblks,
430 	xfs_buf_flags_t		flags,
431 	xfs_buf_t		*new_bp)
432 {
433 	size_t			numbytes;
434 	struct xfs_perag	*pag;
435 	struct rb_node		**rbp;
436 	struct rb_node		*parent;
437 	xfs_buf_t		*bp;
438 
439 	numbytes = BBTOB(numblks);
440 
441 	/* Check for IOs smaller than the sector size / not sector aligned */
442 	ASSERT(!(numbytes < (1 << btp->bt_sshift)));
443 	ASSERT(!(BBTOB(blkno) & (xfs_off_t)btp->bt_smask));
444 
445 	/* get tree root */
446 	pag = xfs_perag_get(btp->bt_mount,
447 				xfs_daddr_to_agno(btp->bt_mount, blkno));
448 
449 	/* walk tree */
450 	spin_lock(&pag->pag_buf_lock);
451 	rbp = &pag->pag_buf_tree.rb_node;
452 	parent = NULL;
453 	bp = NULL;
454 	while (*rbp) {
455 		parent = *rbp;
456 		bp = rb_entry(parent, struct xfs_buf, b_rbnode);
457 
458 		if (blkno < bp->b_bn)
459 			rbp = &(*rbp)->rb_left;
460 		else if (blkno > bp->b_bn)
461 			rbp = &(*rbp)->rb_right;
462 		else {
463 			/*
464 			 * found a block number match. If the range doesn't
465 			 * match, the only way this is allowed is if the buffer
466 			 * in the cache is stale and the transaction that made
467 			 * it stale has not yet committed. i.e. we are
468 			 * reallocating a busy extent. Skip this buffer and
469 			 * continue searching to the right for an exact match.
470 			 */
471 			if (bp->b_length != numblks) {
472 				ASSERT(bp->b_flags & XBF_STALE);
473 				rbp = &(*rbp)->rb_right;
474 				continue;
475 			}
476 			atomic_inc(&bp->b_hold);
477 			goto found;
478 		}
479 	}
480 
481 	/* No match found */
482 	if (new_bp) {
483 		rb_link_node(&new_bp->b_rbnode, parent, rbp);
484 		rb_insert_color(&new_bp->b_rbnode, &pag->pag_buf_tree);
485 		/* the buffer keeps the perag reference until it is freed */
486 		new_bp->b_pag = pag;
487 		spin_unlock(&pag->pag_buf_lock);
488 	} else {
489 		XFS_STATS_INC(xb_miss_locked);
490 		spin_unlock(&pag->pag_buf_lock);
491 		xfs_perag_put(pag);
492 	}
493 	return new_bp;
494 
495 found:
496 	spin_unlock(&pag->pag_buf_lock);
497 	xfs_perag_put(pag);
498 
499 	if (!xfs_buf_trylock(bp)) {
500 		if (flags & XBF_TRYLOCK) {
501 			xfs_buf_rele(bp);
502 			XFS_STATS_INC(xb_busy_locked);
503 			return NULL;
504 		}
505 		xfs_buf_lock(bp);
506 		XFS_STATS_INC(xb_get_locked_waited);
507 	}
508 
509 	/*
510 	 * if the buffer is stale, clear all the external state associated with
511 	 * it. We need to keep flags such as how we allocated the buffer memory
512 	 * intact here.
513 	 */
514 	if (bp->b_flags & XBF_STALE) {
515 		ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
516 		bp->b_flags &= _XBF_KMEM | _XBF_PAGES;
517 	}
518 
519 	trace_xfs_buf_find(bp, flags, _RET_IP_);
520 	XFS_STATS_INC(xb_get_locked);
521 	return bp;
522 }
523 
524 /*
525  * Assembles a buffer covering the specified range. The code is optimised for
526  * cache hits, as metadata intensive workloads will see 3 orders of magnitude
527  * more hits than misses.
528  */
529 struct xfs_buf *
530 xfs_buf_get(
531 	xfs_buftarg_t		*target,
532 	xfs_daddr_t		blkno,
533 	size_t			numblks,
534 	xfs_buf_flags_t		flags)
535 {
536 	struct xfs_buf		*bp;
537 	struct xfs_buf		*new_bp;
538 	int			error = 0;
539 
540 	bp = _xfs_buf_find(target, blkno, numblks, flags, NULL);
541 	if (likely(bp))
542 		goto found;
543 
544 	new_bp = xfs_buf_alloc(target, blkno, numblks, flags);
545 	if (unlikely(!new_bp))
546 		return NULL;
547 
548 	error = xfs_buf_allocate_memory(new_bp, flags);
549 	if (error) {
550 		kmem_zone_free(xfs_buf_zone, new_bp);
551 		return NULL;
552 	}
553 
554 	bp = _xfs_buf_find(target, blkno, numblks, flags, new_bp);
555 	if (!bp) {
556 		xfs_buf_free(new_bp);
557 		return NULL;
558 	}
559 
560 	if (bp != new_bp)
561 		xfs_buf_free(new_bp);
562 
563 	bp->b_io_length = bp->b_length;
564 
565 found:
566 	if (!bp->b_addr) {
567 		error = _xfs_buf_map_pages(bp, flags);
568 		if (unlikely(error)) {
569 			xfs_warn(target->bt_mount,
570 				"%s: failed to map pages\n", __func__);
571 			xfs_buf_relse(bp);
572 			return NULL;
573 		}
574 	}
575 
576 	XFS_STATS_INC(xb_get);
577 	trace_xfs_buf_get(bp, flags, _RET_IP_);
578 	return bp;
579 }
580 
581 STATIC int
582 _xfs_buf_read(
583 	xfs_buf_t		*bp,
584 	xfs_buf_flags_t		flags)
585 {
586 	ASSERT(!(flags & XBF_WRITE));
587 	ASSERT(bp->b_bn != XFS_BUF_DADDR_NULL);
588 
589 	bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD);
590 	bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD);
591 
592 	xfs_buf_iorequest(bp);
593 	if (flags & XBF_ASYNC)
594 		return 0;
595 	return xfs_buf_iowait(bp);
596 }
597 
598 xfs_buf_t *
599 xfs_buf_read(
600 	xfs_buftarg_t		*target,
601 	xfs_daddr_t		blkno,
602 	size_t			numblks,
603 	xfs_buf_flags_t		flags)
604 {
605 	xfs_buf_t		*bp;
606 
607 	flags |= XBF_READ;
608 
609 	bp = xfs_buf_get(target, blkno, numblks, flags);
610 	if (bp) {
611 		trace_xfs_buf_read(bp, flags, _RET_IP_);
612 
613 		if (!XFS_BUF_ISDONE(bp)) {
614 			XFS_STATS_INC(xb_get_read);
615 			_xfs_buf_read(bp, flags);
616 		} else if (flags & XBF_ASYNC) {
617 			/*
618 			 * Read ahead call which is already satisfied,
619 			 * drop the buffer
620 			 */
621 			xfs_buf_relse(bp);
622 			return NULL;
623 		} else {
624 			/* We do not want read in the flags */
625 			bp->b_flags &= ~XBF_READ;
626 		}
627 	}
628 
629 	return bp;
630 }
631 
632 /*
633  *	If we are not low on memory then do the readahead in a deadlock
634  *	safe manner.
635  */
636 void
637 xfs_buf_readahead(
638 	xfs_buftarg_t		*target,
639 	xfs_daddr_t		blkno,
640 	size_t			numblks)
641 {
642 	if (bdi_read_congested(target->bt_bdi))
643 		return;
644 
645 	xfs_buf_read(target, blkno, numblks,
646 		     XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD);
647 }
648 
649 /*
650  * Read an uncached buffer from disk. Allocates and returns a locked
651  * buffer containing the disk contents or nothing.
652  */
653 struct xfs_buf *
654 xfs_buf_read_uncached(
655 	struct xfs_buftarg	*target,
656 	xfs_daddr_t		daddr,
657 	size_t			numblks,
658 	int			flags)
659 {
660 	xfs_buf_t		*bp;
661 	int			error;
662 
663 	bp = xfs_buf_get_uncached(target, numblks, flags);
664 	if (!bp)
665 		return NULL;
666 
667 	/* set up the buffer for a read IO */
668 	XFS_BUF_SET_ADDR(bp, daddr);
669 	XFS_BUF_READ(bp);
670 
671 	xfsbdstrat(target->bt_mount, bp);
672 	error = xfs_buf_iowait(bp);
673 	if (error) {
674 		xfs_buf_relse(bp);
675 		return NULL;
676 	}
677 	return bp;
678 }
679 
680 /*
681  * Return a buffer allocated as an empty buffer and associated to external
682  * memory via xfs_buf_associate_memory() back to it's empty state.
683  */
684 void
685 xfs_buf_set_empty(
686 	struct xfs_buf		*bp,
687 	size_t			numblks)
688 {
689 	if (bp->b_pages)
690 		_xfs_buf_free_pages(bp);
691 
692 	bp->b_pages = NULL;
693 	bp->b_page_count = 0;
694 	bp->b_addr = NULL;
695 	bp->b_length = numblks;
696 	bp->b_io_length = numblks;
697 	bp->b_bn = XFS_BUF_DADDR_NULL;
698 }
699 
700 static inline struct page *
701 mem_to_page(
702 	void			*addr)
703 {
704 	if ((!is_vmalloc_addr(addr))) {
705 		return virt_to_page(addr);
706 	} else {
707 		return vmalloc_to_page(addr);
708 	}
709 }
710 
711 int
712 xfs_buf_associate_memory(
713 	xfs_buf_t		*bp,
714 	void			*mem,
715 	size_t			len)
716 {
717 	int			rval;
718 	int			i = 0;
719 	unsigned long		pageaddr;
720 	unsigned long		offset;
721 	size_t			buflen;
722 	int			page_count;
723 
724 	pageaddr = (unsigned long)mem & PAGE_MASK;
725 	offset = (unsigned long)mem - pageaddr;
726 	buflen = PAGE_ALIGN(len + offset);
727 	page_count = buflen >> PAGE_SHIFT;
728 
729 	/* Free any previous set of page pointers */
730 	if (bp->b_pages)
731 		_xfs_buf_free_pages(bp);
732 
733 	bp->b_pages = NULL;
734 	bp->b_addr = mem;
735 
736 	rval = _xfs_buf_get_pages(bp, page_count, 0);
737 	if (rval)
738 		return rval;
739 
740 	bp->b_offset = offset;
741 
742 	for (i = 0; i < bp->b_page_count; i++) {
743 		bp->b_pages[i] = mem_to_page((void *)pageaddr);
744 		pageaddr += PAGE_SIZE;
745 	}
746 
747 	bp->b_io_length = BTOBB(len);
748 	bp->b_length = BTOBB(buflen);
749 
750 	return 0;
751 }
752 
753 xfs_buf_t *
754 xfs_buf_get_uncached(
755 	struct xfs_buftarg	*target,
756 	size_t			numblks,
757 	int			flags)
758 {
759 	unsigned long		page_count;
760 	int			error, i;
761 	xfs_buf_t		*bp;
762 
763 	bp = xfs_buf_alloc(target, XFS_BUF_DADDR_NULL, numblks, 0);
764 	if (unlikely(bp == NULL))
765 		goto fail;
766 
767 	page_count = PAGE_ALIGN(numblks << BBSHIFT) >> PAGE_SHIFT;
768 	error = _xfs_buf_get_pages(bp, page_count, 0);
769 	if (error)
770 		goto fail_free_buf;
771 
772 	for (i = 0; i < page_count; i++) {
773 		bp->b_pages[i] = alloc_page(xb_to_gfp(flags));
774 		if (!bp->b_pages[i])
775 			goto fail_free_mem;
776 	}
777 	bp->b_flags |= _XBF_PAGES;
778 
779 	error = _xfs_buf_map_pages(bp, 0);
780 	if (unlikely(error)) {
781 		xfs_warn(target->bt_mount,
782 			"%s: failed to map pages\n", __func__);
783 		goto fail_free_mem;
784 	}
785 
786 	trace_xfs_buf_get_uncached(bp, _RET_IP_);
787 	return bp;
788 
789  fail_free_mem:
790 	while (--i >= 0)
791 		__free_page(bp->b_pages[i]);
792 	_xfs_buf_free_pages(bp);
793  fail_free_buf:
794 	kmem_zone_free(xfs_buf_zone, bp);
795  fail:
796 	return NULL;
797 }
798 
799 /*
800  *	Increment reference count on buffer, to hold the buffer concurrently
801  *	with another thread which may release (free) the buffer asynchronously.
802  *	Must hold the buffer already to call this function.
803  */
804 void
805 xfs_buf_hold(
806 	xfs_buf_t		*bp)
807 {
808 	trace_xfs_buf_hold(bp, _RET_IP_);
809 	atomic_inc(&bp->b_hold);
810 }
811 
812 /*
813  *	Releases a hold on the specified buffer.  If the
814  *	the hold count is 1, calls xfs_buf_free.
815  */
816 void
817 xfs_buf_rele(
818 	xfs_buf_t		*bp)
819 {
820 	struct xfs_perag	*pag = bp->b_pag;
821 
822 	trace_xfs_buf_rele(bp, _RET_IP_);
823 
824 	if (!pag) {
825 		ASSERT(list_empty(&bp->b_lru));
826 		ASSERT(RB_EMPTY_NODE(&bp->b_rbnode));
827 		if (atomic_dec_and_test(&bp->b_hold))
828 			xfs_buf_free(bp);
829 		return;
830 	}
831 
832 	ASSERT(!RB_EMPTY_NODE(&bp->b_rbnode));
833 
834 	ASSERT(atomic_read(&bp->b_hold) > 0);
835 	if (atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock)) {
836 		if (!(bp->b_flags & XBF_STALE) &&
837 			   atomic_read(&bp->b_lru_ref)) {
838 			xfs_buf_lru_add(bp);
839 			spin_unlock(&pag->pag_buf_lock);
840 		} else {
841 			xfs_buf_lru_del(bp);
842 			ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
843 			rb_erase(&bp->b_rbnode, &pag->pag_buf_tree);
844 			spin_unlock(&pag->pag_buf_lock);
845 			xfs_perag_put(pag);
846 			xfs_buf_free(bp);
847 		}
848 	}
849 }
850 
851 
852 /*
853  *	Lock a buffer object, if it is not already locked.
854  *
855  *	If we come across a stale, pinned, locked buffer, we know that we are
856  *	being asked to lock a buffer that has been reallocated. Because it is
857  *	pinned, we know that the log has not been pushed to disk and hence it
858  *	will still be locked.  Rather than continuing to have trylock attempts
859  *	fail until someone else pushes the log, push it ourselves before
860  *	returning.  This means that the xfsaild will not get stuck trying
861  *	to push on stale inode buffers.
862  */
863 int
864 xfs_buf_trylock(
865 	struct xfs_buf		*bp)
866 {
867 	int			locked;
868 
869 	locked = down_trylock(&bp->b_sema) == 0;
870 	if (locked)
871 		XB_SET_OWNER(bp);
872 	else if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
873 		xfs_log_force(bp->b_target->bt_mount, 0);
874 
875 	trace_xfs_buf_trylock(bp, _RET_IP_);
876 	return locked;
877 }
878 
879 /*
880  *	Lock a buffer object.
881  *
882  *	If we come across a stale, pinned, locked buffer, we know that we
883  *	are being asked to lock a buffer that has been reallocated. Because
884  *	it is pinned, we know that the log has not been pushed to disk and
885  *	hence it will still be locked. Rather than sleeping until someone
886  *	else pushes the log, push it ourselves before trying to get the lock.
887  */
888 void
889 xfs_buf_lock(
890 	struct xfs_buf		*bp)
891 {
892 	trace_xfs_buf_lock(bp, _RET_IP_);
893 
894 	if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
895 		xfs_log_force(bp->b_target->bt_mount, 0);
896 	down(&bp->b_sema);
897 	XB_SET_OWNER(bp);
898 
899 	trace_xfs_buf_lock_done(bp, _RET_IP_);
900 }
901 
902 void
903 xfs_buf_unlock(
904 	struct xfs_buf		*bp)
905 {
906 	XB_CLEAR_OWNER(bp);
907 	up(&bp->b_sema);
908 
909 	trace_xfs_buf_unlock(bp, _RET_IP_);
910 }
911 
912 STATIC void
913 xfs_buf_wait_unpin(
914 	xfs_buf_t		*bp)
915 {
916 	DECLARE_WAITQUEUE	(wait, current);
917 
918 	if (atomic_read(&bp->b_pin_count) == 0)
919 		return;
920 
921 	add_wait_queue(&bp->b_waiters, &wait);
922 	for (;;) {
923 		set_current_state(TASK_UNINTERRUPTIBLE);
924 		if (atomic_read(&bp->b_pin_count) == 0)
925 			break;
926 		io_schedule();
927 	}
928 	remove_wait_queue(&bp->b_waiters, &wait);
929 	set_current_state(TASK_RUNNING);
930 }
931 
932 /*
933  *	Buffer Utility Routines
934  */
935 
936 STATIC void
937 xfs_buf_iodone_work(
938 	struct work_struct	*work)
939 {
940 	xfs_buf_t		*bp =
941 		container_of(work, xfs_buf_t, b_iodone_work);
942 
943 	if (bp->b_iodone)
944 		(*(bp->b_iodone))(bp);
945 	else if (bp->b_flags & XBF_ASYNC)
946 		xfs_buf_relse(bp);
947 }
948 
949 void
950 xfs_buf_ioend(
951 	xfs_buf_t		*bp,
952 	int			schedule)
953 {
954 	trace_xfs_buf_iodone(bp, _RET_IP_);
955 
956 	bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
957 	if (bp->b_error == 0)
958 		bp->b_flags |= XBF_DONE;
959 
960 	if ((bp->b_iodone) || (bp->b_flags & XBF_ASYNC)) {
961 		if (schedule) {
962 			INIT_WORK(&bp->b_iodone_work, xfs_buf_iodone_work);
963 			queue_work(xfslogd_workqueue, &bp->b_iodone_work);
964 		} else {
965 			xfs_buf_iodone_work(&bp->b_iodone_work);
966 		}
967 	} else {
968 		complete(&bp->b_iowait);
969 	}
970 }
971 
972 void
973 xfs_buf_ioerror(
974 	xfs_buf_t		*bp,
975 	int			error)
976 {
977 	ASSERT(error >= 0 && error <= 0xffff);
978 	bp->b_error = (unsigned short)error;
979 	trace_xfs_buf_ioerror(bp, error, _RET_IP_);
980 }
981 
982 void
983 xfs_buf_ioerror_alert(
984 	struct xfs_buf		*bp,
985 	const char		*func)
986 {
987 	xfs_alert(bp->b_target->bt_mount,
988 "metadata I/O error: block 0x%llx (\"%s\") error %d numblks %d",
989 		(__uint64_t)XFS_BUF_ADDR(bp), func, bp->b_error, bp->b_length);
990 }
991 
992 /*
993  * Called when we want to stop a buffer from getting written or read.
994  * We attach the EIO error, muck with its flags, and call xfs_buf_ioend
995  * so that the proper iodone callbacks get called.
996  */
997 STATIC int
998 xfs_bioerror(
999 	xfs_buf_t *bp)
1000 {
1001 #ifdef XFSERRORDEBUG
1002 	ASSERT(XFS_BUF_ISREAD(bp) || bp->b_iodone);
1003 #endif
1004 
1005 	/*
1006 	 * No need to wait until the buffer is unpinned, we aren't flushing it.
1007 	 */
1008 	xfs_buf_ioerror(bp, EIO);
1009 
1010 	/*
1011 	 * We're calling xfs_buf_ioend, so delete XBF_DONE flag.
1012 	 */
1013 	XFS_BUF_UNREAD(bp);
1014 	XFS_BUF_UNDONE(bp);
1015 	xfs_buf_stale(bp);
1016 
1017 	xfs_buf_ioend(bp, 0);
1018 
1019 	return EIO;
1020 }
1021 
1022 /*
1023  * Same as xfs_bioerror, except that we are releasing the buffer
1024  * here ourselves, and avoiding the xfs_buf_ioend call.
1025  * This is meant for userdata errors; metadata bufs come with
1026  * iodone functions attached, so that we can track down errors.
1027  */
1028 STATIC int
1029 xfs_bioerror_relse(
1030 	struct xfs_buf	*bp)
1031 {
1032 	int64_t		fl = bp->b_flags;
1033 	/*
1034 	 * No need to wait until the buffer is unpinned.
1035 	 * We aren't flushing it.
1036 	 *
1037 	 * chunkhold expects B_DONE to be set, whether
1038 	 * we actually finish the I/O or not. We don't want to
1039 	 * change that interface.
1040 	 */
1041 	XFS_BUF_UNREAD(bp);
1042 	XFS_BUF_DONE(bp);
1043 	xfs_buf_stale(bp);
1044 	bp->b_iodone = NULL;
1045 	if (!(fl & XBF_ASYNC)) {
1046 		/*
1047 		 * Mark b_error and B_ERROR _both_.
1048 		 * Lot's of chunkcache code assumes that.
1049 		 * There's no reason to mark error for
1050 		 * ASYNC buffers.
1051 		 */
1052 		xfs_buf_ioerror(bp, EIO);
1053 		complete(&bp->b_iowait);
1054 	} else {
1055 		xfs_buf_relse(bp);
1056 	}
1057 
1058 	return EIO;
1059 }
1060 
1061 STATIC int
1062 xfs_bdstrat_cb(
1063 	struct xfs_buf	*bp)
1064 {
1065 	if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
1066 		trace_xfs_bdstrat_shut(bp, _RET_IP_);
1067 		/*
1068 		 * Metadata write that didn't get logged but
1069 		 * written delayed anyway. These aren't associated
1070 		 * with a transaction, and can be ignored.
1071 		 */
1072 		if (!bp->b_iodone && !XFS_BUF_ISREAD(bp))
1073 			return xfs_bioerror_relse(bp);
1074 		else
1075 			return xfs_bioerror(bp);
1076 	}
1077 
1078 	xfs_buf_iorequest(bp);
1079 	return 0;
1080 }
1081 
1082 int
1083 xfs_bwrite(
1084 	struct xfs_buf		*bp)
1085 {
1086 	int			error;
1087 
1088 	ASSERT(xfs_buf_islocked(bp));
1089 
1090 	bp->b_flags |= XBF_WRITE;
1091 	bp->b_flags &= ~(XBF_ASYNC | XBF_READ | _XBF_DELWRI_Q);
1092 
1093 	xfs_bdstrat_cb(bp);
1094 
1095 	error = xfs_buf_iowait(bp);
1096 	if (error) {
1097 		xfs_force_shutdown(bp->b_target->bt_mount,
1098 				   SHUTDOWN_META_IO_ERROR);
1099 	}
1100 	return error;
1101 }
1102 
1103 /*
1104  * Wrapper around bdstrat so that we can stop data from going to disk in case
1105  * we are shutting down the filesystem.  Typically user data goes thru this
1106  * path; one of the exceptions is the superblock.
1107  */
1108 void
1109 xfsbdstrat(
1110 	struct xfs_mount	*mp,
1111 	struct xfs_buf		*bp)
1112 {
1113 	if (XFS_FORCED_SHUTDOWN(mp)) {
1114 		trace_xfs_bdstrat_shut(bp, _RET_IP_);
1115 		xfs_bioerror_relse(bp);
1116 		return;
1117 	}
1118 
1119 	xfs_buf_iorequest(bp);
1120 }
1121 
1122 STATIC void
1123 _xfs_buf_ioend(
1124 	xfs_buf_t		*bp,
1125 	int			schedule)
1126 {
1127 	if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1128 		xfs_buf_ioend(bp, schedule);
1129 }
1130 
1131 STATIC void
1132 xfs_buf_bio_end_io(
1133 	struct bio		*bio,
1134 	int			error)
1135 {
1136 	xfs_buf_t		*bp = (xfs_buf_t *)bio->bi_private;
1137 
1138 	xfs_buf_ioerror(bp, -error);
1139 
1140 	if (!error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
1141 		invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1142 
1143 	_xfs_buf_ioend(bp, 1);
1144 	bio_put(bio);
1145 }
1146 
1147 STATIC void
1148 _xfs_buf_ioapply(
1149 	xfs_buf_t		*bp)
1150 {
1151 	int			rw, map_i, total_nr_pages, nr_pages;
1152 	struct bio		*bio;
1153 	int			offset = bp->b_offset;
1154 	int			size = BBTOB(bp->b_io_length);
1155 	sector_t		sector = bp->b_bn;
1156 
1157 	total_nr_pages = bp->b_page_count;
1158 	map_i = 0;
1159 
1160 	if (bp->b_flags & XBF_WRITE) {
1161 		if (bp->b_flags & XBF_SYNCIO)
1162 			rw = WRITE_SYNC;
1163 		else
1164 			rw = WRITE;
1165 		if (bp->b_flags & XBF_FUA)
1166 			rw |= REQ_FUA;
1167 		if (bp->b_flags & XBF_FLUSH)
1168 			rw |= REQ_FLUSH;
1169 	} else if (bp->b_flags & XBF_READ_AHEAD) {
1170 		rw = READA;
1171 	} else {
1172 		rw = READ;
1173 	}
1174 
1175 	/* we only use the buffer cache for meta-data */
1176 	rw |= REQ_META;
1177 
1178 next_chunk:
1179 	atomic_inc(&bp->b_io_remaining);
1180 	nr_pages = BIO_MAX_SECTORS >> (PAGE_SHIFT - BBSHIFT);
1181 	if (nr_pages > total_nr_pages)
1182 		nr_pages = total_nr_pages;
1183 
1184 	bio = bio_alloc(GFP_NOIO, nr_pages);
1185 	bio->bi_bdev = bp->b_target->bt_bdev;
1186 	bio->bi_sector = sector;
1187 	bio->bi_end_io = xfs_buf_bio_end_io;
1188 	bio->bi_private = bp;
1189 
1190 
1191 	for (; size && nr_pages; nr_pages--, map_i++) {
1192 		int	rbytes, nbytes = PAGE_SIZE - offset;
1193 
1194 		if (nbytes > size)
1195 			nbytes = size;
1196 
1197 		rbytes = bio_add_page(bio, bp->b_pages[map_i], nbytes, offset);
1198 		if (rbytes < nbytes)
1199 			break;
1200 
1201 		offset = 0;
1202 		sector += BTOBB(nbytes);
1203 		size -= nbytes;
1204 		total_nr_pages--;
1205 	}
1206 
1207 	if (likely(bio->bi_size)) {
1208 		if (xfs_buf_is_vmapped(bp)) {
1209 			flush_kernel_vmap_range(bp->b_addr,
1210 						xfs_buf_vmap_len(bp));
1211 		}
1212 		submit_bio(rw, bio);
1213 		if (size)
1214 			goto next_chunk;
1215 	} else {
1216 		xfs_buf_ioerror(bp, EIO);
1217 		bio_put(bio);
1218 	}
1219 }
1220 
1221 void
1222 xfs_buf_iorequest(
1223 	xfs_buf_t		*bp)
1224 {
1225 	trace_xfs_buf_iorequest(bp, _RET_IP_);
1226 
1227 	ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1228 
1229 	if (bp->b_flags & XBF_WRITE)
1230 		xfs_buf_wait_unpin(bp);
1231 	xfs_buf_hold(bp);
1232 
1233 	/* Set the count to 1 initially, this will stop an I/O
1234 	 * completion callout which happens before we have started
1235 	 * all the I/O from calling xfs_buf_ioend too early.
1236 	 */
1237 	atomic_set(&bp->b_io_remaining, 1);
1238 	_xfs_buf_ioapply(bp);
1239 	_xfs_buf_ioend(bp, 1);
1240 
1241 	xfs_buf_rele(bp);
1242 }
1243 
1244 /*
1245  * Waits for I/O to complete on the buffer supplied.  It returns immediately if
1246  * no I/O is pending or there is already a pending error on the buffer.  It
1247  * returns the I/O error code, if any, or 0 if there was no error.
1248  */
1249 int
1250 xfs_buf_iowait(
1251 	xfs_buf_t		*bp)
1252 {
1253 	trace_xfs_buf_iowait(bp, _RET_IP_);
1254 
1255 	if (!bp->b_error)
1256 		wait_for_completion(&bp->b_iowait);
1257 
1258 	trace_xfs_buf_iowait_done(bp, _RET_IP_);
1259 	return bp->b_error;
1260 }
1261 
1262 xfs_caddr_t
1263 xfs_buf_offset(
1264 	xfs_buf_t		*bp,
1265 	size_t			offset)
1266 {
1267 	struct page		*page;
1268 
1269 	if (bp->b_addr)
1270 		return bp->b_addr + offset;
1271 
1272 	offset += bp->b_offset;
1273 	page = bp->b_pages[offset >> PAGE_SHIFT];
1274 	return (xfs_caddr_t)page_address(page) + (offset & (PAGE_SIZE-1));
1275 }
1276 
1277 /*
1278  *	Move data into or out of a buffer.
1279  */
1280 void
1281 xfs_buf_iomove(
1282 	xfs_buf_t		*bp,	/* buffer to process		*/
1283 	size_t			boff,	/* starting buffer offset	*/
1284 	size_t			bsize,	/* length to copy		*/
1285 	void			*data,	/* data address			*/
1286 	xfs_buf_rw_t		mode)	/* read/write/zero flag		*/
1287 {
1288 	size_t			bend;
1289 
1290 	bend = boff + bsize;
1291 	while (boff < bend) {
1292 		struct page	*page;
1293 		int		page_index, page_offset, csize;
1294 
1295 		page_index = (boff + bp->b_offset) >> PAGE_SHIFT;
1296 		page_offset = (boff + bp->b_offset) & ~PAGE_MASK;
1297 		page = bp->b_pages[page_index];
1298 		csize = min_t(size_t, PAGE_SIZE - page_offset,
1299 				      BBTOB(bp->b_io_length) - boff);
1300 
1301 		ASSERT((csize + page_offset) <= PAGE_SIZE);
1302 
1303 		switch (mode) {
1304 		case XBRW_ZERO:
1305 			memset(page_address(page) + page_offset, 0, csize);
1306 			break;
1307 		case XBRW_READ:
1308 			memcpy(data, page_address(page) + page_offset, csize);
1309 			break;
1310 		case XBRW_WRITE:
1311 			memcpy(page_address(page) + page_offset, data, csize);
1312 		}
1313 
1314 		boff += csize;
1315 		data += csize;
1316 	}
1317 }
1318 
1319 /*
1320  *	Handling of buffer targets (buftargs).
1321  */
1322 
1323 /*
1324  * Wait for any bufs with callbacks that have been submitted but have not yet
1325  * returned. These buffers will have an elevated hold count, so wait on those
1326  * while freeing all the buffers only held by the LRU.
1327  */
1328 void
1329 xfs_wait_buftarg(
1330 	struct xfs_buftarg	*btp)
1331 {
1332 	struct xfs_buf		*bp;
1333 
1334 restart:
1335 	spin_lock(&btp->bt_lru_lock);
1336 	while (!list_empty(&btp->bt_lru)) {
1337 		bp = list_first_entry(&btp->bt_lru, struct xfs_buf, b_lru);
1338 		if (atomic_read(&bp->b_hold) > 1) {
1339 			spin_unlock(&btp->bt_lru_lock);
1340 			delay(100);
1341 			goto restart;
1342 		}
1343 		/*
1344 		 * clear the LRU reference count so the buffer doesn't get
1345 		 * ignored in xfs_buf_rele().
1346 		 */
1347 		atomic_set(&bp->b_lru_ref, 0);
1348 		spin_unlock(&btp->bt_lru_lock);
1349 		xfs_buf_rele(bp);
1350 		spin_lock(&btp->bt_lru_lock);
1351 	}
1352 	spin_unlock(&btp->bt_lru_lock);
1353 }
1354 
1355 int
1356 xfs_buftarg_shrink(
1357 	struct shrinker		*shrink,
1358 	struct shrink_control	*sc)
1359 {
1360 	struct xfs_buftarg	*btp = container_of(shrink,
1361 					struct xfs_buftarg, bt_shrinker);
1362 	struct xfs_buf		*bp;
1363 	int nr_to_scan = sc->nr_to_scan;
1364 	LIST_HEAD(dispose);
1365 
1366 	if (!nr_to_scan)
1367 		return btp->bt_lru_nr;
1368 
1369 	spin_lock(&btp->bt_lru_lock);
1370 	while (!list_empty(&btp->bt_lru)) {
1371 		if (nr_to_scan-- <= 0)
1372 			break;
1373 
1374 		bp = list_first_entry(&btp->bt_lru, struct xfs_buf, b_lru);
1375 
1376 		/*
1377 		 * Decrement the b_lru_ref count unless the value is already
1378 		 * zero. If the value is already zero, we need to reclaim the
1379 		 * buffer, otherwise it gets another trip through the LRU.
1380 		 */
1381 		if (!atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
1382 			list_move_tail(&bp->b_lru, &btp->bt_lru);
1383 			continue;
1384 		}
1385 
1386 		/*
1387 		 * remove the buffer from the LRU now to avoid needing another
1388 		 * lock round trip inside xfs_buf_rele().
1389 		 */
1390 		list_move(&bp->b_lru, &dispose);
1391 		btp->bt_lru_nr--;
1392 	}
1393 	spin_unlock(&btp->bt_lru_lock);
1394 
1395 	while (!list_empty(&dispose)) {
1396 		bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1397 		list_del_init(&bp->b_lru);
1398 		xfs_buf_rele(bp);
1399 	}
1400 
1401 	return btp->bt_lru_nr;
1402 }
1403 
1404 void
1405 xfs_free_buftarg(
1406 	struct xfs_mount	*mp,
1407 	struct xfs_buftarg	*btp)
1408 {
1409 	unregister_shrinker(&btp->bt_shrinker);
1410 
1411 	if (mp->m_flags & XFS_MOUNT_BARRIER)
1412 		xfs_blkdev_issue_flush(btp);
1413 
1414 	kmem_free(btp);
1415 }
1416 
1417 STATIC int
1418 xfs_setsize_buftarg_flags(
1419 	xfs_buftarg_t		*btp,
1420 	unsigned int		blocksize,
1421 	unsigned int		sectorsize,
1422 	int			verbose)
1423 {
1424 	btp->bt_bsize = blocksize;
1425 	btp->bt_sshift = ffs(sectorsize) - 1;
1426 	btp->bt_smask = sectorsize - 1;
1427 
1428 	if (set_blocksize(btp->bt_bdev, sectorsize)) {
1429 		char name[BDEVNAME_SIZE];
1430 
1431 		bdevname(btp->bt_bdev, name);
1432 
1433 		xfs_warn(btp->bt_mount,
1434 			"Cannot set_blocksize to %u on device %s\n",
1435 			sectorsize, name);
1436 		return EINVAL;
1437 	}
1438 
1439 	return 0;
1440 }
1441 
1442 /*
1443  *	When allocating the initial buffer target we have not yet
1444  *	read in the superblock, so don't know what sized sectors
1445  *	are being used is at this early stage.  Play safe.
1446  */
1447 STATIC int
1448 xfs_setsize_buftarg_early(
1449 	xfs_buftarg_t		*btp,
1450 	struct block_device	*bdev)
1451 {
1452 	return xfs_setsize_buftarg_flags(btp,
1453 			PAGE_SIZE, bdev_logical_block_size(bdev), 0);
1454 }
1455 
1456 int
1457 xfs_setsize_buftarg(
1458 	xfs_buftarg_t		*btp,
1459 	unsigned int		blocksize,
1460 	unsigned int		sectorsize)
1461 {
1462 	return xfs_setsize_buftarg_flags(btp, blocksize, sectorsize, 1);
1463 }
1464 
1465 xfs_buftarg_t *
1466 xfs_alloc_buftarg(
1467 	struct xfs_mount	*mp,
1468 	struct block_device	*bdev,
1469 	int			external,
1470 	const char		*fsname)
1471 {
1472 	xfs_buftarg_t		*btp;
1473 
1474 	btp = kmem_zalloc(sizeof(*btp), KM_SLEEP);
1475 
1476 	btp->bt_mount = mp;
1477 	btp->bt_dev =  bdev->bd_dev;
1478 	btp->bt_bdev = bdev;
1479 	btp->bt_bdi = blk_get_backing_dev_info(bdev);
1480 	if (!btp->bt_bdi)
1481 		goto error;
1482 
1483 	INIT_LIST_HEAD(&btp->bt_lru);
1484 	spin_lock_init(&btp->bt_lru_lock);
1485 	if (xfs_setsize_buftarg_early(btp, bdev))
1486 		goto error;
1487 	btp->bt_shrinker.shrink = xfs_buftarg_shrink;
1488 	btp->bt_shrinker.seeks = DEFAULT_SEEKS;
1489 	register_shrinker(&btp->bt_shrinker);
1490 	return btp;
1491 
1492 error:
1493 	kmem_free(btp);
1494 	return NULL;
1495 }
1496 
1497 /*
1498  * Add a buffer to the delayed write list.
1499  *
1500  * This queues a buffer for writeout if it hasn't already been.  Note that
1501  * neither this routine nor the buffer list submission functions perform
1502  * any internal synchronization.  It is expected that the lists are thread-local
1503  * to the callers.
1504  *
1505  * Returns true if we queued up the buffer, or false if it already had
1506  * been on the buffer list.
1507  */
1508 bool
1509 xfs_buf_delwri_queue(
1510 	struct xfs_buf		*bp,
1511 	struct list_head	*list)
1512 {
1513 	ASSERT(xfs_buf_islocked(bp));
1514 	ASSERT(!(bp->b_flags & XBF_READ));
1515 
1516 	/*
1517 	 * If the buffer is already marked delwri it already is queued up
1518 	 * by someone else for imediate writeout.  Just ignore it in that
1519 	 * case.
1520 	 */
1521 	if (bp->b_flags & _XBF_DELWRI_Q) {
1522 		trace_xfs_buf_delwri_queued(bp, _RET_IP_);
1523 		return false;
1524 	}
1525 
1526 	trace_xfs_buf_delwri_queue(bp, _RET_IP_);
1527 
1528 	/*
1529 	 * If a buffer gets written out synchronously or marked stale while it
1530 	 * is on a delwri list we lazily remove it. To do this, the other party
1531 	 * clears the  _XBF_DELWRI_Q flag but otherwise leaves the buffer alone.
1532 	 * It remains referenced and on the list.  In a rare corner case it
1533 	 * might get readded to a delwri list after the synchronous writeout, in
1534 	 * which case we need just need to re-add the flag here.
1535 	 */
1536 	bp->b_flags |= _XBF_DELWRI_Q;
1537 	if (list_empty(&bp->b_list)) {
1538 		atomic_inc(&bp->b_hold);
1539 		list_add_tail(&bp->b_list, list);
1540 	}
1541 
1542 	return true;
1543 }
1544 
1545 /*
1546  * Compare function is more complex than it needs to be because
1547  * the return value is only 32 bits and we are doing comparisons
1548  * on 64 bit values
1549  */
1550 static int
1551 xfs_buf_cmp(
1552 	void		*priv,
1553 	struct list_head *a,
1554 	struct list_head *b)
1555 {
1556 	struct xfs_buf	*ap = container_of(a, struct xfs_buf, b_list);
1557 	struct xfs_buf	*bp = container_of(b, struct xfs_buf, b_list);
1558 	xfs_daddr_t		diff;
1559 
1560 	diff = ap->b_bn - bp->b_bn;
1561 	if (diff < 0)
1562 		return -1;
1563 	if (diff > 0)
1564 		return 1;
1565 	return 0;
1566 }
1567 
1568 static int
1569 __xfs_buf_delwri_submit(
1570 	struct list_head	*buffer_list,
1571 	struct list_head	*io_list,
1572 	bool			wait)
1573 {
1574 	struct blk_plug		plug;
1575 	struct xfs_buf		*bp, *n;
1576 	int			pinned = 0;
1577 
1578 	list_for_each_entry_safe(bp, n, buffer_list, b_list) {
1579 		if (!wait) {
1580 			if (xfs_buf_ispinned(bp)) {
1581 				pinned++;
1582 				continue;
1583 			}
1584 			if (!xfs_buf_trylock(bp))
1585 				continue;
1586 		} else {
1587 			xfs_buf_lock(bp);
1588 		}
1589 
1590 		/*
1591 		 * Someone else might have written the buffer synchronously or
1592 		 * marked it stale in the meantime.  In that case only the
1593 		 * _XBF_DELWRI_Q flag got cleared, and we have to drop the
1594 		 * reference and remove it from the list here.
1595 		 */
1596 		if (!(bp->b_flags & _XBF_DELWRI_Q)) {
1597 			list_del_init(&bp->b_list);
1598 			xfs_buf_relse(bp);
1599 			continue;
1600 		}
1601 
1602 		list_move_tail(&bp->b_list, io_list);
1603 		trace_xfs_buf_delwri_split(bp, _RET_IP_);
1604 	}
1605 
1606 	list_sort(NULL, io_list, xfs_buf_cmp);
1607 
1608 	blk_start_plug(&plug);
1609 	list_for_each_entry_safe(bp, n, io_list, b_list) {
1610 		bp->b_flags &= ~(_XBF_DELWRI_Q | XBF_ASYNC);
1611 		bp->b_flags |= XBF_WRITE;
1612 
1613 		if (!wait) {
1614 			bp->b_flags |= XBF_ASYNC;
1615 			list_del_init(&bp->b_list);
1616 		}
1617 		xfs_bdstrat_cb(bp);
1618 	}
1619 	blk_finish_plug(&plug);
1620 
1621 	return pinned;
1622 }
1623 
1624 /*
1625  * Write out a buffer list asynchronously.
1626  *
1627  * This will take the @buffer_list, write all non-locked and non-pinned buffers
1628  * out and not wait for I/O completion on any of the buffers.  This interface
1629  * is only safely useable for callers that can track I/O completion by higher
1630  * level means, e.g. AIL pushing as the @buffer_list is consumed in this
1631  * function.
1632  */
1633 int
1634 xfs_buf_delwri_submit_nowait(
1635 	struct list_head	*buffer_list)
1636 {
1637 	LIST_HEAD		(io_list);
1638 	return __xfs_buf_delwri_submit(buffer_list, &io_list, false);
1639 }
1640 
1641 /*
1642  * Write out a buffer list synchronously.
1643  *
1644  * This will take the @buffer_list, write all buffers out and wait for I/O
1645  * completion on all of the buffers. @buffer_list is consumed by the function,
1646  * so callers must have some other way of tracking buffers if they require such
1647  * functionality.
1648  */
1649 int
1650 xfs_buf_delwri_submit(
1651 	struct list_head	*buffer_list)
1652 {
1653 	LIST_HEAD		(io_list);
1654 	int			error = 0, error2;
1655 	struct xfs_buf		*bp;
1656 
1657 	__xfs_buf_delwri_submit(buffer_list, &io_list, true);
1658 
1659 	/* Wait for IO to complete. */
1660 	while (!list_empty(&io_list)) {
1661 		bp = list_first_entry(&io_list, struct xfs_buf, b_list);
1662 
1663 		list_del_init(&bp->b_list);
1664 		error2 = xfs_buf_iowait(bp);
1665 		xfs_buf_relse(bp);
1666 		if (!error)
1667 			error = error2;
1668 	}
1669 
1670 	return error;
1671 }
1672 
1673 int __init
1674 xfs_buf_init(void)
1675 {
1676 	xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
1677 						KM_ZONE_HWALIGN, NULL);
1678 	if (!xfs_buf_zone)
1679 		goto out;
1680 
1681 	xfslogd_workqueue = alloc_workqueue("xfslogd",
1682 					WQ_MEM_RECLAIM | WQ_HIGHPRI, 1);
1683 	if (!xfslogd_workqueue)
1684 		goto out_free_buf_zone;
1685 
1686 	return 0;
1687 
1688  out_free_buf_zone:
1689 	kmem_zone_destroy(xfs_buf_zone);
1690  out:
1691 	return -ENOMEM;
1692 }
1693 
1694 void
1695 xfs_buf_terminate(void)
1696 {
1697 	destroy_workqueue(xfslogd_workqueue);
1698 	kmem_zone_destroy(xfs_buf_zone);
1699 }
1700