xref: /linux/fs/xfs/xfs_buf.c (revision 9cfc5c90ad38c8fc11bfd39de42a107da00871ba)
1 /*
2  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include <linux/stddef.h>
20 #include <linux/errno.h>
21 #include <linux/gfp.h>
22 #include <linux/pagemap.h>
23 #include <linux/init.h>
24 #include <linux/vmalloc.h>
25 #include <linux/bio.h>
26 #include <linux/sysctl.h>
27 #include <linux/proc_fs.h>
28 #include <linux/workqueue.h>
29 #include <linux/percpu.h>
30 #include <linux/blkdev.h>
31 #include <linux/hash.h>
32 #include <linux/kthread.h>
33 #include <linux/migrate.h>
34 #include <linux/backing-dev.h>
35 #include <linux/freezer.h>
36 
37 #include "xfs_format.h"
38 #include "xfs_log_format.h"
39 #include "xfs_trans_resv.h"
40 #include "xfs_sb.h"
41 #include "xfs_mount.h"
42 #include "xfs_trace.h"
43 #include "xfs_log.h"
44 
45 static kmem_zone_t *xfs_buf_zone;
46 
47 #ifdef XFS_BUF_LOCK_TRACKING
48 # define XB_SET_OWNER(bp)	((bp)->b_last_holder = current->pid)
49 # define XB_CLEAR_OWNER(bp)	((bp)->b_last_holder = -1)
50 # define XB_GET_OWNER(bp)	((bp)->b_last_holder)
51 #else
52 # define XB_SET_OWNER(bp)	do { } while (0)
53 # define XB_CLEAR_OWNER(bp)	do { } while (0)
54 # define XB_GET_OWNER(bp)	do { } while (0)
55 #endif
56 
57 #define xb_to_gfp(flags) \
58 	((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : GFP_NOFS) | __GFP_NOWARN)
59 
60 
61 static inline int
62 xfs_buf_is_vmapped(
63 	struct xfs_buf	*bp)
64 {
65 	/*
66 	 * Return true if the buffer is vmapped.
67 	 *
68 	 * b_addr is null if the buffer is not mapped, but the code is clever
69 	 * enough to know it doesn't have to map a single page, so the check has
70 	 * to be both for b_addr and bp->b_page_count > 1.
71 	 */
72 	return bp->b_addr && bp->b_page_count > 1;
73 }
74 
75 static inline int
76 xfs_buf_vmap_len(
77 	struct xfs_buf	*bp)
78 {
79 	return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
80 }
81 
82 /*
83  * When we mark a buffer stale, we remove the buffer from the LRU and clear the
84  * b_lru_ref count so that the buffer is freed immediately when the buffer
85  * reference count falls to zero. If the buffer is already on the LRU, we need
86  * to remove the reference that LRU holds on the buffer.
87  *
88  * This prevents build-up of stale buffers on the LRU.
89  */
90 void
91 xfs_buf_stale(
92 	struct xfs_buf	*bp)
93 {
94 	ASSERT(xfs_buf_islocked(bp));
95 
96 	bp->b_flags |= XBF_STALE;
97 
98 	/*
99 	 * Clear the delwri status so that a delwri queue walker will not
100 	 * flush this buffer to disk now that it is stale. The delwri queue has
101 	 * a reference to the buffer, so this is safe to do.
102 	 */
103 	bp->b_flags &= ~_XBF_DELWRI_Q;
104 
105 	spin_lock(&bp->b_lock);
106 	atomic_set(&bp->b_lru_ref, 0);
107 	if (!(bp->b_state & XFS_BSTATE_DISPOSE) &&
108 	    (list_lru_del(&bp->b_target->bt_lru, &bp->b_lru)))
109 		atomic_dec(&bp->b_hold);
110 
111 	ASSERT(atomic_read(&bp->b_hold) >= 1);
112 	spin_unlock(&bp->b_lock);
113 }
114 
115 static int
116 xfs_buf_get_maps(
117 	struct xfs_buf		*bp,
118 	int			map_count)
119 {
120 	ASSERT(bp->b_maps == NULL);
121 	bp->b_map_count = map_count;
122 
123 	if (map_count == 1) {
124 		bp->b_maps = &bp->__b_map;
125 		return 0;
126 	}
127 
128 	bp->b_maps = kmem_zalloc(map_count * sizeof(struct xfs_buf_map),
129 				KM_NOFS);
130 	if (!bp->b_maps)
131 		return -ENOMEM;
132 	return 0;
133 }
134 
135 /*
136  *	Frees b_pages if it was allocated.
137  */
138 static void
139 xfs_buf_free_maps(
140 	struct xfs_buf	*bp)
141 {
142 	if (bp->b_maps != &bp->__b_map) {
143 		kmem_free(bp->b_maps);
144 		bp->b_maps = NULL;
145 	}
146 }
147 
148 struct xfs_buf *
149 _xfs_buf_alloc(
150 	struct xfs_buftarg	*target,
151 	struct xfs_buf_map	*map,
152 	int			nmaps,
153 	xfs_buf_flags_t		flags)
154 {
155 	struct xfs_buf		*bp;
156 	int			error;
157 	int			i;
158 
159 	bp = kmem_zone_zalloc(xfs_buf_zone, KM_NOFS);
160 	if (unlikely(!bp))
161 		return NULL;
162 
163 	/*
164 	 * We don't want certain flags to appear in b_flags unless they are
165 	 * specifically set by later operations on the buffer.
166 	 */
167 	flags &= ~(XBF_UNMAPPED | XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD);
168 
169 	atomic_set(&bp->b_hold, 1);
170 	atomic_set(&bp->b_lru_ref, 1);
171 	init_completion(&bp->b_iowait);
172 	INIT_LIST_HEAD(&bp->b_lru);
173 	INIT_LIST_HEAD(&bp->b_list);
174 	RB_CLEAR_NODE(&bp->b_rbnode);
175 	sema_init(&bp->b_sema, 0); /* held, no waiters */
176 	spin_lock_init(&bp->b_lock);
177 	XB_SET_OWNER(bp);
178 	bp->b_target = target;
179 	bp->b_flags = flags;
180 
181 	/*
182 	 * Set length and io_length to the same value initially.
183 	 * I/O routines should use io_length, which will be the same in
184 	 * most cases but may be reset (e.g. XFS recovery).
185 	 */
186 	error = xfs_buf_get_maps(bp, nmaps);
187 	if (error)  {
188 		kmem_zone_free(xfs_buf_zone, bp);
189 		return NULL;
190 	}
191 
192 	bp->b_bn = map[0].bm_bn;
193 	bp->b_length = 0;
194 	for (i = 0; i < nmaps; i++) {
195 		bp->b_maps[i].bm_bn = map[i].bm_bn;
196 		bp->b_maps[i].bm_len = map[i].bm_len;
197 		bp->b_length += map[i].bm_len;
198 	}
199 	bp->b_io_length = bp->b_length;
200 
201 	atomic_set(&bp->b_pin_count, 0);
202 	init_waitqueue_head(&bp->b_waiters);
203 
204 	XFS_STATS_INC(target->bt_mount, xb_create);
205 	trace_xfs_buf_init(bp, _RET_IP_);
206 
207 	return bp;
208 }
209 
210 /*
211  *	Allocate a page array capable of holding a specified number
212  *	of pages, and point the page buf at it.
213  */
214 STATIC int
215 _xfs_buf_get_pages(
216 	xfs_buf_t		*bp,
217 	int			page_count)
218 {
219 	/* Make sure that we have a page list */
220 	if (bp->b_pages == NULL) {
221 		bp->b_page_count = page_count;
222 		if (page_count <= XB_PAGES) {
223 			bp->b_pages = bp->b_page_array;
224 		} else {
225 			bp->b_pages = kmem_alloc(sizeof(struct page *) *
226 						 page_count, KM_NOFS);
227 			if (bp->b_pages == NULL)
228 				return -ENOMEM;
229 		}
230 		memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
231 	}
232 	return 0;
233 }
234 
235 /*
236  *	Frees b_pages if it was allocated.
237  */
238 STATIC void
239 _xfs_buf_free_pages(
240 	xfs_buf_t	*bp)
241 {
242 	if (bp->b_pages != bp->b_page_array) {
243 		kmem_free(bp->b_pages);
244 		bp->b_pages = NULL;
245 	}
246 }
247 
248 /*
249  *	Releases the specified buffer.
250  *
251  * 	The modification state of any associated pages is left unchanged.
252  * 	The buffer must not be on any hash - use xfs_buf_rele instead for
253  * 	hashed and refcounted buffers
254  */
255 void
256 xfs_buf_free(
257 	xfs_buf_t		*bp)
258 {
259 	trace_xfs_buf_free(bp, _RET_IP_);
260 
261 	ASSERT(list_empty(&bp->b_lru));
262 
263 	if (bp->b_flags & _XBF_PAGES) {
264 		uint		i;
265 
266 		if (xfs_buf_is_vmapped(bp))
267 			vm_unmap_ram(bp->b_addr - bp->b_offset,
268 					bp->b_page_count);
269 
270 		for (i = 0; i < bp->b_page_count; i++) {
271 			struct page	*page = bp->b_pages[i];
272 
273 			__free_page(page);
274 		}
275 	} else if (bp->b_flags & _XBF_KMEM)
276 		kmem_free(bp->b_addr);
277 	_xfs_buf_free_pages(bp);
278 	xfs_buf_free_maps(bp);
279 	kmem_zone_free(xfs_buf_zone, bp);
280 }
281 
282 /*
283  * Allocates all the pages for buffer in question and builds it's page list.
284  */
285 STATIC int
286 xfs_buf_allocate_memory(
287 	xfs_buf_t		*bp,
288 	uint			flags)
289 {
290 	size_t			size;
291 	size_t			nbytes, offset;
292 	gfp_t			gfp_mask = xb_to_gfp(flags);
293 	unsigned short		page_count, i;
294 	xfs_off_t		start, end;
295 	int			error;
296 
297 	/*
298 	 * for buffers that are contained within a single page, just allocate
299 	 * the memory from the heap - there's no need for the complexity of
300 	 * page arrays to keep allocation down to order 0.
301 	 */
302 	size = BBTOB(bp->b_length);
303 	if (size < PAGE_SIZE) {
304 		bp->b_addr = kmem_alloc(size, KM_NOFS);
305 		if (!bp->b_addr) {
306 			/* low memory - use alloc_page loop instead */
307 			goto use_alloc_page;
308 		}
309 
310 		if (((unsigned long)(bp->b_addr + size - 1) & PAGE_MASK) !=
311 		    ((unsigned long)bp->b_addr & PAGE_MASK)) {
312 			/* b_addr spans two pages - use alloc_page instead */
313 			kmem_free(bp->b_addr);
314 			bp->b_addr = NULL;
315 			goto use_alloc_page;
316 		}
317 		bp->b_offset = offset_in_page(bp->b_addr);
318 		bp->b_pages = bp->b_page_array;
319 		bp->b_pages[0] = virt_to_page(bp->b_addr);
320 		bp->b_page_count = 1;
321 		bp->b_flags |= _XBF_KMEM;
322 		return 0;
323 	}
324 
325 use_alloc_page:
326 	start = BBTOB(bp->b_maps[0].bm_bn) >> PAGE_SHIFT;
327 	end = (BBTOB(bp->b_maps[0].bm_bn + bp->b_length) + PAGE_SIZE - 1)
328 								>> PAGE_SHIFT;
329 	page_count = end - start;
330 	error = _xfs_buf_get_pages(bp, page_count);
331 	if (unlikely(error))
332 		return error;
333 
334 	offset = bp->b_offset;
335 	bp->b_flags |= _XBF_PAGES;
336 
337 	for (i = 0; i < bp->b_page_count; i++) {
338 		struct page	*page;
339 		uint		retries = 0;
340 retry:
341 		page = alloc_page(gfp_mask);
342 		if (unlikely(page == NULL)) {
343 			if (flags & XBF_READ_AHEAD) {
344 				bp->b_page_count = i;
345 				error = -ENOMEM;
346 				goto out_free_pages;
347 			}
348 
349 			/*
350 			 * This could deadlock.
351 			 *
352 			 * But until all the XFS lowlevel code is revamped to
353 			 * handle buffer allocation failures we can't do much.
354 			 */
355 			if (!(++retries % 100))
356 				xfs_err(NULL,
357 		"%s(%u) possible memory allocation deadlock in %s (mode:0x%x)",
358 					current->comm, current->pid,
359 					__func__, gfp_mask);
360 
361 			XFS_STATS_INC(bp->b_target->bt_mount, xb_page_retries);
362 			congestion_wait(BLK_RW_ASYNC, HZ/50);
363 			goto retry;
364 		}
365 
366 		XFS_STATS_INC(bp->b_target->bt_mount, xb_page_found);
367 
368 		nbytes = min_t(size_t, size, PAGE_SIZE - offset);
369 		size -= nbytes;
370 		bp->b_pages[i] = page;
371 		offset = 0;
372 	}
373 	return 0;
374 
375 out_free_pages:
376 	for (i = 0; i < bp->b_page_count; i++)
377 		__free_page(bp->b_pages[i]);
378 	return error;
379 }
380 
381 /*
382  *	Map buffer into kernel address-space if necessary.
383  */
384 STATIC int
385 _xfs_buf_map_pages(
386 	xfs_buf_t		*bp,
387 	uint			flags)
388 {
389 	ASSERT(bp->b_flags & _XBF_PAGES);
390 	if (bp->b_page_count == 1) {
391 		/* A single page buffer is always mappable */
392 		bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
393 	} else if (flags & XBF_UNMAPPED) {
394 		bp->b_addr = NULL;
395 	} else {
396 		int retried = 0;
397 		unsigned noio_flag;
398 
399 		/*
400 		 * vm_map_ram() will allocate auxillary structures (e.g.
401 		 * pagetables) with GFP_KERNEL, yet we are likely to be under
402 		 * GFP_NOFS context here. Hence we need to tell memory reclaim
403 		 * that we are in such a context via PF_MEMALLOC_NOIO to prevent
404 		 * memory reclaim re-entering the filesystem here and
405 		 * potentially deadlocking.
406 		 */
407 		noio_flag = memalloc_noio_save();
408 		do {
409 			bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
410 						-1, PAGE_KERNEL);
411 			if (bp->b_addr)
412 				break;
413 			vm_unmap_aliases();
414 		} while (retried++ <= 1);
415 		memalloc_noio_restore(noio_flag);
416 
417 		if (!bp->b_addr)
418 			return -ENOMEM;
419 		bp->b_addr += bp->b_offset;
420 	}
421 
422 	return 0;
423 }
424 
425 /*
426  *	Finding and Reading Buffers
427  */
428 
429 /*
430  *	Look up, and creates if absent, a lockable buffer for
431  *	a given range of an inode.  The buffer is returned
432  *	locked.	No I/O is implied by this call.
433  */
434 xfs_buf_t *
435 _xfs_buf_find(
436 	struct xfs_buftarg	*btp,
437 	struct xfs_buf_map	*map,
438 	int			nmaps,
439 	xfs_buf_flags_t		flags,
440 	xfs_buf_t		*new_bp)
441 {
442 	struct xfs_perag	*pag;
443 	struct rb_node		**rbp;
444 	struct rb_node		*parent;
445 	xfs_buf_t		*bp;
446 	xfs_daddr_t		blkno = map[0].bm_bn;
447 	xfs_daddr_t		eofs;
448 	int			numblks = 0;
449 	int			i;
450 
451 	for (i = 0; i < nmaps; i++)
452 		numblks += map[i].bm_len;
453 
454 	/* Check for IOs smaller than the sector size / not sector aligned */
455 	ASSERT(!(BBTOB(numblks) < btp->bt_meta_sectorsize));
456 	ASSERT(!(BBTOB(blkno) & (xfs_off_t)btp->bt_meta_sectormask));
457 
458 	/*
459 	 * Corrupted block numbers can get through to here, unfortunately, so we
460 	 * have to check that the buffer falls within the filesystem bounds.
461 	 */
462 	eofs = XFS_FSB_TO_BB(btp->bt_mount, btp->bt_mount->m_sb.sb_dblocks);
463 	if (blkno < 0 || blkno >= eofs) {
464 		/*
465 		 * XXX (dgc): we should really be returning -EFSCORRUPTED here,
466 		 * but none of the higher level infrastructure supports
467 		 * returning a specific error on buffer lookup failures.
468 		 */
469 		xfs_alert(btp->bt_mount,
470 			  "%s: Block out of range: block 0x%llx, EOFS 0x%llx ",
471 			  __func__, blkno, eofs);
472 		WARN_ON(1);
473 		return NULL;
474 	}
475 
476 	/* get tree root */
477 	pag = xfs_perag_get(btp->bt_mount,
478 				xfs_daddr_to_agno(btp->bt_mount, blkno));
479 
480 	/* walk tree */
481 	spin_lock(&pag->pag_buf_lock);
482 	rbp = &pag->pag_buf_tree.rb_node;
483 	parent = NULL;
484 	bp = NULL;
485 	while (*rbp) {
486 		parent = *rbp;
487 		bp = rb_entry(parent, struct xfs_buf, b_rbnode);
488 
489 		if (blkno < bp->b_bn)
490 			rbp = &(*rbp)->rb_left;
491 		else if (blkno > bp->b_bn)
492 			rbp = &(*rbp)->rb_right;
493 		else {
494 			/*
495 			 * found a block number match. If the range doesn't
496 			 * match, the only way this is allowed is if the buffer
497 			 * in the cache is stale and the transaction that made
498 			 * it stale has not yet committed. i.e. we are
499 			 * reallocating a busy extent. Skip this buffer and
500 			 * continue searching to the right for an exact match.
501 			 */
502 			if (bp->b_length != numblks) {
503 				ASSERT(bp->b_flags & XBF_STALE);
504 				rbp = &(*rbp)->rb_right;
505 				continue;
506 			}
507 			atomic_inc(&bp->b_hold);
508 			goto found;
509 		}
510 	}
511 
512 	/* No match found */
513 	if (new_bp) {
514 		rb_link_node(&new_bp->b_rbnode, parent, rbp);
515 		rb_insert_color(&new_bp->b_rbnode, &pag->pag_buf_tree);
516 		/* the buffer keeps the perag reference until it is freed */
517 		new_bp->b_pag = pag;
518 		spin_unlock(&pag->pag_buf_lock);
519 	} else {
520 		XFS_STATS_INC(btp->bt_mount, xb_miss_locked);
521 		spin_unlock(&pag->pag_buf_lock);
522 		xfs_perag_put(pag);
523 	}
524 	return new_bp;
525 
526 found:
527 	spin_unlock(&pag->pag_buf_lock);
528 	xfs_perag_put(pag);
529 
530 	if (!xfs_buf_trylock(bp)) {
531 		if (flags & XBF_TRYLOCK) {
532 			xfs_buf_rele(bp);
533 			XFS_STATS_INC(btp->bt_mount, xb_busy_locked);
534 			return NULL;
535 		}
536 		xfs_buf_lock(bp);
537 		XFS_STATS_INC(btp->bt_mount, xb_get_locked_waited);
538 	}
539 
540 	/*
541 	 * if the buffer is stale, clear all the external state associated with
542 	 * it. We need to keep flags such as how we allocated the buffer memory
543 	 * intact here.
544 	 */
545 	if (bp->b_flags & XBF_STALE) {
546 		ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
547 		ASSERT(bp->b_iodone == NULL);
548 		bp->b_flags &= _XBF_KMEM | _XBF_PAGES;
549 		bp->b_ops = NULL;
550 	}
551 
552 	trace_xfs_buf_find(bp, flags, _RET_IP_);
553 	XFS_STATS_INC(btp->bt_mount, xb_get_locked);
554 	return bp;
555 }
556 
557 /*
558  * Assembles a buffer covering the specified range. The code is optimised for
559  * cache hits, as metadata intensive workloads will see 3 orders of magnitude
560  * more hits than misses.
561  */
562 struct xfs_buf *
563 xfs_buf_get_map(
564 	struct xfs_buftarg	*target,
565 	struct xfs_buf_map	*map,
566 	int			nmaps,
567 	xfs_buf_flags_t		flags)
568 {
569 	struct xfs_buf		*bp;
570 	struct xfs_buf		*new_bp;
571 	int			error = 0;
572 
573 	bp = _xfs_buf_find(target, map, nmaps, flags, NULL);
574 	if (likely(bp))
575 		goto found;
576 
577 	new_bp = _xfs_buf_alloc(target, map, nmaps, flags);
578 	if (unlikely(!new_bp))
579 		return NULL;
580 
581 	error = xfs_buf_allocate_memory(new_bp, flags);
582 	if (error) {
583 		xfs_buf_free(new_bp);
584 		return NULL;
585 	}
586 
587 	bp = _xfs_buf_find(target, map, nmaps, flags, new_bp);
588 	if (!bp) {
589 		xfs_buf_free(new_bp);
590 		return NULL;
591 	}
592 
593 	if (bp != new_bp)
594 		xfs_buf_free(new_bp);
595 
596 found:
597 	if (!bp->b_addr) {
598 		error = _xfs_buf_map_pages(bp, flags);
599 		if (unlikely(error)) {
600 			xfs_warn(target->bt_mount,
601 				"%s: failed to map pagesn", __func__);
602 			xfs_buf_relse(bp);
603 			return NULL;
604 		}
605 	}
606 
607 	XFS_STATS_INC(target->bt_mount, xb_get);
608 	trace_xfs_buf_get(bp, flags, _RET_IP_);
609 	return bp;
610 }
611 
612 STATIC int
613 _xfs_buf_read(
614 	xfs_buf_t		*bp,
615 	xfs_buf_flags_t		flags)
616 {
617 	ASSERT(!(flags & XBF_WRITE));
618 	ASSERT(bp->b_maps[0].bm_bn != XFS_BUF_DADDR_NULL);
619 
620 	bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD);
621 	bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD);
622 
623 	if (flags & XBF_ASYNC) {
624 		xfs_buf_submit(bp);
625 		return 0;
626 	}
627 	return xfs_buf_submit_wait(bp);
628 }
629 
630 xfs_buf_t *
631 xfs_buf_read_map(
632 	struct xfs_buftarg	*target,
633 	struct xfs_buf_map	*map,
634 	int			nmaps,
635 	xfs_buf_flags_t		flags,
636 	const struct xfs_buf_ops *ops)
637 {
638 	struct xfs_buf		*bp;
639 
640 	flags |= XBF_READ;
641 
642 	bp = xfs_buf_get_map(target, map, nmaps, flags);
643 	if (bp) {
644 		trace_xfs_buf_read(bp, flags, _RET_IP_);
645 
646 		if (!XFS_BUF_ISDONE(bp)) {
647 			XFS_STATS_INC(target->bt_mount, xb_get_read);
648 			bp->b_ops = ops;
649 			_xfs_buf_read(bp, flags);
650 		} else if (flags & XBF_ASYNC) {
651 			/*
652 			 * Read ahead call which is already satisfied,
653 			 * drop the buffer
654 			 */
655 			xfs_buf_relse(bp);
656 			return NULL;
657 		} else {
658 			/* We do not want read in the flags */
659 			bp->b_flags &= ~XBF_READ;
660 		}
661 	}
662 
663 	return bp;
664 }
665 
666 /*
667  *	If we are not low on memory then do the readahead in a deadlock
668  *	safe manner.
669  */
670 void
671 xfs_buf_readahead_map(
672 	struct xfs_buftarg	*target,
673 	struct xfs_buf_map	*map,
674 	int			nmaps,
675 	const struct xfs_buf_ops *ops)
676 {
677 	if (bdi_read_congested(target->bt_bdi))
678 		return;
679 
680 	xfs_buf_read_map(target, map, nmaps,
681 		     XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD, ops);
682 }
683 
684 /*
685  * Read an uncached buffer from disk. Allocates and returns a locked
686  * buffer containing the disk contents or nothing.
687  */
688 int
689 xfs_buf_read_uncached(
690 	struct xfs_buftarg	*target,
691 	xfs_daddr_t		daddr,
692 	size_t			numblks,
693 	int			flags,
694 	struct xfs_buf		**bpp,
695 	const struct xfs_buf_ops *ops)
696 {
697 	struct xfs_buf		*bp;
698 
699 	*bpp = NULL;
700 
701 	bp = xfs_buf_get_uncached(target, numblks, flags);
702 	if (!bp)
703 		return -ENOMEM;
704 
705 	/* set up the buffer for a read IO */
706 	ASSERT(bp->b_map_count == 1);
707 	bp->b_bn = XFS_BUF_DADDR_NULL;  /* always null for uncached buffers */
708 	bp->b_maps[0].bm_bn = daddr;
709 	bp->b_flags |= XBF_READ;
710 	bp->b_ops = ops;
711 
712 	xfs_buf_submit_wait(bp);
713 	if (bp->b_error) {
714 		int	error = bp->b_error;
715 		xfs_buf_relse(bp);
716 		return error;
717 	}
718 
719 	*bpp = bp;
720 	return 0;
721 }
722 
723 /*
724  * Return a buffer allocated as an empty buffer and associated to external
725  * memory via xfs_buf_associate_memory() back to it's empty state.
726  */
727 void
728 xfs_buf_set_empty(
729 	struct xfs_buf		*bp,
730 	size_t			numblks)
731 {
732 	if (bp->b_pages)
733 		_xfs_buf_free_pages(bp);
734 
735 	bp->b_pages = NULL;
736 	bp->b_page_count = 0;
737 	bp->b_addr = NULL;
738 	bp->b_length = numblks;
739 	bp->b_io_length = numblks;
740 
741 	ASSERT(bp->b_map_count == 1);
742 	bp->b_bn = XFS_BUF_DADDR_NULL;
743 	bp->b_maps[0].bm_bn = XFS_BUF_DADDR_NULL;
744 	bp->b_maps[0].bm_len = bp->b_length;
745 }
746 
747 static inline struct page *
748 mem_to_page(
749 	void			*addr)
750 {
751 	if ((!is_vmalloc_addr(addr))) {
752 		return virt_to_page(addr);
753 	} else {
754 		return vmalloc_to_page(addr);
755 	}
756 }
757 
758 int
759 xfs_buf_associate_memory(
760 	xfs_buf_t		*bp,
761 	void			*mem,
762 	size_t			len)
763 {
764 	int			rval;
765 	int			i = 0;
766 	unsigned long		pageaddr;
767 	unsigned long		offset;
768 	size_t			buflen;
769 	int			page_count;
770 
771 	pageaddr = (unsigned long)mem & PAGE_MASK;
772 	offset = (unsigned long)mem - pageaddr;
773 	buflen = PAGE_ALIGN(len + offset);
774 	page_count = buflen >> PAGE_SHIFT;
775 
776 	/* Free any previous set of page pointers */
777 	if (bp->b_pages)
778 		_xfs_buf_free_pages(bp);
779 
780 	bp->b_pages = NULL;
781 	bp->b_addr = mem;
782 
783 	rval = _xfs_buf_get_pages(bp, page_count);
784 	if (rval)
785 		return rval;
786 
787 	bp->b_offset = offset;
788 
789 	for (i = 0; i < bp->b_page_count; i++) {
790 		bp->b_pages[i] = mem_to_page((void *)pageaddr);
791 		pageaddr += PAGE_SIZE;
792 	}
793 
794 	bp->b_io_length = BTOBB(len);
795 	bp->b_length = BTOBB(buflen);
796 
797 	return 0;
798 }
799 
800 xfs_buf_t *
801 xfs_buf_get_uncached(
802 	struct xfs_buftarg	*target,
803 	size_t			numblks,
804 	int			flags)
805 {
806 	unsigned long		page_count;
807 	int			error, i;
808 	struct xfs_buf		*bp;
809 	DEFINE_SINGLE_BUF_MAP(map, XFS_BUF_DADDR_NULL, numblks);
810 
811 	bp = _xfs_buf_alloc(target, &map, 1, 0);
812 	if (unlikely(bp == NULL))
813 		goto fail;
814 
815 	page_count = PAGE_ALIGN(numblks << BBSHIFT) >> PAGE_SHIFT;
816 	error = _xfs_buf_get_pages(bp, page_count);
817 	if (error)
818 		goto fail_free_buf;
819 
820 	for (i = 0; i < page_count; i++) {
821 		bp->b_pages[i] = alloc_page(xb_to_gfp(flags));
822 		if (!bp->b_pages[i])
823 			goto fail_free_mem;
824 	}
825 	bp->b_flags |= _XBF_PAGES;
826 
827 	error = _xfs_buf_map_pages(bp, 0);
828 	if (unlikely(error)) {
829 		xfs_warn(target->bt_mount,
830 			"%s: failed to map pages", __func__);
831 		goto fail_free_mem;
832 	}
833 
834 	trace_xfs_buf_get_uncached(bp, _RET_IP_);
835 	return bp;
836 
837  fail_free_mem:
838 	while (--i >= 0)
839 		__free_page(bp->b_pages[i]);
840 	_xfs_buf_free_pages(bp);
841  fail_free_buf:
842 	xfs_buf_free_maps(bp);
843 	kmem_zone_free(xfs_buf_zone, bp);
844  fail:
845 	return NULL;
846 }
847 
848 /*
849  *	Increment reference count on buffer, to hold the buffer concurrently
850  *	with another thread which may release (free) the buffer asynchronously.
851  *	Must hold the buffer already to call this function.
852  */
853 void
854 xfs_buf_hold(
855 	xfs_buf_t		*bp)
856 {
857 	trace_xfs_buf_hold(bp, _RET_IP_);
858 	atomic_inc(&bp->b_hold);
859 }
860 
861 /*
862  *	Releases a hold on the specified buffer.  If the
863  *	the hold count is 1, calls xfs_buf_free.
864  */
865 void
866 xfs_buf_rele(
867 	xfs_buf_t		*bp)
868 {
869 	struct xfs_perag	*pag = bp->b_pag;
870 
871 	trace_xfs_buf_rele(bp, _RET_IP_);
872 
873 	if (!pag) {
874 		ASSERT(list_empty(&bp->b_lru));
875 		ASSERT(RB_EMPTY_NODE(&bp->b_rbnode));
876 		if (atomic_dec_and_test(&bp->b_hold))
877 			xfs_buf_free(bp);
878 		return;
879 	}
880 
881 	ASSERT(!RB_EMPTY_NODE(&bp->b_rbnode));
882 
883 	ASSERT(atomic_read(&bp->b_hold) > 0);
884 	if (atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock)) {
885 		spin_lock(&bp->b_lock);
886 		if (!(bp->b_flags & XBF_STALE) && atomic_read(&bp->b_lru_ref)) {
887 			/*
888 			 * If the buffer is added to the LRU take a new
889 			 * reference to the buffer for the LRU and clear the
890 			 * (now stale) dispose list state flag
891 			 */
892 			if (list_lru_add(&bp->b_target->bt_lru, &bp->b_lru)) {
893 				bp->b_state &= ~XFS_BSTATE_DISPOSE;
894 				atomic_inc(&bp->b_hold);
895 			}
896 			spin_unlock(&bp->b_lock);
897 			spin_unlock(&pag->pag_buf_lock);
898 		} else {
899 			/*
900 			 * most of the time buffers will already be removed from
901 			 * the LRU, so optimise that case by checking for the
902 			 * XFS_BSTATE_DISPOSE flag indicating the last list the
903 			 * buffer was on was the disposal list
904 			 */
905 			if (!(bp->b_state & XFS_BSTATE_DISPOSE)) {
906 				list_lru_del(&bp->b_target->bt_lru, &bp->b_lru);
907 			} else {
908 				ASSERT(list_empty(&bp->b_lru));
909 			}
910 			spin_unlock(&bp->b_lock);
911 
912 			ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
913 			rb_erase(&bp->b_rbnode, &pag->pag_buf_tree);
914 			spin_unlock(&pag->pag_buf_lock);
915 			xfs_perag_put(pag);
916 			xfs_buf_free(bp);
917 		}
918 	}
919 }
920 
921 
922 /*
923  *	Lock a buffer object, if it is not already locked.
924  *
925  *	If we come across a stale, pinned, locked buffer, we know that we are
926  *	being asked to lock a buffer that has been reallocated. Because it is
927  *	pinned, we know that the log has not been pushed to disk and hence it
928  *	will still be locked.  Rather than continuing to have trylock attempts
929  *	fail until someone else pushes the log, push it ourselves before
930  *	returning.  This means that the xfsaild will not get stuck trying
931  *	to push on stale inode buffers.
932  */
933 int
934 xfs_buf_trylock(
935 	struct xfs_buf		*bp)
936 {
937 	int			locked;
938 
939 	locked = down_trylock(&bp->b_sema) == 0;
940 	if (locked)
941 		XB_SET_OWNER(bp);
942 
943 	trace_xfs_buf_trylock(bp, _RET_IP_);
944 	return locked;
945 }
946 
947 /*
948  *	Lock a buffer object.
949  *
950  *	If we come across a stale, pinned, locked buffer, we know that we
951  *	are being asked to lock a buffer that has been reallocated. Because
952  *	it is pinned, we know that the log has not been pushed to disk and
953  *	hence it will still be locked. Rather than sleeping until someone
954  *	else pushes the log, push it ourselves before trying to get the lock.
955  */
956 void
957 xfs_buf_lock(
958 	struct xfs_buf		*bp)
959 {
960 	trace_xfs_buf_lock(bp, _RET_IP_);
961 
962 	if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
963 		xfs_log_force(bp->b_target->bt_mount, 0);
964 	down(&bp->b_sema);
965 	XB_SET_OWNER(bp);
966 
967 	trace_xfs_buf_lock_done(bp, _RET_IP_);
968 }
969 
970 void
971 xfs_buf_unlock(
972 	struct xfs_buf		*bp)
973 {
974 	XB_CLEAR_OWNER(bp);
975 	up(&bp->b_sema);
976 
977 	trace_xfs_buf_unlock(bp, _RET_IP_);
978 }
979 
980 STATIC void
981 xfs_buf_wait_unpin(
982 	xfs_buf_t		*bp)
983 {
984 	DECLARE_WAITQUEUE	(wait, current);
985 
986 	if (atomic_read(&bp->b_pin_count) == 0)
987 		return;
988 
989 	add_wait_queue(&bp->b_waiters, &wait);
990 	for (;;) {
991 		set_current_state(TASK_UNINTERRUPTIBLE);
992 		if (atomic_read(&bp->b_pin_count) == 0)
993 			break;
994 		io_schedule();
995 	}
996 	remove_wait_queue(&bp->b_waiters, &wait);
997 	set_current_state(TASK_RUNNING);
998 }
999 
1000 /*
1001  *	Buffer Utility Routines
1002  */
1003 
1004 void
1005 xfs_buf_ioend(
1006 	struct xfs_buf	*bp)
1007 {
1008 	bool		read = bp->b_flags & XBF_READ;
1009 
1010 	trace_xfs_buf_iodone(bp, _RET_IP_);
1011 
1012 	bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
1013 
1014 	/*
1015 	 * Pull in IO completion errors now. We are guaranteed to be running
1016 	 * single threaded, so we don't need the lock to read b_io_error.
1017 	 */
1018 	if (!bp->b_error && bp->b_io_error)
1019 		xfs_buf_ioerror(bp, bp->b_io_error);
1020 
1021 	/* Only validate buffers that were read without errors */
1022 	if (read && !bp->b_error && bp->b_ops) {
1023 		ASSERT(!bp->b_iodone);
1024 		bp->b_ops->verify_read(bp);
1025 	}
1026 
1027 	if (!bp->b_error)
1028 		bp->b_flags |= XBF_DONE;
1029 
1030 	if (bp->b_iodone)
1031 		(*(bp->b_iodone))(bp);
1032 	else if (bp->b_flags & XBF_ASYNC)
1033 		xfs_buf_relse(bp);
1034 	else
1035 		complete(&bp->b_iowait);
1036 }
1037 
1038 static void
1039 xfs_buf_ioend_work(
1040 	struct work_struct	*work)
1041 {
1042 	struct xfs_buf		*bp =
1043 		container_of(work, xfs_buf_t, b_ioend_work);
1044 
1045 	xfs_buf_ioend(bp);
1046 }
1047 
1048 void
1049 xfs_buf_ioend_async(
1050 	struct xfs_buf	*bp)
1051 {
1052 	INIT_WORK(&bp->b_ioend_work, xfs_buf_ioend_work);
1053 	queue_work(bp->b_ioend_wq, &bp->b_ioend_work);
1054 }
1055 
1056 void
1057 xfs_buf_ioerror(
1058 	xfs_buf_t		*bp,
1059 	int			error)
1060 {
1061 	ASSERT(error <= 0 && error >= -1000);
1062 	bp->b_error = error;
1063 	trace_xfs_buf_ioerror(bp, error, _RET_IP_);
1064 }
1065 
1066 void
1067 xfs_buf_ioerror_alert(
1068 	struct xfs_buf		*bp,
1069 	const char		*func)
1070 {
1071 	xfs_alert(bp->b_target->bt_mount,
1072 "metadata I/O error: block 0x%llx (\"%s\") error %d numblks %d",
1073 		(__uint64_t)XFS_BUF_ADDR(bp), func, -bp->b_error, bp->b_length);
1074 }
1075 
1076 int
1077 xfs_bwrite(
1078 	struct xfs_buf		*bp)
1079 {
1080 	int			error;
1081 
1082 	ASSERT(xfs_buf_islocked(bp));
1083 
1084 	bp->b_flags |= XBF_WRITE;
1085 	bp->b_flags &= ~(XBF_ASYNC | XBF_READ | _XBF_DELWRI_Q |
1086 			 XBF_WRITE_FAIL | XBF_DONE);
1087 
1088 	error = xfs_buf_submit_wait(bp);
1089 	if (error) {
1090 		xfs_force_shutdown(bp->b_target->bt_mount,
1091 				   SHUTDOWN_META_IO_ERROR);
1092 	}
1093 	return error;
1094 }
1095 
1096 STATIC void
1097 xfs_buf_bio_end_io(
1098 	struct bio		*bio)
1099 {
1100 	xfs_buf_t		*bp = (xfs_buf_t *)bio->bi_private;
1101 
1102 	/*
1103 	 * don't overwrite existing errors - otherwise we can lose errors on
1104 	 * buffers that require multiple bios to complete.
1105 	 */
1106 	if (bio->bi_error) {
1107 		spin_lock(&bp->b_lock);
1108 		if (!bp->b_io_error)
1109 			bp->b_io_error = bio->bi_error;
1110 		spin_unlock(&bp->b_lock);
1111 	}
1112 
1113 	if (!bp->b_error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
1114 		invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1115 
1116 	if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1117 		xfs_buf_ioend_async(bp);
1118 	bio_put(bio);
1119 }
1120 
1121 static void
1122 xfs_buf_ioapply_map(
1123 	struct xfs_buf	*bp,
1124 	int		map,
1125 	int		*buf_offset,
1126 	int		*count,
1127 	int		rw)
1128 {
1129 	int		page_index;
1130 	int		total_nr_pages = bp->b_page_count;
1131 	int		nr_pages;
1132 	struct bio	*bio;
1133 	sector_t	sector =  bp->b_maps[map].bm_bn;
1134 	int		size;
1135 	int		offset;
1136 
1137 	total_nr_pages = bp->b_page_count;
1138 
1139 	/* skip the pages in the buffer before the start offset */
1140 	page_index = 0;
1141 	offset = *buf_offset;
1142 	while (offset >= PAGE_SIZE) {
1143 		page_index++;
1144 		offset -= PAGE_SIZE;
1145 	}
1146 
1147 	/*
1148 	 * Limit the IO size to the length of the current vector, and update the
1149 	 * remaining IO count for the next time around.
1150 	 */
1151 	size = min_t(int, BBTOB(bp->b_maps[map].bm_len), *count);
1152 	*count -= size;
1153 	*buf_offset += size;
1154 
1155 next_chunk:
1156 	atomic_inc(&bp->b_io_remaining);
1157 	nr_pages = BIO_MAX_SECTORS >> (PAGE_SHIFT - BBSHIFT);
1158 	if (nr_pages > total_nr_pages)
1159 		nr_pages = total_nr_pages;
1160 
1161 	bio = bio_alloc(GFP_NOIO, nr_pages);
1162 	bio->bi_bdev = bp->b_target->bt_bdev;
1163 	bio->bi_iter.bi_sector = sector;
1164 	bio->bi_end_io = xfs_buf_bio_end_io;
1165 	bio->bi_private = bp;
1166 
1167 
1168 	for (; size && nr_pages; nr_pages--, page_index++) {
1169 		int	rbytes, nbytes = PAGE_SIZE - offset;
1170 
1171 		if (nbytes > size)
1172 			nbytes = size;
1173 
1174 		rbytes = bio_add_page(bio, bp->b_pages[page_index], nbytes,
1175 				      offset);
1176 		if (rbytes < nbytes)
1177 			break;
1178 
1179 		offset = 0;
1180 		sector += BTOBB(nbytes);
1181 		size -= nbytes;
1182 		total_nr_pages--;
1183 	}
1184 
1185 	if (likely(bio->bi_iter.bi_size)) {
1186 		if (xfs_buf_is_vmapped(bp)) {
1187 			flush_kernel_vmap_range(bp->b_addr,
1188 						xfs_buf_vmap_len(bp));
1189 		}
1190 		submit_bio(rw, bio);
1191 		if (size)
1192 			goto next_chunk;
1193 	} else {
1194 		/*
1195 		 * This is guaranteed not to be the last io reference count
1196 		 * because the caller (xfs_buf_submit) holds a count itself.
1197 		 */
1198 		atomic_dec(&bp->b_io_remaining);
1199 		xfs_buf_ioerror(bp, -EIO);
1200 		bio_put(bio);
1201 	}
1202 
1203 }
1204 
1205 STATIC void
1206 _xfs_buf_ioapply(
1207 	struct xfs_buf	*bp)
1208 {
1209 	struct blk_plug	plug;
1210 	int		rw;
1211 	int		offset;
1212 	int		size;
1213 	int		i;
1214 
1215 	/*
1216 	 * Make sure we capture only current IO errors rather than stale errors
1217 	 * left over from previous use of the buffer (e.g. failed readahead).
1218 	 */
1219 	bp->b_error = 0;
1220 
1221 	/*
1222 	 * Initialize the I/O completion workqueue if we haven't yet or the
1223 	 * submitter has not opted to specify a custom one.
1224 	 */
1225 	if (!bp->b_ioend_wq)
1226 		bp->b_ioend_wq = bp->b_target->bt_mount->m_buf_workqueue;
1227 
1228 	if (bp->b_flags & XBF_WRITE) {
1229 		if (bp->b_flags & XBF_SYNCIO)
1230 			rw = WRITE_SYNC;
1231 		else
1232 			rw = WRITE;
1233 		if (bp->b_flags & XBF_FUA)
1234 			rw |= REQ_FUA;
1235 		if (bp->b_flags & XBF_FLUSH)
1236 			rw |= REQ_FLUSH;
1237 
1238 		/*
1239 		 * Run the write verifier callback function if it exists. If
1240 		 * this function fails it will mark the buffer with an error and
1241 		 * the IO should not be dispatched.
1242 		 */
1243 		if (bp->b_ops) {
1244 			bp->b_ops->verify_write(bp);
1245 			if (bp->b_error) {
1246 				xfs_force_shutdown(bp->b_target->bt_mount,
1247 						   SHUTDOWN_CORRUPT_INCORE);
1248 				return;
1249 			}
1250 		} else if (bp->b_bn != XFS_BUF_DADDR_NULL) {
1251 			struct xfs_mount *mp = bp->b_target->bt_mount;
1252 
1253 			/*
1254 			 * non-crc filesystems don't attach verifiers during
1255 			 * log recovery, so don't warn for such filesystems.
1256 			 */
1257 			if (xfs_sb_version_hascrc(&mp->m_sb)) {
1258 				xfs_warn(mp,
1259 					"%s: no ops on block 0x%llx/0x%x",
1260 					__func__, bp->b_bn, bp->b_length);
1261 				xfs_hex_dump(bp->b_addr, 64);
1262 				dump_stack();
1263 			}
1264 		}
1265 	} else if (bp->b_flags & XBF_READ_AHEAD) {
1266 		rw = READA;
1267 	} else {
1268 		rw = READ;
1269 	}
1270 
1271 	/* we only use the buffer cache for meta-data */
1272 	rw |= REQ_META;
1273 
1274 	/*
1275 	 * Walk all the vectors issuing IO on them. Set up the initial offset
1276 	 * into the buffer and the desired IO size before we start -
1277 	 * _xfs_buf_ioapply_vec() will modify them appropriately for each
1278 	 * subsequent call.
1279 	 */
1280 	offset = bp->b_offset;
1281 	size = BBTOB(bp->b_io_length);
1282 	blk_start_plug(&plug);
1283 	for (i = 0; i < bp->b_map_count; i++) {
1284 		xfs_buf_ioapply_map(bp, i, &offset, &size, rw);
1285 		if (bp->b_error)
1286 			break;
1287 		if (size <= 0)
1288 			break;	/* all done */
1289 	}
1290 	blk_finish_plug(&plug);
1291 }
1292 
1293 /*
1294  * Asynchronous IO submission path. This transfers the buffer lock ownership and
1295  * the current reference to the IO. It is not safe to reference the buffer after
1296  * a call to this function unless the caller holds an additional reference
1297  * itself.
1298  */
1299 void
1300 xfs_buf_submit(
1301 	struct xfs_buf	*bp)
1302 {
1303 	trace_xfs_buf_submit(bp, _RET_IP_);
1304 
1305 	ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1306 	ASSERT(bp->b_flags & XBF_ASYNC);
1307 
1308 	/* on shutdown we stale and complete the buffer immediately */
1309 	if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
1310 		xfs_buf_ioerror(bp, -EIO);
1311 		bp->b_flags &= ~XBF_DONE;
1312 		xfs_buf_stale(bp);
1313 		xfs_buf_ioend(bp);
1314 		return;
1315 	}
1316 
1317 	if (bp->b_flags & XBF_WRITE)
1318 		xfs_buf_wait_unpin(bp);
1319 
1320 	/* clear the internal error state to avoid spurious errors */
1321 	bp->b_io_error = 0;
1322 
1323 	/*
1324 	 * The caller's reference is released during I/O completion.
1325 	 * This occurs some time after the last b_io_remaining reference is
1326 	 * released, so after we drop our Io reference we have to have some
1327 	 * other reference to ensure the buffer doesn't go away from underneath
1328 	 * us. Take a direct reference to ensure we have safe access to the
1329 	 * buffer until we are finished with it.
1330 	 */
1331 	xfs_buf_hold(bp);
1332 
1333 	/*
1334 	 * Set the count to 1 initially, this will stop an I/O completion
1335 	 * callout which happens before we have started all the I/O from calling
1336 	 * xfs_buf_ioend too early.
1337 	 */
1338 	atomic_set(&bp->b_io_remaining, 1);
1339 	_xfs_buf_ioapply(bp);
1340 
1341 	/*
1342 	 * If _xfs_buf_ioapply failed, we can get back here with only the IO
1343 	 * reference we took above. If we drop it to zero, run completion so
1344 	 * that we don't return to the caller with completion still pending.
1345 	 */
1346 	if (atomic_dec_and_test(&bp->b_io_remaining) == 1) {
1347 		if (bp->b_error)
1348 			xfs_buf_ioend(bp);
1349 		else
1350 			xfs_buf_ioend_async(bp);
1351 	}
1352 
1353 	xfs_buf_rele(bp);
1354 	/* Note: it is not safe to reference bp now we've dropped our ref */
1355 }
1356 
1357 /*
1358  * Synchronous buffer IO submission path, read or write.
1359  */
1360 int
1361 xfs_buf_submit_wait(
1362 	struct xfs_buf	*bp)
1363 {
1364 	int		error;
1365 
1366 	trace_xfs_buf_submit_wait(bp, _RET_IP_);
1367 
1368 	ASSERT(!(bp->b_flags & (_XBF_DELWRI_Q | XBF_ASYNC)));
1369 
1370 	if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
1371 		xfs_buf_ioerror(bp, -EIO);
1372 		xfs_buf_stale(bp);
1373 		bp->b_flags &= ~XBF_DONE;
1374 		return -EIO;
1375 	}
1376 
1377 	if (bp->b_flags & XBF_WRITE)
1378 		xfs_buf_wait_unpin(bp);
1379 
1380 	/* clear the internal error state to avoid spurious errors */
1381 	bp->b_io_error = 0;
1382 
1383 	/*
1384 	 * For synchronous IO, the IO does not inherit the submitters reference
1385 	 * count, nor the buffer lock. Hence we cannot release the reference we
1386 	 * are about to take until we've waited for all IO completion to occur,
1387 	 * including any xfs_buf_ioend_async() work that may be pending.
1388 	 */
1389 	xfs_buf_hold(bp);
1390 
1391 	/*
1392 	 * Set the count to 1 initially, this will stop an I/O completion
1393 	 * callout which happens before we have started all the I/O from calling
1394 	 * xfs_buf_ioend too early.
1395 	 */
1396 	atomic_set(&bp->b_io_remaining, 1);
1397 	_xfs_buf_ioapply(bp);
1398 
1399 	/*
1400 	 * make sure we run completion synchronously if it raced with us and is
1401 	 * already complete.
1402 	 */
1403 	if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1404 		xfs_buf_ioend(bp);
1405 
1406 	/* wait for completion before gathering the error from the buffer */
1407 	trace_xfs_buf_iowait(bp, _RET_IP_);
1408 	wait_for_completion(&bp->b_iowait);
1409 	trace_xfs_buf_iowait_done(bp, _RET_IP_);
1410 	error = bp->b_error;
1411 
1412 	/*
1413 	 * all done now, we can release the hold that keeps the buffer
1414 	 * referenced for the entire IO.
1415 	 */
1416 	xfs_buf_rele(bp);
1417 	return error;
1418 }
1419 
1420 void *
1421 xfs_buf_offset(
1422 	struct xfs_buf		*bp,
1423 	size_t			offset)
1424 {
1425 	struct page		*page;
1426 
1427 	if (bp->b_addr)
1428 		return bp->b_addr + offset;
1429 
1430 	offset += bp->b_offset;
1431 	page = bp->b_pages[offset >> PAGE_SHIFT];
1432 	return page_address(page) + (offset & (PAGE_SIZE-1));
1433 }
1434 
1435 /*
1436  *	Move data into or out of a buffer.
1437  */
1438 void
1439 xfs_buf_iomove(
1440 	xfs_buf_t		*bp,	/* buffer to process		*/
1441 	size_t			boff,	/* starting buffer offset	*/
1442 	size_t			bsize,	/* length to copy		*/
1443 	void			*data,	/* data address			*/
1444 	xfs_buf_rw_t		mode)	/* read/write/zero flag		*/
1445 {
1446 	size_t			bend;
1447 
1448 	bend = boff + bsize;
1449 	while (boff < bend) {
1450 		struct page	*page;
1451 		int		page_index, page_offset, csize;
1452 
1453 		page_index = (boff + bp->b_offset) >> PAGE_SHIFT;
1454 		page_offset = (boff + bp->b_offset) & ~PAGE_MASK;
1455 		page = bp->b_pages[page_index];
1456 		csize = min_t(size_t, PAGE_SIZE - page_offset,
1457 				      BBTOB(bp->b_io_length) - boff);
1458 
1459 		ASSERT((csize + page_offset) <= PAGE_SIZE);
1460 
1461 		switch (mode) {
1462 		case XBRW_ZERO:
1463 			memset(page_address(page) + page_offset, 0, csize);
1464 			break;
1465 		case XBRW_READ:
1466 			memcpy(data, page_address(page) + page_offset, csize);
1467 			break;
1468 		case XBRW_WRITE:
1469 			memcpy(page_address(page) + page_offset, data, csize);
1470 		}
1471 
1472 		boff += csize;
1473 		data += csize;
1474 	}
1475 }
1476 
1477 /*
1478  *	Handling of buffer targets (buftargs).
1479  */
1480 
1481 /*
1482  * Wait for any bufs with callbacks that have been submitted but have not yet
1483  * returned. These buffers will have an elevated hold count, so wait on those
1484  * while freeing all the buffers only held by the LRU.
1485  */
1486 static enum lru_status
1487 xfs_buftarg_wait_rele(
1488 	struct list_head	*item,
1489 	struct list_lru_one	*lru,
1490 	spinlock_t		*lru_lock,
1491 	void			*arg)
1492 
1493 {
1494 	struct xfs_buf		*bp = container_of(item, struct xfs_buf, b_lru);
1495 	struct list_head	*dispose = arg;
1496 
1497 	if (atomic_read(&bp->b_hold) > 1) {
1498 		/* need to wait, so skip it this pass */
1499 		trace_xfs_buf_wait_buftarg(bp, _RET_IP_);
1500 		return LRU_SKIP;
1501 	}
1502 	if (!spin_trylock(&bp->b_lock))
1503 		return LRU_SKIP;
1504 
1505 	/*
1506 	 * clear the LRU reference count so the buffer doesn't get
1507 	 * ignored in xfs_buf_rele().
1508 	 */
1509 	atomic_set(&bp->b_lru_ref, 0);
1510 	bp->b_state |= XFS_BSTATE_DISPOSE;
1511 	list_lru_isolate_move(lru, item, dispose);
1512 	spin_unlock(&bp->b_lock);
1513 	return LRU_REMOVED;
1514 }
1515 
1516 void
1517 xfs_wait_buftarg(
1518 	struct xfs_buftarg	*btp)
1519 {
1520 	LIST_HEAD(dispose);
1521 	int loop = 0;
1522 
1523 	/* loop until there is nothing left on the lru list. */
1524 	while (list_lru_count(&btp->bt_lru)) {
1525 		list_lru_walk(&btp->bt_lru, xfs_buftarg_wait_rele,
1526 			      &dispose, LONG_MAX);
1527 
1528 		while (!list_empty(&dispose)) {
1529 			struct xfs_buf *bp;
1530 			bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1531 			list_del_init(&bp->b_lru);
1532 			if (bp->b_flags & XBF_WRITE_FAIL) {
1533 				xfs_alert(btp->bt_mount,
1534 "Corruption Alert: Buffer at block 0x%llx had permanent write failures!",
1535 					(long long)bp->b_bn);
1536 				xfs_alert(btp->bt_mount,
1537 "Please run xfs_repair to determine the extent of the problem.");
1538 			}
1539 			xfs_buf_rele(bp);
1540 		}
1541 		if (loop++ != 0)
1542 			delay(100);
1543 	}
1544 }
1545 
1546 static enum lru_status
1547 xfs_buftarg_isolate(
1548 	struct list_head	*item,
1549 	struct list_lru_one	*lru,
1550 	spinlock_t		*lru_lock,
1551 	void			*arg)
1552 {
1553 	struct xfs_buf		*bp = container_of(item, struct xfs_buf, b_lru);
1554 	struct list_head	*dispose = arg;
1555 
1556 	/*
1557 	 * we are inverting the lru lock/bp->b_lock here, so use a trylock.
1558 	 * If we fail to get the lock, just skip it.
1559 	 */
1560 	if (!spin_trylock(&bp->b_lock))
1561 		return LRU_SKIP;
1562 	/*
1563 	 * Decrement the b_lru_ref count unless the value is already
1564 	 * zero. If the value is already zero, we need to reclaim the
1565 	 * buffer, otherwise it gets another trip through the LRU.
1566 	 */
1567 	if (!atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
1568 		spin_unlock(&bp->b_lock);
1569 		return LRU_ROTATE;
1570 	}
1571 
1572 	bp->b_state |= XFS_BSTATE_DISPOSE;
1573 	list_lru_isolate_move(lru, item, dispose);
1574 	spin_unlock(&bp->b_lock);
1575 	return LRU_REMOVED;
1576 }
1577 
1578 static unsigned long
1579 xfs_buftarg_shrink_scan(
1580 	struct shrinker		*shrink,
1581 	struct shrink_control	*sc)
1582 {
1583 	struct xfs_buftarg	*btp = container_of(shrink,
1584 					struct xfs_buftarg, bt_shrinker);
1585 	LIST_HEAD(dispose);
1586 	unsigned long		freed;
1587 
1588 	freed = list_lru_shrink_walk(&btp->bt_lru, sc,
1589 				     xfs_buftarg_isolate, &dispose);
1590 
1591 	while (!list_empty(&dispose)) {
1592 		struct xfs_buf *bp;
1593 		bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1594 		list_del_init(&bp->b_lru);
1595 		xfs_buf_rele(bp);
1596 	}
1597 
1598 	return freed;
1599 }
1600 
1601 static unsigned long
1602 xfs_buftarg_shrink_count(
1603 	struct shrinker		*shrink,
1604 	struct shrink_control	*sc)
1605 {
1606 	struct xfs_buftarg	*btp = container_of(shrink,
1607 					struct xfs_buftarg, bt_shrinker);
1608 	return list_lru_shrink_count(&btp->bt_lru, sc);
1609 }
1610 
1611 void
1612 xfs_free_buftarg(
1613 	struct xfs_mount	*mp,
1614 	struct xfs_buftarg	*btp)
1615 {
1616 	unregister_shrinker(&btp->bt_shrinker);
1617 	list_lru_destroy(&btp->bt_lru);
1618 
1619 	if (mp->m_flags & XFS_MOUNT_BARRIER)
1620 		xfs_blkdev_issue_flush(btp);
1621 
1622 	kmem_free(btp);
1623 }
1624 
1625 int
1626 xfs_setsize_buftarg(
1627 	xfs_buftarg_t		*btp,
1628 	unsigned int		sectorsize)
1629 {
1630 	/* Set up metadata sector size info */
1631 	btp->bt_meta_sectorsize = sectorsize;
1632 	btp->bt_meta_sectormask = sectorsize - 1;
1633 
1634 	if (set_blocksize(btp->bt_bdev, sectorsize)) {
1635 		char name[BDEVNAME_SIZE];
1636 
1637 		bdevname(btp->bt_bdev, name);
1638 
1639 		xfs_warn(btp->bt_mount,
1640 			"Cannot set_blocksize to %u on device %s",
1641 			sectorsize, name);
1642 		return -EINVAL;
1643 	}
1644 
1645 	/* Set up device logical sector size mask */
1646 	btp->bt_logical_sectorsize = bdev_logical_block_size(btp->bt_bdev);
1647 	btp->bt_logical_sectormask = bdev_logical_block_size(btp->bt_bdev) - 1;
1648 
1649 	return 0;
1650 }
1651 
1652 /*
1653  * When allocating the initial buffer target we have not yet
1654  * read in the superblock, so don't know what sized sectors
1655  * are being used at this early stage.  Play safe.
1656  */
1657 STATIC int
1658 xfs_setsize_buftarg_early(
1659 	xfs_buftarg_t		*btp,
1660 	struct block_device	*bdev)
1661 {
1662 	return xfs_setsize_buftarg(btp, bdev_logical_block_size(bdev));
1663 }
1664 
1665 xfs_buftarg_t *
1666 xfs_alloc_buftarg(
1667 	struct xfs_mount	*mp,
1668 	struct block_device	*bdev)
1669 {
1670 	xfs_buftarg_t		*btp;
1671 
1672 	btp = kmem_zalloc(sizeof(*btp), KM_SLEEP | KM_NOFS);
1673 
1674 	btp->bt_mount = mp;
1675 	btp->bt_dev =  bdev->bd_dev;
1676 	btp->bt_bdev = bdev;
1677 	btp->bt_bdi = blk_get_backing_dev_info(bdev);
1678 
1679 	if (xfs_setsize_buftarg_early(btp, bdev))
1680 		goto error;
1681 
1682 	if (list_lru_init(&btp->bt_lru))
1683 		goto error;
1684 
1685 	btp->bt_shrinker.count_objects = xfs_buftarg_shrink_count;
1686 	btp->bt_shrinker.scan_objects = xfs_buftarg_shrink_scan;
1687 	btp->bt_shrinker.seeks = DEFAULT_SEEKS;
1688 	btp->bt_shrinker.flags = SHRINKER_NUMA_AWARE;
1689 	register_shrinker(&btp->bt_shrinker);
1690 	return btp;
1691 
1692 error:
1693 	kmem_free(btp);
1694 	return NULL;
1695 }
1696 
1697 /*
1698  * Add a buffer to the delayed write list.
1699  *
1700  * This queues a buffer for writeout if it hasn't already been.  Note that
1701  * neither this routine nor the buffer list submission functions perform
1702  * any internal synchronization.  It is expected that the lists are thread-local
1703  * to the callers.
1704  *
1705  * Returns true if we queued up the buffer, or false if it already had
1706  * been on the buffer list.
1707  */
1708 bool
1709 xfs_buf_delwri_queue(
1710 	struct xfs_buf		*bp,
1711 	struct list_head	*list)
1712 {
1713 	ASSERT(xfs_buf_islocked(bp));
1714 	ASSERT(!(bp->b_flags & XBF_READ));
1715 
1716 	/*
1717 	 * If the buffer is already marked delwri it already is queued up
1718 	 * by someone else for imediate writeout.  Just ignore it in that
1719 	 * case.
1720 	 */
1721 	if (bp->b_flags & _XBF_DELWRI_Q) {
1722 		trace_xfs_buf_delwri_queued(bp, _RET_IP_);
1723 		return false;
1724 	}
1725 
1726 	trace_xfs_buf_delwri_queue(bp, _RET_IP_);
1727 
1728 	/*
1729 	 * If a buffer gets written out synchronously or marked stale while it
1730 	 * is on a delwri list we lazily remove it. To do this, the other party
1731 	 * clears the  _XBF_DELWRI_Q flag but otherwise leaves the buffer alone.
1732 	 * It remains referenced and on the list.  In a rare corner case it
1733 	 * might get readded to a delwri list after the synchronous writeout, in
1734 	 * which case we need just need to re-add the flag here.
1735 	 */
1736 	bp->b_flags |= _XBF_DELWRI_Q;
1737 	if (list_empty(&bp->b_list)) {
1738 		atomic_inc(&bp->b_hold);
1739 		list_add_tail(&bp->b_list, list);
1740 	}
1741 
1742 	return true;
1743 }
1744 
1745 /*
1746  * Compare function is more complex than it needs to be because
1747  * the return value is only 32 bits and we are doing comparisons
1748  * on 64 bit values
1749  */
1750 static int
1751 xfs_buf_cmp(
1752 	void		*priv,
1753 	struct list_head *a,
1754 	struct list_head *b)
1755 {
1756 	struct xfs_buf	*ap = container_of(a, struct xfs_buf, b_list);
1757 	struct xfs_buf	*bp = container_of(b, struct xfs_buf, b_list);
1758 	xfs_daddr_t		diff;
1759 
1760 	diff = ap->b_maps[0].bm_bn - bp->b_maps[0].bm_bn;
1761 	if (diff < 0)
1762 		return -1;
1763 	if (diff > 0)
1764 		return 1;
1765 	return 0;
1766 }
1767 
1768 static int
1769 __xfs_buf_delwri_submit(
1770 	struct list_head	*buffer_list,
1771 	struct list_head	*io_list,
1772 	bool			wait)
1773 {
1774 	struct blk_plug		plug;
1775 	struct xfs_buf		*bp, *n;
1776 	int			pinned = 0;
1777 
1778 	list_for_each_entry_safe(bp, n, buffer_list, b_list) {
1779 		if (!wait) {
1780 			if (xfs_buf_ispinned(bp)) {
1781 				pinned++;
1782 				continue;
1783 			}
1784 			if (!xfs_buf_trylock(bp))
1785 				continue;
1786 		} else {
1787 			xfs_buf_lock(bp);
1788 		}
1789 
1790 		/*
1791 		 * Someone else might have written the buffer synchronously or
1792 		 * marked it stale in the meantime.  In that case only the
1793 		 * _XBF_DELWRI_Q flag got cleared, and we have to drop the
1794 		 * reference and remove it from the list here.
1795 		 */
1796 		if (!(bp->b_flags & _XBF_DELWRI_Q)) {
1797 			list_del_init(&bp->b_list);
1798 			xfs_buf_relse(bp);
1799 			continue;
1800 		}
1801 
1802 		list_move_tail(&bp->b_list, io_list);
1803 		trace_xfs_buf_delwri_split(bp, _RET_IP_);
1804 	}
1805 
1806 	list_sort(NULL, io_list, xfs_buf_cmp);
1807 
1808 	blk_start_plug(&plug);
1809 	list_for_each_entry_safe(bp, n, io_list, b_list) {
1810 		bp->b_flags &= ~(_XBF_DELWRI_Q | XBF_ASYNC | XBF_WRITE_FAIL);
1811 		bp->b_flags |= XBF_WRITE | XBF_ASYNC;
1812 
1813 		/*
1814 		 * we do all Io submission async. This means if we need to wait
1815 		 * for IO completion we need to take an extra reference so the
1816 		 * buffer is still valid on the other side.
1817 		 */
1818 		if (wait)
1819 			xfs_buf_hold(bp);
1820 		else
1821 			list_del_init(&bp->b_list);
1822 
1823 		xfs_buf_submit(bp);
1824 	}
1825 	blk_finish_plug(&plug);
1826 
1827 	return pinned;
1828 }
1829 
1830 /*
1831  * Write out a buffer list asynchronously.
1832  *
1833  * This will take the @buffer_list, write all non-locked and non-pinned buffers
1834  * out and not wait for I/O completion on any of the buffers.  This interface
1835  * is only safely useable for callers that can track I/O completion by higher
1836  * level means, e.g. AIL pushing as the @buffer_list is consumed in this
1837  * function.
1838  */
1839 int
1840 xfs_buf_delwri_submit_nowait(
1841 	struct list_head	*buffer_list)
1842 {
1843 	LIST_HEAD		(io_list);
1844 	return __xfs_buf_delwri_submit(buffer_list, &io_list, false);
1845 }
1846 
1847 /*
1848  * Write out a buffer list synchronously.
1849  *
1850  * This will take the @buffer_list, write all buffers out and wait for I/O
1851  * completion on all of the buffers. @buffer_list is consumed by the function,
1852  * so callers must have some other way of tracking buffers if they require such
1853  * functionality.
1854  */
1855 int
1856 xfs_buf_delwri_submit(
1857 	struct list_head	*buffer_list)
1858 {
1859 	LIST_HEAD		(io_list);
1860 	int			error = 0, error2;
1861 	struct xfs_buf		*bp;
1862 
1863 	__xfs_buf_delwri_submit(buffer_list, &io_list, true);
1864 
1865 	/* Wait for IO to complete. */
1866 	while (!list_empty(&io_list)) {
1867 		bp = list_first_entry(&io_list, struct xfs_buf, b_list);
1868 
1869 		list_del_init(&bp->b_list);
1870 
1871 		/* locking the buffer will wait for async IO completion. */
1872 		xfs_buf_lock(bp);
1873 		error2 = bp->b_error;
1874 		xfs_buf_relse(bp);
1875 		if (!error)
1876 			error = error2;
1877 	}
1878 
1879 	return error;
1880 }
1881 
1882 int __init
1883 xfs_buf_init(void)
1884 {
1885 	xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
1886 						KM_ZONE_HWALIGN, NULL);
1887 	if (!xfs_buf_zone)
1888 		goto out;
1889 
1890 	return 0;
1891 
1892  out:
1893 	return -ENOMEM;
1894 }
1895 
1896 void
1897 xfs_buf_terminate(void)
1898 {
1899 	kmem_zone_destroy(xfs_buf_zone);
1900 }
1901