xref: /linux/fs/xfs/xfs_buf.c (revision 68c402fe5c5e5aa9a04c8bba9d99feb08a68afa7)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include <linux/backing-dev.h>
8 #include <linux/dax.h>
9 
10 #include "xfs_shared.h"
11 #include "xfs_format.h"
12 #include "xfs_log_format.h"
13 #include "xfs_trans_resv.h"
14 #include "xfs_mount.h"
15 #include "xfs_trace.h"
16 #include "xfs_log.h"
17 #include "xfs_log_recover.h"
18 #include "xfs_log_priv.h"
19 #include "xfs_trans.h"
20 #include "xfs_buf_item.h"
21 #include "xfs_errortag.h"
22 #include "xfs_error.h"
23 #include "xfs_ag.h"
24 #include "xfs_buf_mem.h"
25 
26 struct kmem_cache *xfs_buf_cache;
27 
28 /*
29  * Locking orders
30  *
31  * xfs_buf_ioacct_inc:
32  * xfs_buf_ioacct_dec:
33  *	b_sema (caller holds)
34  *	  b_lock
35  *
36  * xfs_buf_stale:
37  *	b_sema (caller holds)
38  *	  b_lock
39  *	    lru_lock
40  *
41  * xfs_buf_rele:
42  *	b_lock
43  *	  pag_buf_lock
44  *	    lru_lock
45  *
46  * xfs_buftarg_drain_rele
47  *	lru_lock
48  *	  b_lock (trylock due to inversion)
49  *
50  * xfs_buftarg_isolate
51  *	lru_lock
52  *	  b_lock (trylock due to inversion)
53  */
54 
55 static int __xfs_buf_submit(struct xfs_buf *bp, bool wait);
56 
57 static inline int
58 xfs_buf_submit(
59 	struct xfs_buf		*bp)
60 {
61 	return __xfs_buf_submit(bp, !(bp->b_flags & XBF_ASYNC));
62 }
63 
64 static inline bool xfs_buf_is_uncached(struct xfs_buf *bp)
65 {
66 	return bp->b_rhash_key == XFS_BUF_DADDR_NULL;
67 }
68 
69 static inline int
70 xfs_buf_is_vmapped(
71 	struct xfs_buf	*bp)
72 {
73 	/*
74 	 * Return true if the buffer is vmapped.
75 	 *
76 	 * b_addr is null if the buffer is not mapped, but the code is clever
77 	 * enough to know it doesn't have to map a single page, so the check has
78 	 * to be both for b_addr and bp->b_page_count > 1.
79 	 */
80 	return bp->b_addr && bp->b_page_count > 1;
81 }
82 
83 static inline int
84 xfs_buf_vmap_len(
85 	struct xfs_buf	*bp)
86 {
87 	return (bp->b_page_count * PAGE_SIZE);
88 }
89 
90 /*
91  * Bump the I/O in flight count on the buftarg if we haven't yet done so for
92  * this buffer. The count is incremented once per buffer (per hold cycle)
93  * because the corresponding decrement is deferred to buffer release. Buffers
94  * can undergo I/O multiple times in a hold-release cycle and per buffer I/O
95  * tracking adds unnecessary overhead. This is used for sychronization purposes
96  * with unmount (see xfs_buftarg_drain()), so all we really need is a count of
97  * in-flight buffers.
98  *
99  * Buffers that are never released (e.g., superblock, iclog buffers) must set
100  * the XBF_NO_IOACCT flag before I/O submission. Otherwise, the buftarg count
101  * never reaches zero and unmount hangs indefinitely.
102  */
103 static inline void
104 xfs_buf_ioacct_inc(
105 	struct xfs_buf	*bp)
106 {
107 	if (bp->b_flags & XBF_NO_IOACCT)
108 		return;
109 
110 	ASSERT(bp->b_flags & XBF_ASYNC);
111 	spin_lock(&bp->b_lock);
112 	if (!(bp->b_state & XFS_BSTATE_IN_FLIGHT)) {
113 		bp->b_state |= XFS_BSTATE_IN_FLIGHT;
114 		percpu_counter_inc(&bp->b_target->bt_io_count);
115 	}
116 	spin_unlock(&bp->b_lock);
117 }
118 
119 /*
120  * Clear the in-flight state on a buffer about to be released to the LRU or
121  * freed and unaccount from the buftarg.
122  */
123 static inline void
124 __xfs_buf_ioacct_dec(
125 	struct xfs_buf	*bp)
126 {
127 	lockdep_assert_held(&bp->b_lock);
128 
129 	if (bp->b_state & XFS_BSTATE_IN_FLIGHT) {
130 		bp->b_state &= ~XFS_BSTATE_IN_FLIGHT;
131 		percpu_counter_dec(&bp->b_target->bt_io_count);
132 	}
133 }
134 
135 static inline void
136 xfs_buf_ioacct_dec(
137 	struct xfs_buf	*bp)
138 {
139 	spin_lock(&bp->b_lock);
140 	__xfs_buf_ioacct_dec(bp);
141 	spin_unlock(&bp->b_lock);
142 }
143 
144 /*
145  * When we mark a buffer stale, we remove the buffer from the LRU and clear the
146  * b_lru_ref count so that the buffer is freed immediately when the buffer
147  * reference count falls to zero. If the buffer is already on the LRU, we need
148  * to remove the reference that LRU holds on the buffer.
149  *
150  * This prevents build-up of stale buffers on the LRU.
151  */
152 void
153 xfs_buf_stale(
154 	struct xfs_buf	*bp)
155 {
156 	ASSERT(xfs_buf_islocked(bp));
157 
158 	bp->b_flags |= XBF_STALE;
159 
160 	/*
161 	 * Clear the delwri status so that a delwri queue walker will not
162 	 * flush this buffer to disk now that it is stale. The delwri queue has
163 	 * a reference to the buffer, so this is safe to do.
164 	 */
165 	bp->b_flags &= ~_XBF_DELWRI_Q;
166 
167 	/*
168 	 * Once the buffer is marked stale and unlocked, a subsequent lookup
169 	 * could reset b_flags. There is no guarantee that the buffer is
170 	 * unaccounted (released to LRU) before that occurs. Drop in-flight
171 	 * status now to preserve accounting consistency.
172 	 */
173 	spin_lock(&bp->b_lock);
174 	__xfs_buf_ioacct_dec(bp);
175 
176 	atomic_set(&bp->b_lru_ref, 0);
177 	if (!(bp->b_state & XFS_BSTATE_DISPOSE) &&
178 	    (list_lru_del_obj(&bp->b_target->bt_lru, &bp->b_lru)))
179 		atomic_dec(&bp->b_hold);
180 
181 	ASSERT(atomic_read(&bp->b_hold) >= 1);
182 	spin_unlock(&bp->b_lock);
183 }
184 
185 static int
186 xfs_buf_get_maps(
187 	struct xfs_buf		*bp,
188 	int			map_count)
189 {
190 	ASSERT(bp->b_maps == NULL);
191 	bp->b_map_count = map_count;
192 
193 	if (map_count == 1) {
194 		bp->b_maps = &bp->__b_map;
195 		return 0;
196 	}
197 
198 	bp->b_maps = kzalloc(map_count * sizeof(struct xfs_buf_map),
199 			GFP_KERNEL | __GFP_NOLOCKDEP | __GFP_NOFAIL);
200 	if (!bp->b_maps)
201 		return -ENOMEM;
202 	return 0;
203 }
204 
205 /*
206  *	Frees b_pages if it was allocated.
207  */
208 static void
209 xfs_buf_free_maps(
210 	struct xfs_buf	*bp)
211 {
212 	if (bp->b_maps != &bp->__b_map) {
213 		kfree(bp->b_maps);
214 		bp->b_maps = NULL;
215 	}
216 }
217 
218 static int
219 _xfs_buf_alloc(
220 	struct xfs_buftarg	*target,
221 	struct xfs_buf_map	*map,
222 	int			nmaps,
223 	xfs_buf_flags_t		flags,
224 	struct xfs_buf		**bpp)
225 {
226 	struct xfs_buf		*bp;
227 	int			error;
228 	int			i;
229 
230 	*bpp = NULL;
231 	bp = kmem_cache_zalloc(xfs_buf_cache,
232 			GFP_KERNEL | __GFP_NOLOCKDEP | __GFP_NOFAIL);
233 
234 	/*
235 	 * We don't want certain flags to appear in b_flags unless they are
236 	 * specifically set by later operations on the buffer.
237 	 */
238 	flags &= ~(XBF_UNMAPPED | XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD);
239 
240 	atomic_set(&bp->b_hold, 1);
241 	atomic_set(&bp->b_lru_ref, 1);
242 	init_completion(&bp->b_iowait);
243 	INIT_LIST_HEAD(&bp->b_lru);
244 	INIT_LIST_HEAD(&bp->b_list);
245 	INIT_LIST_HEAD(&bp->b_li_list);
246 	sema_init(&bp->b_sema, 0); /* held, no waiters */
247 	spin_lock_init(&bp->b_lock);
248 	bp->b_target = target;
249 	bp->b_mount = target->bt_mount;
250 	bp->b_flags = flags;
251 
252 	/*
253 	 * Set length and io_length to the same value initially.
254 	 * I/O routines should use io_length, which will be the same in
255 	 * most cases but may be reset (e.g. XFS recovery).
256 	 */
257 	error = xfs_buf_get_maps(bp, nmaps);
258 	if (error)  {
259 		kmem_cache_free(xfs_buf_cache, bp);
260 		return error;
261 	}
262 
263 	bp->b_rhash_key = map[0].bm_bn;
264 	bp->b_length = 0;
265 	for (i = 0; i < nmaps; i++) {
266 		bp->b_maps[i].bm_bn = map[i].bm_bn;
267 		bp->b_maps[i].bm_len = map[i].bm_len;
268 		bp->b_length += map[i].bm_len;
269 	}
270 
271 	atomic_set(&bp->b_pin_count, 0);
272 	init_waitqueue_head(&bp->b_waiters);
273 
274 	XFS_STATS_INC(bp->b_mount, xb_create);
275 	trace_xfs_buf_init(bp, _RET_IP_);
276 
277 	*bpp = bp;
278 	return 0;
279 }
280 
281 static void
282 xfs_buf_free_pages(
283 	struct xfs_buf	*bp)
284 {
285 	uint		i;
286 
287 	ASSERT(bp->b_flags & _XBF_PAGES);
288 
289 	if (xfs_buf_is_vmapped(bp))
290 		vm_unmap_ram(bp->b_addr, bp->b_page_count);
291 
292 	for (i = 0; i < bp->b_page_count; i++) {
293 		if (bp->b_pages[i])
294 			__free_page(bp->b_pages[i]);
295 	}
296 	mm_account_reclaimed_pages(bp->b_page_count);
297 
298 	if (bp->b_pages != bp->b_page_array)
299 		kfree(bp->b_pages);
300 	bp->b_pages = NULL;
301 	bp->b_flags &= ~_XBF_PAGES;
302 }
303 
304 static void
305 xfs_buf_free_callback(
306 	struct callback_head	*cb)
307 {
308 	struct xfs_buf		*bp = container_of(cb, struct xfs_buf, b_rcu);
309 
310 	xfs_buf_free_maps(bp);
311 	kmem_cache_free(xfs_buf_cache, bp);
312 }
313 
314 static void
315 xfs_buf_free(
316 	struct xfs_buf		*bp)
317 {
318 	trace_xfs_buf_free(bp, _RET_IP_);
319 
320 	ASSERT(list_empty(&bp->b_lru));
321 
322 	if (xfs_buftarg_is_mem(bp->b_target))
323 		xmbuf_unmap_page(bp);
324 	else if (bp->b_flags & _XBF_PAGES)
325 		xfs_buf_free_pages(bp);
326 	else if (bp->b_flags & _XBF_KMEM)
327 		kfree(bp->b_addr);
328 
329 	call_rcu(&bp->b_rcu, xfs_buf_free_callback);
330 }
331 
332 static int
333 xfs_buf_alloc_kmem(
334 	struct xfs_buf	*bp,
335 	xfs_buf_flags_t	flags)
336 {
337 	gfp_t		gfp_mask = GFP_KERNEL | __GFP_NOLOCKDEP | __GFP_NOFAIL;
338 	size_t		size = BBTOB(bp->b_length);
339 
340 	/* Assure zeroed buffer for non-read cases. */
341 	if (!(flags & XBF_READ))
342 		gfp_mask |= __GFP_ZERO;
343 
344 	bp->b_addr = kmalloc(size, gfp_mask);
345 	if (!bp->b_addr)
346 		return -ENOMEM;
347 
348 	if (((unsigned long)(bp->b_addr + size - 1) & PAGE_MASK) !=
349 	    ((unsigned long)bp->b_addr & PAGE_MASK)) {
350 		/* b_addr spans two pages - use alloc_page instead */
351 		kfree(bp->b_addr);
352 		bp->b_addr = NULL;
353 		return -ENOMEM;
354 	}
355 	bp->b_offset = offset_in_page(bp->b_addr);
356 	bp->b_pages = bp->b_page_array;
357 	bp->b_pages[0] = kmem_to_page(bp->b_addr);
358 	bp->b_page_count = 1;
359 	bp->b_flags |= _XBF_KMEM;
360 	return 0;
361 }
362 
363 static int
364 xfs_buf_alloc_pages(
365 	struct xfs_buf	*bp,
366 	xfs_buf_flags_t	flags)
367 {
368 	gfp_t		gfp_mask = GFP_KERNEL | __GFP_NOLOCKDEP | __GFP_NOWARN;
369 	long		filled = 0;
370 
371 	if (flags & XBF_READ_AHEAD)
372 		gfp_mask |= __GFP_NORETRY;
373 
374 	/* Make sure that we have a page list */
375 	bp->b_page_count = DIV_ROUND_UP(BBTOB(bp->b_length), PAGE_SIZE);
376 	if (bp->b_page_count <= XB_PAGES) {
377 		bp->b_pages = bp->b_page_array;
378 	} else {
379 		bp->b_pages = kzalloc(sizeof(struct page *) * bp->b_page_count,
380 					gfp_mask);
381 		if (!bp->b_pages)
382 			return -ENOMEM;
383 	}
384 	bp->b_flags |= _XBF_PAGES;
385 
386 	/* Assure zeroed buffer for non-read cases. */
387 	if (!(flags & XBF_READ))
388 		gfp_mask |= __GFP_ZERO;
389 
390 	/*
391 	 * Bulk filling of pages can take multiple calls. Not filling the entire
392 	 * array is not an allocation failure, so don't back off if we get at
393 	 * least one extra page.
394 	 */
395 	for (;;) {
396 		long	last = filled;
397 
398 		filled = alloc_pages_bulk_array(gfp_mask, bp->b_page_count,
399 						bp->b_pages);
400 		if (filled == bp->b_page_count) {
401 			XFS_STATS_INC(bp->b_mount, xb_page_found);
402 			break;
403 		}
404 
405 		if (filled != last)
406 			continue;
407 
408 		if (flags & XBF_READ_AHEAD) {
409 			xfs_buf_free_pages(bp);
410 			return -ENOMEM;
411 		}
412 
413 		XFS_STATS_INC(bp->b_mount, xb_page_retries);
414 		memalloc_retry_wait(gfp_mask);
415 	}
416 	return 0;
417 }
418 
419 /*
420  *	Map buffer into kernel address-space if necessary.
421  */
422 STATIC int
423 _xfs_buf_map_pages(
424 	struct xfs_buf		*bp,
425 	xfs_buf_flags_t		flags)
426 {
427 	ASSERT(bp->b_flags & _XBF_PAGES);
428 	if (bp->b_page_count == 1) {
429 		/* A single page buffer is always mappable */
430 		bp->b_addr = page_address(bp->b_pages[0]);
431 	} else if (flags & XBF_UNMAPPED) {
432 		bp->b_addr = NULL;
433 	} else {
434 		int retried = 0;
435 		unsigned nofs_flag;
436 
437 		/*
438 		 * vm_map_ram() will allocate auxiliary structures (e.g.
439 		 * pagetables) with GFP_KERNEL, yet we often under a scoped nofs
440 		 * context here. Mixing GFP_KERNEL with GFP_NOFS allocations
441 		 * from the same call site that can be run from both above and
442 		 * below memory reclaim causes lockdep false positives. Hence we
443 		 * always need to force this allocation to nofs context because
444 		 * we can't pass __GFP_NOLOCKDEP down to auxillary structures to
445 		 * prevent false positive lockdep reports.
446 		 *
447 		 * XXX(dgc): I think dquot reclaim is the only place we can get
448 		 * to this function from memory reclaim context now. If we fix
449 		 * that like we've fixed inode reclaim to avoid writeback from
450 		 * reclaim, this nofs wrapping can go away.
451 		 */
452 		nofs_flag = memalloc_nofs_save();
453 		do {
454 			bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
455 						-1);
456 			if (bp->b_addr)
457 				break;
458 			vm_unmap_aliases();
459 		} while (retried++ <= 1);
460 		memalloc_nofs_restore(nofs_flag);
461 
462 		if (!bp->b_addr)
463 			return -ENOMEM;
464 	}
465 
466 	return 0;
467 }
468 
469 /*
470  *	Finding and Reading Buffers
471  */
472 static int
473 _xfs_buf_obj_cmp(
474 	struct rhashtable_compare_arg	*arg,
475 	const void			*obj)
476 {
477 	const struct xfs_buf_map	*map = arg->key;
478 	const struct xfs_buf		*bp = obj;
479 
480 	/*
481 	 * The key hashing in the lookup path depends on the key being the
482 	 * first element of the compare_arg, make sure to assert this.
483 	 */
484 	BUILD_BUG_ON(offsetof(struct xfs_buf_map, bm_bn) != 0);
485 
486 	if (bp->b_rhash_key != map->bm_bn)
487 		return 1;
488 
489 	if (unlikely(bp->b_length != map->bm_len)) {
490 		/*
491 		 * found a block number match. If the range doesn't
492 		 * match, the only way this is allowed is if the buffer
493 		 * in the cache is stale and the transaction that made
494 		 * it stale has not yet committed. i.e. we are
495 		 * reallocating a busy extent. Skip this buffer and
496 		 * continue searching for an exact match.
497 		 *
498 		 * Note: If we're scanning for incore buffers to stale, don't
499 		 * complain if we find non-stale buffers.
500 		 */
501 		if (!(map->bm_flags & XBM_LIVESCAN))
502 			ASSERT(bp->b_flags & XBF_STALE);
503 		return 1;
504 	}
505 	return 0;
506 }
507 
508 static const struct rhashtable_params xfs_buf_hash_params = {
509 	.min_size		= 32,	/* empty AGs have minimal footprint */
510 	.nelem_hint		= 16,
511 	.key_len		= sizeof(xfs_daddr_t),
512 	.key_offset		= offsetof(struct xfs_buf, b_rhash_key),
513 	.head_offset		= offsetof(struct xfs_buf, b_rhash_head),
514 	.automatic_shrinking	= true,
515 	.obj_cmpfn		= _xfs_buf_obj_cmp,
516 };
517 
518 int
519 xfs_buf_cache_init(
520 	struct xfs_buf_cache	*bch)
521 {
522 	spin_lock_init(&bch->bc_lock);
523 	return rhashtable_init(&bch->bc_hash, &xfs_buf_hash_params);
524 }
525 
526 void
527 xfs_buf_cache_destroy(
528 	struct xfs_buf_cache	*bch)
529 {
530 	rhashtable_destroy(&bch->bc_hash);
531 }
532 
533 static int
534 xfs_buf_map_verify(
535 	struct xfs_buftarg	*btp,
536 	struct xfs_buf_map	*map)
537 {
538 	xfs_daddr_t		eofs;
539 
540 	/* Check for IOs smaller than the sector size / not sector aligned */
541 	ASSERT(!(BBTOB(map->bm_len) < btp->bt_meta_sectorsize));
542 	ASSERT(!(BBTOB(map->bm_bn) & (xfs_off_t)btp->bt_meta_sectormask));
543 
544 	/*
545 	 * Corrupted block numbers can get through to here, unfortunately, so we
546 	 * have to check that the buffer falls within the filesystem bounds.
547 	 */
548 	eofs = XFS_FSB_TO_BB(btp->bt_mount, btp->bt_mount->m_sb.sb_dblocks);
549 	if (map->bm_bn < 0 || map->bm_bn >= eofs) {
550 		xfs_alert(btp->bt_mount,
551 			  "%s: daddr 0x%llx out of range, EOFS 0x%llx",
552 			  __func__, map->bm_bn, eofs);
553 		WARN_ON(1);
554 		return -EFSCORRUPTED;
555 	}
556 	return 0;
557 }
558 
559 static int
560 xfs_buf_find_lock(
561 	struct xfs_buf          *bp,
562 	xfs_buf_flags_t		flags)
563 {
564 	if (flags & XBF_TRYLOCK) {
565 		if (!xfs_buf_trylock(bp)) {
566 			XFS_STATS_INC(bp->b_mount, xb_busy_locked);
567 			return -EAGAIN;
568 		}
569 	} else {
570 		xfs_buf_lock(bp);
571 		XFS_STATS_INC(bp->b_mount, xb_get_locked_waited);
572 	}
573 
574 	/*
575 	 * if the buffer is stale, clear all the external state associated with
576 	 * it. We need to keep flags such as how we allocated the buffer memory
577 	 * intact here.
578 	 */
579 	if (bp->b_flags & XBF_STALE) {
580 		if (flags & XBF_LIVESCAN) {
581 			xfs_buf_unlock(bp);
582 			return -ENOENT;
583 		}
584 		ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
585 		bp->b_flags &= _XBF_KMEM | _XBF_PAGES;
586 		bp->b_ops = NULL;
587 	}
588 	return 0;
589 }
590 
591 static inline int
592 xfs_buf_lookup(
593 	struct xfs_buf_cache	*bch,
594 	struct xfs_buf_map	*map,
595 	xfs_buf_flags_t		flags,
596 	struct xfs_buf		**bpp)
597 {
598 	struct xfs_buf          *bp;
599 	int			error;
600 
601 	rcu_read_lock();
602 	bp = rhashtable_lookup(&bch->bc_hash, map, xfs_buf_hash_params);
603 	if (!bp || !atomic_inc_not_zero(&bp->b_hold)) {
604 		rcu_read_unlock();
605 		return -ENOENT;
606 	}
607 	rcu_read_unlock();
608 
609 	error = xfs_buf_find_lock(bp, flags);
610 	if (error) {
611 		xfs_buf_rele(bp);
612 		return error;
613 	}
614 
615 	trace_xfs_buf_find(bp, flags, _RET_IP_);
616 	*bpp = bp;
617 	return 0;
618 }
619 
620 /*
621  * Insert the new_bp into the hash table. This consumes the perag reference
622  * taken for the lookup regardless of the result of the insert.
623  */
624 static int
625 xfs_buf_find_insert(
626 	struct xfs_buftarg	*btp,
627 	struct xfs_buf_cache	*bch,
628 	struct xfs_perag	*pag,
629 	struct xfs_buf_map	*cmap,
630 	struct xfs_buf_map	*map,
631 	int			nmaps,
632 	xfs_buf_flags_t		flags,
633 	struct xfs_buf		**bpp)
634 {
635 	struct xfs_buf		*new_bp;
636 	struct xfs_buf		*bp;
637 	int			error;
638 
639 	error = _xfs_buf_alloc(btp, map, nmaps, flags, &new_bp);
640 	if (error)
641 		goto out_drop_pag;
642 
643 	if (xfs_buftarg_is_mem(new_bp->b_target)) {
644 		error = xmbuf_map_page(new_bp);
645 	} else if (BBTOB(new_bp->b_length) >= PAGE_SIZE ||
646 		   xfs_buf_alloc_kmem(new_bp, flags) < 0) {
647 		/*
648 		 * For buffers that fit entirely within a single page, first
649 		 * attempt to allocate the memory from the heap to minimise
650 		 * memory usage. If we can't get heap memory for these small
651 		 * buffers, we fall back to using the page allocator.
652 		 */
653 		error = xfs_buf_alloc_pages(new_bp, flags);
654 	}
655 	if (error)
656 		goto out_free_buf;
657 
658 	spin_lock(&bch->bc_lock);
659 	bp = rhashtable_lookup_get_insert_fast(&bch->bc_hash,
660 			&new_bp->b_rhash_head, xfs_buf_hash_params);
661 	if (IS_ERR(bp)) {
662 		error = PTR_ERR(bp);
663 		spin_unlock(&bch->bc_lock);
664 		goto out_free_buf;
665 	}
666 	if (bp) {
667 		/* found an existing buffer */
668 		atomic_inc(&bp->b_hold);
669 		spin_unlock(&bch->bc_lock);
670 		error = xfs_buf_find_lock(bp, flags);
671 		if (error)
672 			xfs_buf_rele(bp);
673 		else
674 			*bpp = bp;
675 		goto out_free_buf;
676 	}
677 
678 	/* The new buffer keeps the perag reference until it is freed. */
679 	new_bp->b_pag = pag;
680 	spin_unlock(&bch->bc_lock);
681 	*bpp = new_bp;
682 	return 0;
683 
684 out_free_buf:
685 	xfs_buf_free(new_bp);
686 out_drop_pag:
687 	if (pag)
688 		xfs_perag_put(pag);
689 	return error;
690 }
691 
692 static inline struct xfs_perag *
693 xfs_buftarg_get_pag(
694 	struct xfs_buftarg		*btp,
695 	const struct xfs_buf_map	*map)
696 {
697 	struct xfs_mount		*mp = btp->bt_mount;
698 
699 	if (xfs_buftarg_is_mem(btp))
700 		return NULL;
701 	return xfs_perag_get(mp, xfs_daddr_to_agno(mp, map->bm_bn));
702 }
703 
704 static inline struct xfs_buf_cache *
705 xfs_buftarg_buf_cache(
706 	struct xfs_buftarg		*btp,
707 	struct xfs_perag		*pag)
708 {
709 	if (pag)
710 		return &pag->pag_bcache;
711 	return btp->bt_cache;
712 }
713 
714 /*
715  * Assembles a buffer covering the specified range. The code is optimised for
716  * cache hits, as metadata intensive workloads will see 3 orders of magnitude
717  * more hits than misses.
718  */
719 int
720 xfs_buf_get_map(
721 	struct xfs_buftarg	*btp,
722 	struct xfs_buf_map	*map,
723 	int			nmaps,
724 	xfs_buf_flags_t		flags,
725 	struct xfs_buf		**bpp)
726 {
727 	struct xfs_buf_cache	*bch;
728 	struct xfs_perag	*pag;
729 	struct xfs_buf		*bp = NULL;
730 	struct xfs_buf_map	cmap = { .bm_bn = map[0].bm_bn };
731 	int			error;
732 	int			i;
733 
734 	if (flags & XBF_LIVESCAN)
735 		cmap.bm_flags |= XBM_LIVESCAN;
736 	for (i = 0; i < nmaps; i++)
737 		cmap.bm_len += map[i].bm_len;
738 
739 	error = xfs_buf_map_verify(btp, &cmap);
740 	if (error)
741 		return error;
742 
743 	pag = xfs_buftarg_get_pag(btp, &cmap);
744 	bch = xfs_buftarg_buf_cache(btp, pag);
745 
746 	error = xfs_buf_lookup(bch, &cmap, flags, &bp);
747 	if (error && error != -ENOENT)
748 		goto out_put_perag;
749 
750 	/* cache hits always outnumber misses by at least 10:1 */
751 	if (unlikely(!bp)) {
752 		XFS_STATS_INC(btp->bt_mount, xb_miss_locked);
753 
754 		if (flags & XBF_INCORE)
755 			goto out_put_perag;
756 
757 		/* xfs_buf_find_insert() consumes the perag reference. */
758 		error = xfs_buf_find_insert(btp, bch, pag, &cmap, map, nmaps,
759 				flags, &bp);
760 		if (error)
761 			return error;
762 	} else {
763 		XFS_STATS_INC(btp->bt_mount, xb_get_locked);
764 		if (pag)
765 			xfs_perag_put(pag);
766 	}
767 
768 	/* We do not hold a perag reference anymore. */
769 	if (!bp->b_addr) {
770 		error = _xfs_buf_map_pages(bp, flags);
771 		if (unlikely(error)) {
772 			xfs_warn_ratelimited(btp->bt_mount,
773 				"%s: failed to map %u pages", __func__,
774 				bp->b_page_count);
775 			xfs_buf_relse(bp);
776 			return error;
777 		}
778 	}
779 
780 	/*
781 	 * Clear b_error if this is a lookup from a caller that doesn't expect
782 	 * valid data to be found in the buffer.
783 	 */
784 	if (!(flags & XBF_READ))
785 		xfs_buf_ioerror(bp, 0);
786 
787 	XFS_STATS_INC(btp->bt_mount, xb_get);
788 	trace_xfs_buf_get(bp, flags, _RET_IP_);
789 	*bpp = bp;
790 	return 0;
791 
792 out_put_perag:
793 	if (pag)
794 		xfs_perag_put(pag);
795 	return error;
796 }
797 
798 int
799 _xfs_buf_read(
800 	struct xfs_buf		*bp,
801 	xfs_buf_flags_t		flags)
802 {
803 	ASSERT(!(flags & XBF_WRITE));
804 	ASSERT(bp->b_maps[0].bm_bn != XFS_BUF_DADDR_NULL);
805 
806 	bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD | XBF_DONE);
807 	bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD);
808 
809 	return xfs_buf_submit(bp);
810 }
811 
812 /*
813  * Reverify a buffer found in cache without an attached ->b_ops.
814  *
815  * If the caller passed an ops structure and the buffer doesn't have ops
816  * assigned, set the ops and use it to verify the contents. If verification
817  * fails, clear XBF_DONE. We assume the buffer has no recorded errors and is
818  * already in XBF_DONE state on entry.
819  *
820  * Under normal operations, every in-core buffer is verified on read I/O
821  * completion. There are two scenarios that can lead to in-core buffers without
822  * an assigned ->b_ops. The first is during log recovery of buffers on a V4
823  * filesystem, though these buffers are purged at the end of recovery. The
824  * other is online repair, which intentionally reads with a NULL buffer ops to
825  * run several verifiers across an in-core buffer in order to establish buffer
826  * type.  If repair can't establish that, the buffer will be left in memory
827  * with NULL buffer ops.
828  */
829 int
830 xfs_buf_reverify(
831 	struct xfs_buf		*bp,
832 	const struct xfs_buf_ops *ops)
833 {
834 	ASSERT(bp->b_flags & XBF_DONE);
835 	ASSERT(bp->b_error == 0);
836 
837 	if (!ops || bp->b_ops)
838 		return 0;
839 
840 	bp->b_ops = ops;
841 	bp->b_ops->verify_read(bp);
842 	if (bp->b_error)
843 		bp->b_flags &= ~XBF_DONE;
844 	return bp->b_error;
845 }
846 
847 int
848 xfs_buf_read_map(
849 	struct xfs_buftarg	*target,
850 	struct xfs_buf_map	*map,
851 	int			nmaps,
852 	xfs_buf_flags_t		flags,
853 	struct xfs_buf		**bpp,
854 	const struct xfs_buf_ops *ops,
855 	xfs_failaddr_t		fa)
856 {
857 	struct xfs_buf		*bp;
858 	int			error;
859 
860 	flags |= XBF_READ;
861 	*bpp = NULL;
862 
863 	error = xfs_buf_get_map(target, map, nmaps, flags, &bp);
864 	if (error)
865 		return error;
866 
867 	trace_xfs_buf_read(bp, flags, _RET_IP_);
868 
869 	if (!(bp->b_flags & XBF_DONE)) {
870 		/* Initiate the buffer read and wait. */
871 		XFS_STATS_INC(target->bt_mount, xb_get_read);
872 		bp->b_ops = ops;
873 		error = _xfs_buf_read(bp, flags);
874 
875 		/* Readahead iodone already dropped the buffer, so exit. */
876 		if (flags & XBF_ASYNC)
877 			return 0;
878 	} else {
879 		/* Buffer already read; all we need to do is check it. */
880 		error = xfs_buf_reverify(bp, ops);
881 
882 		/* Readahead already finished; drop the buffer and exit. */
883 		if (flags & XBF_ASYNC) {
884 			xfs_buf_relse(bp);
885 			return 0;
886 		}
887 
888 		/* We do not want read in the flags */
889 		bp->b_flags &= ~XBF_READ;
890 		ASSERT(bp->b_ops != NULL || ops == NULL);
891 	}
892 
893 	/*
894 	 * If we've had a read error, then the contents of the buffer are
895 	 * invalid and should not be used. To ensure that a followup read tries
896 	 * to pull the buffer from disk again, we clear the XBF_DONE flag and
897 	 * mark the buffer stale. This ensures that anyone who has a current
898 	 * reference to the buffer will interpret it's contents correctly and
899 	 * future cache lookups will also treat it as an empty, uninitialised
900 	 * buffer.
901 	 */
902 	if (error) {
903 		/*
904 		 * Check against log shutdown for error reporting because
905 		 * metadata writeback may require a read first and we need to
906 		 * report errors in metadata writeback until the log is shut
907 		 * down. High level transaction read functions already check
908 		 * against mount shutdown, anyway, so we only need to be
909 		 * concerned about low level IO interactions here.
910 		 */
911 		if (!xlog_is_shutdown(target->bt_mount->m_log))
912 			xfs_buf_ioerror_alert(bp, fa);
913 
914 		bp->b_flags &= ~XBF_DONE;
915 		xfs_buf_stale(bp);
916 		xfs_buf_relse(bp);
917 
918 		/* bad CRC means corrupted metadata */
919 		if (error == -EFSBADCRC)
920 			error = -EFSCORRUPTED;
921 		return error;
922 	}
923 
924 	*bpp = bp;
925 	return 0;
926 }
927 
928 /*
929  *	If we are not low on memory then do the readahead in a deadlock
930  *	safe manner.
931  */
932 void
933 xfs_buf_readahead_map(
934 	struct xfs_buftarg	*target,
935 	struct xfs_buf_map	*map,
936 	int			nmaps,
937 	const struct xfs_buf_ops *ops)
938 {
939 	struct xfs_buf		*bp;
940 
941 	/*
942 	 * Currently we don't have a good means or justification for performing
943 	 * xmbuf_map_page asynchronously, so we don't do readahead.
944 	 */
945 	if (xfs_buftarg_is_mem(target))
946 		return;
947 
948 	xfs_buf_read_map(target, map, nmaps,
949 		     XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD, &bp, ops,
950 		     __this_address);
951 }
952 
953 /*
954  * Read an uncached buffer from disk. Allocates and returns a locked
955  * buffer containing the disk contents or nothing. Uncached buffers always have
956  * a cache index of XFS_BUF_DADDR_NULL so we can easily determine if the buffer
957  * is cached or uncached during fault diagnosis.
958  */
959 int
960 xfs_buf_read_uncached(
961 	struct xfs_buftarg	*target,
962 	xfs_daddr_t		daddr,
963 	size_t			numblks,
964 	xfs_buf_flags_t		flags,
965 	struct xfs_buf		**bpp,
966 	const struct xfs_buf_ops *ops)
967 {
968 	struct xfs_buf		*bp;
969 	int			error;
970 
971 	*bpp = NULL;
972 
973 	error = xfs_buf_get_uncached(target, numblks, flags, &bp);
974 	if (error)
975 		return error;
976 
977 	/* set up the buffer for a read IO */
978 	ASSERT(bp->b_map_count == 1);
979 	bp->b_rhash_key = XFS_BUF_DADDR_NULL;
980 	bp->b_maps[0].bm_bn = daddr;
981 	bp->b_flags |= XBF_READ;
982 	bp->b_ops = ops;
983 
984 	xfs_buf_submit(bp);
985 	if (bp->b_error) {
986 		error = bp->b_error;
987 		xfs_buf_relse(bp);
988 		return error;
989 	}
990 
991 	*bpp = bp;
992 	return 0;
993 }
994 
995 int
996 xfs_buf_get_uncached(
997 	struct xfs_buftarg	*target,
998 	size_t			numblks,
999 	xfs_buf_flags_t		flags,
1000 	struct xfs_buf		**bpp)
1001 {
1002 	int			error;
1003 	struct xfs_buf		*bp;
1004 	DEFINE_SINGLE_BUF_MAP(map, XFS_BUF_DADDR_NULL, numblks);
1005 
1006 	*bpp = NULL;
1007 
1008 	/* flags might contain irrelevant bits, pass only what we care about */
1009 	error = _xfs_buf_alloc(target, &map, 1, flags & XBF_NO_IOACCT, &bp);
1010 	if (error)
1011 		return error;
1012 
1013 	if (xfs_buftarg_is_mem(bp->b_target))
1014 		error = xmbuf_map_page(bp);
1015 	else
1016 		error = xfs_buf_alloc_pages(bp, flags);
1017 	if (error)
1018 		goto fail_free_buf;
1019 
1020 	error = _xfs_buf_map_pages(bp, 0);
1021 	if (unlikely(error)) {
1022 		xfs_warn(target->bt_mount,
1023 			"%s: failed to map pages", __func__);
1024 		goto fail_free_buf;
1025 	}
1026 
1027 	trace_xfs_buf_get_uncached(bp, _RET_IP_);
1028 	*bpp = bp;
1029 	return 0;
1030 
1031 fail_free_buf:
1032 	xfs_buf_free(bp);
1033 	return error;
1034 }
1035 
1036 /*
1037  *	Increment reference count on buffer, to hold the buffer concurrently
1038  *	with another thread which may release (free) the buffer asynchronously.
1039  *	Must hold the buffer already to call this function.
1040  */
1041 void
1042 xfs_buf_hold(
1043 	struct xfs_buf		*bp)
1044 {
1045 	trace_xfs_buf_hold(bp, _RET_IP_);
1046 	atomic_inc(&bp->b_hold);
1047 }
1048 
1049 static void
1050 xfs_buf_rele_uncached(
1051 	struct xfs_buf		*bp)
1052 {
1053 	ASSERT(list_empty(&bp->b_lru));
1054 	if (atomic_dec_and_test(&bp->b_hold)) {
1055 		xfs_buf_ioacct_dec(bp);
1056 		xfs_buf_free(bp);
1057 	}
1058 }
1059 
1060 static void
1061 xfs_buf_rele_cached(
1062 	struct xfs_buf		*bp)
1063 {
1064 	struct xfs_buftarg	*btp = bp->b_target;
1065 	struct xfs_perag	*pag = bp->b_pag;
1066 	struct xfs_buf_cache	*bch = xfs_buftarg_buf_cache(btp, pag);
1067 	bool			release;
1068 	bool			freebuf = false;
1069 
1070 	trace_xfs_buf_rele(bp, _RET_IP_);
1071 
1072 	ASSERT(atomic_read(&bp->b_hold) > 0);
1073 
1074 	/*
1075 	 * We grab the b_lock here first to serialise racing xfs_buf_rele()
1076 	 * calls. The pag_buf_lock being taken on the last reference only
1077 	 * serialises against racing lookups in xfs_buf_find(). IOWs, the second
1078 	 * to last reference we drop here is not serialised against the last
1079 	 * reference until we take bp->b_lock. Hence if we don't grab b_lock
1080 	 * first, the last "release" reference can win the race to the lock and
1081 	 * free the buffer before the second-to-last reference is processed,
1082 	 * leading to a use-after-free scenario.
1083 	 */
1084 	spin_lock(&bp->b_lock);
1085 	release = atomic_dec_and_lock(&bp->b_hold, &bch->bc_lock);
1086 	if (!release) {
1087 		/*
1088 		 * Drop the in-flight state if the buffer is already on the LRU
1089 		 * and it holds the only reference. This is racy because we
1090 		 * haven't acquired the pag lock, but the use of _XBF_IN_FLIGHT
1091 		 * ensures the decrement occurs only once per-buf.
1092 		 */
1093 		if ((atomic_read(&bp->b_hold) == 1) && !list_empty(&bp->b_lru))
1094 			__xfs_buf_ioacct_dec(bp);
1095 		goto out_unlock;
1096 	}
1097 
1098 	/* the last reference has been dropped ... */
1099 	__xfs_buf_ioacct_dec(bp);
1100 	if (!(bp->b_flags & XBF_STALE) && atomic_read(&bp->b_lru_ref)) {
1101 		/*
1102 		 * If the buffer is added to the LRU take a new reference to the
1103 		 * buffer for the LRU and clear the (now stale) dispose list
1104 		 * state flag
1105 		 */
1106 		if (list_lru_add_obj(&btp->bt_lru, &bp->b_lru)) {
1107 			bp->b_state &= ~XFS_BSTATE_DISPOSE;
1108 			atomic_inc(&bp->b_hold);
1109 		}
1110 		spin_unlock(&bch->bc_lock);
1111 	} else {
1112 		/*
1113 		 * most of the time buffers will already be removed from the
1114 		 * LRU, so optimise that case by checking for the
1115 		 * XFS_BSTATE_DISPOSE flag indicating the last list the buffer
1116 		 * was on was the disposal list
1117 		 */
1118 		if (!(bp->b_state & XFS_BSTATE_DISPOSE)) {
1119 			list_lru_del_obj(&btp->bt_lru, &bp->b_lru);
1120 		} else {
1121 			ASSERT(list_empty(&bp->b_lru));
1122 		}
1123 
1124 		ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1125 		rhashtable_remove_fast(&bch->bc_hash, &bp->b_rhash_head,
1126 				xfs_buf_hash_params);
1127 		spin_unlock(&bch->bc_lock);
1128 		if (pag)
1129 			xfs_perag_put(pag);
1130 		freebuf = true;
1131 	}
1132 
1133 out_unlock:
1134 	spin_unlock(&bp->b_lock);
1135 
1136 	if (freebuf)
1137 		xfs_buf_free(bp);
1138 }
1139 
1140 /*
1141  * Release a hold on the specified buffer.
1142  */
1143 void
1144 xfs_buf_rele(
1145 	struct xfs_buf		*bp)
1146 {
1147 	trace_xfs_buf_rele(bp, _RET_IP_);
1148 	if (xfs_buf_is_uncached(bp))
1149 		xfs_buf_rele_uncached(bp);
1150 	else
1151 		xfs_buf_rele_cached(bp);
1152 }
1153 
1154 /*
1155  *	Lock a buffer object, if it is not already locked.
1156  *
1157  *	If we come across a stale, pinned, locked buffer, we know that we are
1158  *	being asked to lock a buffer that has been reallocated. Because it is
1159  *	pinned, we know that the log has not been pushed to disk and hence it
1160  *	will still be locked.  Rather than continuing to have trylock attempts
1161  *	fail until someone else pushes the log, push it ourselves before
1162  *	returning.  This means that the xfsaild will not get stuck trying
1163  *	to push on stale inode buffers.
1164  */
1165 int
1166 xfs_buf_trylock(
1167 	struct xfs_buf		*bp)
1168 {
1169 	int			locked;
1170 
1171 	locked = down_trylock(&bp->b_sema) == 0;
1172 	if (locked)
1173 		trace_xfs_buf_trylock(bp, _RET_IP_);
1174 	else
1175 		trace_xfs_buf_trylock_fail(bp, _RET_IP_);
1176 	return locked;
1177 }
1178 
1179 /*
1180  *	Lock a buffer object.
1181  *
1182  *	If we come across a stale, pinned, locked buffer, we know that we
1183  *	are being asked to lock a buffer that has been reallocated. Because
1184  *	it is pinned, we know that the log has not been pushed to disk and
1185  *	hence it will still be locked. Rather than sleeping until someone
1186  *	else pushes the log, push it ourselves before trying to get the lock.
1187  */
1188 void
1189 xfs_buf_lock(
1190 	struct xfs_buf		*bp)
1191 {
1192 	trace_xfs_buf_lock(bp, _RET_IP_);
1193 
1194 	if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
1195 		xfs_log_force(bp->b_mount, 0);
1196 	down(&bp->b_sema);
1197 
1198 	trace_xfs_buf_lock_done(bp, _RET_IP_);
1199 }
1200 
1201 void
1202 xfs_buf_unlock(
1203 	struct xfs_buf		*bp)
1204 {
1205 	ASSERT(xfs_buf_islocked(bp));
1206 
1207 	up(&bp->b_sema);
1208 	trace_xfs_buf_unlock(bp, _RET_IP_);
1209 }
1210 
1211 STATIC void
1212 xfs_buf_wait_unpin(
1213 	struct xfs_buf		*bp)
1214 {
1215 	DECLARE_WAITQUEUE	(wait, current);
1216 
1217 	if (atomic_read(&bp->b_pin_count) == 0)
1218 		return;
1219 
1220 	add_wait_queue(&bp->b_waiters, &wait);
1221 	for (;;) {
1222 		set_current_state(TASK_UNINTERRUPTIBLE);
1223 		if (atomic_read(&bp->b_pin_count) == 0)
1224 			break;
1225 		io_schedule();
1226 	}
1227 	remove_wait_queue(&bp->b_waiters, &wait);
1228 	set_current_state(TASK_RUNNING);
1229 }
1230 
1231 static void
1232 xfs_buf_ioerror_alert_ratelimited(
1233 	struct xfs_buf		*bp)
1234 {
1235 	static unsigned long	lasttime;
1236 	static struct xfs_buftarg *lasttarg;
1237 
1238 	if (bp->b_target != lasttarg ||
1239 	    time_after(jiffies, (lasttime + 5*HZ))) {
1240 		lasttime = jiffies;
1241 		xfs_buf_ioerror_alert(bp, __this_address);
1242 	}
1243 	lasttarg = bp->b_target;
1244 }
1245 
1246 /*
1247  * Account for this latest trip around the retry handler, and decide if
1248  * we've failed enough times to constitute a permanent failure.
1249  */
1250 static bool
1251 xfs_buf_ioerror_permanent(
1252 	struct xfs_buf		*bp,
1253 	struct xfs_error_cfg	*cfg)
1254 {
1255 	struct xfs_mount	*mp = bp->b_mount;
1256 
1257 	if (cfg->max_retries != XFS_ERR_RETRY_FOREVER &&
1258 	    ++bp->b_retries > cfg->max_retries)
1259 		return true;
1260 	if (cfg->retry_timeout != XFS_ERR_RETRY_FOREVER &&
1261 	    time_after(jiffies, cfg->retry_timeout + bp->b_first_retry_time))
1262 		return true;
1263 
1264 	/* At unmount we may treat errors differently */
1265 	if (xfs_is_unmounting(mp) && mp->m_fail_unmount)
1266 		return true;
1267 
1268 	return false;
1269 }
1270 
1271 /*
1272  * On a sync write or shutdown we just want to stale the buffer and let the
1273  * caller handle the error in bp->b_error appropriately.
1274  *
1275  * If the write was asynchronous then no one will be looking for the error.  If
1276  * this is the first failure of this type, clear the error state and write the
1277  * buffer out again. This means we always retry an async write failure at least
1278  * once, but we also need to set the buffer up to behave correctly now for
1279  * repeated failures.
1280  *
1281  * If we get repeated async write failures, then we take action according to the
1282  * error configuration we have been set up to use.
1283  *
1284  * Returns true if this function took care of error handling and the caller must
1285  * not touch the buffer again.  Return false if the caller should proceed with
1286  * normal I/O completion handling.
1287  */
1288 static bool
1289 xfs_buf_ioend_handle_error(
1290 	struct xfs_buf		*bp)
1291 {
1292 	struct xfs_mount	*mp = bp->b_mount;
1293 	struct xfs_error_cfg	*cfg;
1294 
1295 	/*
1296 	 * If we've already shutdown the journal because of I/O errors, there's
1297 	 * no point in giving this a retry.
1298 	 */
1299 	if (xlog_is_shutdown(mp->m_log))
1300 		goto out_stale;
1301 
1302 	xfs_buf_ioerror_alert_ratelimited(bp);
1303 
1304 	/*
1305 	 * We're not going to bother about retrying this during recovery.
1306 	 * One strike!
1307 	 */
1308 	if (bp->b_flags & _XBF_LOGRECOVERY) {
1309 		xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1310 		return false;
1311 	}
1312 
1313 	/*
1314 	 * Synchronous writes will have callers process the error.
1315 	 */
1316 	if (!(bp->b_flags & XBF_ASYNC))
1317 		goto out_stale;
1318 
1319 	trace_xfs_buf_iodone_async(bp, _RET_IP_);
1320 
1321 	cfg = xfs_error_get_cfg(mp, XFS_ERR_METADATA, bp->b_error);
1322 	if (bp->b_last_error != bp->b_error ||
1323 	    !(bp->b_flags & (XBF_STALE | XBF_WRITE_FAIL))) {
1324 		bp->b_last_error = bp->b_error;
1325 		if (cfg->retry_timeout != XFS_ERR_RETRY_FOREVER &&
1326 		    !bp->b_first_retry_time)
1327 			bp->b_first_retry_time = jiffies;
1328 		goto resubmit;
1329 	}
1330 
1331 	/*
1332 	 * Permanent error - we need to trigger a shutdown if we haven't already
1333 	 * to indicate that inconsistency will result from this action.
1334 	 */
1335 	if (xfs_buf_ioerror_permanent(bp, cfg)) {
1336 		xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1337 		goto out_stale;
1338 	}
1339 
1340 	/* Still considered a transient error. Caller will schedule retries. */
1341 	if (bp->b_flags & _XBF_INODES)
1342 		xfs_buf_inode_io_fail(bp);
1343 	else if (bp->b_flags & _XBF_DQUOTS)
1344 		xfs_buf_dquot_io_fail(bp);
1345 	else
1346 		ASSERT(list_empty(&bp->b_li_list));
1347 	xfs_buf_ioerror(bp, 0);
1348 	xfs_buf_relse(bp);
1349 	return true;
1350 
1351 resubmit:
1352 	xfs_buf_ioerror(bp, 0);
1353 	bp->b_flags |= (XBF_DONE | XBF_WRITE_FAIL);
1354 	xfs_buf_submit(bp);
1355 	return true;
1356 out_stale:
1357 	xfs_buf_stale(bp);
1358 	bp->b_flags |= XBF_DONE;
1359 	bp->b_flags &= ~XBF_WRITE;
1360 	trace_xfs_buf_error_relse(bp, _RET_IP_);
1361 	return false;
1362 }
1363 
1364 static void
1365 xfs_buf_ioend(
1366 	struct xfs_buf	*bp)
1367 {
1368 	trace_xfs_buf_iodone(bp, _RET_IP_);
1369 
1370 	/*
1371 	 * Pull in IO completion errors now. We are guaranteed to be running
1372 	 * single threaded, so we don't need the lock to read b_io_error.
1373 	 */
1374 	if (!bp->b_error && bp->b_io_error)
1375 		xfs_buf_ioerror(bp, bp->b_io_error);
1376 
1377 	if (bp->b_flags & XBF_READ) {
1378 		if (!bp->b_error && bp->b_ops)
1379 			bp->b_ops->verify_read(bp);
1380 		if (!bp->b_error)
1381 			bp->b_flags |= XBF_DONE;
1382 	} else {
1383 		if (!bp->b_error) {
1384 			bp->b_flags &= ~XBF_WRITE_FAIL;
1385 			bp->b_flags |= XBF_DONE;
1386 		}
1387 
1388 		if (unlikely(bp->b_error) && xfs_buf_ioend_handle_error(bp))
1389 			return;
1390 
1391 		/* clear the retry state */
1392 		bp->b_last_error = 0;
1393 		bp->b_retries = 0;
1394 		bp->b_first_retry_time = 0;
1395 
1396 		/*
1397 		 * Note that for things like remote attribute buffers, there may
1398 		 * not be a buffer log item here, so processing the buffer log
1399 		 * item must remain optional.
1400 		 */
1401 		if (bp->b_log_item)
1402 			xfs_buf_item_done(bp);
1403 
1404 		if (bp->b_flags & _XBF_INODES)
1405 			xfs_buf_inode_iodone(bp);
1406 		else if (bp->b_flags & _XBF_DQUOTS)
1407 			xfs_buf_dquot_iodone(bp);
1408 
1409 	}
1410 
1411 	bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD |
1412 			 _XBF_LOGRECOVERY);
1413 
1414 	if (bp->b_flags & XBF_ASYNC)
1415 		xfs_buf_relse(bp);
1416 	else
1417 		complete(&bp->b_iowait);
1418 }
1419 
1420 static void
1421 xfs_buf_ioend_work(
1422 	struct work_struct	*work)
1423 {
1424 	struct xfs_buf		*bp =
1425 		container_of(work, struct xfs_buf, b_ioend_work);
1426 
1427 	xfs_buf_ioend(bp);
1428 }
1429 
1430 static void
1431 xfs_buf_ioend_async(
1432 	struct xfs_buf	*bp)
1433 {
1434 	INIT_WORK(&bp->b_ioend_work, xfs_buf_ioend_work);
1435 	queue_work(bp->b_mount->m_buf_workqueue, &bp->b_ioend_work);
1436 }
1437 
1438 void
1439 __xfs_buf_ioerror(
1440 	struct xfs_buf		*bp,
1441 	int			error,
1442 	xfs_failaddr_t		failaddr)
1443 {
1444 	ASSERT(error <= 0 && error >= -1000);
1445 	bp->b_error = error;
1446 	trace_xfs_buf_ioerror(bp, error, failaddr);
1447 }
1448 
1449 void
1450 xfs_buf_ioerror_alert(
1451 	struct xfs_buf		*bp,
1452 	xfs_failaddr_t		func)
1453 {
1454 	xfs_buf_alert_ratelimited(bp, "XFS: metadata IO error",
1455 		"metadata I/O error in \"%pS\" at daddr 0x%llx len %d error %d",
1456 				  func, (uint64_t)xfs_buf_daddr(bp),
1457 				  bp->b_length, -bp->b_error);
1458 }
1459 
1460 /*
1461  * To simulate an I/O failure, the buffer must be locked and held with at least
1462  * three references. The LRU reference is dropped by the stale call. The buf
1463  * item reference is dropped via ioend processing. The third reference is owned
1464  * by the caller and is dropped on I/O completion if the buffer is XBF_ASYNC.
1465  */
1466 void
1467 xfs_buf_ioend_fail(
1468 	struct xfs_buf	*bp)
1469 {
1470 	bp->b_flags &= ~XBF_DONE;
1471 	xfs_buf_stale(bp);
1472 	xfs_buf_ioerror(bp, -EIO);
1473 	xfs_buf_ioend(bp);
1474 }
1475 
1476 int
1477 xfs_bwrite(
1478 	struct xfs_buf		*bp)
1479 {
1480 	int			error;
1481 
1482 	ASSERT(xfs_buf_islocked(bp));
1483 
1484 	bp->b_flags |= XBF_WRITE;
1485 	bp->b_flags &= ~(XBF_ASYNC | XBF_READ | _XBF_DELWRI_Q |
1486 			 XBF_DONE);
1487 
1488 	error = xfs_buf_submit(bp);
1489 	if (error)
1490 		xfs_force_shutdown(bp->b_mount, SHUTDOWN_META_IO_ERROR);
1491 	return error;
1492 }
1493 
1494 static void
1495 xfs_buf_bio_end_io(
1496 	struct bio		*bio)
1497 {
1498 	struct xfs_buf		*bp = (struct xfs_buf *)bio->bi_private;
1499 
1500 	if (!bio->bi_status &&
1501 	    (bp->b_flags & XBF_WRITE) && (bp->b_flags & XBF_ASYNC) &&
1502 	    XFS_TEST_ERROR(false, bp->b_mount, XFS_ERRTAG_BUF_IOERROR))
1503 		bio->bi_status = BLK_STS_IOERR;
1504 
1505 	/*
1506 	 * don't overwrite existing errors - otherwise we can lose errors on
1507 	 * buffers that require multiple bios to complete.
1508 	 */
1509 	if (bio->bi_status) {
1510 		int error = blk_status_to_errno(bio->bi_status);
1511 
1512 		cmpxchg(&bp->b_io_error, 0, error);
1513 	}
1514 
1515 	if (!bp->b_error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
1516 		invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1517 
1518 	if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1519 		xfs_buf_ioend_async(bp);
1520 	bio_put(bio);
1521 }
1522 
1523 static void
1524 xfs_buf_ioapply_map(
1525 	struct xfs_buf	*bp,
1526 	int		map,
1527 	int		*buf_offset,
1528 	int		*count,
1529 	blk_opf_t	op)
1530 {
1531 	int		page_index;
1532 	unsigned int	total_nr_pages = bp->b_page_count;
1533 	int		nr_pages;
1534 	struct bio	*bio;
1535 	sector_t	sector =  bp->b_maps[map].bm_bn;
1536 	int		size;
1537 	int		offset;
1538 
1539 	/* skip the pages in the buffer before the start offset */
1540 	page_index = 0;
1541 	offset = *buf_offset;
1542 	while (offset >= PAGE_SIZE) {
1543 		page_index++;
1544 		offset -= PAGE_SIZE;
1545 	}
1546 
1547 	/*
1548 	 * Limit the IO size to the length of the current vector, and update the
1549 	 * remaining IO count for the next time around.
1550 	 */
1551 	size = min_t(int, BBTOB(bp->b_maps[map].bm_len), *count);
1552 	*count -= size;
1553 	*buf_offset += size;
1554 
1555 next_chunk:
1556 	atomic_inc(&bp->b_io_remaining);
1557 	nr_pages = bio_max_segs(total_nr_pages);
1558 
1559 	bio = bio_alloc(bp->b_target->bt_bdev, nr_pages, op, GFP_NOIO);
1560 	bio->bi_iter.bi_sector = sector;
1561 	bio->bi_end_io = xfs_buf_bio_end_io;
1562 	bio->bi_private = bp;
1563 
1564 	for (; size && nr_pages; nr_pages--, page_index++) {
1565 		int	rbytes, nbytes = PAGE_SIZE - offset;
1566 
1567 		if (nbytes > size)
1568 			nbytes = size;
1569 
1570 		rbytes = bio_add_page(bio, bp->b_pages[page_index], nbytes,
1571 				      offset);
1572 		if (rbytes < nbytes)
1573 			break;
1574 
1575 		offset = 0;
1576 		sector += BTOBB(nbytes);
1577 		size -= nbytes;
1578 		total_nr_pages--;
1579 	}
1580 
1581 	if (likely(bio->bi_iter.bi_size)) {
1582 		if (xfs_buf_is_vmapped(bp)) {
1583 			flush_kernel_vmap_range(bp->b_addr,
1584 						xfs_buf_vmap_len(bp));
1585 		}
1586 		submit_bio(bio);
1587 		if (size)
1588 			goto next_chunk;
1589 	} else {
1590 		/*
1591 		 * This is guaranteed not to be the last io reference count
1592 		 * because the caller (xfs_buf_submit) holds a count itself.
1593 		 */
1594 		atomic_dec(&bp->b_io_remaining);
1595 		xfs_buf_ioerror(bp, -EIO);
1596 		bio_put(bio);
1597 	}
1598 
1599 }
1600 
1601 STATIC void
1602 _xfs_buf_ioapply(
1603 	struct xfs_buf	*bp)
1604 {
1605 	struct blk_plug	plug;
1606 	blk_opf_t	op;
1607 	int		offset;
1608 	int		size;
1609 	int		i;
1610 
1611 	/*
1612 	 * Make sure we capture only current IO errors rather than stale errors
1613 	 * left over from previous use of the buffer (e.g. failed readahead).
1614 	 */
1615 	bp->b_error = 0;
1616 
1617 	if (bp->b_flags & XBF_WRITE) {
1618 		op = REQ_OP_WRITE;
1619 
1620 		/*
1621 		 * Run the write verifier callback function if it exists. If
1622 		 * this function fails it will mark the buffer with an error and
1623 		 * the IO should not be dispatched.
1624 		 */
1625 		if (bp->b_ops) {
1626 			bp->b_ops->verify_write(bp);
1627 			if (bp->b_error) {
1628 				xfs_force_shutdown(bp->b_mount,
1629 						   SHUTDOWN_CORRUPT_INCORE);
1630 				return;
1631 			}
1632 		} else if (bp->b_rhash_key != XFS_BUF_DADDR_NULL) {
1633 			struct xfs_mount *mp = bp->b_mount;
1634 
1635 			/*
1636 			 * non-crc filesystems don't attach verifiers during
1637 			 * log recovery, so don't warn for such filesystems.
1638 			 */
1639 			if (xfs_has_crc(mp)) {
1640 				xfs_warn(mp,
1641 					"%s: no buf ops on daddr 0x%llx len %d",
1642 					__func__, xfs_buf_daddr(bp),
1643 					bp->b_length);
1644 				xfs_hex_dump(bp->b_addr,
1645 						XFS_CORRUPTION_DUMP_LEN);
1646 				dump_stack();
1647 			}
1648 		}
1649 	} else {
1650 		op = REQ_OP_READ;
1651 		if (bp->b_flags & XBF_READ_AHEAD)
1652 			op |= REQ_RAHEAD;
1653 	}
1654 
1655 	/* we only use the buffer cache for meta-data */
1656 	op |= REQ_META;
1657 
1658 	/* in-memory targets are directly mapped, no IO required. */
1659 	if (xfs_buftarg_is_mem(bp->b_target)) {
1660 		xfs_buf_ioend(bp);
1661 		return;
1662 	}
1663 
1664 	/*
1665 	 * Walk all the vectors issuing IO on them. Set up the initial offset
1666 	 * into the buffer and the desired IO size before we start -
1667 	 * _xfs_buf_ioapply_vec() will modify them appropriately for each
1668 	 * subsequent call.
1669 	 */
1670 	offset = bp->b_offset;
1671 	size = BBTOB(bp->b_length);
1672 	blk_start_plug(&plug);
1673 	for (i = 0; i < bp->b_map_count; i++) {
1674 		xfs_buf_ioapply_map(bp, i, &offset, &size, op);
1675 		if (bp->b_error)
1676 			break;
1677 		if (size <= 0)
1678 			break;	/* all done */
1679 	}
1680 	blk_finish_plug(&plug);
1681 }
1682 
1683 /*
1684  * Wait for I/O completion of a sync buffer and return the I/O error code.
1685  */
1686 static int
1687 xfs_buf_iowait(
1688 	struct xfs_buf	*bp)
1689 {
1690 	ASSERT(!(bp->b_flags & XBF_ASYNC));
1691 
1692 	trace_xfs_buf_iowait(bp, _RET_IP_);
1693 	wait_for_completion(&bp->b_iowait);
1694 	trace_xfs_buf_iowait_done(bp, _RET_IP_);
1695 
1696 	return bp->b_error;
1697 }
1698 
1699 /*
1700  * Buffer I/O submission path, read or write. Asynchronous submission transfers
1701  * the buffer lock ownership and the current reference to the IO. It is not
1702  * safe to reference the buffer after a call to this function unless the caller
1703  * holds an additional reference itself.
1704  */
1705 static int
1706 __xfs_buf_submit(
1707 	struct xfs_buf	*bp,
1708 	bool		wait)
1709 {
1710 	int		error = 0;
1711 
1712 	trace_xfs_buf_submit(bp, _RET_IP_);
1713 
1714 	ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1715 
1716 	/*
1717 	 * On log shutdown we stale and complete the buffer immediately. We can
1718 	 * be called to read the superblock before the log has been set up, so
1719 	 * be careful checking the log state.
1720 	 *
1721 	 * Checking the mount shutdown state here can result in the log tail
1722 	 * moving inappropriately on disk as the log may not yet be shut down.
1723 	 * i.e. failing this buffer on mount shutdown can remove it from the AIL
1724 	 * and move the tail of the log forwards without having written this
1725 	 * buffer to disk. This corrupts the log tail state in memory, and
1726 	 * because the log may not be shut down yet, it can then be propagated
1727 	 * to disk before the log is shutdown. Hence we check log shutdown
1728 	 * state here rather than mount state to avoid corrupting the log tail
1729 	 * on shutdown.
1730 	 */
1731 	if (bp->b_mount->m_log &&
1732 	    xlog_is_shutdown(bp->b_mount->m_log)) {
1733 		xfs_buf_ioend_fail(bp);
1734 		return -EIO;
1735 	}
1736 
1737 	/*
1738 	 * Grab a reference so the buffer does not go away underneath us. For
1739 	 * async buffers, I/O completion drops the callers reference, which
1740 	 * could occur before submission returns.
1741 	 */
1742 	xfs_buf_hold(bp);
1743 
1744 	if (bp->b_flags & XBF_WRITE)
1745 		xfs_buf_wait_unpin(bp);
1746 
1747 	/* clear the internal error state to avoid spurious errors */
1748 	bp->b_io_error = 0;
1749 
1750 	/*
1751 	 * Set the count to 1 initially, this will stop an I/O completion
1752 	 * callout which happens before we have started all the I/O from calling
1753 	 * xfs_buf_ioend too early.
1754 	 */
1755 	atomic_set(&bp->b_io_remaining, 1);
1756 	if (bp->b_flags & XBF_ASYNC)
1757 		xfs_buf_ioacct_inc(bp);
1758 	_xfs_buf_ioapply(bp);
1759 
1760 	/*
1761 	 * If _xfs_buf_ioapply failed, we can get back here with only the IO
1762 	 * reference we took above. If we drop it to zero, run completion so
1763 	 * that we don't return to the caller with completion still pending.
1764 	 */
1765 	if (atomic_dec_and_test(&bp->b_io_remaining) == 1) {
1766 		if (bp->b_error || !(bp->b_flags & XBF_ASYNC))
1767 			xfs_buf_ioend(bp);
1768 		else
1769 			xfs_buf_ioend_async(bp);
1770 	}
1771 
1772 	if (wait)
1773 		error = xfs_buf_iowait(bp);
1774 
1775 	/*
1776 	 * Release the hold that keeps the buffer referenced for the entire
1777 	 * I/O. Note that if the buffer is async, it is not safe to reference
1778 	 * after this release.
1779 	 */
1780 	xfs_buf_rele(bp);
1781 	return error;
1782 }
1783 
1784 void *
1785 xfs_buf_offset(
1786 	struct xfs_buf		*bp,
1787 	size_t			offset)
1788 {
1789 	struct page		*page;
1790 
1791 	if (bp->b_addr)
1792 		return bp->b_addr + offset;
1793 
1794 	page = bp->b_pages[offset >> PAGE_SHIFT];
1795 	return page_address(page) + (offset & (PAGE_SIZE-1));
1796 }
1797 
1798 void
1799 xfs_buf_zero(
1800 	struct xfs_buf		*bp,
1801 	size_t			boff,
1802 	size_t			bsize)
1803 {
1804 	size_t			bend;
1805 
1806 	bend = boff + bsize;
1807 	while (boff < bend) {
1808 		struct page	*page;
1809 		int		page_index, page_offset, csize;
1810 
1811 		page_index = (boff + bp->b_offset) >> PAGE_SHIFT;
1812 		page_offset = (boff + bp->b_offset) & ~PAGE_MASK;
1813 		page = bp->b_pages[page_index];
1814 		csize = min_t(size_t, PAGE_SIZE - page_offset,
1815 				      BBTOB(bp->b_length) - boff);
1816 
1817 		ASSERT((csize + page_offset) <= PAGE_SIZE);
1818 
1819 		memset(page_address(page) + page_offset, 0, csize);
1820 
1821 		boff += csize;
1822 	}
1823 }
1824 
1825 /*
1826  * Log a message about and stale a buffer that a caller has decided is corrupt.
1827  *
1828  * This function should be called for the kinds of metadata corruption that
1829  * cannot be detect from a verifier, such as incorrect inter-block relationship
1830  * data.  Do /not/ call this function from a verifier function.
1831  *
1832  * The buffer must be XBF_DONE prior to the call.  Afterwards, the buffer will
1833  * be marked stale, but b_error will not be set.  The caller is responsible for
1834  * releasing the buffer or fixing it.
1835  */
1836 void
1837 __xfs_buf_mark_corrupt(
1838 	struct xfs_buf		*bp,
1839 	xfs_failaddr_t		fa)
1840 {
1841 	ASSERT(bp->b_flags & XBF_DONE);
1842 
1843 	xfs_buf_corruption_error(bp, fa);
1844 	xfs_buf_stale(bp);
1845 }
1846 
1847 /*
1848  *	Handling of buffer targets (buftargs).
1849  */
1850 
1851 /*
1852  * Wait for any bufs with callbacks that have been submitted but have not yet
1853  * returned. These buffers will have an elevated hold count, so wait on those
1854  * while freeing all the buffers only held by the LRU.
1855  */
1856 static enum lru_status
1857 xfs_buftarg_drain_rele(
1858 	struct list_head	*item,
1859 	struct list_lru_one	*lru,
1860 	spinlock_t		*lru_lock,
1861 	void			*arg)
1862 
1863 {
1864 	struct xfs_buf		*bp = container_of(item, struct xfs_buf, b_lru);
1865 	struct list_head	*dispose = arg;
1866 
1867 	if (atomic_read(&bp->b_hold) > 1) {
1868 		/* need to wait, so skip it this pass */
1869 		trace_xfs_buf_drain_buftarg(bp, _RET_IP_);
1870 		return LRU_SKIP;
1871 	}
1872 	if (!spin_trylock(&bp->b_lock))
1873 		return LRU_SKIP;
1874 
1875 	/*
1876 	 * clear the LRU reference count so the buffer doesn't get
1877 	 * ignored in xfs_buf_rele().
1878 	 */
1879 	atomic_set(&bp->b_lru_ref, 0);
1880 	bp->b_state |= XFS_BSTATE_DISPOSE;
1881 	list_lru_isolate_move(lru, item, dispose);
1882 	spin_unlock(&bp->b_lock);
1883 	return LRU_REMOVED;
1884 }
1885 
1886 /*
1887  * Wait for outstanding I/O on the buftarg to complete.
1888  */
1889 void
1890 xfs_buftarg_wait(
1891 	struct xfs_buftarg	*btp)
1892 {
1893 	/*
1894 	 * First wait on the buftarg I/O count for all in-flight buffers to be
1895 	 * released. This is critical as new buffers do not make the LRU until
1896 	 * they are released.
1897 	 *
1898 	 * Next, flush the buffer workqueue to ensure all completion processing
1899 	 * has finished. Just waiting on buffer locks is not sufficient for
1900 	 * async IO as the reference count held over IO is not released until
1901 	 * after the buffer lock is dropped. Hence we need to ensure here that
1902 	 * all reference counts have been dropped before we start walking the
1903 	 * LRU list.
1904 	 */
1905 	while (percpu_counter_sum(&btp->bt_io_count))
1906 		delay(100);
1907 	flush_workqueue(btp->bt_mount->m_buf_workqueue);
1908 }
1909 
1910 void
1911 xfs_buftarg_drain(
1912 	struct xfs_buftarg	*btp)
1913 {
1914 	LIST_HEAD(dispose);
1915 	int			loop = 0;
1916 	bool			write_fail = false;
1917 
1918 	xfs_buftarg_wait(btp);
1919 
1920 	/* loop until there is nothing left on the lru list. */
1921 	while (list_lru_count(&btp->bt_lru)) {
1922 		list_lru_walk(&btp->bt_lru, xfs_buftarg_drain_rele,
1923 			      &dispose, LONG_MAX);
1924 
1925 		while (!list_empty(&dispose)) {
1926 			struct xfs_buf *bp;
1927 			bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1928 			list_del_init(&bp->b_lru);
1929 			if (bp->b_flags & XBF_WRITE_FAIL) {
1930 				write_fail = true;
1931 				xfs_buf_alert_ratelimited(bp,
1932 					"XFS: Corruption Alert",
1933 "Corruption Alert: Buffer at daddr 0x%llx had permanent write failures!",
1934 					(long long)xfs_buf_daddr(bp));
1935 			}
1936 			xfs_buf_rele(bp);
1937 		}
1938 		if (loop++ != 0)
1939 			delay(100);
1940 	}
1941 
1942 	/*
1943 	 * If one or more failed buffers were freed, that means dirty metadata
1944 	 * was thrown away. This should only ever happen after I/O completion
1945 	 * handling has elevated I/O error(s) to permanent failures and shuts
1946 	 * down the journal.
1947 	 */
1948 	if (write_fail) {
1949 		ASSERT(xlog_is_shutdown(btp->bt_mount->m_log));
1950 		xfs_alert(btp->bt_mount,
1951 	      "Please run xfs_repair to determine the extent of the problem.");
1952 	}
1953 }
1954 
1955 static enum lru_status
1956 xfs_buftarg_isolate(
1957 	struct list_head	*item,
1958 	struct list_lru_one	*lru,
1959 	spinlock_t		*lru_lock,
1960 	void			*arg)
1961 {
1962 	struct xfs_buf		*bp = container_of(item, struct xfs_buf, b_lru);
1963 	struct list_head	*dispose = arg;
1964 
1965 	/*
1966 	 * we are inverting the lru lock/bp->b_lock here, so use a trylock.
1967 	 * If we fail to get the lock, just skip it.
1968 	 */
1969 	if (!spin_trylock(&bp->b_lock))
1970 		return LRU_SKIP;
1971 	/*
1972 	 * Decrement the b_lru_ref count unless the value is already
1973 	 * zero. If the value is already zero, we need to reclaim the
1974 	 * buffer, otherwise it gets another trip through the LRU.
1975 	 */
1976 	if (atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
1977 		spin_unlock(&bp->b_lock);
1978 		return LRU_ROTATE;
1979 	}
1980 
1981 	bp->b_state |= XFS_BSTATE_DISPOSE;
1982 	list_lru_isolate_move(lru, item, dispose);
1983 	spin_unlock(&bp->b_lock);
1984 	return LRU_REMOVED;
1985 }
1986 
1987 static unsigned long
1988 xfs_buftarg_shrink_scan(
1989 	struct shrinker		*shrink,
1990 	struct shrink_control	*sc)
1991 {
1992 	struct xfs_buftarg	*btp = shrink->private_data;
1993 	LIST_HEAD(dispose);
1994 	unsigned long		freed;
1995 
1996 	freed = list_lru_shrink_walk(&btp->bt_lru, sc,
1997 				     xfs_buftarg_isolate, &dispose);
1998 
1999 	while (!list_empty(&dispose)) {
2000 		struct xfs_buf *bp;
2001 		bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
2002 		list_del_init(&bp->b_lru);
2003 		xfs_buf_rele(bp);
2004 	}
2005 
2006 	return freed;
2007 }
2008 
2009 static unsigned long
2010 xfs_buftarg_shrink_count(
2011 	struct shrinker		*shrink,
2012 	struct shrink_control	*sc)
2013 {
2014 	struct xfs_buftarg	*btp = shrink->private_data;
2015 	return list_lru_shrink_count(&btp->bt_lru, sc);
2016 }
2017 
2018 void
2019 xfs_destroy_buftarg(
2020 	struct xfs_buftarg	*btp)
2021 {
2022 	shrinker_free(btp->bt_shrinker);
2023 	ASSERT(percpu_counter_sum(&btp->bt_io_count) == 0);
2024 	percpu_counter_destroy(&btp->bt_io_count);
2025 	list_lru_destroy(&btp->bt_lru);
2026 }
2027 
2028 void
2029 xfs_free_buftarg(
2030 	struct xfs_buftarg	*btp)
2031 {
2032 	xfs_destroy_buftarg(btp);
2033 	fs_put_dax(btp->bt_daxdev, btp->bt_mount);
2034 	/* the main block device is closed by kill_block_super */
2035 	if (btp->bt_bdev != btp->bt_mount->m_super->s_bdev)
2036 		bdev_fput(btp->bt_bdev_file);
2037 	kfree(btp);
2038 }
2039 
2040 int
2041 xfs_setsize_buftarg(
2042 	struct xfs_buftarg	*btp,
2043 	unsigned int		sectorsize)
2044 {
2045 	/* Set up metadata sector size info */
2046 	btp->bt_meta_sectorsize = sectorsize;
2047 	btp->bt_meta_sectormask = sectorsize - 1;
2048 
2049 	if (set_blocksize(btp->bt_bdev_file, sectorsize)) {
2050 		xfs_warn(btp->bt_mount,
2051 			"Cannot set_blocksize to %u on device %pg",
2052 			sectorsize, btp->bt_bdev);
2053 		return -EINVAL;
2054 	}
2055 
2056 	return 0;
2057 }
2058 
2059 int
2060 xfs_init_buftarg(
2061 	struct xfs_buftarg		*btp,
2062 	size_t				logical_sectorsize,
2063 	const char			*descr)
2064 {
2065 	/* Set up device logical sector size mask */
2066 	btp->bt_logical_sectorsize = logical_sectorsize;
2067 	btp->bt_logical_sectormask = logical_sectorsize - 1;
2068 
2069 	/*
2070 	 * Buffer IO error rate limiting. Limit it to no more than 10 messages
2071 	 * per 30 seconds so as to not spam logs too much on repeated errors.
2072 	 */
2073 	ratelimit_state_init(&btp->bt_ioerror_rl, 30 * HZ,
2074 			     DEFAULT_RATELIMIT_BURST);
2075 
2076 	if (list_lru_init(&btp->bt_lru))
2077 		return -ENOMEM;
2078 	if (percpu_counter_init(&btp->bt_io_count, 0, GFP_KERNEL))
2079 		goto out_destroy_lru;
2080 
2081 	btp->bt_shrinker =
2082 		shrinker_alloc(SHRINKER_NUMA_AWARE, "xfs-buf:%s", descr);
2083 	if (!btp->bt_shrinker)
2084 		goto out_destroy_io_count;
2085 	btp->bt_shrinker->count_objects = xfs_buftarg_shrink_count;
2086 	btp->bt_shrinker->scan_objects = xfs_buftarg_shrink_scan;
2087 	btp->bt_shrinker->private_data = btp;
2088 	shrinker_register(btp->bt_shrinker);
2089 	return 0;
2090 
2091 out_destroy_io_count:
2092 	percpu_counter_destroy(&btp->bt_io_count);
2093 out_destroy_lru:
2094 	list_lru_destroy(&btp->bt_lru);
2095 	return -ENOMEM;
2096 }
2097 
2098 struct xfs_buftarg *
2099 xfs_alloc_buftarg(
2100 	struct xfs_mount	*mp,
2101 	struct file		*bdev_file)
2102 {
2103 	struct xfs_buftarg	*btp;
2104 	const struct dax_holder_operations *ops = NULL;
2105 
2106 #if defined(CONFIG_FS_DAX) && defined(CONFIG_MEMORY_FAILURE)
2107 	ops = &xfs_dax_holder_operations;
2108 #endif
2109 	btp = kzalloc(sizeof(*btp), GFP_KERNEL | __GFP_NOFAIL);
2110 
2111 	btp->bt_mount = mp;
2112 	btp->bt_bdev_file = bdev_file;
2113 	btp->bt_bdev = file_bdev(bdev_file);
2114 	btp->bt_dev = btp->bt_bdev->bd_dev;
2115 	btp->bt_daxdev = fs_dax_get_by_bdev(btp->bt_bdev, &btp->bt_dax_part_off,
2116 					    mp, ops);
2117 
2118 	/*
2119 	 * When allocating the buftargs we have not yet read the super block and
2120 	 * thus don't know the file system sector size yet.
2121 	 */
2122 	if (xfs_setsize_buftarg(btp, bdev_logical_block_size(btp->bt_bdev)))
2123 		goto error_free;
2124 	if (xfs_init_buftarg(btp, bdev_logical_block_size(btp->bt_bdev),
2125 			mp->m_super->s_id))
2126 		goto error_free;
2127 
2128 	return btp;
2129 
2130 error_free:
2131 	kfree(btp);
2132 	return NULL;
2133 }
2134 
2135 static inline void
2136 xfs_buf_list_del(
2137 	struct xfs_buf		*bp)
2138 {
2139 	list_del_init(&bp->b_list);
2140 	wake_up_var(&bp->b_list);
2141 }
2142 
2143 /*
2144  * Cancel a delayed write list.
2145  *
2146  * Remove each buffer from the list, clear the delwri queue flag and drop the
2147  * associated buffer reference.
2148  */
2149 void
2150 xfs_buf_delwri_cancel(
2151 	struct list_head	*list)
2152 {
2153 	struct xfs_buf		*bp;
2154 
2155 	while (!list_empty(list)) {
2156 		bp = list_first_entry(list, struct xfs_buf, b_list);
2157 
2158 		xfs_buf_lock(bp);
2159 		bp->b_flags &= ~_XBF_DELWRI_Q;
2160 		xfs_buf_list_del(bp);
2161 		xfs_buf_relse(bp);
2162 	}
2163 }
2164 
2165 /*
2166  * Add a buffer to the delayed write list.
2167  *
2168  * This queues a buffer for writeout if it hasn't already been.  Note that
2169  * neither this routine nor the buffer list submission functions perform
2170  * any internal synchronization.  It is expected that the lists are thread-local
2171  * to the callers.
2172  *
2173  * Returns true if we queued up the buffer, or false if it already had
2174  * been on the buffer list.
2175  */
2176 bool
2177 xfs_buf_delwri_queue(
2178 	struct xfs_buf		*bp,
2179 	struct list_head	*list)
2180 {
2181 	ASSERT(xfs_buf_islocked(bp));
2182 	ASSERT(!(bp->b_flags & XBF_READ));
2183 
2184 	/*
2185 	 * If the buffer is already marked delwri it already is queued up
2186 	 * by someone else for imediate writeout.  Just ignore it in that
2187 	 * case.
2188 	 */
2189 	if (bp->b_flags & _XBF_DELWRI_Q) {
2190 		trace_xfs_buf_delwri_queued(bp, _RET_IP_);
2191 		return false;
2192 	}
2193 
2194 	trace_xfs_buf_delwri_queue(bp, _RET_IP_);
2195 
2196 	/*
2197 	 * If a buffer gets written out synchronously or marked stale while it
2198 	 * is on a delwri list we lazily remove it. To do this, the other party
2199 	 * clears the  _XBF_DELWRI_Q flag but otherwise leaves the buffer alone.
2200 	 * It remains referenced and on the list.  In a rare corner case it
2201 	 * might get readded to a delwri list after the synchronous writeout, in
2202 	 * which case we need just need to re-add the flag here.
2203 	 */
2204 	bp->b_flags |= _XBF_DELWRI_Q;
2205 	if (list_empty(&bp->b_list)) {
2206 		atomic_inc(&bp->b_hold);
2207 		list_add_tail(&bp->b_list, list);
2208 	}
2209 
2210 	return true;
2211 }
2212 
2213 /*
2214  * Queue a buffer to this delwri list as part of a data integrity operation.
2215  * If the buffer is on any other delwri list, we'll wait for that to clear
2216  * so that the caller can submit the buffer for IO and wait for the result.
2217  * Callers must ensure the buffer is not already on the list.
2218  */
2219 void
2220 xfs_buf_delwri_queue_here(
2221 	struct xfs_buf		*bp,
2222 	struct list_head	*buffer_list)
2223 {
2224 	/*
2225 	 * We need this buffer to end up on the /caller's/ delwri list, not any
2226 	 * old list.  This can happen if the buffer is marked stale (which
2227 	 * clears DELWRI_Q) after the AIL queues the buffer to its list but
2228 	 * before the AIL has a chance to submit the list.
2229 	 */
2230 	while (!list_empty(&bp->b_list)) {
2231 		xfs_buf_unlock(bp);
2232 		wait_var_event(&bp->b_list, list_empty(&bp->b_list));
2233 		xfs_buf_lock(bp);
2234 	}
2235 
2236 	ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
2237 
2238 	xfs_buf_delwri_queue(bp, buffer_list);
2239 }
2240 
2241 /*
2242  * Compare function is more complex than it needs to be because
2243  * the return value is only 32 bits and we are doing comparisons
2244  * on 64 bit values
2245  */
2246 static int
2247 xfs_buf_cmp(
2248 	void			*priv,
2249 	const struct list_head	*a,
2250 	const struct list_head	*b)
2251 {
2252 	struct xfs_buf	*ap = container_of(a, struct xfs_buf, b_list);
2253 	struct xfs_buf	*bp = container_of(b, struct xfs_buf, b_list);
2254 	xfs_daddr_t		diff;
2255 
2256 	diff = ap->b_maps[0].bm_bn - bp->b_maps[0].bm_bn;
2257 	if (diff < 0)
2258 		return -1;
2259 	if (diff > 0)
2260 		return 1;
2261 	return 0;
2262 }
2263 
2264 /*
2265  * Submit buffers for write. If wait_list is specified, the buffers are
2266  * submitted using sync I/O and placed on the wait list such that the caller can
2267  * iowait each buffer. Otherwise async I/O is used and the buffers are released
2268  * at I/O completion time. In either case, buffers remain locked until I/O
2269  * completes and the buffer is released from the queue.
2270  */
2271 static int
2272 xfs_buf_delwri_submit_buffers(
2273 	struct list_head	*buffer_list,
2274 	struct list_head	*wait_list)
2275 {
2276 	struct xfs_buf		*bp, *n;
2277 	int			pinned = 0;
2278 	struct blk_plug		plug;
2279 
2280 	list_sort(NULL, buffer_list, xfs_buf_cmp);
2281 
2282 	blk_start_plug(&plug);
2283 	list_for_each_entry_safe(bp, n, buffer_list, b_list) {
2284 		if (!wait_list) {
2285 			if (!xfs_buf_trylock(bp))
2286 				continue;
2287 			if (xfs_buf_ispinned(bp)) {
2288 				xfs_buf_unlock(bp);
2289 				pinned++;
2290 				continue;
2291 			}
2292 		} else {
2293 			xfs_buf_lock(bp);
2294 		}
2295 
2296 		/*
2297 		 * Someone else might have written the buffer synchronously or
2298 		 * marked it stale in the meantime.  In that case only the
2299 		 * _XBF_DELWRI_Q flag got cleared, and we have to drop the
2300 		 * reference and remove it from the list here.
2301 		 */
2302 		if (!(bp->b_flags & _XBF_DELWRI_Q)) {
2303 			xfs_buf_list_del(bp);
2304 			xfs_buf_relse(bp);
2305 			continue;
2306 		}
2307 
2308 		trace_xfs_buf_delwri_split(bp, _RET_IP_);
2309 
2310 		/*
2311 		 * If we have a wait list, each buffer (and associated delwri
2312 		 * queue reference) transfers to it and is submitted
2313 		 * synchronously. Otherwise, drop the buffer from the delwri
2314 		 * queue and submit async.
2315 		 */
2316 		bp->b_flags &= ~_XBF_DELWRI_Q;
2317 		bp->b_flags |= XBF_WRITE;
2318 		if (wait_list) {
2319 			bp->b_flags &= ~XBF_ASYNC;
2320 			list_move_tail(&bp->b_list, wait_list);
2321 		} else {
2322 			bp->b_flags |= XBF_ASYNC;
2323 			xfs_buf_list_del(bp);
2324 		}
2325 		__xfs_buf_submit(bp, false);
2326 	}
2327 	blk_finish_plug(&plug);
2328 
2329 	return pinned;
2330 }
2331 
2332 /*
2333  * Write out a buffer list asynchronously.
2334  *
2335  * This will take the @buffer_list, write all non-locked and non-pinned buffers
2336  * out and not wait for I/O completion on any of the buffers.  This interface
2337  * is only safely useable for callers that can track I/O completion by higher
2338  * level means, e.g. AIL pushing as the @buffer_list is consumed in this
2339  * function.
2340  *
2341  * Note: this function will skip buffers it would block on, and in doing so
2342  * leaves them on @buffer_list so they can be retried on a later pass. As such,
2343  * it is up to the caller to ensure that the buffer list is fully submitted or
2344  * cancelled appropriately when they are finished with the list. Failure to
2345  * cancel or resubmit the list until it is empty will result in leaked buffers
2346  * at unmount time.
2347  */
2348 int
2349 xfs_buf_delwri_submit_nowait(
2350 	struct list_head	*buffer_list)
2351 {
2352 	return xfs_buf_delwri_submit_buffers(buffer_list, NULL);
2353 }
2354 
2355 /*
2356  * Write out a buffer list synchronously.
2357  *
2358  * This will take the @buffer_list, write all buffers out and wait for I/O
2359  * completion on all of the buffers. @buffer_list is consumed by the function,
2360  * so callers must have some other way of tracking buffers if they require such
2361  * functionality.
2362  */
2363 int
2364 xfs_buf_delwri_submit(
2365 	struct list_head	*buffer_list)
2366 {
2367 	LIST_HEAD		(wait_list);
2368 	int			error = 0, error2;
2369 	struct xfs_buf		*bp;
2370 
2371 	xfs_buf_delwri_submit_buffers(buffer_list, &wait_list);
2372 
2373 	/* Wait for IO to complete. */
2374 	while (!list_empty(&wait_list)) {
2375 		bp = list_first_entry(&wait_list, struct xfs_buf, b_list);
2376 
2377 		xfs_buf_list_del(bp);
2378 
2379 		/*
2380 		 * Wait on the locked buffer, check for errors and unlock and
2381 		 * release the delwri queue reference.
2382 		 */
2383 		error2 = xfs_buf_iowait(bp);
2384 		xfs_buf_relse(bp);
2385 		if (!error)
2386 			error = error2;
2387 	}
2388 
2389 	return error;
2390 }
2391 
2392 /*
2393  * Push a single buffer on a delwri queue.
2394  *
2395  * The purpose of this function is to submit a single buffer of a delwri queue
2396  * and return with the buffer still on the original queue. The waiting delwri
2397  * buffer submission infrastructure guarantees transfer of the delwri queue
2398  * buffer reference to a temporary wait list. We reuse this infrastructure to
2399  * transfer the buffer back to the original queue.
2400  *
2401  * Note the buffer transitions from the queued state, to the submitted and wait
2402  * listed state and back to the queued state during this call. The buffer
2403  * locking and queue management logic between _delwri_pushbuf() and
2404  * _delwri_queue() guarantee that the buffer cannot be queued to another list
2405  * before returning.
2406  */
2407 int
2408 xfs_buf_delwri_pushbuf(
2409 	struct xfs_buf		*bp,
2410 	struct list_head	*buffer_list)
2411 {
2412 	LIST_HEAD		(submit_list);
2413 	int			error;
2414 
2415 	ASSERT(bp->b_flags & _XBF_DELWRI_Q);
2416 
2417 	trace_xfs_buf_delwri_pushbuf(bp, _RET_IP_);
2418 
2419 	/*
2420 	 * Isolate the buffer to a new local list so we can submit it for I/O
2421 	 * independently from the rest of the original list.
2422 	 */
2423 	xfs_buf_lock(bp);
2424 	list_move(&bp->b_list, &submit_list);
2425 	xfs_buf_unlock(bp);
2426 
2427 	/*
2428 	 * Delwri submission clears the DELWRI_Q buffer flag and returns with
2429 	 * the buffer on the wait list with the original reference. Rather than
2430 	 * bounce the buffer from a local wait list back to the original list
2431 	 * after I/O completion, reuse the original list as the wait list.
2432 	 */
2433 	xfs_buf_delwri_submit_buffers(&submit_list, buffer_list);
2434 
2435 	/*
2436 	 * The buffer is now locked, under I/O and wait listed on the original
2437 	 * delwri queue. Wait for I/O completion, restore the DELWRI_Q flag and
2438 	 * return with the buffer unlocked and on the original queue.
2439 	 */
2440 	error = xfs_buf_iowait(bp);
2441 	bp->b_flags |= _XBF_DELWRI_Q;
2442 	xfs_buf_unlock(bp);
2443 
2444 	return error;
2445 }
2446 
2447 void xfs_buf_set_ref(struct xfs_buf *bp, int lru_ref)
2448 {
2449 	/*
2450 	 * Set the lru reference count to 0 based on the error injection tag.
2451 	 * This allows userspace to disrupt buffer caching for debug/testing
2452 	 * purposes.
2453 	 */
2454 	if (XFS_TEST_ERROR(false, bp->b_mount, XFS_ERRTAG_BUF_LRU_REF))
2455 		lru_ref = 0;
2456 
2457 	atomic_set(&bp->b_lru_ref, lru_ref);
2458 }
2459 
2460 /*
2461  * Verify an on-disk magic value against the magic value specified in the
2462  * verifier structure. The verifier magic is in disk byte order so the caller is
2463  * expected to pass the value directly from disk.
2464  */
2465 bool
2466 xfs_verify_magic(
2467 	struct xfs_buf		*bp,
2468 	__be32			dmagic)
2469 {
2470 	struct xfs_mount	*mp = bp->b_mount;
2471 	int			idx;
2472 
2473 	idx = xfs_has_crc(mp);
2474 	if (WARN_ON(!bp->b_ops || !bp->b_ops->magic[idx]))
2475 		return false;
2476 	return dmagic == bp->b_ops->magic[idx];
2477 }
2478 /*
2479  * Verify an on-disk magic value against the magic value specified in the
2480  * verifier structure. The verifier magic is in disk byte order so the caller is
2481  * expected to pass the value directly from disk.
2482  */
2483 bool
2484 xfs_verify_magic16(
2485 	struct xfs_buf		*bp,
2486 	__be16			dmagic)
2487 {
2488 	struct xfs_mount	*mp = bp->b_mount;
2489 	int			idx;
2490 
2491 	idx = xfs_has_crc(mp);
2492 	if (WARN_ON(!bp->b_ops || !bp->b_ops->magic16[idx]))
2493 		return false;
2494 	return dmagic == bp->b_ops->magic16[idx];
2495 }
2496