1 /* 2 * Copyright (c) 2000-2006 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include <linux/stddef.h> 20 #include <linux/errno.h> 21 #include <linux/gfp.h> 22 #include <linux/pagemap.h> 23 #include <linux/init.h> 24 #include <linux/vmalloc.h> 25 #include <linux/bio.h> 26 #include <linux/sysctl.h> 27 #include <linux/proc_fs.h> 28 #include <linux/workqueue.h> 29 #include <linux/percpu.h> 30 #include <linux/blkdev.h> 31 #include <linux/hash.h> 32 #include <linux/kthread.h> 33 #include <linux/migrate.h> 34 #include <linux/backing-dev.h> 35 #include <linux/freezer.h> 36 37 #include "xfs_sb.h" 38 #include "xfs_log.h" 39 #include "xfs_ag.h" 40 #include "xfs_mount.h" 41 #include "xfs_trace.h" 42 43 static kmem_zone_t *xfs_buf_zone; 44 45 static struct workqueue_struct *xfslogd_workqueue; 46 47 #ifdef XFS_BUF_LOCK_TRACKING 48 # define XB_SET_OWNER(bp) ((bp)->b_last_holder = current->pid) 49 # define XB_CLEAR_OWNER(bp) ((bp)->b_last_holder = -1) 50 # define XB_GET_OWNER(bp) ((bp)->b_last_holder) 51 #else 52 # define XB_SET_OWNER(bp) do { } while (0) 53 # define XB_CLEAR_OWNER(bp) do { } while (0) 54 # define XB_GET_OWNER(bp) do { } while (0) 55 #endif 56 57 #define xb_to_gfp(flags) \ 58 ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : GFP_NOFS) | __GFP_NOWARN) 59 60 61 static inline int 62 xfs_buf_is_vmapped( 63 struct xfs_buf *bp) 64 { 65 /* 66 * Return true if the buffer is vmapped. 67 * 68 * b_addr is null if the buffer is not mapped, but the code is clever 69 * enough to know it doesn't have to map a single page, so the check has 70 * to be both for b_addr and bp->b_page_count > 1. 71 */ 72 return bp->b_addr && bp->b_page_count > 1; 73 } 74 75 static inline int 76 xfs_buf_vmap_len( 77 struct xfs_buf *bp) 78 { 79 return (bp->b_page_count * PAGE_SIZE) - bp->b_offset; 80 } 81 82 /* 83 * xfs_buf_lru_add - add a buffer to the LRU. 84 * 85 * The LRU takes a new reference to the buffer so that it will only be freed 86 * once the shrinker takes the buffer off the LRU. 87 */ 88 STATIC void 89 xfs_buf_lru_add( 90 struct xfs_buf *bp) 91 { 92 struct xfs_buftarg *btp = bp->b_target; 93 94 spin_lock(&btp->bt_lru_lock); 95 if (list_empty(&bp->b_lru)) { 96 atomic_inc(&bp->b_hold); 97 list_add_tail(&bp->b_lru, &btp->bt_lru); 98 btp->bt_lru_nr++; 99 bp->b_lru_flags &= ~_XBF_LRU_DISPOSE; 100 } 101 spin_unlock(&btp->bt_lru_lock); 102 } 103 104 /* 105 * xfs_buf_lru_del - remove a buffer from the LRU 106 * 107 * The unlocked check is safe here because it only occurs when there are not 108 * b_lru_ref counts left on the inode under the pag->pag_buf_lock. it is there 109 * to optimise the shrinker removing the buffer from the LRU and calling 110 * xfs_buf_free(). i.e. it removes an unnecessary round trip on the 111 * bt_lru_lock. 112 */ 113 STATIC void 114 xfs_buf_lru_del( 115 struct xfs_buf *bp) 116 { 117 struct xfs_buftarg *btp = bp->b_target; 118 119 if (list_empty(&bp->b_lru)) 120 return; 121 122 spin_lock(&btp->bt_lru_lock); 123 if (!list_empty(&bp->b_lru)) { 124 list_del_init(&bp->b_lru); 125 btp->bt_lru_nr--; 126 } 127 spin_unlock(&btp->bt_lru_lock); 128 } 129 130 /* 131 * When we mark a buffer stale, we remove the buffer from the LRU and clear the 132 * b_lru_ref count so that the buffer is freed immediately when the buffer 133 * reference count falls to zero. If the buffer is already on the LRU, we need 134 * to remove the reference that LRU holds on the buffer. 135 * 136 * This prevents build-up of stale buffers on the LRU. 137 */ 138 void 139 xfs_buf_stale( 140 struct xfs_buf *bp) 141 { 142 ASSERT(xfs_buf_islocked(bp)); 143 144 bp->b_flags |= XBF_STALE; 145 146 /* 147 * Clear the delwri status so that a delwri queue walker will not 148 * flush this buffer to disk now that it is stale. The delwri queue has 149 * a reference to the buffer, so this is safe to do. 150 */ 151 bp->b_flags &= ~_XBF_DELWRI_Q; 152 153 atomic_set(&(bp)->b_lru_ref, 0); 154 if (!list_empty(&bp->b_lru)) { 155 struct xfs_buftarg *btp = bp->b_target; 156 157 spin_lock(&btp->bt_lru_lock); 158 if (!list_empty(&bp->b_lru) && 159 !(bp->b_lru_flags & _XBF_LRU_DISPOSE)) { 160 list_del_init(&bp->b_lru); 161 btp->bt_lru_nr--; 162 atomic_dec(&bp->b_hold); 163 } 164 spin_unlock(&btp->bt_lru_lock); 165 } 166 ASSERT(atomic_read(&bp->b_hold) >= 1); 167 } 168 169 static int 170 xfs_buf_get_maps( 171 struct xfs_buf *bp, 172 int map_count) 173 { 174 ASSERT(bp->b_maps == NULL); 175 bp->b_map_count = map_count; 176 177 if (map_count == 1) { 178 bp->b_maps = &bp->__b_map; 179 return 0; 180 } 181 182 bp->b_maps = kmem_zalloc(map_count * sizeof(struct xfs_buf_map), 183 KM_NOFS); 184 if (!bp->b_maps) 185 return ENOMEM; 186 return 0; 187 } 188 189 /* 190 * Frees b_pages if it was allocated. 191 */ 192 static void 193 xfs_buf_free_maps( 194 struct xfs_buf *bp) 195 { 196 if (bp->b_maps != &bp->__b_map) { 197 kmem_free(bp->b_maps); 198 bp->b_maps = NULL; 199 } 200 } 201 202 struct xfs_buf * 203 _xfs_buf_alloc( 204 struct xfs_buftarg *target, 205 struct xfs_buf_map *map, 206 int nmaps, 207 xfs_buf_flags_t flags) 208 { 209 struct xfs_buf *bp; 210 int error; 211 int i; 212 213 bp = kmem_zone_zalloc(xfs_buf_zone, KM_NOFS); 214 if (unlikely(!bp)) 215 return NULL; 216 217 /* 218 * We don't want certain flags to appear in b_flags unless they are 219 * specifically set by later operations on the buffer. 220 */ 221 flags &= ~(XBF_UNMAPPED | XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD); 222 223 atomic_set(&bp->b_hold, 1); 224 atomic_set(&bp->b_lru_ref, 1); 225 init_completion(&bp->b_iowait); 226 INIT_LIST_HEAD(&bp->b_lru); 227 INIT_LIST_HEAD(&bp->b_list); 228 RB_CLEAR_NODE(&bp->b_rbnode); 229 sema_init(&bp->b_sema, 0); /* held, no waiters */ 230 XB_SET_OWNER(bp); 231 bp->b_target = target; 232 bp->b_flags = flags; 233 234 /* 235 * Set length and io_length to the same value initially. 236 * I/O routines should use io_length, which will be the same in 237 * most cases but may be reset (e.g. XFS recovery). 238 */ 239 error = xfs_buf_get_maps(bp, nmaps); 240 if (error) { 241 kmem_zone_free(xfs_buf_zone, bp); 242 return NULL; 243 } 244 245 bp->b_bn = map[0].bm_bn; 246 bp->b_length = 0; 247 for (i = 0; i < nmaps; i++) { 248 bp->b_maps[i].bm_bn = map[i].bm_bn; 249 bp->b_maps[i].bm_len = map[i].bm_len; 250 bp->b_length += map[i].bm_len; 251 } 252 bp->b_io_length = bp->b_length; 253 254 atomic_set(&bp->b_pin_count, 0); 255 init_waitqueue_head(&bp->b_waiters); 256 257 XFS_STATS_INC(xb_create); 258 trace_xfs_buf_init(bp, _RET_IP_); 259 260 return bp; 261 } 262 263 /* 264 * Allocate a page array capable of holding a specified number 265 * of pages, and point the page buf at it. 266 */ 267 STATIC int 268 _xfs_buf_get_pages( 269 xfs_buf_t *bp, 270 int page_count, 271 xfs_buf_flags_t flags) 272 { 273 /* Make sure that we have a page list */ 274 if (bp->b_pages == NULL) { 275 bp->b_page_count = page_count; 276 if (page_count <= XB_PAGES) { 277 bp->b_pages = bp->b_page_array; 278 } else { 279 bp->b_pages = kmem_alloc(sizeof(struct page *) * 280 page_count, KM_NOFS); 281 if (bp->b_pages == NULL) 282 return -ENOMEM; 283 } 284 memset(bp->b_pages, 0, sizeof(struct page *) * page_count); 285 } 286 return 0; 287 } 288 289 /* 290 * Frees b_pages if it was allocated. 291 */ 292 STATIC void 293 _xfs_buf_free_pages( 294 xfs_buf_t *bp) 295 { 296 if (bp->b_pages != bp->b_page_array) { 297 kmem_free(bp->b_pages); 298 bp->b_pages = NULL; 299 } 300 } 301 302 /* 303 * Releases the specified buffer. 304 * 305 * The modification state of any associated pages is left unchanged. 306 * The buffer most not be on any hash - use xfs_buf_rele instead for 307 * hashed and refcounted buffers 308 */ 309 void 310 xfs_buf_free( 311 xfs_buf_t *bp) 312 { 313 trace_xfs_buf_free(bp, _RET_IP_); 314 315 ASSERT(list_empty(&bp->b_lru)); 316 317 if (bp->b_flags & _XBF_PAGES) { 318 uint i; 319 320 if (xfs_buf_is_vmapped(bp)) 321 vm_unmap_ram(bp->b_addr - bp->b_offset, 322 bp->b_page_count); 323 324 for (i = 0; i < bp->b_page_count; i++) { 325 struct page *page = bp->b_pages[i]; 326 327 __free_page(page); 328 } 329 } else if (bp->b_flags & _XBF_KMEM) 330 kmem_free(bp->b_addr); 331 _xfs_buf_free_pages(bp); 332 xfs_buf_free_maps(bp); 333 kmem_zone_free(xfs_buf_zone, bp); 334 } 335 336 /* 337 * Allocates all the pages for buffer in question and builds it's page list. 338 */ 339 STATIC int 340 xfs_buf_allocate_memory( 341 xfs_buf_t *bp, 342 uint flags) 343 { 344 size_t size; 345 size_t nbytes, offset; 346 gfp_t gfp_mask = xb_to_gfp(flags); 347 unsigned short page_count, i; 348 xfs_off_t start, end; 349 int error; 350 351 /* 352 * for buffers that are contained within a single page, just allocate 353 * the memory from the heap - there's no need for the complexity of 354 * page arrays to keep allocation down to order 0. 355 */ 356 size = BBTOB(bp->b_length); 357 if (size < PAGE_SIZE) { 358 bp->b_addr = kmem_alloc(size, KM_NOFS); 359 if (!bp->b_addr) { 360 /* low memory - use alloc_page loop instead */ 361 goto use_alloc_page; 362 } 363 364 if (((unsigned long)(bp->b_addr + size - 1) & PAGE_MASK) != 365 ((unsigned long)bp->b_addr & PAGE_MASK)) { 366 /* b_addr spans two pages - use alloc_page instead */ 367 kmem_free(bp->b_addr); 368 bp->b_addr = NULL; 369 goto use_alloc_page; 370 } 371 bp->b_offset = offset_in_page(bp->b_addr); 372 bp->b_pages = bp->b_page_array; 373 bp->b_pages[0] = virt_to_page(bp->b_addr); 374 bp->b_page_count = 1; 375 bp->b_flags |= _XBF_KMEM; 376 return 0; 377 } 378 379 use_alloc_page: 380 start = BBTOB(bp->b_maps[0].bm_bn) >> PAGE_SHIFT; 381 end = (BBTOB(bp->b_maps[0].bm_bn + bp->b_length) + PAGE_SIZE - 1) 382 >> PAGE_SHIFT; 383 page_count = end - start; 384 error = _xfs_buf_get_pages(bp, page_count, flags); 385 if (unlikely(error)) 386 return error; 387 388 offset = bp->b_offset; 389 bp->b_flags |= _XBF_PAGES; 390 391 for (i = 0; i < bp->b_page_count; i++) { 392 struct page *page; 393 uint retries = 0; 394 retry: 395 page = alloc_page(gfp_mask); 396 if (unlikely(page == NULL)) { 397 if (flags & XBF_READ_AHEAD) { 398 bp->b_page_count = i; 399 error = ENOMEM; 400 goto out_free_pages; 401 } 402 403 /* 404 * This could deadlock. 405 * 406 * But until all the XFS lowlevel code is revamped to 407 * handle buffer allocation failures we can't do much. 408 */ 409 if (!(++retries % 100)) 410 xfs_err(NULL, 411 "possible memory allocation deadlock in %s (mode:0x%x)", 412 __func__, gfp_mask); 413 414 XFS_STATS_INC(xb_page_retries); 415 congestion_wait(BLK_RW_ASYNC, HZ/50); 416 goto retry; 417 } 418 419 XFS_STATS_INC(xb_page_found); 420 421 nbytes = min_t(size_t, size, PAGE_SIZE - offset); 422 size -= nbytes; 423 bp->b_pages[i] = page; 424 offset = 0; 425 } 426 return 0; 427 428 out_free_pages: 429 for (i = 0; i < bp->b_page_count; i++) 430 __free_page(bp->b_pages[i]); 431 return error; 432 } 433 434 /* 435 * Map buffer into kernel address-space if necessary. 436 */ 437 STATIC int 438 _xfs_buf_map_pages( 439 xfs_buf_t *bp, 440 uint flags) 441 { 442 ASSERT(bp->b_flags & _XBF_PAGES); 443 if (bp->b_page_count == 1) { 444 /* A single page buffer is always mappable */ 445 bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset; 446 } else if (flags & XBF_UNMAPPED) { 447 bp->b_addr = NULL; 448 } else { 449 int retried = 0; 450 451 do { 452 bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count, 453 -1, PAGE_KERNEL); 454 if (bp->b_addr) 455 break; 456 vm_unmap_aliases(); 457 } while (retried++ <= 1); 458 459 if (!bp->b_addr) 460 return -ENOMEM; 461 bp->b_addr += bp->b_offset; 462 } 463 464 return 0; 465 } 466 467 /* 468 * Finding and Reading Buffers 469 */ 470 471 /* 472 * Look up, and creates if absent, a lockable buffer for 473 * a given range of an inode. The buffer is returned 474 * locked. No I/O is implied by this call. 475 */ 476 xfs_buf_t * 477 _xfs_buf_find( 478 struct xfs_buftarg *btp, 479 struct xfs_buf_map *map, 480 int nmaps, 481 xfs_buf_flags_t flags, 482 xfs_buf_t *new_bp) 483 { 484 size_t numbytes; 485 struct xfs_perag *pag; 486 struct rb_node **rbp; 487 struct rb_node *parent; 488 xfs_buf_t *bp; 489 xfs_daddr_t blkno = map[0].bm_bn; 490 xfs_daddr_t eofs; 491 int numblks = 0; 492 int i; 493 494 for (i = 0; i < nmaps; i++) 495 numblks += map[i].bm_len; 496 numbytes = BBTOB(numblks); 497 498 /* Check for IOs smaller than the sector size / not sector aligned */ 499 ASSERT(!(numbytes < (1 << btp->bt_sshift))); 500 ASSERT(!(BBTOB(blkno) & (xfs_off_t)btp->bt_smask)); 501 502 /* 503 * Corrupted block numbers can get through to here, unfortunately, so we 504 * have to check that the buffer falls within the filesystem bounds. 505 */ 506 eofs = XFS_FSB_TO_BB(btp->bt_mount, btp->bt_mount->m_sb.sb_dblocks); 507 if (blkno >= eofs) { 508 /* 509 * XXX (dgc): we should really be returning EFSCORRUPTED here, 510 * but none of the higher level infrastructure supports 511 * returning a specific error on buffer lookup failures. 512 */ 513 xfs_alert(btp->bt_mount, 514 "%s: Block out of range: block 0x%llx, EOFS 0x%llx ", 515 __func__, blkno, eofs); 516 return NULL; 517 } 518 519 /* get tree root */ 520 pag = xfs_perag_get(btp->bt_mount, 521 xfs_daddr_to_agno(btp->bt_mount, blkno)); 522 523 /* walk tree */ 524 spin_lock(&pag->pag_buf_lock); 525 rbp = &pag->pag_buf_tree.rb_node; 526 parent = NULL; 527 bp = NULL; 528 while (*rbp) { 529 parent = *rbp; 530 bp = rb_entry(parent, struct xfs_buf, b_rbnode); 531 532 if (blkno < bp->b_bn) 533 rbp = &(*rbp)->rb_left; 534 else if (blkno > bp->b_bn) 535 rbp = &(*rbp)->rb_right; 536 else { 537 /* 538 * found a block number match. If the range doesn't 539 * match, the only way this is allowed is if the buffer 540 * in the cache is stale and the transaction that made 541 * it stale has not yet committed. i.e. we are 542 * reallocating a busy extent. Skip this buffer and 543 * continue searching to the right for an exact match. 544 */ 545 if (bp->b_length != numblks) { 546 ASSERT(bp->b_flags & XBF_STALE); 547 rbp = &(*rbp)->rb_right; 548 continue; 549 } 550 atomic_inc(&bp->b_hold); 551 goto found; 552 } 553 } 554 555 /* No match found */ 556 if (new_bp) { 557 rb_link_node(&new_bp->b_rbnode, parent, rbp); 558 rb_insert_color(&new_bp->b_rbnode, &pag->pag_buf_tree); 559 /* the buffer keeps the perag reference until it is freed */ 560 new_bp->b_pag = pag; 561 spin_unlock(&pag->pag_buf_lock); 562 } else { 563 XFS_STATS_INC(xb_miss_locked); 564 spin_unlock(&pag->pag_buf_lock); 565 xfs_perag_put(pag); 566 } 567 return new_bp; 568 569 found: 570 spin_unlock(&pag->pag_buf_lock); 571 xfs_perag_put(pag); 572 573 if (!xfs_buf_trylock(bp)) { 574 if (flags & XBF_TRYLOCK) { 575 xfs_buf_rele(bp); 576 XFS_STATS_INC(xb_busy_locked); 577 return NULL; 578 } 579 xfs_buf_lock(bp); 580 XFS_STATS_INC(xb_get_locked_waited); 581 } 582 583 /* 584 * if the buffer is stale, clear all the external state associated with 585 * it. We need to keep flags such as how we allocated the buffer memory 586 * intact here. 587 */ 588 if (bp->b_flags & XBF_STALE) { 589 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0); 590 ASSERT(bp->b_iodone == NULL); 591 bp->b_flags &= _XBF_KMEM | _XBF_PAGES; 592 bp->b_ops = NULL; 593 } 594 595 trace_xfs_buf_find(bp, flags, _RET_IP_); 596 XFS_STATS_INC(xb_get_locked); 597 return bp; 598 } 599 600 /* 601 * Assembles a buffer covering the specified range. The code is optimised for 602 * cache hits, as metadata intensive workloads will see 3 orders of magnitude 603 * more hits than misses. 604 */ 605 struct xfs_buf * 606 xfs_buf_get_map( 607 struct xfs_buftarg *target, 608 struct xfs_buf_map *map, 609 int nmaps, 610 xfs_buf_flags_t flags) 611 { 612 struct xfs_buf *bp; 613 struct xfs_buf *new_bp; 614 int error = 0; 615 616 bp = _xfs_buf_find(target, map, nmaps, flags, NULL); 617 if (likely(bp)) 618 goto found; 619 620 new_bp = _xfs_buf_alloc(target, map, nmaps, flags); 621 if (unlikely(!new_bp)) 622 return NULL; 623 624 error = xfs_buf_allocate_memory(new_bp, flags); 625 if (error) { 626 xfs_buf_free(new_bp); 627 return NULL; 628 } 629 630 bp = _xfs_buf_find(target, map, nmaps, flags, new_bp); 631 if (!bp) { 632 xfs_buf_free(new_bp); 633 return NULL; 634 } 635 636 if (bp != new_bp) 637 xfs_buf_free(new_bp); 638 639 found: 640 if (!bp->b_addr) { 641 error = _xfs_buf_map_pages(bp, flags); 642 if (unlikely(error)) { 643 xfs_warn(target->bt_mount, 644 "%s: failed to map pages\n", __func__); 645 xfs_buf_relse(bp); 646 return NULL; 647 } 648 } 649 650 XFS_STATS_INC(xb_get); 651 trace_xfs_buf_get(bp, flags, _RET_IP_); 652 return bp; 653 } 654 655 STATIC int 656 _xfs_buf_read( 657 xfs_buf_t *bp, 658 xfs_buf_flags_t flags) 659 { 660 ASSERT(!(flags & XBF_WRITE)); 661 ASSERT(bp->b_maps[0].bm_bn != XFS_BUF_DADDR_NULL); 662 663 bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD); 664 bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD); 665 666 xfs_buf_iorequest(bp); 667 if (flags & XBF_ASYNC) 668 return 0; 669 return xfs_buf_iowait(bp); 670 } 671 672 xfs_buf_t * 673 xfs_buf_read_map( 674 struct xfs_buftarg *target, 675 struct xfs_buf_map *map, 676 int nmaps, 677 xfs_buf_flags_t flags, 678 const struct xfs_buf_ops *ops) 679 { 680 struct xfs_buf *bp; 681 682 flags |= XBF_READ; 683 684 bp = xfs_buf_get_map(target, map, nmaps, flags); 685 if (bp) { 686 trace_xfs_buf_read(bp, flags, _RET_IP_); 687 688 if (!XFS_BUF_ISDONE(bp)) { 689 XFS_STATS_INC(xb_get_read); 690 bp->b_ops = ops; 691 _xfs_buf_read(bp, flags); 692 } else if (flags & XBF_ASYNC) { 693 /* 694 * Read ahead call which is already satisfied, 695 * drop the buffer 696 */ 697 xfs_buf_relse(bp); 698 return NULL; 699 } else { 700 /* We do not want read in the flags */ 701 bp->b_flags &= ~XBF_READ; 702 } 703 } 704 705 return bp; 706 } 707 708 /* 709 * If we are not low on memory then do the readahead in a deadlock 710 * safe manner. 711 */ 712 void 713 xfs_buf_readahead_map( 714 struct xfs_buftarg *target, 715 struct xfs_buf_map *map, 716 int nmaps, 717 const struct xfs_buf_ops *ops) 718 { 719 if (bdi_read_congested(target->bt_bdi)) 720 return; 721 722 xfs_buf_read_map(target, map, nmaps, 723 XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD, ops); 724 } 725 726 /* 727 * Read an uncached buffer from disk. Allocates and returns a locked 728 * buffer containing the disk contents or nothing. 729 */ 730 struct xfs_buf * 731 xfs_buf_read_uncached( 732 struct xfs_buftarg *target, 733 xfs_daddr_t daddr, 734 size_t numblks, 735 int flags, 736 const struct xfs_buf_ops *ops) 737 { 738 struct xfs_buf *bp; 739 740 bp = xfs_buf_get_uncached(target, numblks, flags); 741 if (!bp) 742 return NULL; 743 744 /* set up the buffer for a read IO */ 745 ASSERT(bp->b_map_count == 1); 746 bp->b_bn = daddr; 747 bp->b_maps[0].bm_bn = daddr; 748 bp->b_flags |= XBF_READ; 749 bp->b_ops = ops; 750 751 xfsbdstrat(target->bt_mount, bp); 752 xfs_buf_iowait(bp); 753 return bp; 754 } 755 756 /* 757 * Return a buffer allocated as an empty buffer and associated to external 758 * memory via xfs_buf_associate_memory() back to it's empty state. 759 */ 760 void 761 xfs_buf_set_empty( 762 struct xfs_buf *bp, 763 size_t numblks) 764 { 765 if (bp->b_pages) 766 _xfs_buf_free_pages(bp); 767 768 bp->b_pages = NULL; 769 bp->b_page_count = 0; 770 bp->b_addr = NULL; 771 bp->b_length = numblks; 772 bp->b_io_length = numblks; 773 774 ASSERT(bp->b_map_count == 1); 775 bp->b_bn = XFS_BUF_DADDR_NULL; 776 bp->b_maps[0].bm_bn = XFS_BUF_DADDR_NULL; 777 bp->b_maps[0].bm_len = bp->b_length; 778 } 779 780 static inline struct page * 781 mem_to_page( 782 void *addr) 783 { 784 if ((!is_vmalloc_addr(addr))) { 785 return virt_to_page(addr); 786 } else { 787 return vmalloc_to_page(addr); 788 } 789 } 790 791 int 792 xfs_buf_associate_memory( 793 xfs_buf_t *bp, 794 void *mem, 795 size_t len) 796 { 797 int rval; 798 int i = 0; 799 unsigned long pageaddr; 800 unsigned long offset; 801 size_t buflen; 802 int page_count; 803 804 pageaddr = (unsigned long)mem & PAGE_MASK; 805 offset = (unsigned long)mem - pageaddr; 806 buflen = PAGE_ALIGN(len + offset); 807 page_count = buflen >> PAGE_SHIFT; 808 809 /* Free any previous set of page pointers */ 810 if (bp->b_pages) 811 _xfs_buf_free_pages(bp); 812 813 bp->b_pages = NULL; 814 bp->b_addr = mem; 815 816 rval = _xfs_buf_get_pages(bp, page_count, 0); 817 if (rval) 818 return rval; 819 820 bp->b_offset = offset; 821 822 for (i = 0; i < bp->b_page_count; i++) { 823 bp->b_pages[i] = mem_to_page((void *)pageaddr); 824 pageaddr += PAGE_SIZE; 825 } 826 827 bp->b_io_length = BTOBB(len); 828 bp->b_length = BTOBB(buflen); 829 830 return 0; 831 } 832 833 xfs_buf_t * 834 xfs_buf_get_uncached( 835 struct xfs_buftarg *target, 836 size_t numblks, 837 int flags) 838 { 839 unsigned long page_count; 840 int error, i; 841 struct xfs_buf *bp; 842 DEFINE_SINGLE_BUF_MAP(map, XFS_BUF_DADDR_NULL, numblks); 843 844 bp = _xfs_buf_alloc(target, &map, 1, 0); 845 if (unlikely(bp == NULL)) 846 goto fail; 847 848 page_count = PAGE_ALIGN(numblks << BBSHIFT) >> PAGE_SHIFT; 849 error = _xfs_buf_get_pages(bp, page_count, 0); 850 if (error) 851 goto fail_free_buf; 852 853 for (i = 0; i < page_count; i++) { 854 bp->b_pages[i] = alloc_page(xb_to_gfp(flags)); 855 if (!bp->b_pages[i]) 856 goto fail_free_mem; 857 } 858 bp->b_flags |= _XBF_PAGES; 859 860 error = _xfs_buf_map_pages(bp, 0); 861 if (unlikely(error)) { 862 xfs_warn(target->bt_mount, 863 "%s: failed to map pages\n", __func__); 864 goto fail_free_mem; 865 } 866 867 trace_xfs_buf_get_uncached(bp, _RET_IP_); 868 return bp; 869 870 fail_free_mem: 871 while (--i >= 0) 872 __free_page(bp->b_pages[i]); 873 _xfs_buf_free_pages(bp); 874 fail_free_buf: 875 xfs_buf_free_maps(bp); 876 kmem_zone_free(xfs_buf_zone, bp); 877 fail: 878 return NULL; 879 } 880 881 /* 882 * Increment reference count on buffer, to hold the buffer concurrently 883 * with another thread which may release (free) the buffer asynchronously. 884 * Must hold the buffer already to call this function. 885 */ 886 void 887 xfs_buf_hold( 888 xfs_buf_t *bp) 889 { 890 trace_xfs_buf_hold(bp, _RET_IP_); 891 atomic_inc(&bp->b_hold); 892 } 893 894 /* 895 * Releases a hold on the specified buffer. If the 896 * the hold count is 1, calls xfs_buf_free. 897 */ 898 void 899 xfs_buf_rele( 900 xfs_buf_t *bp) 901 { 902 struct xfs_perag *pag = bp->b_pag; 903 904 trace_xfs_buf_rele(bp, _RET_IP_); 905 906 if (!pag) { 907 ASSERT(list_empty(&bp->b_lru)); 908 ASSERT(RB_EMPTY_NODE(&bp->b_rbnode)); 909 if (atomic_dec_and_test(&bp->b_hold)) 910 xfs_buf_free(bp); 911 return; 912 } 913 914 ASSERT(!RB_EMPTY_NODE(&bp->b_rbnode)); 915 916 ASSERT(atomic_read(&bp->b_hold) > 0); 917 if (atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock)) { 918 if (!(bp->b_flags & XBF_STALE) && 919 atomic_read(&bp->b_lru_ref)) { 920 xfs_buf_lru_add(bp); 921 spin_unlock(&pag->pag_buf_lock); 922 } else { 923 xfs_buf_lru_del(bp); 924 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q)); 925 rb_erase(&bp->b_rbnode, &pag->pag_buf_tree); 926 spin_unlock(&pag->pag_buf_lock); 927 xfs_perag_put(pag); 928 xfs_buf_free(bp); 929 } 930 } 931 } 932 933 934 /* 935 * Lock a buffer object, if it is not already locked. 936 * 937 * If we come across a stale, pinned, locked buffer, we know that we are 938 * being asked to lock a buffer that has been reallocated. Because it is 939 * pinned, we know that the log has not been pushed to disk and hence it 940 * will still be locked. Rather than continuing to have trylock attempts 941 * fail until someone else pushes the log, push it ourselves before 942 * returning. This means that the xfsaild will not get stuck trying 943 * to push on stale inode buffers. 944 */ 945 int 946 xfs_buf_trylock( 947 struct xfs_buf *bp) 948 { 949 int locked; 950 951 locked = down_trylock(&bp->b_sema) == 0; 952 if (locked) 953 XB_SET_OWNER(bp); 954 else if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE)) 955 xfs_log_force(bp->b_target->bt_mount, 0); 956 957 trace_xfs_buf_trylock(bp, _RET_IP_); 958 return locked; 959 } 960 961 /* 962 * Lock a buffer object. 963 * 964 * If we come across a stale, pinned, locked buffer, we know that we 965 * are being asked to lock a buffer that has been reallocated. Because 966 * it is pinned, we know that the log has not been pushed to disk and 967 * hence it will still be locked. Rather than sleeping until someone 968 * else pushes the log, push it ourselves before trying to get the lock. 969 */ 970 void 971 xfs_buf_lock( 972 struct xfs_buf *bp) 973 { 974 trace_xfs_buf_lock(bp, _RET_IP_); 975 976 if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE)) 977 xfs_log_force(bp->b_target->bt_mount, 0); 978 down(&bp->b_sema); 979 XB_SET_OWNER(bp); 980 981 trace_xfs_buf_lock_done(bp, _RET_IP_); 982 } 983 984 void 985 xfs_buf_unlock( 986 struct xfs_buf *bp) 987 { 988 XB_CLEAR_OWNER(bp); 989 up(&bp->b_sema); 990 991 trace_xfs_buf_unlock(bp, _RET_IP_); 992 } 993 994 STATIC void 995 xfs_buf_wait_unpin( 996 xfs_buf_t *bp) 997 { 998 DECLARE_WAITQUEUE (wait, current); 999 1000 if (atomic_read(&bp->b_pin_count) == 0) 1001 return; 1002 1003 add_wait_queue(&bp->b_waiters, &wait); 1004 for (;;) { 1005 set_current_state(TASK_UNINTERRUPTIBLE); 1006 if (atomic_read(&bp->b_pin_count) == 0) 1007 break; 1008 io_schedule(); 1009 } 1010 remove_wait_queue(&bp->b_waiters, &wait); 1011 set_current_state(TASK_RUNNING); 1012 } 1013 1014 /* 1015 * Buffer Utility Routines 1016 */ 1017 1018 STATIC void 1019 xfs_buf_iodone_work( 1020 struct work_struct *work) 1021 { 1022 struct xfs_buf *bp = 1023 container_of(work, xfs_buf_t, b_iodone_work); 1024 bool read = !!(bp->b_flags & XBF_READ); 1025 1026 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD); 1027 if (read && bp->b_ops) 1028 bp->b_ops->verify_read(bp); 1029 1030 if (bp->b_iodone) 1031 (*(bp->b_iodone))(bp); 1032 else if (bp->b_flags & XBF_ASYNC) 1033 xfs_buf_relse(bp); 1034 else { 1035 ASSERT(read && bp->b_ops); 1036 complete(&bp->b_iowait); 1037 } 1038 } 1039 1040 void 1041 xfs_buf_ioend( 1042 struct xfs_buf *bp, 1043 int schedule) 1044 { 1045 bool read = !!(bp->b_flags & XBF_READ); 1046 1047 trace_xfs_buf_iodone(bp, _RET_IP_); 1048 1049 if (bp->b_error == 0) 1050 bp->b_flags |= XBF_DONE; 1051 1052 if (bp->b_iodone || (read && bp->b_ops) || (bp->b_flags & XBF_ASYNC)) { 1053 if (schedule) { 1054 INIT_WORK(&bp->b_iodone_work, xfs_buf_iodone_work); 1055 queue_work(xfslogd_workqueue, &bp->b_iodone_work); 1056 } else { 1057 xfs_buf_iodone_work(&bp->b_iodone_work); 1058 } 1059 } else { 1060 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD); 1061 complete(&bp->b_iowait); 1062 } 1063 } 1064 1065 void 1066 xfs_buf_ioerror( 1067 xfs_buf_t *bp, 1068 int error) 1069 { 1070 ASSERT(error >= 0 && error <= 0xffff); 1071 bp->b_error = (unsigned short)error; 1072 trace_xfs_buf_ioerror(bp, error, _RET_IP_); 1073 } 1074 1075 void 1076 xfs_buf_ioerror_alert( 1077 struct xfs_buf *bp, 1078 const char *func) 1079 { 1080 xfs_alert(bp->b_target->bt_mount, 1081 "metadata I/O error: block 0x%llx (\"%s\") error %d numblks %d", 1082 (__uint64_t)XFS_BUF_ADDR(bp), func, bp->b_error, bp->b_length); 1083 } 1084 1085 /* 1086 * Called when we want to stop a buffer from getting written or read. 1087 * We attach the EIO error, muck with its flags, and call xfs_buf_ioend 1088 * so that the proper iodone callbacks get called. 1089 */ 1090 STATIC int 1091 xfs_bioerror( 1092 xfs_buf_t *bp) 1093 { 1094 #ifdef XFSERRORDEBUG 1095 ASSERT(XFS_BUF_ISREAD(bp) || bp->b_iodone); 1096 #endif 1097 1098 /* 1099 * No need to wait until the buffer is unpinned, we aren't flushing it. 1100 */ 1101 xfs_buf_ioerror(bp, EIO); 1102 1103 /* 1104 * We're calling xfs_buf_ioend, so delete XBF_DONE flag. 1105 */ 1106 XFS_BUF_UNREAD(bp); 1107 XFS_BUF_UNDONE(bp); 1108 xfs_buf_stale(bp); 1109 1110 xfs_buf_ioend(bp, 0); 1111 1112 return EIO; 1113 } 1114 1115 /* 1116 * Same as xfs_bioerror, except that we are releasing the buffer 1117 * here ourselves, and avoiding the xfs_buf_ioend call. 1118 * This is meant for userdata errors; metadata bufs come with 1119 * iodone functions attached, so that we can track down errors. 1120 */ 1121 STATIC int 1122 xfs_bioerror_relse( 1123 struct xfs_buf *bp) 1124 { 1125 int64_t fl = bp->b_flags; 1126 /* 1127 * No need to wait until the buffer is unpinned. 1128 * We aren't flushing it. 1129 * 1130 * chunkhold expects B_DONE to be set, whether 1131 * we actually finish the I/O or not. We don't want to 1132 * change that interface. 1133 */ 1134 XFS_BUF_UNREAD(bp); 1135 XFS_BUF_DONE(bp); 1136 xfs_buf_stale(bp); 1137 bp->b_iodone = NULL; 1138 if (!(fl & XBF_ASYNC)) { 1139 /* 1140 * Mark b_error and B_ERROR _both_. 1141 * Lot's of chunkcache code assumes that. 1142 * There's no reason to mark error for 1143 * ASYNC buffers. 1144 */ 1145 xfs_buf_ioerror(bp, EIO); 1146 complete(&bp->b_iowait); 1147 } else { 1148 xfs_buf_relse(bp); 1149 } 1150 1151 return EIO; 1152 } 1153 1154 STATIC int 1155 xfs_bdstrat_cb( 1156 struct xfs_buf *bp) 1157 { 1158 if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) { 1159 trace_xfs_bdstrat_shut(bp, _RET_IP_); 1160 /* 1161 * Metadata write that didn't get logged but 1162 * written delayed anyway. These aren't associated 1163 * with a transaction, and can be ignored. 1164 */ 1165 if (!bp->b_iodone && !XFS_BUF_ISREAD(bp)) 1166 return xfs_bioerror_relse(bp); 1167 else 1168 return xfs_bioerror(bp); 1169 } 1170 1171 xfs_buf_iorequest(bp); 1172 return 0; 1173 } 1174 1175 int 1176 xfs_bwrite( 1177 struct xfs_buf *bp) 1178 { 1179 int error; 1180 1181 ASSERT(xfs_buf_islocked(bp)); 1182 1183 bp->b_flags |= XBF_WRITE; 1184 bp->b_flags &= ~(XBF_ASYNC | XBF_READ | _XBF_DELWRI_Q); 1185 1186 xfs_bdstrat_cb(bp); 1187 1188 error = xfs_buf_iowait(bp); 1189 if (error) { 1190 xfs_force_shutdown(bp->b_target->bt_mount, 1191 SHUTDOWN_META_IO_ERROR); 1192 } 1193 return error; 1194 } 1195 1196 /* 1197 * Wrapper around bdstrat so that we can stop data from going to disk in case 1198 * we are shutting down the filesystem. Typically user data goes thru this 1199 * path; one of the exceptions is the superblock. 1200 */ 1201 void 1202 xfsbdstrat( 1203 struct xfs_mount *mp, 1204 struct xfs_buf *bp) 1205 { 1206 if (XFS_FORCED_SHUTDOWN(mp)) { 1207 trace_xfs_bdstrat_shut(bp, _RET_IP_); 1208 xfs_bioerror_relse(bp); 1209 return; 1210 } 1211 1212 xfs_buf_iorequest(bp); 1213 } 1214 1215 STATIC void 1216 _xfs_buf_ioend( 1217 xfs_buf_t *bp, 1218 int schedule) 1219 { 1220 if (atomic_dec_and_test(&bp->b_io_remaining) == 1) 1221 xfs_buf_ioend(bp, schedule); 1222 } 1223 1224 STATIC void 1225 xfs_buf_bio_end_io( 1226 struct bio *bio, 1227 int error) 1228 { 1229 xfs_buf_t *bp = (xfs_buf_t *)bio->bi_private; 1230 1231 /* 1232 * don't overwrite existing errors - otherwise we can lose errors on 1233 * buffers that require multiple bios to complete. 1234 */ 1235 if (!bp->b_error) 1236 xfs_buf_ioerror(bp, -error); 1237 1238 if (!bp->b_error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ)) 1239 invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp)); 1240 1241 _xfs_buf_ioend(bp, 1); 1242 bio_put(bio); 1243 } 1244 1245 static void 1246 xfs_buf_ioapply_map( 1247 struct xfs_buf *bp, 1248 int map, 1249 int *buf_offset, 1250 int *count, 1251 int rw) 1252 { 1253 int page_index; 1254 int total_nr_pages = bp->b_page_count; 1255 int nr_pages; 1256 struct bio *bio; 1257 sector_t sector = bp->b_maps[map].bm_bn; 1258 int size; 1259 int offset; 1260 1261 total_nr_pages = bp->b_page_count; 1262 1263 /* skip the pages in the buffer before the start offset */ 1264 page_index = 0; 1265 offset = *buf_offset; 1266 while (offset >= PAGE_SIZE) { 1267 page_index++; 1268 offset -= PAGE_SIZE; 1269 } 1270 1271 /* 1272 * Limit the IO size to the length of the current vector, and update the 1273 * remaining IO count for the next time around. 1274 */ 1275 size = min_t(int, BBTOB(bp->b_maps[map].bm_len), *count); 1276 *count -= size; 1277 *buf_offset += size; 1278 1279 next_chunk: 1280 atomic_inc(&bp->b_io_remaining); 1281 nr_pages = BIO_MAX_SECTORS >> (PAGE_SHIFT - BBSHIFT); 1282 if (nr_pages > total_nr_pages) 1283 nr_pages = total_nr_pages; 1284 1285 bio = bio_alloc(GFP_NOIO, nr_pages); 1286 bio->bi_bdev = bp->b_target->bt_bdev; 1287 bio->bi_sector = sector; 1288 bio->bi_end_io = xfs_buf_bio_end_io; 1289 bio->bi_private = bp; 1290 1291 1292 for (; size && nr_pages; nr_pages--, page_index++) { 1293 int rbytes, nbytes = PAGE_SIZE - offset; 1294 1295 if (nbytes > size) 1296 nbytes = size; 1297 1298 rbytes = bio_add_page(bio, bp->b_pages[page_index], nbytes, 1299 offset); 1300 if (rbytes < nbytes) 1301 break; 1302 1303 offset = 0; 1304 sector += BTOBB(nbytes); 1305 size -= nbytes; 1306 total_nr_pages--; 1307 } 1308 1309 if (likely(bio->bi_size)) { 1310 if (xfs_buf_is_vmapped(bp)) { 1311 flush_kernel_vmap_range(bp->b_addr, 1312 xfs_buf_vmap_len(bp)); 1313 } 1314 submit_bio(rw, bio); 1315 if (size) 1316 goto next_chunk; 1317 } else { 1318 /* 1319 * This is guaranteed not to be the last io reference count 1320 * because the caller (xfs_buf_iorequest) holds a count itself. 1321 */ 1322 atomic_dec(&bp->b_io_remaining); 1323 xfs_buf_ioerror(bp, EIO); 1324 bio_put(bio); 1325 } 1326 1327 } 1328 1329 STATIC void 1330 _xfs_buf_ioapply( 1331 struct xfs_buf *bp) 1332 { 1333 struct blk_plug plug; 1334 int rw; 1335 int offset; 1336 int size; 1337 int i; 1338 1339 if (bp->b_flags & XBF_WRITE) { 1340 if (bp->b_flags & XBF_SYNCIO) 1341 rw = WRITE_SYNC; 1342 else 1343 rw = WRITE; 1344 if (bp->b_flags & XBF_FUA) 1345 rw |= REQ_FUA; 1346 if (bp->b_flags & XBF_FLUSH) 1347 rw |= REQ_FLUSH; 1348 1349 /* 1350 * Run the write verifier callback function if it exists. If 1351 * this function fails it will mark the buffer with an error and 1352 * the IO should not be dispatched. 1353 */ 1354 if (bp->b_ops) { 1355 bp->b_ops->verify_write(bp); 1356 if (bp->b_error) { 1357 xfs_force_shutdown(bp->b_target->bt_mount, 1358 SHUTDOWN_CORRUPT_INCORE); 1359 return; 1360 } 1361 } 1362 } else if (bp->b_flags & XBF_READ_AHEAD) { 1363 rw = READA; 1364 } else { 1365 rw = READ; 1366 } 1367 1368 /* we only use the buffer cache for meta-data */ 1369 rw |= REQ_META; 1370 1371 /* 1372 * Walk all the vectors issuing IO on them. Set up the initial offset 1373 * into the buffer and the desired IO size before we start - 1374 * _xfs_buf_ioapply_vec() will modify them appropriately for each 1375 * subsequent call. 1376 */ 1377 offset = bp->b_offset; 1378 size = BBTOB(bp->b_io_length); 1379 blk_start_plug(&plug); 1380 for (i = 0; i < bp->b_map_count; i++) { 1381 xfs_buf_ioapply_map(bp, i, &offset, &size, rw); 1382 if (bp->b_error) 1383 break; 1384 if (size <= 0) 1385 break; /* all done */ 1386 } 1387 blk_finish_plug(&plug); 1388 } 1389 1390 void 1391 xfs_buf_iorequest( 1392 xfs_buf_t *bp) 1393 { 1394 trace_xfs_buf_iorequest(bp, _RET_IP_); 1395 1396 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q)); 1397 1398 if (bp->b_flags & XBF_WRITE) 1399 xfs_buf_wait_unpin(bp); 1400 xfs_buf_hold(bp); 1401 1402 /* Set the count to 1 initially, this will stop an I/O 1403 * completion callout which happens before we have started 1404 * all the I/O from calling xfs_buf_ioend too early. 1405 */ 1406 atomic_set(&bp->b_io_remaining, 1); 1407 _xfs_buf_ioapply(bp); 1408 _xfs_buf_ioend(bp, 1); 1409 1410 xfs_buf_rele(bp); 1411 } 1412 1413 /* 1414 * Waits for I/O to complete on the buffer supplied. It returns immediately if 1415 * no I/O is pending or there is already a pending error on the buffer. It 1416 * returns the I/O error code, if any, or 0 if there was no error. 1417 */ 1418 int 1419 xfs_buf_iowait( 1420 xfs_buf_t *bp) 1421 { 1422 trace_xfs_buf_iowait(bp, _RET_IP_); 1423 1424 if (!bp->b_error) 1425 wait_for_completion(&bp->b_iowait); 1426 1427 trace_xfs_buf_iowait_done(bp, _RET_IP_); 1428 return bp->b_error; 1429 } 1430 1431 xfs_caddr_t 1432 xfs_buf_offset( 1433 xfs_buf_t *bp, 1434 size_t offset) 1435 { 1436 struct page *page; 1437 1438 if (bp->b_addr) 1439 return bp->b_addr + offset; 1440 1441 offset += bp->b_offset; 1442 page = bp->b_pages[offset >> PAGE_SHIFT]; 1443 return (xfs_caddr_t)page_address(page) + (offset & (PAGE_SIZE-1)); 1444 } 1445 1446 /* 1447 * Move data into or out of a buffer. 1448 */ 1449 void 1450 xfs_buf_iomove( 1451 xfs_buf_t *bp, /* buffer to process */ 1452 size_t boff, /* starting buffer offset */ 1453 size_t bsize, /* length to copy */ 1454 void *data, /* data address */ 1455 xfs_buf_rw_t mode) /* read/write/zero flag */ 1456 { 1457 size_t bend; 1458 1459 bend = boff + bsize; 1460 while (boff < bend) { 1461 struct page *page; 1462 int page_index, page_offset, csize; 1463 1464 page_index = (boff + bp->b_offset) >> PAGE_SHIFT; 1465 page_offset = (boff + bp->b_offset) & ~PAGE_MASK; 1466 page = bp->b_pages[page_index]; 1467 csize = min_t(size_t, PAGE_SIZE - page_offset, 1468 BBTOB(bp->b_io_length) - boff); 1469 1470 ASSERT((csize + page_offset) <= PAGE_SIZE); 1471 1472 switch (mode) { 1473 case XBRW_ZERO: 1474 memset(page_address(page) + page_offset, 0, csize); 1475 break; 1476 case XBRW_READ: 1477 memcpy(data, page_address(page) + page_offset, csize); 1478 break; 1479 case XBRW_WRITE: 1480 memcpy(page_address(page) + page_offset, data, csize); 1481 } 1482 1483 boff += csize; 1484 data += csize; 1485 } 1486 } 1487 1488 /* 1489 * Handling of buffer targets (buftargs). 1490 */ 1491 1492 /* 1493 * Wait for any bufs with callbacks that have been submitted but have not yet 1494 * returned. These buffers will have an elevated hold count, so wait on those 1495 * while freeing all the buffers only held by the LRU. 1496 */ 1497 void 1498 xfs_wait_buftarg( 1499 struct xfs_buftarg *btp) 1500 { 1501 struct xfs_buf *bp; 1502 1503 restart: 1504 spin_lock(&btp->bt_lru_lock); 1505 while (!list_empty(&btp->bt_lru)) { 1506 bp = list_first_entry(&btp->bt_lru, struct xfs_buf, b_lru); 1507 if (atomic_read(&bp->b_hold) > 1) { 1508 trace_xfs_buf_wait_buftarg(bp, _RET_IP_); 1509 list_move_tail(&bp->b_lru, &btp->bt_lru); 1510 spin_unlock(&btp->bt_lru_lock); 1511 delay(100); 1512 goto restart; 1513 } 1514 /* 1515 * clear the LRU reference count so the buffer doesn't get 1516 * ignored in xfs_buf_rele(). 1517 */ 1518 atomic_set(&bp->b_lru_ref, 0); 1519 spin_unlock(&btp->bt_lru_lock); 1520 xfs_buf_rele(bp); 1521 spin_lock(&btp->bt_lru_lock); 1522 } 1523 spin_unlock(&btp->bt_lru_lock); 1524 } 1525 1526 int 1527 xfs_buftarg_shrink( 1528 struct shrinker *shrink, 1529 struct shrink_control *sc) 1530 { 1531 struct xfs_buftarg *btp = container_of(shrink, 1532 struct xfs_buftarg, bt_shrinker); 1533 struct xfs_buf *bp; 1534 int nr_to_scan = sc->nr_to_scan; 1535 LIST_HEAD(dispose); 1536 1537 if (!nr_to_scan) 1538 return btp->bt_lru_nr; 1539 1540 spin_lock(&btp->bt_lru_lock); 1541 while (!list_empty(&btp->bt_lru)) { 1542 if (nr_to_scan-- <= 0) 1543 break; 1544 1545 bp = list_first_entry(&btp->bt_lru, struct xfs_buf, b_lru); 1546 1547 /* 1548 * Decrement the b_lru_ref count unless the value is already 1549 * zero. If the value is already zero, we need to reclaim the 1550 * buffer, otherwise it gets another trip through the LRU. 1551 */ 1552 if (!atomic_add_unless(&bp->b_lru_ref, -1, 0)) { 1553 list_move_tail(&bp->b_lru, &btp->bt_lru); 1554 continue; 1555 } 1556 1557 /* 1558 * remove the buffer from the LRU now to avoid needing another 1559 * lock round trip inside xfs_buf_rele(). 1560 */ 1561 list_move(&bp->b_lru, &dispose); 1562 btp->bt_lru_nr--; 1563 bp->b_lru_flags |= _XBF_LRU_DISPOSE; 1564 } 1565 spin_unlock(&btp->bt_lru_lock); 1566 1567 while (!list_empty(&dispose)) { 1568 bp = list_first_entry(&dispose, struct xfs_buf, b_lru); 1569 list_del_init(&bp->b_lru); 1570 xfs_buf_rele(bp); 1571 } 1572 1573 return btp->bt_lru_nr; 1574 } 1575 1576 void 1577 xfs_free_buftarg( 1578 struct xfs_mount *mp, 1579 struct xfs_buftarg *btp) 1580 { 1581 unregister_shrinker(&btp->bt_shrinker); 1582 1583 if (mp->m_flags & XFS_MOUNT_BARRIER) 1584 xfs_blkdev_issue_flush(btp); 1585 1586 kmem_free(btp); 1587 } 1588 1589 STATIC int 1590 xfs_setsize_buftarg_flags( 1591 xfs_buftarg_t *btp, 1592 unsigned int blocksize, 1593 unsigned int sectorsize, 1594 int verbose) 1595 { 1596 btp->bt_bsize = blocksize; 1597 btp->bt_sshift = ffs(sectorsize) - 1; 1598 btp->bt_smask = sectorsize - 1; 1599 1600 if (set_blocksize(btp->bt_bdev, sectorsize)) { 1601 char name[BDEVNAME_SIZE]; 1602 1603 bdevname(btp->bt_bdev, name); 1604 1605 xfs_warn(btp->bt_mount, 1606 "Cannot set_blocksize to %u on device %s\n", 1607 sectorsize, name); 1608 return EINVAL; 1609 } 1610 1611 return 0; 1612 } 1613 1614 /* 1615 * When allocating the initial buffer target we have not yet 1616 * read in the superblock, so don't know what sized sectors 1617 * are being used is at this early stage. Play safe. 1618 */ 1619 STATIC int 1620 xfs_setsize_buftarg_early( 1621 xfs_buftarg_t *btp, 1622 struct block_device *bdev) 1623 { 1624 return xfs_setsize_buftarg_flags(btp, 1625 PAGE_SIZE, bdev_logical_block_size(bdev), 0); 1626 } 1627 1628 int 1629 xfs_setsize_buftarg( 1630 xfs_buftarg_t *btp, 1631 unsigned int blocksize, 1632 unsigned int sectorsize) 1633 { 1634 return xfs_setsize_buftarg_flags(btp, blocksize, sectorsize, 1); 1635 } 1636 1637 xfs_buftarg_t * 1638 xfs_alloc_buftarg( 1639 struct xfs_mount *mp, 1640 struct block_device *bdev, 1641 int external, 1642 const char *fsname) 1643 { 1644 xfs_buftarg_t *btp; 1645 1646 btp = kmem_zalloc(sizeof(*btp), KM_SLEEP); 1647 1648 btp->bt_mount = mp; 1649 btp->bt_dev = bdev->bd_dev; 1650 btp->bt_bdev = bdev; 1651 btp->bt_bdi = blk_get_backing_dev_info(bdev); 1652 if (!btp->bt_bdi) 1653 goto error; 1654 1655 INIT_LIST_HEAD(&btp->bt_lru); 1656 spin_lock_init(&btp->bt_lru_lock); 1657 if (xfs_setsize_buftarg_early(btp, bdev)) 1658 goto error; 1659 btp->bt_shrinker.shrink = xfs_buftarg_shrink; 1660 btp->bt_shrinker.seeks = DEFAULT_SEEKS; 1661 register_shrinker(&btp->bt_shrinker); 1662 return btp; 1663 1664 error: 1665 kmem_free(btp); 1666 return NULL; 1667 } 1668 1669 /* 1670 * Add a buffer to the delayed write list. 1671 * 1672 * This queues a buffer for writeout if it hasn't already been. Note that 1673 * neither this routine nor the buffer list submission functions perform 1674 * any internal synchronization. It is expected that the lists are thread-local 1675 * to the callers. 1676 * 1677 * Returns true if we queued up the buffer, or false if it already had 1678 * been on the buffer list. 1679 */ 1680 bool 1681 xfs_buf_delwri_queue( 1682 struct xfs_buf *bp, 1683 struct list_head *list) 1684 { 1685 ASSERT(xfs_buf_islocked(bp)); 1686 ASSERT(!(bp->b_flags & XBF_READ)); 1687 1688 /* 1689 * If the buffer is already marked delwri it already is queued up 1690 * by someone else for imediate writeout. Just ignore it in that 1691 * case. 1692 */ 1693 if (bp->b_flags & _XBF_DELWRI_Q) { 1694 trace_xfs_buf_delwri_queued(bp, _RET_IP_); 1695 return false; 1696 } 1697 1698 trace_xfs_buf_delwri_queue(bp, _RET_IP_); 1699 1700 /* 1701 * If a buffer gets written out synchronously or marked stale while it 1702 * is on a delwri list we lazily remove it. To do this, the other party 1703 * clears the _XBF_DELWRI_Q flag but otherwise leaves the buffer alone. 1704 * It remains referenced and on the list. In a rare corner case it 1705 * might get readded to a delwri list after the synchronous writeout, in 1706 * which case we need just need to re-add the flag here. 1707 */ 1708 bp->b_flags |= _XBF_DELWRI_Q; 1709 if (list_empty(&bp->b_list)) { 1710 atomic_inc(&bp->b_hold); 1711 list_add_tail(&bp->b_list, list); 1712 } 1713 1714 return true; 1715 } 1716 1717 /* 1718 * Compare function is more complex than it needs to be because 1719 * the return value is only 32 bits and we are doing comparisons 1720 * on 64 bit values 1721 */ 1722 static int 1723 xfs_buf_cmp( 1724 void *priv, 1725 struct list_head *a, 1726 struct list_head *b) 1727 { 1728 struct xfs_buf *ap = container_of(a, struct xfs_buf, b_list); 1729 struct xfs_buf *bp = container_of(b, struct xfs_buf, b_list); 1730 xfs_daddr_t diff; 1731 1732 diff = ap->b_maps[0].bm_bn - bp->b_maps[0].bm_bn; 1733 if (diff < 0) 1734 return -1; 1735 if (diff > 0) 1736 return 1; 1737 return 0; 1738 } 1739 1740 static int 1741 __xfs_buf_delwri_submit( 1742 struct list_head *buffer_list, 1743 struct list_head *io_list, 1744 bool wait) 1745 { 1746 struct blk_plug plug; 1747 struct xfs_buf *bp, *n; 1748 int pinned = 0; 1749 1750 list_for_each_entry_safe(bp, n, buffer_list, b_list) { 1751 if (!wait) { 1752 if (xfs_buf_ispinned(bp)) { 1753 pinned++; 1754 continue; 1755 } 1756 if (!xfs_buf_trylock(bp)) 1757 continue; 1758 } else { 1759 xfs_buf_lock(bp); 1760 } 1761 1762 /* 1763 * Someone else might have written the buffer synchronously or 1764 * marked it stale in the meantime. In that case only the 1765 * _XBF_DELWRI_Q flag got cleared, and we have to drop the 1766 * reference and remove it from the list here. 1767 */ 1768 if (!(bp->b_flags & _XBF_DELWRI_Q)) { 1769 list_del_init(&bp->b_list); 1770 xfs_buf_relse(bp); 1771 continue; 1772 } 1773 1774 list_move_tail(&bp->b_list, io_list); 1775 trace_xfs_buf_delwri_split(bp, _RET_IP_); 1776 } 1777 1778 list_sort(NULL, io_list, xfs_buf_cmp); 1779 1780 blk_start_plug(&plug); 1781 list_for_each_entry_safe(bp, n, io_list, b_list) { 1782 bp->b_flags &= ~(_XBF_DELWRI_Q | XBF_ASYNC); 1783 bp->b_flags |= XBF_WRITE; 1784 1785 if (!wait) { 1786 bp->b_flags |= XBF_ASYNC; 1787 list_del_init(&bp->b_list); 1788 } 1789 xfs_bdstrat_cb(bp); 1790 } 1791 blk_finish_plug(&plug); 1792 1793 return pinned; 1794 } 1795 1796 /* 1797 * Write out a buffer list asynchronously. 1798 * 1799 * This will take the @buffer_list, write all non-locked and non-pinned buffers 1800 * out and not wait for I/O completion on any of the buffers. This interface 1801 * is only safely useable for callers that can track I/O completion by higher 1802 * level means, e.g. AIL pushing as the @buffer_list is consumed in this 1803 * function. 1804 */ 1805 int 1806 xfs_buf_delwri_submit_nowait( 1807 struct list_head *buffer_list) 1808 { 1809 LIST_HEAD (io_list); 1810 return __xfs_buf_delwri_submit(buffer_list, &io_list, false); 1811 } 1812 1813 /* 1814 * Write out a buffer list synchronously. 1815 * 1816 * This will take the @buffer_list, write all buffers out and wait for I/O 1817 * completion on all of the buffers. @buffer_list is consumed by the function, 1818 * so callers must have some other way of tracking buffers if they require such 1819 * functionality. 1820 */ 1821 int 1822 xfs_buf_delwri_submit( 1823 struct list_head *buffer_list) 1824 { 1825 LIST_HEAD (io_list); 1826 int error = 0, error2; 1827 struct xfs_buf *bp; 1828 1829 __xfs_buf_delwri_submit(buffer_list, &io_list, true); 1830 1831 /* Wait for IO to complete. */ 1832 while (!list_empty(&io_list)) { 1833 bp = list_first_entry(&io_list, struct xfs_buf, b_list); 1834 1835 list_del_init(&bp->b_list); 1836 error2 = xfs_buf_iowait(bp); 1837 xfs_buf_relse(bp); 1838 if (!error) 1839 error = error2; 1840 } 1841 1842 return error; 1843 } 1844 1845 int __init 1846 xfs_buf_init(void) 1847 { 1848 xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf", 1849 KM_ZONE_HWALIGN, NULL); 1850 if (!xfs_buf_zone) 1851 goto out; 1852 1853 xfslogd_workqueue = alloc_workqueue("xfslogd", 1854 WQ_MEM_RECLAIM | WQ_HIGHPRI, 1); 1855 if (!xfslogd_workqueue) 1856 goto out_free_buf_zone; 1857 1858 return 0; 1859 1860 out_free_buf_zone: 1861 kmem_zone_destroy(xfs_buf_zone); 1862 out: 1863 return -ENOMEM; 1864 } 1865 1866 void 1867 xfs_buf_terminate(void) 1868 { 1869 destroy_workqueue(xfslogd_workqueue); 1870 kmem_zone_destroy(xfs_buf_zone); 1871 } 1872