xref: /linux/fs/xfs/xfs_buf.c (revision 63d6e721527e175edbbe8513cba8e4a0caf94da5)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include <linux/backing-dev.h>
8 
9 #include "xfs_shared.h"
10 #include "xfs_format.h"
11 #include "xfs_log_format.h"
12 #include "xfs_trans_resv.h"
13 #include "xfs_sb.h"
14 #include "xfs_mount.h"
15 #include "xfs_trace.h"
16 #include "xfs_log.h"
17 #include "xfs_errortag.h"
18 #include "xfs_error.h"
19 
20 static kmem_zone_t *xfs_buf_zone;
21 
22 #define xb_to_gfp(flags) \
23 	((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : GFP_NOFS) | __GFP_NOWARN)
24 
25 /*
26  * Locking orders
27  *
28  * xfs_buf_ioacct_inc:
29  * xfs_buf_ioacct_dec:
30  *	b_sema (caller holds)
31  *	  b_lock
32  *
33  * xfs_buf_stale:
34  *	b_sema (caller holds)
35  *	  b_lock
36  *	    lru_lock
37  *
38  * xfs_buf_rele:
39  *	b_lock
40  *	  pag_buf_lock
41  *	    lru_lock
42  *
43  * xfs_buftarg_wait_rele
44  *	lru_lock
45  *	  b_lock (trylock due to inversion)
46  *
47  * xfs_buftarg_isolate
48  *	lru_lock
49  *	  b_lock (trylock due to inversion)
50  */
51 
52 static inline int
53 xfs_buf_is_vmapped(
54 	struct xfs_buf	*bp)
55 {
56 	/*
57 	 * Return true if the buffer is vmapped.
58 	 *
59 	 * b_addr is null if the buffer is not mapped, but the code is clever
60 	 * enough to know it doesn't have to map a single page, so the check has
61 	 * to be both for b_addr and bp->b_page_count > 1.
62 	 */
63 	return bp->b_addr && bp->b_page_count > 1;
64 }
65 
66 static inline int
67 xfs_buf_vmap_len(
68 	struct xfs_buf	*bp)
69 {
70 	return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
71 }
72 
73 /*
74  * Bump the I/O in flight count on the buftarg if we haven't yet done so for
75  * this buffer. The count is incremented once per buffer (per hold cycle)
76  * because the corresponding decrement is deferred to buffer release. Buffers
77  * can undergo I/O multiple times in a hold-release cycle and per buffer I/O
78  * tracking adds unnecessary overhead. This is used for sychronization purposes
79  * with unmount (see xfs_wait_buftarg()), so all we really need is a count of
80  * in-flight buffers.
81  *
82  * Buffers that are never released (e.g., superblock, iclog buffers) must set
83  * the XBF_NO_IOACCT flag before I/O submission. Otherwise, the buftarg count
84  * never reaches zero and unmount hangs indefinitely.
85  */
86 static inline void
87 xfs_buf_ioacct_inc(
88 	struct xfs_buf	*bp)
89 {
90 	if (bp->b_flags & XBF_NO_IOACCT)
91 		return;
92 
93 	ASSERT(bp->b_flags & XBF_ASYNC);
94 	spin_lock(&bp->b_lock);
95 	if (!(bp->b_state & XFS_BSTATE_IN_FLIGHT)) {
96 		bp->b_state |= XFS_BSTATE_IN_FLIGHT;
97 		percpu_counter_inc(&bp->b_target->bt_io_count);
98 	}
99 	spin_unlock(&bp->b_lock);
100 }
101 
102 /*
103  * Clear the in-flight state on a buffer about to be released to the LRU or
104  * freed and unaccount from the buftarg.
105  */
106 static inline void
107 __xfs_buf_ioacct_dec(
108 	struct xfs_buf	*bp)
109 {
110 	lockdep_assert_held(&bp->b_lock);
111 
112 	if (bp->b_state & XFS_BSTATE_IN_FLIGHT) {
113 		bp->b_state &= ~XFS_BSTATE_IN_FLIGHT;
114 		percpu_counter_dec(&bp->b_target->bt_io_count);
115 	}
116 }
117 
118 static inline void
119 xfs_buf_ioacct_dec(
120 	struct xfs_buf	*bp)
121 {
122 	spin_lock(&bp->b_lock);
123 	__xfs_buf_ioacct_dec(bp);
124 	spin_unlock(&bp->b_lock);
125 }
126 
127 /*
128  * When we mark a buffer stale, we remove the buffer from the LRU and clear the
129  * b_lru_ref count so that the buffer is freed immediately when the buffer
130  * reference count falls to zero. If the buffer is already on the LRU, we need
131  * to remove the reference that LRU holds on the buffer.
132  *
133  * This prevents build-up of stale buffers on the LRU.
134  */
135 void
136 xfs_buf_stale(
137 	struct xfs_buf	*bp)
138 {
139 	ASSERT(xfs_buf_islocked(bp));
140 
141 	bp->b_flags |= XBF_STALE;
142 
143 	/*
144 	 * Clear the delwri status so that a delwri queue walker will not
145 	 * flush this buffer to disk now that it is stale. The delwri queue has
146 	 * a reference to the buffer, so this is safe to do.
147 	 */
148 	bp->b_flags &= ~_XBF_DELWRI_Q;
149 
150 	/*
151 	 * Once the buffer is marked stale and unlocked, a subsequent lookup
152 	 * could reset b_flags. There is no guarantee that the buffer is
153 	 * unaccounted (released to LRU) before that occurs. Drop in-flight
154 	 * status now to preserve accounting consistency.
155 	 */
156 	spin_lock(&bp->b_lock);
157 	__xfs_buf_ioacct_dec(bp);
158 
159 	atomic_set(&bp->b_lru_ref, 0);
160 	if (!(bp->b_state & XFS_BSTATE_DISPOSE) &&
161 	    (list_lru_del(&bp->b_target->bt_lru, &bp->b_lru)))
162 		atomic_dec(&bp->b_hold);
163 
164 	ASSERT(atomic_read(&bp->b_hold) >= 1);
165 	spin_unlock(&bp->b_lock);
166 }
167 
168 static int
169 xfs_buf_get_maps(
170 	struct xfs_buf		*bp,
171 	int			map_count)
172 {
173 	ASSERT(bp->b_maps == NULL);
174 	bp->b_map_count = map_count;
175 
176 	if (map_count == 1) {
177 		bp->b_maps = &bp->__b_map;
178 		return 0;
179 	}
180 
181 	bp->b_maps = kmem_zalloc(map_count * sizeof(struct xfs_buf_map),
182 				KM_NOFS);
183 	if (!bp->b_maps)
184 		return -ENOMEM;
185 	return 0;
186 }
187 
188 /*
189  *	Frees b_pages if it was allocated.
190  */
191 static void
192 xfs_buf_free_maps(
193 	struct xfs_buf	*bp)
194 {
195 	if (bp->b_maps != &bp->__b_map) {
196 		kmem_free(bp->b_maps);
197 		bp->b_maps = NULL;
198 	}
199 }
200 
201 static int
202 _xfs_buf_alloc(
203 	struct xfs_buftarg	*target,
204 	struct xfs_buf_map	*map,
205 	int			nmaps,
206 	xfs_buf_flags_t		flags,
207 	struct xfs_buf		**bpp)
208 {
209 	struct xfs_buf		*bp;
210 	int			error;
211 	int			i;
212 
213 	*bpp = NULL;
214 	bp = kmem_zone_zalloc(xfs_buf_zone, KM_NOFS);
215 	if (unlikely(!bp))
216 		return -ENOMEM;
217 
218 	/*
219 	 * We don't want certain flags to appear in b_flags unless they are
220 	 * specifically set by later operations on the buffer.
221 	 */
222 	flags &= ~(XBF_UNMAPPED | XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD);
223 
224 	atomic_set(&bp->b_hold, 1);
225 	atomic_set(&bp->b_lru_ref, 1);
226 	init_completion(&bp->b_iowait);
227 	INIT_LIST_HEAD(&bp->b_lru);
228 	INIT_LIST_HEAD(&bp->b_list);
229 	INIT_LIST_HEAD(&bp->b_li_list);
230 	sema_init(&bp->b_sema, 0); /* held, no waiters */
231 	spin_lock_init(&bp->b_lock);
232 	bp->b_target = target;
233 	bp->b_mount = target->bt_mount;
234 	bp->b_flags = flags;
235 
236 	/*
237 	 * Set length and io_length to the same value initially.
238 	 * I/O routines should use io_length, which will be the same in
239 	 * most cases but may be reset (e.g. XFS recovery).
240 	 */
241 	error = xfs_buf_get_maps(bp, nmaps);
242 	if (error)  {
243 		kmem_cache_free(xfs_buf_zone, bp);
244 		return error;
245 	}
246 
247 	bp->b_bn = map[0].bm_bn;
248 	bp->b_length = 0;
249 	for (i = 0; i < nmaps; i++) {
250 		bp->b_maps[i].bm_bn = map[i].bm_bn;
251 		bp->b_maps[i].bm_len = map[i].bm_len;
252 		bp->b_length += map[i].bm_len;
253 	}
254 
255 	atomic_set(&bp->b_pin_count, 0);
256 	init_waitqueue_head(&bp->b_waiters);
257 
258 	XFS_STATS_INC(bp->b_mount, xb_create);
259 	trace_xfs_buf_init(bp, _RET_IP_);
260 
261 	*bpp = bp;
262 	return 0;
263 }
264 
265 /*
266  *	Allocate a page array capable of holding a specified number
267  *	of pages, and point the page buf at it.
268  */
269 STATIC int
270 _xfs_buf_get_pages(
271 	xfs_buf_t		*bp,
272 	int			page_count)
273 {
274 	/* Make sure that we have a page list */
275 	if (bp->b_pages == NULL) {
276 		bp->b_page_count = page_count;
277 		if (page_count <= XB_PAGES) {
278 			bp->b_pages = bp->b_page_array;
279 		} else {
280 			bp->b_pages = kmem_alloc(sizeof(struct page *) *
281 						 page_count, KM_NOFS);
282 			if (bp->b_pages == NULL)
283 				return -ENOMEM;
284 		}
285 		memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
286 	}
287 	return 0;
288 }
289 
290 /*
291  *	Frees b_pages if it was allocated.
292  */
293 STATIC void
294 _xfs_buf_free_pages(
295 	xfs_buf_t	*bp)
296 {
297 	if (bp->b_pages != bp->b_page_array) {
298 		kmem_free(bp->b_pages);
299 		bp->b_pages = NULL;
300 	}
301 }
302 
303 /*
304  *	Releases the specified buffer.
305  *
306  * 	The modification state of any associated pages is left unchanged.
307  * 	The buffer must not be on any hash - use xfs_buf_rele instead for
308  * 	hashed and refcounted buffers
309  */
310 static void
311 xfs_buf_free(
312 	xfs_buf_t		*bp)
313 {
314 	trace_xfs_buf_free(bp, _RET_IP_);
315 
316 	ASSERT(list_empty(&bp->b_lru));
317 
318 	if (bp->b_flags & _XBF_PAGES) {
319 		uint		i;
320 
321 		if (xfs_buf_is_vmapped(bp))
322 			vm_unmap_ram(bp->b_addr - bp->b_offset,
323 					bp->b_page_count);
324 
325 		for (i = 0; i < bp->b_page_count; i++) {
326 			struct page	*page = bp->b_pages[i];
327 
328 			__free_page(page);
329 		}
330 	} else if (bp->b_flags & _XBF_KMEM)
331 		kmem_free(bp->b_addr);
332 	_xfs_buf_free_pages(bp);
333 	xfs_buf_free_maps(bp);
334 	kmem_cache_free(xfs_buf_zone, bp);
335 }
336 
337 /*
338  * Allocates all the pages for buffer in question and builds it's page list.
339  */
340 STATIC int
341 xfs_buf_allocate_memory(
342 	xfs_buf_t		*bp,
343 	uint			flags)
344 {
345 	size_t			size;
346 	size_t			nbytes, offset;
347 	gfp_t			gfp_mask = xb_to_gfp(flags);
348 	unsigned short		page_count, i;
349 	xfs_off_t		start, end;
350 	int			error;
351 	xfs_km_flags_t		kmflag_mask = 0;
352 
353 	/*
354 	 * assure zeroed buffer for non-read cases.
355 	 */
356 	if (!(flags & XBF_READ)) {
357 		kmflag_mask |= KM_ZERO;
358 		gfp_mask |= __GFP_ZERO;
359 	}
360 
361 	/*
362 	 * for buffers that are contained within a single page, just allocate
363 	 * the memory from the heap - there's no need for the complexity of
364 	 * page arrays to keep allocation down to order 0.
365 	 */
366 	size = BBTOB(bp->b_length);
367 	if (size < PAGE_SIZE) {
368 		int align_mask = xfs_buftarg_dma_alignment(bp->b_target);
369 		bp->b_addr = kmem_alloc_io(size, align_mask,
370 					   KM_NOFS | kmflag_mask);
371 		if (!bp->b_addr) {
372 			/* low memory - use alloc_page loop instead */
373 			goto use_alloc_page;
374 		}
375 
376 		if (((unsigned long)(bp->b_addr + size - 1) & PAGE_MASK) !=
377 		    ((unsigned long)bp->b_addr & PAGE_MASK)) {
378 			/* b_addr spans two pages - use alloc_page instead */
379 			kmem_free(bp->b_addr);
380 			bp->b_addr = NULL;
381 			goto use_alloc_page;
382 		}
383 		bp->b_offset = offset_in_page(bp->b_addr);
384 		bp->b_pages = bp->b_page_array;
385 		bp->b_pages[0] = kmem_to_page(bp->b_addr);
386 		bp->b_page_count = 1;
387 		bp->b_flags |= _XBF_KMEM;
388 		return 0;
389 	}
390 
391 use_alloc_page:
392 	start = BBTOB(bp->b_maps[0].bm_bn) >> PAGE_SHIFT;
393 	end = (BBTOB(bp->b_maps[0].bm_bn + bp->b_length) + PAGE_SIZE - 1)
394 								>> PAGE_SHIFT;
395 	page_count = end - start;
396 	error = _xfs_buf_get_pages(bp, page_count);
397 	if (unlikely(error))
398 		return error;
399 
400 	offset = bp->b_offset;
401 	bp->b_flags |= _XBF_PAGES;
402 
403 	for (i = 0; i < bp->b_page_count; i++) {
404 		struct page	*page;
405 		uint		retries = 0;
406 retry:
407 		page = alloc_page(gfp_mask);
408 		if (unlikely(page == NULL)) {
409 			if (flags & XBF_READ_AHEAD) {
410 				bp->b_page_count = i;
411 				error = -ENOMEM;
412 				goto out_free_pages;
413 			}
414 
415 			/*
416 			 * This could deadlock.
417 			 *
418 			 * But until all the XFS lowlevel code is revamped to
419 			 * handle buffer allocation failures we can't do much.
420 			 */
421 			if (!(++retries % 100))
422 				xfs_err(NULL,
423 		"%s(%u) possible memory allocation deadlock in %s (mode:0x%x)",
424 					current->comm, current->pid,
425 					__func__, gfp_mask);
426 
427 			XFS_STATS_INC(bp->b_mount, xb_page_retries);
428 			congestion_wait(BLK_RW_ASYNC, HZ/50);
429 			goto retry;
430 		}
431 
432 		XFS_STATS_INC(bp->b_mount, xb_page_found);
433 
434 		nbytes = min_t(size_t, size, PAGE_SIZE - offset);
435 		size -= nbytes;
436 		bp->b_pages[i] = page;
437 		offset = 0;
438 	}
439 	return 0;
440 
441 out_free_pages:
442 	for (i = 0; i < bp->b_page_count; i++)
443 		__free_page(bp->b_pages[i]);
444 	bp->b_flags &= ~_XBF_PAGES;
445 	return error;
446 }
447 
448 /*
449  *	Map buffer into kernel address-space if necessary.
450  */
451 STATIC int
452 _xfs_buf_map_pages(
453 	xfs_buf_t		*bp,
454 	uint			flags)
455 {
456 	ASSERT(bp->b_flags & _XBF_PAGES);
457 	if (bp->b_page_count == 1) {
458 		/* A single page buffer is always mappable */
459 		bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
460 	} else if (flags & XBF_UNMAPPED) {
461 		bp->b_addr = NULL;
462 	} else {
463 		int retried = 0;
464 		unsigned nofs_flag;
465 
466 		/*
467 		 * vm_map_ram() will allocate auxiliary structures (e.g.
468 		 * pagetables) with GFP_KERNEL, yet we are likely to be under
469 		 * GFP_NOFS context here. Hence we need to tell memory reclaim
470 		 * that we are in such a context via PF_MEMALLOC_NOFS to prevent
471 		 * memory reclaim re-entering the filesystem here and
472 		 * potentially deadlocking.
473 		 */
474 		nofs_flag = memalloc_nofs_save();
475 		do {
476 			bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
477 						-1, PAGE_KERNEL);
478 			if (bp->b_addr)
479 				break;
480 			vm_unmap_aliases();
481 		} while (retried++ <= 1);
482 		memalloc_nofs_restore(nofs_flag);
483 
484 		if (!bp->b_addr)
485 			return -ENOMEM;
486 		bp->b_addr += bp->b_offset;
487 	}
488 
489 	return 0;
490 }
491 
492 /*
493  *	Finding and Reading Buffers
494  */
495 static int
496 _xfs_buf_obj_cmp(
497 	struct rhashtable_compare_arg	*arg,
498 	const void			*obj)
499 {
500 	const struct xfs_buf_map	*map = arg->key;
501 	const struct xfs_buf		*bp = obj;
502 
503 	/*
504 	 * The key hashing in the lookup path depends on the key being the
505 	 * first element of the compare_arg, make sure to assert this.
506 	 */
507 	BUILD_BUG_ON(offsetof(struct xfs_buf_map, bm_bn) != 0);
508 
509 	if (bp->b_bn != map->bm_bn)
510 		return 1;
511 
512 	if (unlikely(bp->b_length != map->bm_len)) {
513 		/*
514 		 * found a block number match. If the range doesn't
515 		 * match, the only way this is allowed is if the buffer
516 		 * in the cache is stale and the transaction that made
517 		 * it stale has not yet committed. i.e. we are
518 		 * reallocating a busy extent. Skip this buffer and
519 		 * continue searching for an exact match.
520 		 */
521 		ASSERT(bp->b_flags & XBF_STALE);
522 		return 1;
523 	}
524 	return 0;
525 }
526 
527 static const struct rhashtable_params xfs_buf_hash_params = {
528 	.min_size		= 32,	/* empty AGs have minimal footprint */
529 	.nelem_hint		= 16,
530 	.key_len		= sizeof(xfs_daddr_t),
531 	.key_offset		= offsetof(struct xfs_buf, b_bn),
532 	.head_offset		= offsetof(struct xfs_buf, b_rhash_head),
533 	.automatic_shrinking	= true,
534 	.obj_cmpfn		= _xfs_buf_obj_cmp,
535 };
536 
537 int
538 xfs_buf_hash_init(
539 	struct xfs_perag	*pag)
540 {
541 	spin_lock_init(&pag->pag_buf_lock);
542 	return rhashtable_init(&pag->pag_buf_hash, &xfs_buf_hash_params);
543 }
544 
545 void
546 xfs_buf_hash_destroy(
547 	struct xfs_perag	*pag)
548 {
549 	rhashtable_destroy(&pag->pag_buf_hash);
550 }
551 
552 /*
553  * Look up a buffer in the buffer cache and return it referenced and locked
554  * in @found_bp.
555  *
556  * If @new_bp is supplied and we have a lookup miss, insert @new_bp into the
557  * cache.
558  *
559  * If XBF_TRYLOCK is set in @flags, only try to lock the buffer and return
560  * -EAGAIN if we fail to lock it.
561  *
562  * Return values are:
563  *	-EFSCORRUPTED if have been supplied with an invalid address
564  *	-EAGAIN on trylock failure
565  *	-ENOENT if we fail to find a match and @new_bp was NULL
566  *	0, with @found_bp:
567  *		- @new_bp if we inserted it into the cache
568  *		- the buffer we found and locked.
569  */
570 static int
571 xfs_buf_find(
572 	struct xfs_buftarg	*btp,
573 	struct xfs_buf_map	*map,
574 	int			nmaps,
575 	xfs_buf_flags_t		flags,
576 	struct xfs_buf		*new_bp,
577 	struct xfs_buf		**found_bp)
578 {
579 	struct xfs_perag	*pag;
580 	xfs_buf_t		*bp;
581 	struct xfs_buf_map	cmap = { .bm_bn = map[0].bm_bn };
582 	xfs_daddr_t		eofs;
583 	int			i;
584 
585 	*found_bp = NULL;
586 
587 	for (i = 0; i < nmaps; i++)
588 		cmap.bm_len += map[i].bm_len;
589 
590 	/* Check for IOs smaller than the sector size / not sector aligned */
591 	ASSERT(!(BBTOB(cmap.bm_len) < btp->bt_meta_sectorsize));
592 	ASSERT(!(BBTOB(cmap.bm_bn) & (xfs_off_t)btp->bt_meta_sectormask));
593 
594 	/*
595 	 * Corrupted block numbers can get through to here, unfortunately, so we
596 	 * have to check that the buffer falls within the filesystem bounds.
597 	 */
598 	eofs = XFS_FSB_TO_BB(btp->bt_mount, btp->bt_mount->m_sb.sb_dblocks);
599 	if (cmap.bm_bn < 0 || cmap.bm_bn >= eofs) {
600 		xfs_alert(btp->bt_mount,
601 			  "%s: daddr 0x%llx out of range, EOFS 0x%llx",
602 			  __func__, cmap.bm_bn, eofs);
603 		WARN_ON(1);
604 		return -EFSCORRUPTED;
605 	}
606 
607 	pag = xfs_perag_get(btp->bt_mount,
608 			    xfs_daddr_to_agno(btp->bt_mount, cmap.bm_bn));
609 
610 	spin_lock(&pag->pag_buf_lock);
611 	bp = rhashtable_lookup_fast(&pag->pag_buf_hash, &cmap,
612 				    xfs_buf_hash_params);
613 	if (bp) {
614 		atomic_inc(&bp->b_hold);
615 		goto found;
616 	}
617 
618 	/* No match found */
619 	if (!new_bp) {
620 		XFS_STATS_INC(btp->bt_mount, xb_miss_locked);
621 		spin_unlock(&pag->pag_buf_lock);
622 		xfs_perag_put(pag);
623 		return -ENOENT;
624 	}
625 
626 	/* the buffer keeps the perag reference until it is freed */
627 	new_bp->b_pag = pag;
628 	rhashtable_insert_fast(&pag->pag_buf_hash, &new_bp->b_rhash_head,
629 			       xfs_buf_hash_params);
630 	spin_unlock(&pag->pag_buf_lock);
631 	*found_bp = new_bp;
632 	return 0;
633 
634 found:
635 	spin_unlock(&pag->pag_buf_lock);
636 	xfs_perag_put(pag);
637 
638 	if (!xfs_buf_trylock(bp)) {
639 		if (flags & XBF_TRYLOCK) {
640 			xfs_buf_rele(bp);
641 			XFS_STATS_INC(btp->bt_mount, xb_busy_locked);
642 			return -EAGAIN;
643 		}
644 		xfs_buf_lock(bp);
645 		XFS_STATS_INC(btp->bt_mount, xb_get_locked_waited);
646 	}
647 
648 	/*
649 	 * if the buffer is stale, clear all the external state associated with
650 	 * it. We need to keep flags such as how we allocated the buffer memory
651 	 * intact here.
652 	 */
653 	if (bp->b_flags & XBF_STALE) {
654 		ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
655 		ASSERT(bp->b_iodone == NULL);
656 		bp->b_flags &= _XBF_KMEM | _XBF_PAGES;
657 		bp->b_ops = NULL;
658 	}
659 
660 	trace_xfs_buf_find(bp, flags, _RET_IP_);
661 	XFS_STATS_INC(btp->bt_mount, xb_get_locked);
662 	*found_bp = bp;
663 	return 0;
664 }
665 
666 struct xfs_buf *
667 xfs_buf_incore(
668 	struct xfs_buftarg	*target,
669 	xfs_daddr_t		blkno,
670 	size_t			numblks,
671 	xfs_buf_flags_t		flags)
672 {
673 	struct xfs_buf		*bp;
674 	int			error;
675 	DEFINE_SINGLE_BUF_MAP(map, blkno, numblks);
676 
677 	error = xfs_buf_find(target, &map, 1, flags, NULL, &bp);
678 	if (error)
679 		return NULL;
680 	return bp;
681 }
682 
683 /*
684  * Assembles a buffer covering the specified range. The code is optimised for
685  * cache hits, as metadata intensive workloads will see 3 orders of magnitude
686  * more hits than misses.
687  */
688 int
689 xfs_buf_get_map(
690 	struct xfs_buftarg	*target,
691 	struct xfs_buf_map	*map,
692 	int			nmaps,
693 	xfs_buf_flags_t		flags,
694 	struct xfs_buf		**bpp)
695 {
696 	struct xfs_buf		*bp;
697 	struct xfs_buf		*new_bp;
698 	int			error = 0;
699 
700 	*bpp = NULL;
701 	error = xfs_buf_find(target, map, nmaps, flags, NULL, &bp);
702 	if (!error)
703 		goto found;
704 	if (error != -ENOENT)
705 		return error;
706 
707 	error = _xfs_buf_alloc(target, map, nmaps, flags, &new_bp);
708 	if (error)
709 		return error;
710 
711 	error = xfs_buf_allocate_memory(new_bp, flags);
712 	if (error) {
713 		xfs_buf_free(new_bp);
714 		return error;
715 	}
716 
717 	error = xfs_buf_find(target, map, nmaps, flags, new_bp, &bp);
718 	if (error) {
719 		xfs_buf_free(new_bp);
720 		return error;
721 	}
722 
723 	if (bp != new_bp)
724 		xfs_buf_free(new_bp);
725 
726 found:
727 	if (!bp->b_addr) {
728 		error = _xfs_buf_map_pages(bp, flags);
729 		if (unlikely(error)) {
730 			xfs_warn(target->bt_mount,
731 				"%s: failed to map pagesn", __func__);
732 			xfs_buf_relse(bp);
733 			return error;
734 		}
735 	}
736 
737 	/*
738 	 * Clear b_error if this is a lookup from a caller that doesn't expect
739 	 * valid data to be found in the buffer.
740 	 */
741 	if (!(flags & XBF_READ))
742 		xfs_buf_ioerror(bp, 0);
743 
744 	XFS_STATS_INC(target->bt_mount, xb_get);
745 	trace_xfs_buf_get(bp, flags, _RET_IP_);
746 	*bpp = bp;
747 	return 0;
748 }
749 
750 STATIC int
751 _xfs_buf_read(
752 	xfs_buf_t		*bp,
753 	xfs_buf_flags_t		flags)
754 {
755 	ASSERT(!(flags & XBF_WRITE));
756 	ASSERT(bp->b_maps[0].bm_bn != XFS_BUF_DADDR_NULL);
757 
758 	bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD);
759 	bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD);
760 
761 	return xfs_buf_submit(bp);
762 }
763 
764 /*
765  * Reverify a buffer found in cache without an attached ->b_ops.
766  *
767  * If the caller passed an ops structure and the buffer doesn't have ops
768  * assigned, set the ops and use it to verify the contents. If verification
769  * fails, clear XBF_DONE. We assume the buffer has no recorded errors and is
770  * already in XBF_DONE state on entry.
771  *
772  * Under normal operations, every in-core buffer is verified on read I/O
773  * completion. There are two scenarios that can lead to in-core buffers without
774  * an assigned ->b_ops. The first is during log recovery of buffers on a V4
775  * filesystem, though these buffers are purged at the end of recovery. The
776  * other is online repair, which intentionally reads with a NULL buffer ops to
777  * run several verifiers across an in-core buffer in order to establish buffer
778  * type.  If repair can't establish that, the buffer will be left in memory
779  * with NULL buffer ops.
780  */
781 int
782 xfs_buf_reverify(
783 	struct xfs_buf		*bp,
784 	const struct xfs_buf_ops *ops)
785 {
786 	ASSERT(bp->b_flags & XBF_DONE);
787 	ASSERT(bp->b_error == 0);
788 
789 	if (!ops || bp->b_ops)
790 		return 0;
791 
792 	bp->b_ops = ops;
793 	bp->b_ops->verify_read(bp);
794 	if (bp->b_error)
795 		bp->b_flags &= ~XBF_DONE;
796 	return bp->b_error;
797 }
798 
799 int
800 xfs_buf_read_map(
801 	struct xfs_buftarg	*target,
802 	struct xfs_buf_map	*map,
803 	int			nmaps,
804 	xfs_buf_flags_t		flags,
805 	struct xfs_buf		**bpp,
806 	const struct xfs_buf_ops *ops,
807 	xfs_failaddr_t		fa)
808 {
809 	struct xfs_buf		*bp;
810 	int			error;
811 
812 	flags |= XBF_READ;
813 	*bpp = NULL;
814 
815 	error = xfs_buf_get_map(target, map, nmaps, flags, &bp);
816 	if (error)
817 		return error;
818 
819 	trace_xfs_buf_read(bp, flags, _RET_IP_);
820 
821 	if (!(bp->b_flags & XBF_DONE)) {
822 		/* Initiate the buffer read and wait. */
823 		XFS_STATS_INC(target->bt_mount, xb_get_read);
824 		bp->b_ops = ops;
825 		error = _xfs_buf_read(bp, flags);
826 
827 		/* Readahead iodone already dropped the buffer, so exit. */
828 		if (flags & XBF_ASYNC)
829 			return 0;
830 	} else {
831 		/* Buffer already read; all we need to do is check it. */
832 		error = xfs_buf_reverify(bp, ops);
833 
834 		/* Readahead already finished; drop the buffer and exit. */
835 		if (flags & XBF_ASYNC) {
836 			xfs_buf_relse(bp);
837 			return 0;
838 		}
839 
840 		/* We do not want read in the flags */
841 		bp->b_flags &= ~XBF_READ;
842 		ASSERT(bp->b_ops != NULL || ops == NULL);
843 	}
844 
845 	/*
846 	 * If we've had a read error, then the contents of the buffer are
847 	 * invalid and should not be used. To ensure that a followup read tries
848 	 * to pull the buffer from disk again, we clear the XBF_DONE flag and
849 	 * mark the buffer stale. This ensures that anyone who has a current
850 	 * reference to the buffer will interpret it's contents correctly and
851 	 * future cache lookups will also treat it as an empty, uninitialised
852 	 * buffer.
853 	 */
854 	if (error) {
855 		if (!XFS_FORCED_SHUTDOWN(target->bt_mount))
856 			xfs_buf_ioerror_alert(bp, fa);
857 
858 		bp->b_flags &= ~XBF_DONE;
859 		xfs_buf_stale(bp);
860 		xfs_buf_relse(bp);
861 
862 		/* bad CRC means corrupted metadata */
863 		if (error == -EFSBADCRC)
864 			error = -EFSCORRUPTED;
865 		return error;
866 	}
867 
868 	*bpp = bp;
869 	return 0;
870 }
871 
872 /*
873  *	If we are not low on memory then do the readahead in a deadlock
874  *	safe manner.
875  */
876 void
877 xfs_buf_readahead_map(
878 	struct xfs_buftarg	*target,
879 	struct xfs_buf_map	*map,
880 	int			nmaps,
881 	const struct xfs_buf_ops *ops)
882 {
883 	struct xfs_buf		*bp;
884 
885 	if (bdi_read_congested(target->bt_bdev->bd_bdi))
886 		return;
887 
888 	xfs_buf_read_map(target, map, nmaps,
889 		     XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD, &bp, ops,
890 		     __this_address);
891 }
892 
893 /*
894  * Read an uncached buffer from disk. Allocates and returns a locked
895  * buffer containing the disk contents or nothing.
896  */
897 int
898 xfs_buf_read_uncached(
899 	struct xfs_buftarg	*target,
900 	xfs_daddr_t		daddr,
901 	size_t			numblks,
902 	int			flags,
903 	struct xfs_buf		**bpp,
904 	const struct xfs_buf_ops *ops)
905 {
906 	struct xfs_buf		*bp;
907 	int			error;
908 
909 	*bpp = NULL;
910 
911 	error = xfs_buf_get_uncached(target, numblks, flags, &bp);
912 	if (error)
913 		return error;
914 
915 	/* set up the buffer for a read IO */
916 	ASSERT(bp->b_map_count == 1);
917 	bp->b_bn = XFS_BUF_DADDR_NULL;  /* always null for uncached buffers */
918 	bp->b_maps[0].bm_bn = daddr;
919 	bp->b_flags |= XBF_READ;
920 	bp->b_ops = ops;
921 
922 	xfs_buf_submit(bp);
923 	if (bp->b_error) {
924 		error = bp->b_error;
925 		xfs_buf_relse(bp);
926 		return error;
927 	}
928 
929 	*bpp = bp;
930 	return 0;
931 }
932 
933 int
934 xfs_buf_get_uncached(
935 	struct xfs_buftarg	*target,
936 	size_t			numblks,
937 	int			flags,
938 	struct xfs_buf		**bpp)
939 {
940 	unsigned long		page_count;
941 	int			error, i;
942 	struct xfs_buf		*bp;
943 	DEFINE_SINGLE_BUF_MAP(map, XFS_BUF_DADDR_NULL, numblks);
944 
945 	*bpp = NULL;
946 
947 	/* flags might contain irrelevant bits, pass only what we care about */
948 	error = _xfs_buf_alloc(target, &map, 1, flags & XBF_NO_IOACCT, &bp);
949 	if (error)
950 		goto fail;
951 
952 	page_count = PAGE_ALIGN(numblks << BBSHIFT) >> PAGE_SHIFT;
953 	error = _xfs_buf_get_pages(bp, page_count);
954 	if (error)
955 		goto fail_free_buf;
956 
957 	for (i = 0; i < page_count; i++) {
958 		bp->b_pages[i] = alloc_page(xb_to_gfp(flags));
959 		if (!bp->b_pages[i]) {
960 			error = -ENOMEM;
961 			goto fail_free_mem;
962 		}
963 	}
964 	bp->b_flags |= _XBF_PAGES;
965 
966 	error = _xfs_buf_map_pages(bp, 0);
967 	if (unlikely(error)) {
968 		xfs_warn(target->bt_mount,
969 			"%s: failed to map pages", __func__);
970 		goto fail_free_mem;
971 	}
972 
973 	trace_xfs_buf_get_uncached(bp, _RET_IP_);
974 	*bpp = bp;
975 	return 0;
976 
977  fail_free_mem:
978 	while (--i >= 0)
979 		__free_page(bp->b_pages[i]);
980 	_xfs_buf_free_pages(bp);
981  fail_free_buf:
982 	xfs_buf_free_maps(bp);
983 	kmem_cache_free(xfs_buf_zone, bp);
984  fail:
985 	return error;
986 }
987 
988 /*
989  *	Increment reference count on buffer, to hold the buffer concurrently
990  *	with another thread which may release (free) the buffer asynchronously.
991  *	Must hold the buffer already to call this function.
992  */
993 void
994 xfs_buf_hold(
995 	xfs_buf_t		*bp)
996 {
997 	trace_xfs_buf_hold(bp, _RET_IP_);
998 	atomic_inc(&bp->b_hold);
999 }
1000 
1001 /*
1002  * Release a hold on the specified buffer. If the hold count is 1, the buffer is
1003  * placed on LRU or freed (depending on b_lru_ref).
1004  */
1005 void
1006 xfs_buf_rele(
1007 	xfs_buf_t		*bp)
1008 {
1009 	struct xfs_perag	*pag = bp->b_pag;
1010 	bool			release;
1011 	bool			freebuf = false;
1012 
1013 	trace_xfs_buf_rele(bp, _RET_IP_);
1014 
1015 	if (!pag) {
1016 		ASSERT(list_empty(&bp->b_lru));
1017 		if (atomic_dec_and_test(&bp->b_hold)) {
1018 			xfs_buf_ioacct_dec(bp);
1019 			xfs_buf_free(bp);
1020 		}
1021 		return;
1022 	}
1023 
1024 	ASSERT(atomic_read(&bp->b_hold) > 0);
1025 
1026 	/*
1027 	 * We grab the b_lock here first to serialise racing xfs_buf_rele()
1028 	 * calls. The pag_buf_lock being taken on the last reference only
1029 	 * serialises against racing lookups in xfs_buf_find(). IOWs, the second
1030 	 * to last reference we drop here is not serialised against the last
1031 	 * reference until we take bp->b_lock. Hence if we don't grab b_lock
1032 	 * first, the last "release" reference can win the race to the lock and
1033 	 * free the buffer before the second-to-last reference is processed,
1034 	 * leading to a use-after-free scenario.
1035 	 */
1036 	spin_lock(&bp->b_lock);
1037 	release = atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock);
1038 	if (!release) {
1039 		/*
1040 		 * Drop the in-flight state if the buffer is already on the LRU
1041 		 * and it holds the only reference. This is racy because we
1042 		 * haven't acquired the pag lock, but the use of _XBF_IN_FLIGHT
1043 		 * ensures the decrement occurs only once per-buf.
1044 		 */
1045 		if ((atomic_read(&bp->b_hold) == 1) && !list_empty(&bp->b_lru))
1046 			__xfs_buf_ioacct_dec(bp);
1047 		goto out_unlock;
1048 	}
1049 
1050 	/* the last reference has been dropped ... */
1051 	__xfs_buf_ioacct_dec(bp);
1052 	if (!(bp->b_flags & XBF_STALE) && atomic_read(&bp->b_lru_ref)) {
1053 		/*
1054 		 * If the buffer is added to the LRU take a new reference to the
1055 		 * buffer for the LRU and clear the (now stale) dispose list
1056 		 * state flag
1057 		 */
1058 		if (list_lru_add(&bp->b_target->bt_lru, &bp->b_lru)) {
1059 			bp->b_state &= ~XFS_BSTATE_DISPOSE;
1060 			atomic_inc(&bp->b_hold);
1061 		}
1062 		spin_unlock(&pag->pag_buf_lock);
1063 	} else {
1064 		/*
1065 		 * most of the time buffers will already be removed from the
1066 		 * LRU, so optimise that case by checking for the
1067 		 * XFS_BSTATE_DISPOSE flag indicating the last list the buffer
1068 		 * was on was the disposal list
1069 		 */
1070 		if (!(bp->b_state & XFS_BSTATE_DISPOSE)) {
1071 			list_lru_del(&bp->b_target->bt_lru, &bp->b_lru);
1072 		} else {
1073 			ASSERT(list_empty(&bp->b_lru));
1074 		}
1075 
1076 		ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1077 		rhashtable_remove_fast(&pag->pag_buf_hash, &bp->b_rhash_head,
1078 				       xfs_buf_hash_params);
1079 		spin_unlock(&pag->pag_buf_lock);
1080 		xfs_perag_put(pag);
1081 		freebuf = true;
1082 	}
1083 
1084 out_unlock:
1085 	spin_unlock(&bp->b_lock);
1086 
1087 	if (freebuf)
1088 		xfs_buf_free(bp);
1089 }
1090 
1091 
1092 /*
1093  *	Lock a buffer object, if it is not already locked.
1094  *
1095  *	If we come across a stale, pinned, locked buffer, we know that we are
1096  *	being asked to lock a buffer that has been reallocated. Because it is
1097  *	pinned, we know that the log has not been pushed to disk and hence it
1098  *	will still be locked.  Rather than continuing to have trylock attempts
1099  *	fail until someone else pushes the log, push it ourselves before
1100  *	returning.  This means that the xfsaild will not get stuck trying
1101  *	to push on stale inode buffers.
1102  */
1103 int
1104 xfs_buf_trylock(
1105 	struct xfs_buf		*bp)
1106 {
1107 	int			locked;
1108 
1109 	locked = down_trylock(&bp->b_sema) == 0;
1110 	if (locked)
1111 		trace_xfs_buf_trylock(bp, _RET_IP_);
1112 	else
1113 		trace_xfs_buf_trylock_fail(bp, _RET_IP_);
1114 	return locked;
1115 }
1116 
1117 /*
1118  *	Lock a buffer object.
1119  *
1120  *	If we come across a stale, pinned, locked buffer, we know that we
1121  *	are being asked to lock a buffer that has been reallocated. Because
1122  *	it is pinned, we know that the log has not been pushed to disk and
1123  *	hence it will still be locked. Rather than sleeping until someone
1124  *	else pushes the log, push it ourselves before trying to get the lock.
1125  */
1126 void
1127 xfs_buf_lock(
1128 	struct xfs_buf		*bp)
1129 {
1130 	trace_xfs_buf_lock(bp, _RET_IP_);
1131 
1132 	if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
1133 		xfs_log_force(bp->b_mount, 0);
1134 	down(&bp->b_sema);
1135 
1136 	trace_xfs_buf_lock_done(bp, _RET_IP_);
1137 }
1138 
1139 void
1140 xfs_buf_unlock(
1141 	struct xfs_buf		*bp)
1142 {
1143 	ASSERT(xfs_buf_islocked(bp));
1144 
1145 	up(&bp->b_sema);
1146 	trace_xfs_buf_unlock(bp, _RET_IP_);
1147 }
1148 
1149 STATIC void
1150 xfs_buf_wait_unpin(
1151 	xfs_buf_t		*bp)
1152 {
1153 	DECLARE_WAITQUEUE	(wait, current);
1154 
1155 	if (atomic_read(&bp->b_pin_count) == 0)
1156 		return;
1157 
1158 	add_wait_queue(&bp->b_waiters, &wait);
1159 	for (;;) {
1160 		set_current_state(TASK_UNINTERRUPTIBLE);
1161 		if (atomic_read(&bp->b_pin_count) == 0)
1162 			break;
1163 		io_schedule();
1164 	}
1165 	remove_wait_queue(&bp->b_waiters, &wait);
1166 	set_current_state(TASK_RUNNING);
1167 }
1168 
1169 /*
1170  *	Buffer Utility Routines
1171  */
1172 
1173 void
1174 xfs_buf_ioend(
1175 	struct xfs_buf	*bp)
1176 {
1177 	bool		read = bp->b_flags & XBF_READ;
1178 
1179 	trace_xfs_buf_iodone(bp, _RET_IP_);
1180 
1181 	bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
1182 
1183 	/*
1184 	 * Pull in IO completion errors now. We are guaranteed to be running
1185 	 * single threaded, so we don't need the lock to read b_io_error.
1186 	 */
1187 	if (!bp->b_error && bp->b_io_error)
1188 		xfs_buf_ioerror(bp, bp->b_io_error);
1189 
1190 	/* Only validate buffers that were read without errors */
1191 	if (read && !bp->b_error && bp->b_ops) {
1192 		ASSERT(!bp->b_iodone);
1193 		bp->b_ops->verify_read(bp);
1194 	}
1195 
1196 	if (!bp->b_error)
1197 		bp->b_flags |= XBF_DONE;
1198 
1199 	if (bp->b_iodone)
1200 		(*(bp->b_iodone))(bp);
1201 	else if (bp->b_flags & XBF_ASYNC)
1202 		xfs_buf_relse(bp);
1203 	else
1204 		complete(&bp->b_iowait);
1205 }
1206 
1207 static void
1208 xfs_buf_ioend_work(
1209 	struct work_struct	*work)
1210 {
1211 	struct xfs_buf		*bp =
1212 		container_of(work, xfs_buf_t, b_ioend_work);
1213 
1214 	xfs_buf_ioend(bp);
1215 }
1216 
1217 static void
1218 xfs_buf_ioend_async(
1219 	struct xfs_buf	*bp)
1220 {
1221 	INIT_WORK(&bp->b_ioend_work, xfs_buf_ioend_work);
1222 	queue_work(bp->b_mount->m_buf_workqueue, &bp->b_ioend_work);
1223 }
1224 
1225 void
1226 __xfs_buf_ioerror(
1227 	xfs_buf_t		*bp,
1228 	int			error,
1229 	xfs_failaddr_t		failaddr)
1230 {
1231 	ASSERT(error <= 0 && error >= -1000);
1232 	bp->b_error = error;
1233 	trace_xfs_buf_ioerror(bp, error, failaddr);
1234 }
1235 
1236 void
1237 xfs_buf_ioerror_alert(
1238 	struct xfs_buf		*bp,
1239 	xfs_failaddr_t		func)
1240 {
1241 	xfs_alert(bp->b_mount,
1242 "metadata I/O error in \"%pS\" at daddr 0x%llx len %d error %d",
1243 			func, (uint64_t)XFS_BUF_ADDR(bp), bp->b_length,
1244 			-bp->b_error);
1245 }
1246 
1247 int
1248 xfs_bwrite(
1249 	struct xfs_buf		*bp)
1250 {
1251 	int			error;
1252 
1253 	ASSERT(xfs_buf_islocked(bp));
1254 
1255 	bp->b_flags |= XBF_WRITE;
1256 	bp->b_flags &= ~(XBF_ASYNC | XBF_READ | _XBF_DELWRI_Q |
1257 			 XBF_WRITE_FAIL | XBF_DONE);
1258 
1259 	error = xfs_buf_submit(bp);
1260 	if (error)
1261 		xfs_force_shutdown(bp->b_mount, SHUTDOWN_META_IO_ERROR);
1262 	return error;
1263 }
1264 
1265 static void
1266 xfs_buf_bio_end_io(
1267 	struct bio		*bio)
1268 {
1269 	struct xfs_buf		*bp = (struct xfs_buf *)bio->bi_private;
1270 
1271 	/*
1272 	 * don't overwrite existing errors - otherwise we can lose errors on
1273 	 * buffers that require multiple bios to complete.
1274 	 */
1275 	if (bio->bi_status) {
1276 		int error = blk_status_to_errno(bio->bi_status);
1277 
1278 		cmpxchg(&bp->b_io_error, 0, error);
1279 	}
1280 
1281 	if (!bp->b_error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
1282 		invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1283 
1284 	if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1285 		xfs_buf_ioend_async(bp);
1286 	bio_put(bio);
1287 }
1288 
1289 static void
1290 xfs_buf_ioapply_map(
1291 	struct xfs_buf	*bp,
1292 	int		map,
1293 	int		*buf_offset,
1294 	int		*count,
1295 	int		op)
1296 {
1297 	int		page_index;
1298 	int		total_nr_pages = bp->b_page_count;
1299 	int		nr_pages;
1300 	struct bio	*bio;
1301 	sector_t	sector =  bp->b_maps[map].bm_bn;
1302 	int		size;
1303 	int		offset;
1304 
1305 	/* skip the pages in the buffer before the start offset */
1306 	page_index = 0;
1307 	offset = *buf_offset;
1308 	while (offset >= PAGE_SIZE) {
1309 		page_index++;
1310 		offset -= PAGE_SIZE;
1311 	}
1312 
1313 	/*
1314 	 * Limit the IO size to the length of the current vector, and update the
1315 	 * remaining IO count for the next time around.
1316 	 */
1317 	size = min_t(int, BBTOB(bp->b_maps[map].bm_len), *count);
1318 	*count -= size;
1319 	*buf_offset += size;
1320 
1321 next_chunk:
1322 	atomic_inc(&bp->b_io_remaining);
1323 	nr_pages = min(total_nr_pages, BIO_MAX_PAGES);
1324 
1325 	bio = bio_alloc(GFP_NOIO, nr_pages);
1326 	bio_set_dev(bio, bp->b_target->bt_bdev);
1327 	bio->bi_iter.bi_sector = sector;
1328 	bio->bi_end_io = xfs_buf_bio_end_io;
1329 	bio->bi_private = bp;
1330 	bio->bi_opf = op;
1331 
1332 	for (; size && nr_pages; nr_pages--, page_index++) {
1333 		int	rbytes, nbytes = PAGE_SIZE - offset;
1334 
1335 		if (nbytes > size)
1336 			nbytes = size;
1337 
1338 		rbytes = bio_add_page(bio, bp->b_pages[page_index], nbytes,
1339 				      offset);
1340 		if (rbytes < nbytes)
1341 			break;
1342 
1343 		offset = 0;
1344 		sector += BTOBB(nbytes);
1345 		size -= nbytes;
1346 		total_nr_pages--;
1347 	}
1348 
1349 	if (likely(bio->bi_iter.bi_size)) {
1350 		if (xfs_buf_is_vmapped(bp)) {
1351 			flush_kernel_vmap_range(bp->b_addr,
1352 						xfs_buf_vmap_len(bp));
1353 		}
1354 		submit_bio(bio);
1355 		if (size)
1356 			goto next_chunk;
1357 	} else {
1358 		/*
1359 		 * This is guaranteed not to be the last io reference count
1360 		 * because the caller (xfs_buf_submit) holds a count itself.
1361 		 */
1362 		atomic_dec(&bp->b_io_remaining);
1363 		xfs_buf_ioerror(bp, -EIO);
1364 		bio_put(bio);
1365 	}
1366 
1367 }
1368 
1369 STATIC void
1370 _xfs_buf_ioapply(
1371 	struct xfs_buf	*bp)
1372 {
1373 	struct blk_plug	plug;
1374 	int		op;
1375 	int		offset;
1376 	int		size;
1377 	int		i;
1378 
1379 	/*
1380 	 * Make sure we capture only current IO errors rather than stale errors
1381 	 * left over from previous use of the buffer (e.g. failed readahead).
1382 	 */
1383 	bp->b_error = 0;
1384 
1385 	if (bp->b_flags & XBF_WRITE) {
1386 		op = REQ_OP_WRITE;
1387 
1388 		/*
1389 		 * Run the write verifier callback function if it exists. If
1390 		 * this function fails it will mark the buffer with an error and
1391 		 * the IO should not be dispatched.
1392 		 */
1393 		if (bp->b_ops) {
1394 			bp->b_ops->verify_write(bp);
1395 			if (bp->b_error) {
1396 				xfs_force_shutdown(bp->b_mount,
1397 						   SHUTDOWN_CORRUPT_INCORE);
1398 				return;
1399 			}
1400 		} else if (bp->b_bn != XFS_BUF_DADDR_NULL) {
1401 			struct xfs_mount *mp = bp->b_mount;
1402 
1403 			/*
1404 			 * non-crc filesystems don't attach verifiers during
1405 			 * log recovery, so don't warn for such filesystems.
1406 			 */
1407 			if (xfs_sb_version_hascrc(&mp->m_sb)) {
1408 				xfs_warn(mp,
1409 					"%s: no buf ops on daddr 0x%llx len %d",
1410 					__func__, bp->b_bn, bp->b_length);
1411 				xfs_hex_dump(bp->b_addr,
1412 						XFS_CORRUPTION_DUMP_LEN);
1413 				dump_stack();
1414 			}
1415 		}
1416 	} else {
1417 		op = REQ_OP_READ;
1418 		if (bp->b_flags & XBF_READ_AHEAD)
1419 			op |= REQ_RAHEAD;
1420 	}
1421 
1422 	/* we only use the buffer cache for meta-data */
1423 	op |= REQ_META;
1424 
1425 	/*
1426 	 * Walk all the vectors issuing IO on them. Set up the initial offset
1427 	 * into the buffer and the desired IO size before we start -
1428 	 * _xfs_buf_ioapply_vec() will modify them appropriately for each
1429 	 * subsequent call.
1430 	 */
1431 	offset = bp->b_offset;
1432 	size = BBTOB(bp->b_length);
1433 	blk_start_plug(&plug);
1434 	for (i = 0; i < bp->b_map_count; i++) {
1435 		xfs_buf_ioapply_map(bp, i, &offset, &size, op);
1436 		if (bp->b_error)
1437 			break;
1438 		if (size <= 0)
1439 			break;	/* all done */
1440 	}
1441 	blk_finish_plug(&plug);
1442 }
1443 
1444 /*
1445  * Wait for I/O completion of a sync buffer and return the I/O error code.
1446  */
1447 static int
1448 xfs_buf_iowait(
1449 	struct xfs_buf	*bp)
1450 {
1451 	ASSERT(!(bp->b_flags & XBF_ASYNC));
1452 
1453 	trace_xfs_buf_iowait(bp, _RET_IP_);
1454 	wait_for_completion(&bp->b_iowait);
1455 	trace_xfs_buf_iowait_done(bp, _RET_IP_);
1456 
1457 	return bp->b_error;
1458 }
1459 
1460 /*
1461  * Buffer I/O submission path, read or write. Asynchronous submission transfers
1462  * the buffer lock ownership and the current reference to the IO. It is not
1463  * safe to reference the buffer after a call to this function unless the caller
1464  * holds an additional reference itself.
1465  */
1466 int
1467 __xfs_buf_submit(
1468 	struct xfs_buf	*bp,
1469 	bool		wait)
1470 {
1471 	int		error = 0;
1472 
1473 	trace_xfs_buf_submit(bp, _RET_IP_);
1474 
1475 	ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1476 
1477 	/* on shutdown we stale and complete the buffer immediately */
1478 	if (XFS_FORCED_SHUTDOWN(bp->b_mount)) {
1479 		xfs_buf_ioerror(bp, -EIO);
1480 		bp->b_flags &= ~XBF_DONE;
1481 		xfs_buf_stale(bp);
1482 		xfs_buf_ioend(bp);
1483 		return -EIO;
1484 	}
1485 
1486 	/*
1487 	 * Grab a reference so the buffer does not go away underneath us. For
1488 	 * async buffers, I/O completion drops the callers reference, which
1489 	 * could occur before submission returns.
1490 	 */
1491 	xfs_buf_hold(bp);
1492 
1493 	if (bp->b_flags & XBF_WRITE)
1494 		xfs_buf_wait_unpin(bp);
1495 
1496 	/* clear the internal error state to avoid spurious errors */
1497 	bp->b_io_error = 0;
1498 
1499 	/*
1500 	 * Set the count to 1 initially, this will stop an I/O completion
1501 	 * callout which happens before we have started all the I/O from calling
1502 	 * xfs_buf_ioend too early.
1503 	 */
1504 	atomic_set(&bp->b_io_remaining, 1);
1505 	if (bp->b_flags & XBF_ASYNC)
1506 		xfs_buf_ioacct_inc(bp);
1507 	_xfs_buf_ioapply(bp);
1508 
1509 	/*
1510 	 * If _xfs_buf_ioapply failed, we can get back here with only the IO
1511 	 * reference we took above. If we drop it to zero, run completion so
1512 	 * that we don't return to the caller with completion still pending.
1513 	 */
1514 	if (atomic_dec_and_test(&bp->b_io_remaining) == 1) {
1515 		if (bp->b_error || !(bp->b_flags & XBF_ASYNC))
1516 			xfs_buf_ioend(bp);
1517 		else
1518 			xfs_buf_ioend_async(bp);
1519 	}
1520 
1521 	if (wait)
1522 		error = xfs_buf_iowait(bp);
1523 
1524 	/*
1525 	 * Release the hold that keeps the buffer referenced for the entire
1526 	 * I/O. Note that if the buffer is async, it is not safe to reference
1527 	 * after this release.
1528 	 */
1529 	xfs_buf_rele(bp);
1530 	return error;
1531 }
1532 
1533 void *
1534 xfs_buf_offset(
1535 	struct xfs_buf		*bp,
1536 	size_t			offset)
1537 {
1538 	struct page		*page;
1539 
1540 	if (bp->b_addr)
1541 		return bp->b_addr + offset;
1542 
1543 	offset += bp->b_offset;
1544 	page = bp->b_pages[offset >> PAGE_SHIFT];
1545 	return page_address(page) + (offset & (PAGE_SIZE-1));
1546 }
1547 
1548 void
1549 xfs_buf_zero(
1550 	struct xfs_buf		*bp,
1551 	size_t			boff,
1552 	size_t			bsize)
1553 {
1554 	size_t			bend;
1555 
1556 	bend = boff + bsize;
1557 	while (boff < bend) {
1558 		struct page	*page;
1559 		int		page_index, page_offset, csize;
1560 
1561 		page_index = (boff + bp->b_offset) >> PAGE_SHIFT;
1562 		page_offset = (boff + bp->b_offset) & ~PAGE_MASK;
1563 		page = bp->b_pages[page_index];
1564 		csize = min_t(size_t, PAGE_SIZE - page_offset,
1565 				      BBTOB(bp->b_length) - boff);
1566 
1567 		ASSERT((csize + page_offset) <= PAGE_SIZE);
1568 
1569 		memset(page_address(page) + page_offset, 0, csize);
1570 
1571 		boff += csize;
1572 	}
1573 }
1574 
1575 /*
1576  *	Handling of buffer targets (buftargs).
1577  */
1578 
1579 /*
1580  * Wait for any bufs with callbacks that have been submitted but have not yet
1581  * returned. These buffers will have an elevated hold count, so wait on those
1582  * while freeing all the buffers only held by the LRU.
1583  */
1584 static enum lru_status
1585 xfs_buftarg_wait_rele(
1586 	struct list_head	*item,
1587 	struct list_lru_one	*lru,
1588 	spinlock_t		*lru_lock,
1589 	void			*arg)
1590 
1591 {
1592 	struct xfs_buf		*bp = container_of(item, struct xfs_buf, b_lru);
1593 	struct list_head	*dispose = arg;
1594 
1595 	if (atomic_read(&bp->b_hold) > 1) {
1596 		/* need to wait, so skip it this pass */
1597 		trace_xfs_buf_wait_buftarg(bp, _RET_IP_);
1598 		return LRU_SKIP;
1599 	}
1600 	if (!spin_trylock(&bp->b_lock))
1601 		return LRU_SKIP;
1602 
1603 	/*
1604 	 * clear the LRU reference count so the buffer doesn't get
1605 	 * ignored in xfs_buf_rele().
1606 	 */
1607 	atomic_set(&bp->b_lru_ref, 0);
1608 	bp->b_state |= XFS_BSTATE_DISPOSE;
1609 	list_lru_isolate_move(lru, item, dispose);
1610 	spin_unlock(&bp->b_lock);
1611 	return LRU_REMOVED;
1612 }
1613 
1614 void
1615 xfs_wait_buftarg(
1616 	struct xfs_buftarg	*btp)
1617 {
1618 	LIST_HEAD(dispose);
1619 	int loop = 0;
1620 
1621 	/*
1622 	 * First wait on the buftarg I/O count for all in-flight buffers to be
1623 	 * released. This is critical as new buffers do not make the LRU until
1624 	 * they are released.
1625 	 *
1626 	 * Next, flush the buffer workqueue to ensure all completion processing
1627 	 * has finished. Just waiting on buffer locks is not sufficient for
1628 	 * async IO as the reference count held over IO is not released until
1629 	 * after the buffer lock is dropped. Hence we need to ensure here that
1630 	 * all reference counts have been dropped before we start walking the
1631 	 * LRU list.
1632 	 */
1633 	while (percpu_counter_sum(&btp->bt_io_count))
1634 		delay(100);
1635 	flush_workqueue(btp->bt_mount->m_buf_workqueue);
1636 
1637 	/* loop until there is nothing left on the lru list. */
1638 	while (list_lru_count(&btp->bt_lru)) {
1639 		list_lru_walk(&btp->bt_lru, xfs_buftarg_wait_rele,
1640 			      &dispose, LONG_MAX);
1641 
1642 		while (!list_empty(&dispose)) {
1643 			struct xfs_buf *bp;
1644 			bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1645 			list_del_init(&bp->b_lru);
1646 			if (bp->b_flags & XBF_WRITE_FAIL) {
1647 				xfs_alert(btp->bt_mount,
1648 "Corruption Alert: Buffer at daddr 0x%llx had permanent write failures!",
1649 					(long long)bp->b_bn);
1650 				xfs_alert(btp->bt_mount,
1651 "Please run xfs_repair to determine the extent of the problem.");
1652 			}
1653 			xfs_buf_rele(bp);
1654 		}
1655 		if (loop++ != 0)
1656 			delay(100);
1657 	}
1658 }
1659 
1660 static enum lru_status
1661 xfs_buftarg_isolate(
1662 	struct list_head	*item,
1663 	struct list_lru_one	*lru,
1664 	spinlock_t		*lru_lock,
1665 	void			*arg)
1666 {
1667 	struct xfs_buf		*bp = container_of(item, struct xfs_buf, b_lru);
1668 	struct list_head	*dispose = arg;
1669 
1670 	/*
1671 	 * we are inverting the lru lock/bp->b_lock here, so use a trylock.
1672 	 * If we fail to get the lock, just skip it.
1673 	 */
1674 	if (!spin_trylock(&bp->b_lock))
1675 		return LRU_SKIP;
1676 	/*
1677 	 * Decrement the b_lru_ref count unless the value is already
1678 	 * zero. If the value is already zero, we need to reclaim the
1679 	 * buffer, otherwise it gets another trip through the LRU.
1680 	 */
1681 	if (atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
1682 		spin_unlock(&bp->b_lock);
1683 		return LRU_ROTATE;
1684 	}
1685 
1686 	bp->b_state |= XFS_BSTATE_DISPOSE;
1687 	list_lru_isolate_move(lru, item, dispose);
1688 	spin_unlock(&bp->b_lock);
1689 	return LRU_REMOVED;
1690 }
1691 
1692 static unsigned long
1693 xfs_buftarg_shrink_scan(
1694 	struct shrinker		*shrink,
1695 	struct shrink_control	*sc)
1696 {
1697 	struct xfs_buftarg	*btp = container_of(shrink,
1698 					struct xfs_buftarg, bt_shrinker);
1699 	LIST_HEAD(dispose);
1700 	unsigned long		freed;
1701 
1702 	freed = list_lru_shrink_walk(&btp->bt_lru, sc,
1703 				     xfs_buftarg_isolate, &dispose);
1704 
1705 	while (!list_empty(&dispose)) {
1706 		struct xfs_buf *bp;
1707 		bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1708 		list_del_init(&bp->b_lru);
1709 		xfs_buf_rele(bp);
1710 	}
1711 
1712 	return freed;
1713 }
1714 
1715 static unsigned long
1716 xfs_buftarg_shrink_count(
1717 	struct shrinker		*shrink,
1718 	struct shrink_control	*sc)
1719 {
1720 	struct xfs_buftarg	*btp = container_of(shrink,
1721 					struct xfs_buftarg, bt_shrinker);
1722 	return list_lru_shrink_count(&btp->bt_lru, sc);
1723 }
1724 
1725 void
1726 xfs_free_buftarg(
1727 	struct xfs_buftarg	*btp)
1728 {
1729 	unregister_shrinker(&btp->bt_shrinker);
1730 	ASSERT(percpu_counter_sum(&btp->bt_io_count) == 0);
1731 	percpu_counter_destroy(&btp->bt_io_count);
1732 	list_lru_destroy(&btp->bt_lru);
1733 
1734 	xfs_blkdev_issue_flush(btp);
1735 
1736 	kmem_free(btp);
1737 }
1738 
1739 int
1740 xfs_setsize_buftarg(
1741 	xfs_buftarg_t		*btp,
1742 	unsigned int		sectorsize)
1743 {
1744 	/* Set up metadata sector size info */
1745 	btp->bt_meta_sectorsize = sectorsize;
1746 	btp->bt_meta_sectormask = sectorsize - 1;
1747 
1748 	if (set_blocksize(btp->bt_bdev, sectorsize)) {
1749 		xfs_warn(btp->bt_mount,
1750 			"Cannot set_blocksize to %u on device %pg",
1751 			sectorsize, btp->bt_bdev);
1752 		return -EINVAL;
1753 	}
1754 
1755 	/* Set up device logical sector size mask */
1756 	btp->bt_logical_sectorsize = bdev_logical_block_size(btp->bt_bdev);
1757 	btp->bt_logical_sectormask = bdev_logical_block_size(btp->bt_bdev) - 1;
1758 
1759 	return 0;
1760 }
1761 
1762 /*
1763  * When allocating the initial buffer target we have not yet
1764  * read in the superblock, so don't know what sized sectors
1765  * are being used at this early stage.  Play safe.
1766  */
1767 STATIC int
1768 xfs_setsize_buftarg_early(
1769 	xfs_buftarg_t		*btp,
1770 	struct block_device	*bdev)
1771 {
1772 	return xfs_setsize_buftarg(btp, bdev_logical_block_size(bdev));
1773 }
1774 
1775 xfs_buftarg_t *
1776 xfs_alloc_buftarg(
1777 	struct xfs_mount	*mp,
1778 	struct block_device	*bdev,
1779 	struct dax_device	*dax_dev)
1780 {
1781 	xfs_buftarg_t		*btp;
1782 
1783 	btp = kmem_zalloc(sizeof(*btp), KM_NOFS);
1784 
1785 	btp->bt_mount = mp;
1786 	btp->bt_dev =  bdev->bd_dev;
1787 	btp->bt_bdev = bdev;
1788 	btp->bt_daxdev = dax_dev;
1789 
1790 	if (xfs_setsize_buftarg_early(btp, bdev))
1791 		goto error_free;
1792 
1793 	if (list_lru_init(&btp->bt_lru))
1794 		goto error_free;
1795 
1796 	if (percpu_counter_init(&btp->bt_io_count, 0, GFP_KERNEL))
1797 		goto error_lru;
1798 
1799 	btp->bt_shrinker.count_objects = xfs_buftarg_shrink_count;
1800 	btp->bt_shrinker.scan_objects = xfs_buftarg_shrink_scan;
1801 	btp->bt_shrinker.seeks = DEFAULT_SEEKS;
1802 	btp->bt_shrinker.flags = SHRINKER_NUMA_AWARE;
1803 	if (register_shrinker(&btp->bt_shrinker))
1804 		goto error_pcpu;
1805 	return btp;
1806 
1807 error_pcpu:
1808 	percpu_counter_destroy(&btp->bt_io_count);
1809 error_lru:
1810 	list_lru_destroy(&btp->bt_lru);
1811 error_free:
1812 	kmem_free(btp);
1813 	return NULL;
1814 }
1815 
1816 /*
1817  * Cancel a delayed write list.
1818  *
1819  * Remove each buffer from the list, clear the delwri queue flag and drop the
1820  * associated buffer reference.
1821  */
1822 void
1823 xfs_buf_delwri_cancel(
1824 	struct list_head	*list)
1825 {
1826 	struct xfs_buf		*bp;
1827 
1828 	while (!list_empty(list)) {
1829 		bp = list_first_entry(list, struct xfs_buf, b_list);
1830 
1831 		xfs_buf_lock(bp);
1832 		bp->b_flags &= ~_XBF_DELWRI_Q;
1833 		list_del_init(&bp->b_list);
1834 		xfs_buf_relse(bp);
1835 	}
1836 }
1837 
1838 /*
1839  * Add a buffer to the delayed write list.
1840  *
1841  * This queues a buffer for writeout if it hasn't already been.  Note that
1842  * neither this routine nor the buffer list submission functions perform
1843  * any internal synchronization.  It is expected that the lists are thread-local
1844  * to the callers.
1845  *
1846  * Returns true if we queued up the buffer, or false if it already had
1847  * been on the buffer list.
1848  */
1849 bool
1850 xfs_buf_delwri_queue(
1851 	struct xfs_buf		*bp,
1852 	struct list_head	*list)
1853 {
1854 	ASSERT(xfs_buf_islocked(bp));
1855 	ASSERT(!(bp->b_flags & XBF_READ));
1856 
1857 	/*
1858 	 * If the buffer is already marked delwri it already is queued up
1859 	 * by someone else for imediate writeout.  Just ignore it in that
1860 	 * case.
1861 	 */
1862 	if (bp->b_flags & _XBF_DELWRI_Q) {
1863 		trace_xfs_buf_delwri_queued(bp, _RET_IP_);
1864 		return false;
1865 	}
1866 
1867 	trace_xfs_buf_delwri_queue(bp, _RET_IP_);
1868 
1869 	/*
1870 	 * If a buffer gets written out synchronously or marked stale while it
1871 	 * is on a delwri list we lazily remove it. To do this, the other party
1872 	 * clears the  _XBF_DELWRI_Q flag but otherwise leaves the buffer alone.
1873 	 * It remains referenced and on the list.  In a rare corner case it
1874 	 * might get readded to a delwri list after the synchronous writeout, in
1875 	 * which case we need just need to re-add the flag here.
1876 	 */
1877 	bp->b_flags |= _XBF_DELWRI_Q;
1878 	if (list_empty(&bp->b_list)) {
1879 		atomic_inc(&bp->b_hold);
1880 		list_add_tail(&bp->b_list, list);
1881 	}
1882 
1883 	return true;
1884 }
1885 
1886 /*
1887  * Compare function is more complex than it needs to be because
1888  * the return value is only 32 bits and we are doing comparisons
1889  * on 64 bit values
1890  */
1891 static int
1892 xfs_buf_cmp(
1893 	void		*priv,
1894 	struct list_head *a,
1895 	struct list_head *b)
1896 {
1897 	struct xfs_buf	*ap = container_of(a, struct xfs_buf, b_list);
1898 	struct xfs_buf	*bp = container_of(b, struct xfs_buf, b_list);
1899 	xfs_daddr_t		diff;
1900 
1901 	diff = ap->b_maps[0].bm_bn - bp->b_maps[0].bm_bn;
1902 	if (diff < 0)
1903 		return -1;
1904 	if (diff > 0)
1905 		return 1;
1906 	return 0;
1907 }
1908 
1909 /*
1910  * Submit buffers for write. If wait_list is specified, the buffers are
1911  * submitted using sync I/O and placed on the wait list such that the caller can
1912  * iowait each buffer. Otherwise async I/O is used and the buffers are released
1913  * at I/O completion time. In either case, buffers remain locked until I/O
1914  * completes and the buffer is released from the queue.
1915  */
1916 static int
1917 xfs_buf_delwri_submit_buffers(
1918 	struct list_head	*buffer_list,
1919 	struct list_head	*wait_list)
1920 {
1921 	struct xfs_buf		*bp, *n;
1922 	int			pinned = 0;
1923 	struct blk_plug		plug;
1924 
1925 	list_sort(NULL, buffer_list, xfs_buf_cmp);
1926 
1927 	blk_start_plug(&plug);
1928 	list_for_each_entry_safe(bp, n, buffer_list, b_list) {
1929 		if (!wait_list) {
1930 			if (xfs_buf_ispinned(bp)) {
1931 				pinned++;
1932 				continue;
1933 			}
1934 			if (!xfs_buf_trylock(bp))
1935 				continue;
1936 		} else {
1937 			xfs_buf_lock(bp);
1938 		}
1939 
1940 		/*
1941 		 * Someone else might have written the buffer synchronously or
1942 		 * marked it stale in the meantime.  In that case only the
1943 		 * _XBF_DELWRI_Q flag got cleared, and we have to drop the
1944 		 * reference and remove it from the list here.
1945 		 */
1946 		if (!(bp->b_flags & _XBF_DELWRI_Q)) {
1947 			list_del_init(&bp->b_list);
1948 			xfs_buf_relse(bp);
1949 			continue;
1950 		}
1951 
1952 		trace_xfs_buf_delwri_split(bp, _RET_IP_);
1953 
1954 		/*
1955 		 * If we have a wait list, each buffer (and associated delwri
1956 		 * queue reference) transfers to it and is submitted
1957 		 * synchronously. Otherwise, drop the buffer from the delwri
1958 		 * queue and submit async.
1959 		 */
1960 		bp->b_flags &= ~(_XBF_DELWRI_Q | XBF_WRITE_FAIL);
1961 		bp->b_flags |= XBF_WRITE;
1962 		if (wait_list) {
1963 			bp->b_flags &= ~XBF_ASYNC;
1964 			list_move_tail(&bp->b_list, wait_list);
1965 		} else {
1966 			bp->b_flags |= XBF_ASYNC;
1967 			list_del_init(&bp->b_list);
1968 		}
1969 		__xfs_buf_submit(bp, false);
1970 	}
1971 	blk_finish_plug(&plug);
1972 
1973 	return pinned;
1974 }
1975 
1976 /*
1977  * Write out a buffer list asynchronously.
1978  *
1979  * This will take the @buffer_list, write all non-locked and non-pinned buffers
1980  * out and not wait for I/O completion on any of the buffers.  This interface
1981  * is only safely useable for callers that can track I/O completion by higher
1982  * level means, e.g. AIL pushing as the @buffer_list is consumed in this
1983  * function.
1984  *
1985  * Note: this function will skip buffers it would block on, and in doing so
1986  * leaves them on @buffer_list so they can be retried on a later pass. As such,
1987  * it is up to the caller to ensure that the buffer list is fully submitted or
1988  * cancelled appropriately when they are finished with the list. Failure to
1989  * cancel or resubmit the list until it is empty will result in leaked buffers
1990  * at unmount time.
1991  */
1992 int
1993 xfs_buf_delwri_submit_nowait(
1994 	struct list_head	*buffer_list)
1995 {
1996 	return xfs_buf_delwri_submit_buffers(buffer_list, NULL);
1997 }
1998 
1999 /*
2000  * Write out a buffer list synchronously.
2001  *
2002  * This will take the @buffer_list, write all buffers out and wait for I/O
2003  * completion on all of the buffers. @buffer_list is consumed by the function,
2004  * so callers must have some other way of tracking buffers if they require such
2005  * functionality.
2006  */
2007 int
2008 xfs_buf_delwri_submit(
2009 	struct list_head	*buffer_list)
2010 {
2011 	LIST_HEAD		(wait_list);
2012 	int			error = 0, error2;
2013 	struct xfs_buf		*bp;
2014 
2015 	xfs_buf_delwri_submit_buffers(buffer_list, &wait_list);
2016 
2017 	/* Wait for IO to complete. */
2018 	while (!list_empty(&wait_list)) {
2019 		bp = list_first_entry(&wait_list, struct xfs_buf, b_list);
2020 
2021 		list_del_init(&bp->b_list);
2022 
2023 		/*
2024 		 * Wait on the locked buffer, check for errors and unlock and
2025 		 * release the delwri queue reference.
2026 		 */
2027 		error2 = xfs_buf_iowait(bp);
2028 		xfs_buf_relse(bp);
2029 		if (!error)
2030 			error = error2;
2031 	}
2032 
2033 	return error;
2034 }
2035 
2036 /*
2037  * Push a single buffer on a delwri queue.
2038  *
2039  * The purpose of this function is to submit a single buffer of a delwri queue
2040  * and return with the buffer still on the original queue. The waiting delwri
2041  * buffer submission infrastructure guarantees transfer of the delwri queue
2042  * buffer reference to a temporary wait list. We reuse this infrastructure to
2043  * transfer the buffer back to the original queue.
2044  *
2045  * Note the buffer transitions from the queued state, to the submitted and wait
2046  * listed state and back to the queued state during this call. The buffer
2047  * locking and queue management logic between _delwri_pushbuf() and
2048  * _delwri_queue() guarantee that the buffer cannot be queued to another list
2049  * before returning.
2050  */
2051 int
2052 xfs_buf_delwri_pushbuf(
2053 	struct xfs_buf		*bp,
2054 	struct list_head	*buffer_list)
2055 {
2056 	LIST_HEAD		(submit_list);
2057 	int			error;
2058 
2059 	ASSERT(bp->b_flags & _XBF_DELWRI_Q);
2060 
2061 	trace_xfs_buf_delwri_pushbuf(bp, _RET_IP_);
2062 
2063 	/*
2064 	 * Isolate the buffer to a new local list so we can submit it for I/O
2065 	 * independently from the rest of the original list.
2066 	 */
2067 	xfs_buf_lock(bp);
2068 	list_move(&bp->b_list, &submit_list);
2069 	xfs_buf_unlock(bp);
2070 
2071 	/*
2072 	 * Delwri submission clears the DELWRI_Q buffer flag and returns with
2073 	 * the buffer on the wait list with the original reference. Rather than
2074 	 * bounce the buffer from a local wait list back to the original list
2075 	 * after I/O completion, reuse the original list as the wait list.
2076 	 */
2077 	xfs_buf_delwri_submit_buffers(&submit_list, buffer_list);
2078 
2079 	/*
2080 	 * The buffer is now locked, under I/O and wait listed on the original
2081 	 * delwri queue. Wait for I/O completion, restore the DELWRI_Q flag and
2082 	 * return with the buffer unlocked and on the original queue.
2083 	 */
2084 	error = xfs_buf_iowait(bp);
2085 	bp->b_flags |= _XBF_DELWRI_Q;
2086 	xfs_buf_unlock(bp);
2087 
2088 	return error;
2089 }
2090 
2091 int __init
2092 xfs_buf_init(void)
2093 {
2094 	xfs_buf_zone = kmem_cache_create("xfs_buf",
2095 					 sizeof(struct xfs_buf), 0,
2096 					 SLAB_HWCACHE_ALIGN, NULL);
2097 	if (!xfs_buf_zone)
2098 		goto out;
2099 
2100 	return 0;
2101 
2102  out:
2103 	return -ENOMEM;
2104 }
2105 
2106 void
2107 xfs_buf_terminate(void)
2108 {
2109 	kmem_cache_destroy(xfs_buf_zone);
2110 }
2111 
2112 void xfs_buf_set_ref(struct xfs_buf *bp, int lru_ref)
2113 {
2114 	/*
2115 	 * Set the lru reference count to 0 based on the error injection tag.
2116 	 * This allows userspace to disrupt buffer caching for debug/testing
2117 	 * purposes.
2118 	 */
2119 	if (XFS_TEST_ERROR(false, bp->b_mount, XFS_ERRTAG_BUF_LRU_REF))
2120 		lru_ref = 0;
2121 
2122 	atomic_set(&bp->b_lru_ref, lru_ref);
2123 }
2124 
2125 /*
2126  * Verify an on-disk magic value against the magic value specified in the
2127  * verifier structure. The verifier magic is in disk byte order so the caller is
2128  * expected to pass the value directly from disk.
2129  */
2130 bool
2131 xfs_verify_magic(
2132 	struct xfs_buf		*bp,
2133 	__be32			dmagic)
2134 {
2135 	struct xfs_mount	*mp = bp->b_mount;
2136 	int			idx;
2137 
2138 	idx = xfs_sb_version_hascrc(&mp->m_sb);
2139 	if (WARN_ON(!bp->b_ops || !bp->b_ops->magic[idx]))
2140 		return false;
2141 	return dmagic == bp->b_ops->magic[idx];
2142 }
2143 /*
2144  * Verify an on-disk magic value against the magic value specified in the
2145  * verifier structure. The verifier magic is in disk byte order so the caller is
2146  * expected to pass the value directly from disk.
2147  */
2148 bool
2149 xfs_verify_magic16(
2150 	struct xfs_buf		*bp,
2151 	__be16			dmagic)
2152 {
2153 	struct xfs_mount	*mp = bp->b_mount;
2154 	int			idx;
2155 
2156 	idx = xfs_sb_version_hascrc(&mp->m_sb);
2157 	if (WARN_ON(!bp->b_ops || !bp->b_ops->magic16[idx]))
2158 		return false;
2159 	return dmagic == bp->b_ops->magic16[idx];
2160 }
2161