1 /* 2 * Copyright (c) 2000-2006 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include <linux/stddef.h> 20 #include <linux/errno.h> 21 #include <linux/gfp.h> 22 #include <linux/pagemap.h> 23 #include <linux/init.h> 24 #include <linux/vmalloc.h> 25 #include <linux/bio.h> 26 #include <linux/sysctl.h> 27 #include <linux/proc_fs.h> 28 #include <linux/workqueue.h> 29 #include <linux/percpu.h> 30 #include <linux/blkdev.h> 31 #include <linux/hash.h> 32 #include <linux/kthread.h> 33 #include <linux/migrate.h> 34 #include <linux/backing-dev.h> 35 #include <linux/freezer.h> 36 #include <linux/sched/mm.h> 37 38 #include "xfs_format.h" 39 #include "xfs_log_format.h" 40 #include "xfs_trans_resv.h" 41 #include "xfs_sb.h" 42 #include "xfs_mount.h" 43 #include "xfs_trace.h" 44 #include "xfs_log.h" 45 46 static kmem_zone_t *xfs_buf_zone; 47 48 #ifdef XFS_BUF_LOCK_TRACKING 49 # define XB_SET_OWNER(bp) ((bp)->b_last_holder = current->pid) 50 # define XB_CLEAR_OWNER(bp) ((bp)->b_last_holder = -1) 51 # define XB_GET_OWNER(bp) ((bp)->b_last_holder) 52 #else 53 # define XB_SET_OWNER(bp) do { } while (0) 54 # define XB_CLEAR_OWNER(bp) do { } while (0) 55 # define XB_GET_OWNER(bp) do { } while (0) 56 #endif 57 58 #define xb_to_gfp(flags) \ 59 ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : GFP_NOFS) | __GFP_NOWARN) 60 61 62 static inline int 63 xfs_buf_is_vmapped( 64 struct xfs_buf *bp) 65 { 66 /* 67 * Return true if the buffer is vmapped. 68 * 69 * b_addr is null if the buffer is not mapped, but the code is clever 70 * enough to know it doesn't have to map a single page, so the check has 71 * to be both for b_addr and bp->b_page_count > 1. 72 */ 73 return bp->b_addr && bp->b_page_count > 1; 74 } 75 76 static inline int 77 xfs_buf_vmap_len( 78 struct xfs_buf *bp) 79 { 80 return (bp->b_page_count * PAGE_SIZE) - bp->b_offset; 81 } 82 83 /* 84 * Bump the I/O in flight count on the buftarg if we haven't yet done so for 85 * this buffer. The count is incremented once per buffer (per hold cycle) 86 * because the corresponding decrement is deferred to buffer release. Buffers 87 * can undergo I/O multiple times in a hold-release cycle and per buffer I/O 88 * tracking adds unnecessary overhead. This is used for sychronization purposes 89 * with unmount (see xfs_wait_buftarg()), so all we really need is a count of 90 * in-flight buffers. 91 * 92 * Buffers that are never released (e.g., superblock, iclog buffers) must set 93 * the XBF_NO_IOACCT flag before I/O submission. Otherwise, the buftarg count 94 * never reaches zero and unmount hangs indefinitely. 95 */ 96 static inline void 97 xfs_buf_ioacct_inc( 98 struct xfs_buf *bp) 99 { 100 if (bp->b_flags & XBF_NO_IOACCT) 101 return; 102 103 ASSERT(bp->b_flags & XBF_ASYNC); 104 spin_lock(&bp->b_lock); 105 if (!(bp->b_state & XFS_BSTATE_IN_FLIGHT)) { 106 bp->b_state |= XFS_BSTATE_IN_FLIGHT; 107 percpu_counter_inc(&bp->b_target->bt_io_count); 108 } 109 spin_unlock(&bp->b_lock); 110 } 111 112 /* 113 * Clear the in-flight state on a buffer about to be released to the LRU or 114 * freed and unaccount from the buftarg. 115 */ 116 static inline void 117 __xfs_buf_ioacct_dec( 118 struct xfs_buf *bp) 119 { 120 lockdep_assert_held(&bp->b_lock); 121 122 if (bp->b_state & XFS_BSTATE_IN_FLIGHT) { 123 bp->b_state &= ~XFS_BSTATE_IN_FLIGHT; 124 percpu_counter_dec(&bp->b_target->bt_io_count); 125 } 126 } 127 128 static inline void 129 xfs_buf_ioacct_dec( 130 struct xfs_buf *bp) 131 { 132 spin_lock(&bp->b_lock); 133 __xfs_buf_ioacct_dec(bp); 134 spin_unlock(&bp->b_lock); 135 } 136 137 /* 138 * When we mark a buffer stale, we remove the buffer from the LRU and clear the 139 * b_lru_ref count so that the buffer is freed immediately when the buffer 140 * reference count falls to zero. If the buffer is already on the LRU, we need 141 * to remove the reference that LRU holds on the buffer. 142 * 143 * This prevents build-up of stale buffers on the LRU. 144 */ 145 void 146 xfs_buf_stale( 147 struct xfs_buf *bp) 148 { 149 ASSERT(xfs_buf_islocked(bp)); 150 151 bp->b_flags |= XBF_STALE; 152 153 /* 154 * Clear the delwri status so that a delwri queue walker will not 155 * flush this buffer to disk now that it is stale. The delwri queue has 156 * a reference to the buffer, so this is safe to do. 157 */ 158 bp->b_flags &= ~_XBF_DELWRI_Q; 159 160 /* 161 * Once the buffer is marked stale and unlocked, a subsequent lookup 162 * could reset b_flags. There is no guarantee that the buffer is 163 * unaccounted (released to LRU) before that occurs. Drop in-flight 164 * status now to preserve accounting consistency. 165 */ 166 spin_lock(&bp->b_lock); 167 __xfs_buf_ioacct_dec(bp); 168 169 atomic_set(&bp->b_lru_ref, 0); 170 if (!(bp->b_state & XFS_BSTATE_DISPOSE) && 171 (list_lru_del(&bp->b_target->bt_lru, &bp->b_lru))) 172 atomic_dec(&bp->b_hold); 173 174 ASSERT(atomic_read(&bp->b_hold) >= 1); 175 spin_unlock(&bp->b_lock); 176 } 177 178 static int 179 xfs_buf_get_maps( 180 struct xfs_buf *bp, 181 int map_count) 182 { 183 ASSERT(bp->b_maps == NULL); 184 bp->b_map_count = map_count; 185 186 if (map_count == 1) { 187 bp->b_maps = &bp->__b_map; 188 return 0; 189 } 190 191 bp->b_maps = kmem_zalloc(map_count * sizeof(struct xfs_buf_map), 192 KM_NOFS); 193 if (!bp->b_maps) 194 return -ENOMEM; 195 return 0; 196 } 197 198 /* 199 * Frees b_pages if it was allocated. 200 */ 201 static void 202 xfs_buf_free_maps( 203 struct xfs_buf *bp) 204 { 205 if (bp->b_maps != &bp->__b_map) { 206 kmem_free(bp->b_maps); 207 bp->b_maps = NULL; 208 } 209 } 210 211 struct xfs_buf * 212 _xfs_buf_alloc( 213 struct xfs_buftarg *target, 214 struct xfs_buf_map *map, 215 int nmaps, 216 xfs_buf_flags_t flags) 217 { 218 struct xfs_buf *bp; 219 int error; 220 int i; 221 222 bp = kmem_zone_zalloc(xfs_buf_zone, KM_NOFS); 223 if (unlikely(!bp)) 224 return NULL; 225 226 /* 227 * We don't want certain flags to appear in b_flags unless they are 228 * specifically set by later operations on the buffer. 229 */ 230 flags &= ~(XBF_UNMAPPED | XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD); 231 232 atomic_set(&bp->b_hold, 1); 233 atomic_set(&bp->b_lru_ref, 1); 234 init_completion(&bp->b_iowait); 235 INIT_LIST_HEAD(&bp->b_lru); 236 INIT_LIST_HEAD(&bp->b_list); 237 sema_init(&bp->b_sema, 0); /* held, no waiters */ 238 spin_lock_init(&bp->b_lock); 239 XB_SET_OWNER(bp); 240 bp->b_target = target; 241 bp->b_flags = flags; 242 243 /* 244 * Set length and io_length to the same value initially. 245 * I/O routines should use io_length, which will be the same in 246 * most cases but may be reset (e.g. XFS recovery). 247 */ 248 error = xfs_buf_get_maps(bp, nmaps); 249 if (error) { 250 kmem_zone_free(xfs_buf_zone, bp); 251 return NULL; 252 } 253 254 bp->b_bn = map[0].bm_bn; 255 bp->b_length = 0; 256 for (i = 0; i < nmaps; i++) { 257 bp->b_maps[i].bm_bn = map[i].bm_bn; 258 bp->b_maps[i].bm_len = map[i].bm_len; 259 bp->b_length += map[i].bm_len; 260 } 261 bp->b_io_length = bp->b_length; 262 263 atomic_set(&bp->b_pin_count, 0); 264 init_waitqueue_head(&bp->b_waiters); 265 266 XFS_STATS_INC(target->bt_mount, xb_create); 267 trace_xfs_buf_init(bp, _RET_IP_); 268 269 return bp; 270 } 271 272 /* 273 * Allocate a page array capable of holding a specified number 274 * of pages, and point the page buf at it. 275 */ 276 STATIC int 277 _xfs_buf_get_pages( 278 xfs_buf_t *bp, 279 int page_count) 280 { 281 /* Make sure that we have a page list */ 282 if (bp->b_pages == NULL) { 283 bp->b_page_count = page_count; 284 if (page_count <= XB_PAGES) { 285 bp->b_pages = bp->b_page_array; 286 } else { 287 bp->b_pages = kmem_alloc(sizeof(struct page *) * 288 page_count, KM_NOFS); 289 if (bp->b_pages == NULL) 290 return -ENOMEM; 291 } 292 memset(bp->b_pages, 0, sizeof(struct page *) * page_count); 293 } 294 return 0; 295 } 296 297 /* 298 * Frees b_pages if it was allocated. 299 */ 300 STATIC void 301 _xfs_buf_free_pages( 302 xfs_buf_t *bp) 303 { 304 if (bp->b_pages != bp->b_page_array) { 305 kmem_free(bp->b_pages); 306 bp->b_pages = NULL; 307 } 308 } 309 310 /* 311 * Releases the specified buffer. 312 * 313 * The modification state of any associated pages is left unchanged. 314 * The buffer must not be on any hash - use xfs_buf_rele instead for 315 * hashed and refcounted buffers 316 */ 317 void 318 xfs_buf_free( 319 xfs_buf_t *bp) 320 { 321 trace_xfs_buf_free(bp, _RET_IP_); 322 323 ASSERT(list_empty(&bp->b_lru)); 324 325 if (bp->b_flags & _XBF_PAGES) { 326 uint i; 327 328 if (xfs_buf_is_vmapped(bp)) 329 vm_unmap_ram(bp->b_addr - bp->b_offset, 330 bp->b_page_count); 331 332 for (i = 0; i < bp->b_page_count; i++) { 333 struct page *page = bp->b_pages[i]; 334 335 __free_page(page); 336 } 337 } else if (bp->b_flags & _XBF_KMEM) 338 kmem_free(bp->b_addr); 339 _xfs_buf_free_pages(bp); 340 xfs_buf_free_maps(bp); 341 kmem_zone_free(xfs_buf_zone, bp); 342 } 343 344 /* 345 * Allocates all the pages for buffer in question and builds it's page list. 346 */ 347 STATIC int 348 xfs_buf_allocate_memory( 349 xfs_buf_t *bp, 350 uint flags) 351 { 352 size_t size; 353 size_t nbytes, offset; 354 gfp_t gfp_mask = xb_to_gfp(flags); 355 unsigned short page_count, i; 356 xfs_off_t start, end; 357 int error; 358 359 /* 360 * for buffers that are contained within a single page, just allocate 361 * the memory from the heap - there's no need for the complexity of 362 * page arrays to keep allocation down to order 0. 363 */ 364 size = BBTOB(bp->b_length); 365 if (size < PAGE_SIZE) { 366 bp->b_addr = kmem_alloc(size, KM_NOFS); 367 if (!bp->b_addr) { 368 /* low memory - use alloc_page loop instead */ 369 goto use_alloc_page; 370 } 371 372 if (((unsigned long)(bp->b_addr + size - 1) & PAGE_MASK) != 373 ((unsigned long)bp->b_addr & PAGE_MASK)) { 374 /* b_addr spans two pages - use alloc_page instead */ 375 kmem_free(bp->b_addr); 376 bp->b_addr = NULL; 377 goto use_alloc_page; 378 } 379 bp->b_offset = offset_in_page(bp->b_addr); 380 bp->b_pages = bp->b_page_array; 381 bp->b_pages[0] = virt_to_page(bp->b_addr); 382 bp->b_page_count = 1; 383 bp->b_flags |= _XBF_KMEM; 384 return 0; 385 } 386 387 use_alloc_page: 388 start = BBTOB(bp->b_maps[0].bm_bn) >> PAGE_SHIFT; 389 end = (BBTOB(bp->b_maps[0].bm_bn + bp->b_length) + PAGE_SIZE - 1) 390 >> PAGE_SHIFT; 391 page_count = end - start; 392 error = _xfs_buf_get_pages(bp, page_count); 393 if (unlikely(error)) 394 return error; 395 396 offset = bp->b_offset; 397 bp->b_flags |= _XBF_PAGES; 398 399 for (i = 0; i < bp->b_page_count; i++) { 400 struct page *page; 401 uint retries = 0; 402 retry: 403 page = alloc_page(gfp_mask); 404 if (unlikely(page == NULL)) { 405 if (flags & XBF_READ_AHEAD) { 406 bp->b_page_count = i; 407 error = -ENOMEM; 408 goto out_free_pages; 409 } 410 411 /* 412 * This could deadlock. 413 * 414 * But until all the XFS lowlevel code is revamped to 415 * handle buffer allocation failures we can't do much. 416 */ 417 if (!(++retries % 100)) 418 xfs_err(NULL, 419 "%s(%u) possible memory allocation deadlock in %s (mode:0x%x)", 420 current->comm, current->pid, 421 __func__, gfp_mask); 422 423 XFS_STATS_INC(bp->b_target->bt_mount, xb_page_retries); 424 congestion_wait(BLK_RW_ASYNC, HZ/50); 425 goto retry; 426 } 427 428 XFS_STATS_INC(bp->b_target->bt_mount, xb_page_found); 429 430 nbytes = min_t(size_t, size, PAGE_SIZE - offset); 431 size -= nbytes; 432 bp->b_pages[i] = page; 433 offset = 0; 434 } 435 return 0; 436 437 out_free_pages: 438 for (i = 0; i < bp->b_page_count; i++) 439 __free_page(bp->b_pages[i]); 440 bp->b_flags &= ~_XBF_PAGES; 441 return error; 442 } 443 444 /* 445 * Map buffer into kernel address-space if necessary. 446 */ 447 STATIC int 448 _xfs_buf_map_pages( 449 xfs_buf_t *bp, 450 uint flags) 451 { 452 ASSERT(bp->b_flags & _XBF_PAGES); 453 if (bp->b_page_count == 1) { 454 /* A single page buffer is always mappable */ 455 bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset; 456 } else if (flags & XBF_UNMAPPED) { 457 bp->b_addr = NULL; 458 } else { 459 int retried = 0; 460 unsigned nofs_flag; 461 462 /* 463 * vm_map_ram() will allocate auxillary structures (e.g. 464 * pagetables) with GFP_KERNEL, yet we are likely to be under 465 * GFP_NOFS context here. Hence we need to tell memory reclaim 466 * that we are in such a context via PF_MEMALLOC_NOFS to prevent 467 * memory reclaim re-entering the filesystem here and 468 * potentially deadlocking. 469 */ 470 nofs_flag = memalloc_nofs_save(); 471 do { 472 bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count, 473 -1, PAGE_KERNEL); 474 if (bp->b_addr) 475 break; 476 vm_unmap_aliases(); 477 } while (retried++ <= 1); 478 memalloc_nofs_restore(nofs_flag); 479 480 if (!bp->b_addr) 481 return -ENOMEM; 482 bp->b_addr += bp->b_offset; 483 } 484 485 return 0; 486 } 487 488 /* 489 * Finding and Reading Buffers 490 */ 491 static int 492 _xfs_buf_obj_cmp( 493 struct rhashtable_compare_arg *arg, 494 const void *obj) 495 { 496 const struct xfs_buf_map *map = arg->key; 497 const struct xfs_buf *bp = obj; 498 499 /* 500 * The key hashing in the lookup path depends on the key being the 501 * first element of the compare_arg, make sure to assert this. 502 */ 503 BUILD_BUG_ON(offsetof(struct xfs_buf_map, bm_bn) != 0); 504 505 if (bp->b_bn != map->bm_bn) 506 return 1; 507 508 if (unlikely(bp->b_length != map->bm_len)) { 509 /* 510 * found a block number match. If the range doesn't 511 * match, the only way this is allowed is if the buffer 512 * in the cache is stale and the transaction that made 513 * it stale has not yet committed. i.e. we are 514 * reallocating a busy extent. Skip this buffer and 515 * continue searching for an exact match. 516 */ 517 ASSERT(bp->b_flags & XBF_STALE); 518 return 1; 519 } 520 return 0; 521 } 522 523 static const struct rhashtable_params xfs_buf_hash_params = { 524 .min_size = 32, /* empty AGs have minimal footprint */ 525 .nelem_hint = 16, 526 .key_len = sizeof(xfs_daddr_t), 527 .key_offset = offsetof(struct xfs_buf, b_bn), 528 .head_offset = offsetof(struct xfs_buf, b_rhash_head), 529 .automatic_shrinking = true, 530 .obj_cmpfn = _xfs_buf_obj_cmp, 531 }; 532 533 int 534 xfs_buf_hash_init( 535 struct xfs_perag *pag) 536 { 537 spin_lock_init(&pag->pag_buf_lock); 538 return rhashtable_init(&pag->pag_buf_hash, &xfs_buf_hash_params); 539 } 540 541 void 542 xfs_buf_hash_destroy( 543 struct xfs_perag *pag) 544 { 545 rhashtable_destroy(&pag->pag_buf_hash); 546 } 547 548 /* 549 * Look up, and creates if absent, a lockable buffer for 550 * a given range of an inode. The buffer is returned 551 * locked. No I/O is implied by this call. 552 */ 553 xfs_buf_t * 554 _xfs_buf_find( 555 struct xfs_buftarg *btp, 556 struct xfs_buf_map *map, 557 int nmaps, 558 xfs_buf_flags_t flags, 559 xfs_buf_t *new_bp) 560 { 561 struct xfs_perag *pag; 562 xfs_buf_t *bp; 563 struct xfs_buf_map cmap = { .bm_bn = map[0].bm_bn }; 564 xfs_daddr_t eofs; 565 int i; 566 567 for (i = 0; i < nmaps; i++) 568 cmap.bm_len += map[i].bm_len; 569 570 /* Check for IOs smaller than the sector size / not sector aligned */ 571 ASSERT(!(BBTOB(cmap.bm_len) < btp->bt_meta_sectorsize)); 572 ASSERT(!(BBTOB(cmap.bm_bn) & (xfs_off_t)btp->bt_meta_sectormask)); 573 574 /* 575 * Corrupted block numbers can get through to here, unfortunately, so we 576 * have to check that the buffer falls within the filesystem bounds. 577 */ 578 eofs = XFS_FSB_TO_BB(btp->bt_mount, btp->bt_mount->m_sb.sb_dblocks); 579 if (cmap.bm_bn < 0 || cmap.bm_bn >= eofs) { 580 /* 581 * XXX (dgc): we should really be returning -EFSCORRUPTED here, 582 * but none of the higher level infrastructure supports 583 * returning a specific error on buffer lookup failures. 584 */ 585 xfs_alert(btp->bt_mount, 586 "%s: Block out of range: block 0x%llx, EOFS 0x%llx ", 587 __func__, cmap.bm_bn, eofs); 588 WARN_ON(1); 589 return NULL; 590 } 591 592 pag = xfs_perag_get(btp->bt_mount, 593 xfs_daddr_to_agno(btp->bt_mount, cmap.bm_bn)); 594 595 spin_lock(&pag->pag_buf_lock); 596 bp = rhashtable_lookup_fast(&pag->pag_buf_hash, &cmap, 597 xfs_buf_hash_params); 598 if (bp) { 599 atomic_inc(&bp->b_hold); 600 goto found; 601 } 602 603 /* No match found */ 604 if (new_bp) { 605 /* the buffer keeps the perag reference until it is freed */ 606 new_bp->b_pag = pag; 607 rhashtable_insert_fast(&pag->pag_buf_hash, 608 &new_bp->b_rhash_head, 609 xfs_buf_hash_params); 610 spin_unlock(&pag->pag_buf_lock); 611 } else { 612 XFS_STATS_INC(btp->bt_mount, xb_miss_locked); 613 spin_unlock(&pag->pag_buf_lock); 614 xfs_perag_put(pag); 615 } 616 return new_bp; 617 618 found: 619 spin_unlock(&pag->pag_buf_lock); 620 xfs_perag_put(pag); 621 622 if (!xfs_buf_trylock(bp)) { 623 if (flags & XBF_TRYLOCK) { 624 xfs_buf_rele(bp); 625 XFS_STATS_INC(btp->bt_mount, xb_busy_locked); 626 return NULL; 627 } 628 xfs_buf_lock(bp); 629 XFS_STATS_INC(btp->bt_mount, xb_get_locked_waited); 630 } 631 632 /* 633 * if the buffer is stale, clear all the external state associated with 634 * it. We need to keep flags such as how we allocated the buffer memory 635 * intact here. 636 */ 637 if (bp->b_flags & XBF_STALE) { 638 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0); 639 ASSERT(bp->b_iodone == NULL); 640 bp->b_flags &= _XBF_KMEM | _XBF_PAGES; 641 bp->b_ops = NULL; 642 } 643 644 trace_xfs_buf_find(bp, flags, _RET_IP_); 645 XFS_STATS_INC(btp->bt_mount, xb_get_locked); 646 return bp; 647 } 648 649 /* 650 * Assembles a buffer covering the specified range. The code is optimised for 651 * cache hits, as metadata intensive workloads will see 3 orders of magnitude 652 * more hits than misses. 653 */ 654 struct xfs_buf * 655 xfs_buf_get_map( 656 struct xfs_buftarg *target, 657 struct xfs_buf_map *map, 658 int nmaps, 659 xfs_buf_flags_t flags) 660 { 661 struct xfs_buf *bp; 662 struct xfs_buf *new_bp; 663 int error = 0; 664 665 bp = _xfs_buf_find(target, map, nmaps, flags, NULL); 666 if (likely(bp)) 667 goto found; 668 669 new_bp = _xfs_buf_alloc(target, map, nmaps, flags); 670 if (unlikely(!new_bp)) 671 return NULL; 672 673 error = xfs_buf_allocate_memory(new_bp, flags); 674 if (error) { 675 xfs_buf_free(new_bp); 676 return NULL; 677 } 678 679 bp = _xfs_buf_find(target, map, nmaps, flags, new_bp); 680 if (!bp) { 681 xfs_buf_free(new_bp); 682 return NULL; 683 } 684 685 if (bp != new_bp) 686 xfs_buf_free(new_bp); 687 688 found: 689 if (!bp->b_addr) { 690 error = _xfs_buf_map_pages(bp, flags); 691 if (unlikely(error)) { 692 xfs_warn(target->bt_mount, 693 "%s: failed to map pagesn", __func__); 694 xfs_buf_relse(bp); 695 return NULL; 696 } 697 } 698 699 /* 700 * Clear b_error if this is a lookup from a caller that doesn't expect 701 * valid data to be found in the buffer. 702 */ 703 if (!(flags & XBF_READ)) 704 xfs_buf_ioerror(bp, 0); 705 706 XFS_STATS_INC(target->bt_mount, xb_get); 707 trace_xfs_buf_get(bp, flags, _RET_IP_); 708 return bp; 709 } 710 711 STATIC int 712 _xfs_buf_read( 713 xfs_buf_t *bp, 714 xfs_buf_flags_t flags) 715 { 716 ASSERT(!(flags & XBF_WRITE)); 717 ASSERT(bp->b_maps[0].bm_bn != XFS_BUF_DADDR_NULL); 718 719 bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD); 720 bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD); 721 722 if (flags & XBF_ASYNC) { 723 xfs_buf_submit(bp); 724 return 0; 725 } 726 return xfs_buf_submit_wait(bp); 727 } 728 729 xfs_buf_t * 730 xfs_buf_read_map( 731 struct xfs_buftarg *target, 732 struct xfs_buf_map *map, 733 int nmaps, 734 xfs_buf_flags_t flags, 735 const struct xfs_buf_ops *ops) 736 { 737 struct xfs_buf *bp; 738 739 flags |= XBF_READ; 740 741 bp = xfs_buf_get_map(target, map, nmaps, flags); 742 if (bp) { 743 trace_xfs_buf_read(bp, flags, _RET_IP_); 744 745 if (!(bp->b_flags & XBF_DONE)) { 746 XFS_STATS_INC(target->bt_mount, xb_get_read); 747 bp->b_ops = ops; 748 _xfs_buf_read(bp, flags); 749 } else if (flags & XBF_ASYNC) { 750 /* 751 * Read ahead call which is already satisfied, 752 * drop the buffer 753 */ 754 xfs_buf_relse(bp); 755 return NULL; 756 } else { 757 /* We do not want read in the flags */ 758 bp->b_flags &= ~XBF_READ; 759 } 760 } 761 762 return bp; 763 } 764 765 /* 766 * If we are not low on memory then do the readahead in a deadlock 767 * safe manner. 768 */ 769 void 770 xfs_buf_readahead_map( 771 struct xfs_buftarg *target, 772 struct xfs_buf_map *map, 773 int nmaps, 774 const struct xfs_buf_ops *ops) 775 { 776 if (bdi_read_congested(target->bt_bdev->bd_bdi)) 777 return; 778 779 xfs_buf_read_map(target, map, nmaps, 780 XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD, ops); 781 } 782 783 /* 784 * Read an uncached buffer from disk. Allocates and returns a locked 785 * buffer containing the disk contents or nothing. 786 */ 787 int 788 xfs_buf_read_uncached( 789 struct xfs_buftarg *target, 790 xfs_daddr_t daddr, 791 size_t numblks, 792 int flags, 793 struct xfs_buf **bpp, 794 const struct xfs_buf_ops *ops) 795 { 796 struct xfs_buf *bp; 797 798 *bpp = NULL; 799 800 bp = xfs_buf_get_uncached(target, numblks, flags); 801 if (!bp) 802 return -ENOMEM; 803 804 /* set up the buffer for a read IO */ 805 ASSERT(bp->b_map_count == 1); 806 bp->b_bn = XFS_BUF_DADDR_NULL; /* always null for uncached buffers */ 807 bp->b_maps[0].bm_bn = daddr; 808 bp->b_flags |= XBF_READ; 809 bp->b_ops = ops; 810 811 xfs_buf_submit_wait(bp); 812 if (bp->b_error) { 813 int error = bp->b_error; 814 xfs_buf_relse(bp); 815 return error; 816 } 817 818 *bpp = bp; 819 return 0; 820 } 821 822 /* 823 * Return a buffer allocated as an empty buffer and associated to external 824 * memory via xfs_buf_associate_memory() back to it's empty state. 825 */ 826 void 827 xfs_buf_set_empty( 828 struct xfs_buf *bp, 829 size_t numblks) 830 { 831 if (bp->b_pages) 832 _xfs_buf_free_pages(bp); 833 834 bp->b_pages = NULL; 835 bp->b_page_count = 0; 836 bp->b_addr = NULL; 837 bp->b_length = numblks; 838 bp->b_io_length = numblks; 839 840 ASSERT(bp->b_map_count == 1); 841 bp->b_bn = XFS_BUF_DADDR_NULL; 842 bp->b_maps[0].bm_bn = XFS_BUF_DADDR_NULL; 843 bp->b_maps[0].bm_len = bp->b_length; 844 } 845 846 static inline struct page * 847 mem_to_page( 848 void *addr) 849 { 850 if ((!is_vmalloc_addr(addr))) { 851 return virt_to_page(addr); 852 } else { 853 return vmalloc_to_page(addr); 854 } 855 } 856 857 int 858 xfs_buf_associate_memory( 859 xfs_buf_t *bp, 860 void *mem, 861 size_t len) 862 { 863 int rval; 864 int i = 0; 865 unsigned long pageaddr; 866 unsigned long offset; 867 size_t buflen; 868 int page_count; 869 870 pageaddr = (unsigned long)mem & PAGE_MASK; 871 offset = (unsigned long)mem - pageaddr; 872 buflen = PAGE_ALIGN(len + offset); 873 page_count = buflen >> PAGE_SHIFT; 874 875 /* Free any previous set of page pointers */ 876 if (bp->b_pages) 877 _xfs_buf_free_pages(bp); 878 879 bp->b_pages = NULL; 880 bp->b_addr = mem; 881 882 rval = _xfs_buf_get_pages(bp, page_count); 883 if (rval) 884 return rval; 885 886 bp->b_offset = offset; 887 888 for (i = 0; i < bp->b_page_count; i++) { 889 bp->b_pages[i] = mem_to_page((void *)pageaddr); 890 pageaddr += PAGE_SIZE; 891 } 892 893 bp->b_io_length = BTOBB(len); 894 bp->b_length = BTOBB(buflen); 895 896 return 0; 897 } 898 899 xfs_buf_t * 900 xfs_buf_get_uncached( 901 struct xfs_buftarg *target, 902 size_t numblks, 903 int flags) 904 { 905 unsigned long page_count; 906 int error, i; 907 struct xfs_buf *bp; 908 DEFINE_SINGLE_BUF_MAP(map, XFS_BUF_DADDR_NULL, numblks); 909 910 /* flags might contain irrelevant bits, pass only what we care about */ 911 bp = _xfs_buf_alloc(target, &map, 1, flags & XBF_NO_IOACCT); 912 if (unlikely(bp == NULL)) 913 goto fail; 914 915 page_count = PAGE_ALIGN(numblks << BBSHIFT) >> PAGE_SHIFT; 916 error = _xfs_buf_get_pages(bp, page_count); 917 if (error) 918 goto fail_free_buf; 919 920 for (i = 0; i < page_count; i++) { 921 bp->b_pages[i] = alloc_page(xb_to_gfp(flags)); 922 if (!bp->b_pages[i]) 923 goto fail_free_mem; 924 } 925 bp->b_flags |= _XBF_PAGES; 926 927 error = _xfs_buf_map_pages(bp, 0); 928 if (unlikely(error)) { 929 xfs_warn(target->bt_mount, 930 "%s: failed to map pages", __func__); 931 goto fail_free_mem; 932 } 933 934 trace_xfs_buf_get_uncached(bp, _RET_IP_); 935 return bp; 936 937 fail_free_mem: 938 while (--i >= 0) 939 __free_page(bp->b_pages[i]); 940 _xfs_buf_free_pages(bp); 941 fail_free_buf: 942 xfs_buf_free_maps(bp); 943 kmem_zone_free(xfs_buf_zone, bp); 944 fail: 945 return NULL; 946 } 947 948 /* 949 * Increment reference count on buffer, to hold the buffer concurrently 950 * with another thread which may release (free) the buffer asynchronously. 951 * Must hold the buffer already to call this function. 952 */ 953 void 954 xfs_buf_hold( 955 xfs_buf_t *bp) 956 { 957 trace_xfs_buf_hold(bp, _RET_IP_); 958 atomic_inc(&bp->b_hold); 959 } 960 961 /* 962 * Release a hold on the specified buffer. If the hold count is 1, the buffer is 963 * placed on LRU or freed (depending on b_lru_ref). 964 */ 965 void 966 xfs_buf_rele( 967 xfs_buf_t *bp) 968 { 969 struct xfs_perag *pag = bp->b_pag; 970 bool release; 971 bool freebuf = false; 972 973 trace_xfs_buf_rele(bp, _RET_IP_); 974 975 if (!pag) { 976 ASSERT(list_empty(&bp->b_lru)); 977 if (atomic_dec_and_test(&bp->b_hold)) { 978 xfs_buf_ioacct_dec(bp); 979 xfs_buf_free(bp); 980 } 981 return; 982 } 983 984 ASSERT(atomic_read(&bp->b_hold) > 0); 985 986 release = atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock); 987 spin_lock(&bp->b_lock); 988 if (!release) { 989 /* 990 * Drop the in-flight state if the buffer is already on the LRU 991 * and it holds the only reference. This is racy because we 992 * haven't acquired the pag lock, but the use of _XBF_IN_FLIGHT 993 * ensures the decrement occurs only once per-buf. 994 */ 995 if ((atomic_read(&bp->b_hold) == 1) && !list_empty(&bp->b_lru)) 996 __xfs_buf_ioacct_dec(bp); 997 goto out_unlock; 998 } 999 1000 /* the last reference has been dropped ... */ 1001 __xfs_buf_ioacct_dec(bp); 1002 if (!(bp->b_flags & XBF_STALE) && atomic_read(&bp->b_lru_ref)) { 1003 /* 1004 * If the buffer is added to the LRU take a new reference to the 1005 * buffer for the LRU and clear the (now stale) dispose list 1006 * state flag 1007 */ 1008 if (list_lru_add(&bp->b_target->bt_lru, &bp->b_lru)) { 1009 bp->b_state &= ~XFS_BSTATE_DISPOSE; 1010 atomic_inc(&bp->b_hold); 1011 } 1012 spin_unlock(&pag->pag_buf_lock); 1013 } else { 1014 /* 1015 * most of the time buffers will already be removed from the 1016 * LRU, so optimise that case by checking for the 1017 * XFS_BSTATE_DISPOSE flag indicating the last list the buffer 1018 * was on was the disposal list 1019 */ 1020 if (!(bp->b_state & XFS_BSTATE_DISPOSE)) { 1021 list_lru_del(&bp->b_target->bt_lru, &bp->b_lru); 1022 } else { 1023 ASSERT(list_empty(&bp->b_lru)); 1024 } 1025 1026 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q)); 1027 rhashtable_remove_fast(&pag->pag_buf_hash, &bp->b_rhash_head, 1028 xfs_buf_hash_params); 1029 spin_unlock(&pag->pag_buf_lock); 1030 xfs_perag_put(pag); 1031 freebuf = true; 1032 } 1033 1034 out_unlock: 1035 spin_unlock(&bp->b_lock); 1036 1037 if (freebuf) 1038 xfs_buf_free(bp); 1039 } 1040 1041 1042 /* 1043 * Lock a buffer object, if it is not already locked. 1044 * 1045 * If we come across a stale, pinned, locked buffer, we know that we are 1046 * being asked to lock a buffer that has been reallocated. Because it is 1047 * pinned, we know that the log has not been pushed to disk and hence it 1048 * will still be locked. Rather than continuing to have trylock attempts 1049 * fail until someone else pushes the log, push it ourselves before 1050 * returning. This means that the xfsaild will not get stuck trying 1051 * to push on stale inode buffers. 1052 */ 1053 int 1054 xfs_buf_trylock( 1055 struct xfs_buf *bp) 1056 { 1057 int locked; 1058 1059 locked = down_trylock(&bp->b_sema) == 0; 1060 if (locked) { 1061 XB_SET_OWNER(bp); 1062 trace_xfs_buf_trylock(bp, _RET_IP_); 1063 } else { 1064 trace_xfs_buf_trylock_fail(bp, _RET_IP_); 1065 } 1066 return locked; 1067 } 1068 1069 /* 1070 * Lock a buffer object. 1071 * 1072 * If we come across a stale, pinned, locked buffer, we know that we 1073 * are being asked to lock a buffer that has been reallocated. Because 1074 * it is pinned, we know that the log has not been pushed to disk and 1075 * hence it will still be locked. Rather than sleeping until someone 1076 * else pushes the log, push it ourselves before trying to get the lock. 1077 */ 1078 void 1079 xfs_buf_lock( 1080 struct xfs_buf *bp) 1081 { 1082 trace_xfs_buf_lock(bp, _RET_IP_); 1083 1084 if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE)) 1085 xfs_log_force(bp->b_target->bt_mount, 0); 1086 down(&bp->b_sema); 1087 XB_SET_OWNER(bp); 1088 1089 trace_xfs_buf_lock_done(bp, _RET_IP_); 1090 } 1091 1092 void 1093 xfs_buf_unlock( 1094 struct xfs_buf *bp) 1095 { 1096 ASSERT(xfs_buf_islocked(bp)); 1097 1098 XB_CLEAR_OWNER(bp); 1099 up(&bp->b_sema); 1100 1101 trace_xfs_buf_unlock(bp, _RET_IP_); 1102 } 1103 1104 STATIC void 1105 xfs_buf_wait_unpin( 1106 xfs_buf_t *bp) 1107 { 1108 DECLARE_WAITQUEUE (wait, current); 1109 1110 if (atomic_read(&bp->b_pin_count) == 0) 1111 return; 1112 1113 add_wait_queue(&bp->b_waiters, &wait); 1114 for (;;) { 1115 set_current_state(TASK_UNINTERRUPTIBLE); 1116 if (atomic_read(&bp->b_pin_count) == 0) 1117 break; 1118 io_schedule(); 1119 } 1120 remove_wait_queue(&bp->b_waiters, &wait); 1121 set_current_state(TASK_RUNNING); 1122 } 1123 1124 /* 1125 * Buffer Utility Routines 1126 */ 1127 1128 void 1129 xfs_buf_ioend( 1130 struct xfs_buf *bp) 1131 { 1132 bool read = bp->b_flags & XBF_READ; 1133 1134 trace_xfs_buf_iodone(bp, _RET_IP_); 1135 1136 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD); 1137 1138 /* 1139 * Pull in IO completion errors now. We are guaranteed to be running 1140 * single threaded, so we don't need the lock to read b_io_error. 1141 */ 1142 if (!bp->b_error && bp->b_io_error) 1143 xfs_buf_ioerror(bp, bp->b_io_error); 1144 1145 /* Only validate buffers that were read without errors */ 1146 if (read && !bp->b_error && bp->b_ops) { 1147 ASSERT(!bp->b_iodone); 1148 bp->b_ops->verify_read(bp); 1149 } 1150 1151 if (!bp->b_error) 1152 bp->b_flags |= XBF_DONE; 1153 1154 if (bp->b_iodone) 1155 (*(bp->b_iodone))(bp); 1156 else if (bp->b_flags & XBF_ASYNC) 1157 xfs_buf_relse(bp); 1158 else 1159 complete(&bp->b_iowait); 1160 } 1161 1162 static void 1163 xfs_buf_ioend_work( 1164 struct work_struct *work) 1165 { 1166 struct xfs_buf *bp = 1167 container_of(work, xfs_buf_t, b_ioend_work); 1168 1169 xfs_buf_ioend(bp); 1170 } 1171 1172 static void 1173 xfs_buf_ioend_async( 1174 struct xfs_buf *bp) 1175 { 1176 INIT_WORK(&bp->b_ioend_work, xfs_buf_ioend_work); 1177 queue_work(bp->b_ioend_wq, &bp->b_ioend_work); 1178 } 1179 1180 void 1181 xfs_buf_ioerror( 1182 xfs_buf_t *bp, 1183 int error) 1184 { 1185 ASSERT(error <= 0 && error >= -1000); 1186 bp->b_error = error; 1187 trace_xfs_buf_ioerror(bp, error, _RET_IP_); 1188 } 1189 1190 void 1191 xfs_buf_ioerror_alert( 1192 struct xfs_buf *bp, 1193 const char *func) 1194 { 1195 xfs_alert(bp->b_target->bt_mount, 1196 "metadata I/O error: block 0x%llx (\"%s\") error %d numblks %d", 1197 (uint64_t)XFS_BUF_ADDR(bp), func, -bp->b_error, bp->b_length); 1198 } 1199 1200 int 1201 xfs_bwrite( 1202 struct xfs_buf *bp) 1203 { 1204 int error; 1205 1206 ASSERT(xfs_buf_islocked(bp)); 1207 1208 bp->b_flags |= XBF_WRITE; 1209 bp->b_flags &= ~(XBF_ASYNC | XBF_READ | _XBF_DELWRI_Q | 1210 XBF_WRITE_FAIL | XBF_DONE); 1211 1212 error = xfs_buf_submit_wait(bp); 1213 if (error) { 1214 xfs_force_shutdown(bp->b_target->bt_mount, 1215 SHUTDOWN_META_IO_ERROR); 1216 } 1217 return error; 1218 } 1219 1220 static void 1221 xfs_buf_bio_end_io( 1222 struct bio *bio) 1223 { 1224 struct xfs_buf *bp = (struct xfs_buf *)bio->bi_private; 1225 1226 /* 1227 * don't overwrite existing errors - otherwise we can lose errors on 1228 * buffers that require multiple bios to complete. 1229 */ 1230 if (bio->bi_status) { 1231 int error = blk_status_to_errno(bio->bi_status); 1232 1233 cmpxchg(&bp->b_io_error, 0, error); 1234 } 1235 1236 if (!bp->b_error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ)) 1237 invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp)); 1238 1239 if (atomic_dec_and_test(&bp->b_io_remaining) == 1) 1240 xfs_buf_ioend_async(bp); 1241 bio_put(bio); 1242 } 1243 1244 static void 1245 xfs_buf_ioapply_map( 1246 struct xfs_buf *bp, 1247 int map, 1248 int *buf_offset, 1249 int *count, 1250 int op, 1251 int op_flags) 1252 { 1253 int page_index; 1254 int total_nr_pages = bp->b_page_count; 1255 int nr_pages; 1256 struct bio *bio; 1257 sector_t sector = bp->b_maps[map].bm_bn; 1258 int size; 1259 int offset; 1260 1261 total_nr_pages = bp->b_page_count; 1262 1263 /* skip the pages in the buffer before the start offset */ 1264 page_index = 0; 1265 offset = *buf_offset; 1266 while (offset >= PAGE_SIZE) { 1267 page_index++; 1268 offset -= PAGE_SIZE; 1269 } 1270 1271 /* 1272 * Limit the IO size to the length of the current vector, and update the 1273 * remaining IO count for the next time around. 1274 */ 1275 size = min_t(int, BBTOB(bp->b_maps[map].bm_len), *count); 1276 *count -= size; 1277 *buf_offset += size; 1278 1279 next_chunk: 1280 atomic_inc(&bp->b_io_remaining); 1281 nr_pages = min(total_nr_pages, BIO_MAX_PAGES); 1282 1283 bio = bio_alloc(GFP_NOIO, nr_pages); 1284 bio->bi_bdev = bp->b_target->bt_bdev; 1285 bio->bi_iter.bi_sector = sector; 1286 bio->bi_end_io = xfs_buf_bio_end_io; 1287 bio->bi_private = bp; 1288 bio_set_op_attrs(bio, op, op_flags); 1289 1290 for (; size && nr_pages; nr_pages--, page_index++) { 1291 int rbytes, nbytes = PAGE_SIZE - offset; 1292 1293 if (nbytes > size) 1294 nbytes = size; 1295 1296 rbytes = bio_add_page(bio, bp->b_pages[page_index], nbytes, 1297 offset); 1298 if (rbytes < nbytes) 1299 break; 1300 1301 offset = 0; 1302 sector += BTOBB(nbytes); 1303 size -= nbytes; 1304 total_nr_pages--; 1305 } 1306 1307 if (likely(bio->bi_iter.bi_size)) { 1308 if (xfs_buf_is_vmapped(bp)) { 1309 flush_kernel_vmap_range(bp->b_addr, 1310 xfs_buf_vmap_len(bp)); 1311 } 1312 submit_bio(bio); 1313 if (size) 1314 goto next_chunk; 1315 } else { 1316 /* 1317 * This is guaranteed not to be the last io reference count 1318 * because the caller (xfs_buf_submit) holds a count itself. 1319 */ 1320 atomic_dec(&bp->b_io_remaining); 1321 xfs_buf_ioerror(bp, -EIO); 1322 bio_put(bio); 1323 } 1324 1325 } 1326 1327 STATIC void 1328 _xfs_buf_ioapply( 1329 struct xfs_buf *bp) 1330 { 1331 struct blk_plug plug; 1332 int op; 1333 int op_flags = 0; 1334 int offset; 1335 int size; 1336 int i; 1337 1338 /* 1339 * Make sure we capture only current IO errors rather than stale errors 1340 * left over from previous use of the buffer (e.g. failed readahead). 1341 */ 1342 bp->b_error = 0; 1343 1344 /* 1345 * Initialize the I/O completion workqueue if we haven't yet or the 1346 * submitter has not opted to specify a custom one. 1347 */ 1348 if (!bp->b_ioend_wq) 1349 bp->b_ioend_wq = bp->b_target->bt_mount->m_buf_workqueue; 1350 1351 if (bp->b_flags & XBF_WRITE) { 1352 op = REQ_OP_WRITE; 1353 if (bp->b_flags & XBF_SYNCIO) 1354 op_flags = REQ_SYNC; 1355 if (bp->b_flags & XBF_FUA) 1356 op_flags |= REQ_FUA; 1357 if (bp->b_flags & XBF_FLUSH) 1358 op_flags |= REQ_PREFLUSH; 1359 1360 /* 1361 * Run the write verifier callback function if it exists. If 1362 * this function fails it will mark the buffer with an error and 1363 * the IO should not be dispatched. 1364 */ 1365 if (bp->b_ops) { 1366 bp->b_ops->verify_write(bp); 1367 if (bp->b_error) { 1368 xfs_force_shutdown(bp->b_target->bt_mount, 1369 SHUTDOWN_CORRUPT_INCORE); 1370 return; 1371 } 1372 } else if (bp->b_bn != XFS_BUF_DADDR_NULL) { 1373 struct xfs_mount *mp = bp->b_target->bt_mount; 1374 1375 /* 1376 * non-crc filesystems don't attach verifiers during 1377 * log recovery, so don't warn for such filesystems. 1378 */ 1379 if (xfs_sb_version_hascrc(&mp->m_sb)) { 1380 xfs_warn(mp, 1381 "%s: no ops on block 0x%llx/0x%x", 1382 __func__, bp->b_bn, bp->b_length); 1383 xfs_hex_dump(bp->b_addr, 64); 1384 dump_stack(); 1385 } 1386 } 1387 } else if (bp->b_flags & XBF_READ_AHEAD) { 1388 op = REQ_OP_READ; 1389 op_flags = REQ_RAHEAD; 1390 } else { 1391 op = REQ_OP_READ; 1392 } 1393 1394 /* we only use the buffer cache for meta-data */ 1395 op_flags |= REQ_META; 1396 1397 /* 1398 * Walk all the vectors issuing IO on them. Set up the initial offset 1399 * into the buffer and the desired IO size before we start - 1400 * _xfs_buf_ioapply_vec() will modify them appropriately for each 1401 * subsequent call. 1402 */ 1403 offset = bp->b_offset; 1404 size = BBTOB(bp->b_io_length); 1405 blk_start_plug(&plug); 1406 for (i = 0; i < bp->b_map_count; i++) { 1407 xfs_buf_ioapply_map(bp, i, &offset, &size, op, op_flags); 1408 if (bp->b_error) 1409 break; 1410 if (size <= 0) 1411 break; /* all done */ 1412 } 1413 blk_finish_plug(&plug); 1414 } 1415 1416 /* 1417 * Asynchronous IO submission path. This transfers the buffer lock ownership and 1418 * the current reference to the IO. It is not safe to reference the buffer after 1419 * a call to this function unless the caller holds an additional reference 1420 * itself. 1421 */ 1422 void 1423 xfs_buf_submit( 1424 struct xfs_buf *bp) 1425 { 1426 trace_xfs_buf_submit(bp, _RET_IP_); 1427 1428 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q)); 1429 ASSERT(bp->b_flags & XBF_ASYNC); 1430 1431 /* on shutdown we stale and complete the buffer immediately */ 1432 if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) { 1433 xfs_buf_ioerror(bp, -EIO); 1434 bp->b_flags &= ~XBF_DONE; 1435 xfs_buf_stale(bp); 1436 xfs_buf_ioend(bp); 1437 return; 1438 } 1439 1440 if (bp->b_flags & XBF_WRITE) 1441 xfs_buf_wait_unpin(bp); 1442 1443 /* clear the internal error state to avoid spurious errors */ 1444 bp->b_io_error = 0; 1445 1446 /* 1447 * The caller's reference is released during I/O completion. 1448 * This occurs some time after the last b_io_remaining reference is 1449 * released, so after we drop our Io reference we have to have some 1450 * other reference to ensure the buffer doesn't go away from underneath 1451 * us. Take a direct reference to ensure we have safe access to the 1452 * buffer until we are finished with it. 1453 */ 1454 xfs_buf_hold(bp); 1455 1456 /* 1457 * Set the count to 1 initially, this will stop an I/O completion 1458 * callout which happens before we have started all the I/O from calling 1459 * xfs_buf_ioend too early. 1460 */ 1461 atomic_set(&bp->b_io_remaining, 1); 1462 xfs_buf_ioacct_inc(bp); 1463 _xfs_buf_ioapply(bp); 1464 1465 /* 1466 * If _xfs_buf_ioapply failed, we can get back here with only the IO 1467 * reference we took above. If we drop it to zero, run completion so 1468 * that we don't return to the caller with completion still pending. 1469 */ 1470 if (atomic_dec_and_test(&bp->b_io_remaining) == 1) { 1471 if (bp->b_error) 1472 xfs_buf_ioend(bp); 1473 else 1474 xfs_buf_ioend_async(bp); 1475 } 1476 1477 xfs_buf_rele(bp); 1478 /* Note: it is not safe to reference bp now we've dropped our ref */ 1479 } 1480 1481 /* 1482 * Synchronous buffer IO submission path, read or write. 1483 */ 1484 int 1485 xfs_buf_submit_wait( 1486 struct xfs_buf *bp) 1487 { 1488 int error; 1489 1490 trace_xfs_buf_submit_wait(bp, _RET_IP_); 1491 1492 ASSERT(!(bp->b_flags & (_XBF_DELWRI_Q | XBF_ASYNC))); 1493 1494 if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) { 1495 xfs_buf_ioerror(bp, -EIO); 1496 xfs_buf_stale(bp); 1497 bp->b_flags &= ~XBF_DONE; 1498 return -EIO; 1499 } 1500 1501 if (bp->b_flags & XBF_WRITE) 1502 xfs_buf_wait_unpin(bp); 1503 1504 /* clear the internal error state to avoid spurious errors */ 1505 bp->b_io_error = 0; 1506 1507 /* 1508 * For synchronous IO, the IO does not inherit the submitters reference 1509 * count, nor the buffer lock. Hence we cannot release the reference we 1510 * are about to take until we've waited for all IO completion to occur, 1511 * including any xfs_buf_ioend_async() work that may be pending. 1512 */ 1513 xfs_buf_hold(bp); 1514 1515 /* 1516 * Set the count to 1 initially, this will stop an I/O completion 1517 * callout which happens before we have started all the I/O from calling 1518 * xfs_buf_ioend too early. 1519 */ 1520 atomic_set(&bp->b_io_remaining, 1); 1521 _xfs_buf_ioapply(bp); 1522 1523 /* 1524 * make sure we run completion synchronously if it raced with us and is 1525 * already complete. 1526 */ 1527 if (atomic_dec_and_test(&bp->b_io_remaining) == 1) 1528 xfs_buf_ioend(bp); 1529 1530 /* wait for completion before gathering the error from the buffer */ 1531 trace_xfs_buf_iowait(bp, _RET_IP_); 1532 wait_for_completion(&bp->b_iowait); 1533 trace_xfs_buf_iowait_done(bp, _RET_IP_); 1534 error = bp->b_error; 1535 1536 /* 1537 * all done now, we can release the hold that keeps the buffer 1538 * referenced for the entire IO. 1539 */ 1540 xfs_buf_rele(bp); 1541 return error; 1542 } 1543 1544 void * 1545 xfs_buf_offset( 1546 struct xfs_buf *bp, 1547 size_t offset) 1548 { 1549 struct page *page; 1550 1551 if (bp->b_addr) 1552 return bp->b_addr + offset; 1553 1554 offset += bp->b_offset; 1555 page = bp->b_pages[offset >> PAGE_SHIFT]; 1556 return page_address(page) + (offset & (PAGE_SIZE-1)); 1557 } 1558 1559 /* 1560 * Move data into or out of a buffer. 1561 */ 1562 void 1563 xfs_buf_iomove( 1564 xfs_buf_t *bp, /* buffer to process */ 1565 size_t boff, /* starting buffer offset */ 1566 size_t bsize, /* length to copy */ 1567 void *data, /* data address */ 1568 xfs_buf_rw_t mode) /* read/write/zero flag */ 1569 { 1570 size_t bend; 1571 1572 bend = boff + bsize; 1573 while (boff < bend) { 1574 struct page *page; 1575 int page_index, page_offset, csize; 1576 1577 page_index = (boff + bp->b_offset) >> PAGE_SHIFT; 1578 page_offset = (boff + bp->b_offset) & ~PAGE_MASK; 1579 page = bp->b_pages[page_index]; 1580 csize = min_t(size_t, PAGE_SIZE - page_offset, 1581 BBTOB(bp->b_io_length) - boff); 1582 1583 ASSERT((csize + page_offset) <= PAGE_SIZE); 1584 1585 switch (mode) { 1586 case XBRW_ZERO: 1587 memset(page_address(page) + page_offset, 0, csize); 1588 break; 1589 case XBRW_READ: 1590 memcpy(data, page_address(page) + page_offset, csize); 1591 break; 1592 case XBRW_WRITE: 1593 memcpy(page_address(page) + page_offset, data, csize); 1594 } 1595 1596 boff += csize; 1597 data += csize; 1598 } 1599 } 1600 1601 /* 1602 * Handling of buffer targets (buftargs). 1603 */ 1604 1605 /* 1606 * Wait for any bufs with callbacks that have been submitted but have not yet 1607 * returned. These buffers will have an elevated hold count, so wait on those 1608 * while freeing all the buffers only held by the LRU. 1609 */ 1610 static enum lru_status 1611 xfs_buftarg_wait_rele( 1612 struct list_head *item, 1613 struct list_lru_one *lru, 1614 spinlock_t *lru_lock, 1615 void *arg) 1616 1617 { 1618 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru); 1619 struct list_head *dispose = arg; 1620 1621 if (atomic_read(&bp->b_hold) > 1) { 1622 /* need to wait, so skip it this pass */ 1623 trace_xfs_buf_wait_buftarg(bp, _RET_IP_); 1624 return LRU_SKIP; 1625 } 1626 if (!spin_trylock(&bp->b_lock)) 1627 return LRU_SKIP; 1628 1629 /* 1630 * clear the LRU reference count so the buffer doesn't get 1631 * ignored in xfs_buf_rele(). 1632 */ 1633 atomic_set(&bp->b_lru_ref, 0); 1634 bp->b_state |= XFS_BSTATE_DISPOSE; 1635 list_lru_isolate_move(lru, item, dispose); 1636 spin_unlock(&bp->b_lock); 1637 return LRU_REMOVED; 1638 } 1639 1640 void 1641 xfs_wait_buftarg( 1642 struct xfs_buftarg *btp) 1643 { 1644 LIST_HEAD(dispose); 1645 int loop = 0; 1646 1647 /* 1648 * First wait on the buftarg I/O count for all in-flight buffers to be 1649 * released. This is critical as new buffers do not make the LRU until 1650 * they are released. 1651 * 1652 * Next, flush the buffer workqueue to ensure all completion processing 1653 * has finished. Just waiting on buffer locks is not sufficient for 1654 * async IO as the reference count held over IO is not released until 1655 * after the buffer lock is dropped. Hence we need to ensure here that 1656 * all reference counts have been dropped before we start walking the 1657 * LRU list. 1658 */ 1659 while (percpu_counter_sum(&btp->bt_io_count)) 1660 delay(100); 1661 flush_workqueue(btp->bt_mount->m_buf_workqueue); 1662 1663 /* loop until there is nothing left on the lru list. */ 1664 while (list_lru_count(&btp->bt_lru)) { 1665 list_lru_walk(&btp->bt_lru, xfs_buftarg_wait_rele, 1666 &dispose, LONG_MAX); 1667 1668 while (!list_empty(&dispose)) { 1669 struct xfs_buf *bp; 1670 bp = list_first_entry(&dispose, struct xfs_buf, b_lru); 1671 list_del_init(&bp->b_lru); 1672 if (bp->b_flags & XBF_WRITE_FAIL) { 1673 xfs_alert(btp->bt_mount, 1674 "Corruption Alert: Buffer at block 0x%llx had permanent write failures!", 1675 (long long)bp->b_bn); 1676 xfs_alert(btp->bt_mount, 1677 "Please run xfs_repair to determine the extent of the problem."); 1678 } 1679 xfs_buf_rele(bp); 1680 } 1681 if (loop++ != 0) 1682 delay(100); 1683 } 1684 } 1685 1686 static enum lru_status 1687 xfs_buftarg_isolate( 1688 struct list_head *item, 1689 struct list_lru_one *lru, 1690 spinlock_t *lru_lock, 1691 void *arg) 1692 { 1693 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru); 1694 struct list_head *dispose = arg; 1695 1696 /* 1697 * we are inverting the lru lock/bp->b_lock here, so use a trylock. 1698 * If we fail to get the lock, just skip it. 1699 */ 1700 if (!spin_trylock(&bp->b_lock)) 1701 return LRU_SKIP; 1702 /* 1703 * Decrement the b_lru_ref count unless the value is already 1704 * zero. If the value is already zero, we need to reclaim the 1705 * buffer, otherwise it gets another trip through the LRU. 1706 */ 1707 if (!atomic_add_unless(&bp->b_lru_ref, -1, 0)) { 1708 spin_unlock(&bp->b_lock); 1709 return LRU_ROTATE; 1710 } 1711 1712 bp->b_state |= XFS_BSTATE_DISPOSE; 1713 list_lru_isolate_move(lru, item, dispose); 1714 spin_unlock(&bp->b_lock); 1715 return LRU_REMOVED; 1716 } 1717 1718 static unsigned long 1719 xfs_buftarg_shrink_scan( 1720 struct shrinker *shrink, 1721 struct shrink_control *sc) 1722 { 1723 struct xfs_buftarg *btp = container_of(shrink, 1724 struct xfs_buftarg, bt_shrinker); 1725 LIST_HEAD(dispose); 1726 unsigned long freed; 1727 1728 freed = list_lru_shrink_walk(&btp->bt_lru, sc, 1729 xfs_buftarg_isolate, &dispose); 1730 1731 while (!list_empty(&dispose)) { 1732 struct xfs_buf *bp; 1733 bp = list_first_entry(&dispose, struct xfs_buf, b_lru); 1734 list_del_init(&bp->b_lru); 1735 xfs_buf_rele(bp); 1736 } 1737 1738 return freed; 1739 } 1740 1741 static unsigned long 1742 xfs_buftarg_shrink_count( 1743 struct shrinker *shrink, 1744 struct shrink_control *sc) 1745 { 1746 struct xfs_buftarg *btp = container_of(shrink, 1747 struct xfs_buftarg, bt_shrinker); 1748 return list_lru_shrink_count(&btp->bt_lru, sc); 1749 } 1750 1751 void 1752 xfs_free_buftarg( 1753 struct xfs_mount *mp, 1754 struct xfs_buftarg *btp) 1755 { 1756 unregister_shrinker(&btp->bt_shrinker); 1757 ASSERT(percpu_counter_sum(&btp->bt_io_count) == 0); 1758 percpu_counter_destroy(&btp->bt_io_count); 1759 list_lru_destroy(&btp->bt_lru); 1760 1761 xfs_blkdev_issue_flush(btp); 1762 1763 kmem_free(btp); 1764 } 1765 1766 int 1767 xfs_setsize_buftarg( 1768 xfs_buftarg_t *btp, 1769 unsigned int sectorsize) 1770 { 1771 /* Set up metadata sector size info */ 1772 btp->bt_meta_sectorsize = sectorsize; 1773 btp->bt_meta_sectormask = sectorsize - 1; 1774 1775 if (set_blocksize(btp->bt_bdev, sectorsize)) { 1776 xfs_warn(btp->bt_mount, 1777 "Cannot set_blocksize to %u on device %pg", 1778 sectorsize, btp->bt_bdev); 1779 return -EINVAL; 1780 } 1781 1782 /* Set up device logical sector size mask */ 1783 btp->bt_logical_sectorsize = bdev_logical_block_size(btp->bt_bdev); 1784 btp->bt_logical_sectormask = bdev_logical_block_size(btp->bt_bdev) - 1; 1785 1786 return 0; 1787 } 1788 1789 /* 1790 * When allocating the initial buffer target we have not yet 1791 * read in the superblock, so don't know what sized sectors 1792 * are being used at this early stage. Play safe. 1793 */ 1794 STATIC int 1795 xfs_setsize_buftarg_early( 1796 xfs_buftarg_t *btp, 1797 struct block_device *bdev) 1798 { 1799 return xfs_setsize_buftarg(btp, bdev_logical_block_size(bdev)); 1800 } 1801 1802 xfs_buftarg_t * 1803 xfs_alloc_buftarg( 1804 struct xfs_mount *mp, 1805 struct block_device *bdev) 1806 { 1807 xfs_buftarg_t *btp; 1808 1809 btp = kmem_zalloc(sizeof(*btp), KM_SLEEP | KM_NOFS); 1810 1811 btp->bt_mount = mp; 1812 btp->bt_dev = bdev->bd_dev; 1813 btp->bt_bdev = bdev; 1814 1815 if (xfs_setsize_buftarg_early(btp, bdev)) 1816 goto error; 1817 1818 if (list_lru_init(&btp->bt_lru)) 1819 goto error; 1820 1821 if (percpu_counter_init(&btp->bt_io_count, 0, GFP_KERNEL)) 1822 goto error; 1823 1824 btp->bt_shrinker.count_objects = xfs_buftarg_shrink_count; 1825 btp->bt_shrinker.scan_objects = xfs_buftarg_shrink_scan; 1826 btp->bt_shrinker.seeks = DEFAULT_SEEKS; 1827 btp->bt_shrinker.flags = SHRINKER_NUMA_AWARE; 1828 register_shrinker(&btp->bt_shrinker); 1829 return btp; 1830 1831 error: 1832 kmem_free(btp); 1833 return NULL; 1834 } 1835 1836 /* 1837 * Cancel a delayed write list. 1838 * 1839 * Remove each buffer from the list, clear the delwri queue flag and drop the 1840 * associated buffer reference. 1841 */ 1842 void 1843 xfs_buf_delwri_cancel( 1844 struct list_head *list) 1845 { 1846 struct xfs_buf *bp; 1847 1848 while (!list_empty(list)) { 1849 bp = list_first_entry(list, struct xfs_buf, b_list); 1850 1851 xfs_buf_lock(bp); 1852 bp->b_flags &= ~_XBF_DELWRI_Q; 1853 list_del_init(&bp->b_list); 1854 xfs_buf_relse(bp); 1855 } 1856 } 1857 1858 /* 1859 * Add a buffer to the delayed write list. 1860 * 1861 * This queues a buffer for writeout if it hasn't already been. Note that 1862 * neither this routine nor the buffer list submission functions perform 1863 * any internal synchronization. It is expected that the lists are thread-local 1864 * to the callers. 1865 * 1866 * Returns true if we queued up the buffer, or false if it already had 1867 * been on the buffer list. 1868 */ 1869 bool 1870 xfs_buf_delwri_queue( 1871 struct xfs_buf *bp, 1872 struct list_head *list) 1873 { 1874 ASSERT(xfs_buf_islocked(bp)); 1875 ASSERT(!(bp->b_flags & XBF_READ)); 1876 1877 /* 1878 * If the buffer is already marked delwri it already is queued up 1879 * by someone else for imediate writeout. Just ignore it in that 1880 * case. 1881 */ 1882 if (bp->b_flags & _XBF_DELWRI_Q) { 1883 trace_xfs_buf_delwri_queued(bp, _RET_IP_); 1884 return false; 1885 } 1886 1887 trace_xfs_buf_delwri_queue(bp, _RET_IP_); 1888 1889 /* 1890 * If a buffer gets written out synchronously or marked stale while it 1891 * is on a delwri list we lazily remove it. To do this, the other party 1892 * clears the _XBF_DELWRI_Q flag but otherwise leaves the buffer alone. 1893 * It remains referenced and on the list. In a rare corner case it 1894 * might get readded to a delwri list after the synchronous writeout, in 1895 * which case we need just need to re-add the flag here. 1896 */ 1897 bp->b_flags |= _XBF_DELWRI_Q; 1898 if (list_empty(&bp->b_list)) { 1899 atomic_inc(&bp->b_hold); 1900 list_add_tail(&bp->b_list, list); 1901 } 1902 1903 return true; 1904 } 1905 1906 /* 1907 * Compare function is more complex than it needs to be because 1908 * the return value is only 32 bits and we are doing comparisons 1909 * on 64 bit values 1910 */ 1911 static int 1912 xfs_buf_cmp( 1913 void *priv, 1914 struct list_head *a, 1915 struct list_head *b) 1916 { 1917 struct xfs_buf *ap = container_of(a, struct xfs_buf, b_list); 1918 struct xfs_buf *bp = container_of(b, struct xfs_buf, b_list); 1919 xfs_daddr_t diff; 1920 1921 diff = ap->b_maps[0].bm_bn - bp->b_maps[0].bm_bn; 1922 if (diff < 0) 1923 return -1; 1924 if (diff > 0) 1925 return 1; 1926 return 0; 1927 } 1928 1929 /* 1930 * submit buffers for write. 1931 * 1932 * When we have a large buffer list, we do not want to hold all the buffers 1933 * locked while we block on the request queue waiting for IO dispatch. To avoid 1934 * this problem, we lock and submit buffers in groups of 50, thereby minimising 1935 * the lock hold times for lists which may contain thousands of objects. 1936 * 1937 * To do this, we sort the buffer list before we walk the list to lock and 1938 * submit buffers, and we plug and unplug around each group of buffers we 1939 * submit. 1940 */ 1941 static int 1942 xfs_buf_delwri_submit_buffers( 1943 struct list_head *buffer_list, 1944 struct list_head *wait_list) 1945 { 1946 struct xfs_buf *bp, *n; 1947 LIST_HEAD (submit_list); 1948 int pinned = 0; 1949 struct blk_plug plug; 1950 1951 list_sort(NULL, buffer_list, xfs_buf_cmp); 1952 1953 blk_start_plug(&plug); 1954 list_for_each_entry_safe(bp, n, buffer_list, b_list) { 1955 if (!wait_list) { 1956 if (xfs_buf_ispinned(bp)) { 1957 pinned++; 1958 continue; 1959 } 1960 if (!xfs_buf_trylock(bp)) 1961 continue; 1962 } else { 1963 xfs_buf_lock(bp); 1964 } 1965 1966 /* 1967 * Someone else might have written the buffer synchronously or 1968 * marked it stale in the meantime. In that case only the 1969 * _XBF_DELWRI_Q flag got cleared, and we have to drop the 1970 * reference and remove it from the list here. 1971 */ 1972 if (!(bp->b_flags & _XBF_DELWRI_Q)) { 1973 list_del_init(&bp->b_list); 1974 xfs_buf_relse(bp); 1975 continue; 1976 } 1977 1978 trace_xfs_buf_delwri_split(bp, _RET_IP_); 1979 1980 /* 1981 * We do all IO submission async. This means if we need 1982 * to wait for IO completion we need to take an extra 1983 * reference so the buffer is still valid on the other 1984 * side. We need to move the buffer onto the io_list 1985 * at this point so the caller can still access it. 1986 */ 1987 bp->b_flags &= ~(_XBF_DELWRI_Q | XBF_WRITE_FAIL); 1988 bp->b_flags |= XBF_WRITE | XBF_ASYNC; 1989 if (wait_list) { 1990 xfs_buf_hold(bp); 1991 list_move_tail(&bp->b_list, wait_list); 1992 } else 1993 list_del_init(&bp->b_list); 1994 1995 xfs_buf_submit(bp); 1996 } 1997 blk_finish_plug(&plug); 1998 1999 return pinned; 2000 } 2001 2002 /* 2003 * Write out a buffer list asynchronously. 2004 * 2005 * This will take the @buffer_list, write all non-locked and non-pinned buffers 2006 * out and not wait for I/O completion on any of the buffers. This interface 2007 * is only safely useable for callers that can track I/O completion by higher 2008 * level means, e.g. AIL pushing as the @buffer_list is consumed in this 2009 * function. 2010 */ 2011 int 2012 xfs_buf_delwri_submit_nowait( 2013 struct list_head *buffer_list) 2014 { 2015 return xfs_buf_delwri_submit_buffers(buffer_list, NULL); 2016 } 2017 2018 /* 2019 * Write out a buffer list synchronously. 2020 * 2021 * This will take the @buffer_list, write all buffers out and wait for I/O 2022 * completion on all of the buffers. @buffer_list is consumed by the function, 2023 * so callers must have some other way of tracking buffers if they require such 2024 * functionality. 2025 */ 2026 int 2027 xfs_buf_delwri_submit( 2028 struct list_head *buffer_list) 2029 { 2030 LIST_HEAD (wait_list); 2031 int error = 0, error2; 2032 struct xfs_buf *bp; 2033 2034 xfs_buf_delwri_submit_buffers(buffer_list, &wait_list); 2035 2036 /* Wait for IO to complete. */ 2037 while (!list_empty(&wait_list)) { 2038 bp = list_first_entry(&wait_list, struct xfs_buf, b_list); 2039 2040 list_del_init(&bp->b_list); 2041 2042 /* locking the buffer will wait for async IO completion. */ 2043 xfs_buf_lock(bp); 2044 error2 = bp->b_error; 2045 xfs_buf_relse(bp); 2046 if (!error) 2047 error = error2; 2048 } 2049 2050 return error; 2051 } 2052 2053 /* 2054 * Push a single buffer on a delwri queue. 2055 * 2056 * The purpose of this function is to submit a single buffer of a delwri queue 2057 * and return with the buffer still on the original queue. The waiting delwri 2058 * buffer submission infrastructure guarantees transfer of the delwri queue 2059 * buffer reference to a temporary wait list. We reuse this infrastructure to 2060 * transfer the buffer back to the original queue. 2061 * 2062 * Note the buffer transitions from the queued state, to the submitted and wait 2063 * listed state and back to the queued state during this call. The buffer 2064 * locking and queue management logic between _delwri_pushbuf() and 2065 * _delwri_queue() guarantee that the buffer cannot be queued to another list 2066 * before returning. 2067 */ 2068 int 2069 xfs_buf_delwri_pushbuf( 2070 struct xfs_buf *bp, 2071 struct list_head *buffer_list) 2072 { 2073 LIST_HEAD (submit_list); 2074 int error; 2075 2076 ASSERT(bp->b_flags & _XBF_DELWRI_Q); 2077 2078 trace_xfs_buf_delwri_pushbuf(bp, _RET_IP_); 2079 2080 /* 2081 * Isolate the buffer to a new local list so we can submit it for I/O 2082 * independently from the rest of the original list. 2083 */ 2084 xfs_buf_lock(bp); 2085 list_move(&bp->b_list, &submit_list); 2086 xfs_buf_unlock(bp); 2087 2088 /* 2089 * Delwri submission clears the DELWRI_Q buffer flag and returns with 2090 * the buffer on the wait list with an associated reference. Rather than 2091 * bounce the buffer from a local wait list back to the original list 2092 * after I/O completion, reuse the original list as the wait list. 2093 */ 2094 xfs_buf_delwri_submit_buffers(&submit_list, buffer_list); 2095 2096 /* 2097 * The buffer is now under I/O and wait listed as during typical delwri 2098 * submission. Lock the buffer to wait for I/O completion. Rather than 2099 * remove the buffer from the wait list and release the reference, we 2100 * want to return with the buffer queued to the original list. The 2101 * buffer already sits on the original list with a wait list reference, 2102 * however. If we let the queue inherit that wait list reference, all we 2103 * need to do is reset the DELWRI_Q flag. 2104 */ 2105 xfs_buf_lock(bp); 2106 error = bp->b_error; 2107 bp->b_flags |= _XBF_DELWRI_Q; 2108 xfs_buf_unlock(bp); 2109 2110 return error; 2111 } 2112 2113 int __init 2114 xfs_buf_init(void) 2115 { 2116 xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf", 2117 KM_ZONE_HWALIGN, NULL); 2118 if (!xfs_buf_zone) 2119 goto out; 2120 2121 return 0; 2122 2123 out: 2124 return -ENOMEM; 2125 } 2126 2127 void 2128 xfs_buf_terminate(void) 2129 { 2130 kmem_zone_destroy(xfs_buf_zone); 2131 } 2132