1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2006 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include "xfs.h" 7 #include <linux/backing-dev.h> 8 9 #include "xfs_shared.h" 10 #include "xfs_format.h" 11 #include "xfs_log_format.h" 12 #include "xfs_trans_resv.h" 13 #include "xfs_sb.h" 14 #include "xfs_mount.h" 15 #include "xfs_trace.h" 16 #include "xfs_log.h" 17 #include "xfs_errortag.h" 18 #include "xfs_error.h" 19 20 static kmem_zone_t *xfs_buf_zone; 21 22 #define xb_to_gfp(flags) \ 23 ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : GFP_NOFS) | __GFP_NOWARN) 24 25 /* 26 * Locking orders 27 * 28 * xfs_buf_ioacct_inc: 29 * xfs_buf_ioacct_dec: 30 * b_sema (caller holds) 31 * b_lock 32 * 33 * xfs_buf_stale: 34 * b_sema (caller holds) 35 * b_lock 36 * lru_lock 37 * 38 * xfs_buf_rele: 39 * b_lock 40 * pag_buf_lock 41 * lru_lock 42 * 43 * xfs_buftarg_wait_rele 44 * lru_lock 45 * b_lock (trylock due to inversion) 46 * 47 * xfs_buftarg_isolate 48 * lru_lock 49 * b_lock (trylock due to inversion) 50 */ 51 52 static inline int 53 xfs_buf_is_vmapped( 54 struct xfs_buf *bp) 55 { 56 /* 57 * Return true if the buffer is vmapped. 58 * 59 * b_addr is null if the buffer is not mapped, but the code is clever 60 * enough to know it doesn't have to map a single page, so the check has 61 * to be both for b_addr and bp->b_page_count > 1. 62 */ 63 return bp->b_addr && bp->b_page_count > 1; 64 } 65 66 static inline int 67 xfs_buf_vmap_len( 68 struct xfs_buf *bp) 69 { 70 return (bp->b_page_count * PAGE_SIZE) - bp->b_offset; 71 } 72 73 /* 74 * Bump the I/O in flight count on the buftarg if we haven't yet done so for 75 * this buffer. The count is incremented once per buffer (per hold cycle) 76 * because the corresponding decrement is deferred to buffer release. Buffers 77 * can undergo I/O multiple times in a hold-release cycle and per buffer I/O 78 * tracking adds unnecessary overhead. This is used for sychronization purposes 79 * with unmount (see xfs_wait_buftarg()), so all we really need is a count of 80 * in-flight buffers. 81 * 82 * Buffers that are never released (e.g., superblock, iclog buffers) must set 83 * the XBF_NO_IOACCT flag before I/O submission. Otherwise, the buftarg count 84 * never reaches zero and unmount hangs indefinitely. 85 */ 86 static inline void 87 xfs_buf_ioacct_inc( 88 struct xfs_buf *bp) 89 { 90 if (bp->b_flags & XBF_NO_IOACCT) 91 return; 92 93 ASSERT(bp->b_flags & XBF_ASYNC); 94 spin_lock(&bp->b_lock); 95 if (!(bp->b_state & XFS_BSTATE_IN_FLIGHT)) { 96 bp->b_state |= XFS_BSTATE_IN_FLIGHT; 97 percpu_counter_inc(&bp->b_target->bt_io_count); 98 } 99 spin_unlock(&bp->b_lock); 100 } 101 102 /* 103 * Clear the in-flight state on a buffer about to be released to the LRU or 104 * freed and unaccount from the buftarg. 105 */ 106 static inline void 107 __xfs_buf_ioacct_dec( 108 struct xfs_buf *bp) 109 { 110 lockdep_assert_held(&bp->b_lock); 111 112 if (bp->b_state & XFS_BSTATE_IN_FLIGHT) { 113 bp->b_state &= ~XFS_BSTATE_IN_FLIGHT; 114 percpu_counter_dec(&bp->b_target->bt_io_count); 115 } 116 } 117 118 static inline void 119 xfs_buf_ioacct_dec( 120 struct xfs_buf *bp) 121 { 122 spin_lock(&bp->b_lock); 123 __xfs_buf_ioacct_dec(bp); 124 spin_unlock(&bp->b_lock); 125 } 126 127 /* 128 * When we mark a buffer stale, we remove the buffer from the LRU and clear the 129 * b_lru_ref count so that the buffer is freed immediately when the buffer 130 * reference count falls to zero. If the buffer is already on the LRU, we need 131 * to remove the reference that LRU holds on the buffer. 132 * 133 * This prevents build-up of stale buffers on the LRU. 134 */ 135 void 136 xfs_buf_stale( 137 struct xfs_buf *bp) 138 { 139 ASSERT(xfs_buf_islocked(bp)); 140 141 bp->b_flags |= XBF_STALE; 142 143 /* 144 * Clear the delwri status so that a delwri queue walker will not 145 * flush this buffer to disk now that it is stale. The delwri queue has 146 * a reference to the buffer, so this is safe to do. 147 */ 148 bp->b_flags &= ~_XBF_DELWRI_Q; 149 150 /* 151 * Once the buffer is marked stale and unlocked, a subsequent lookup 152 * could reset b_flags. There is no guarantee that the buffer is 153 * unaccounted (released to LRU) before that occurs. Drop in-flight 154 * status now to preserve accounting consistency. 155 */ 156 spin_lock(&bp->b_lock); 157 __xfs_buf_ioacct_dec(bp); 158 159 atomic_set(&bp->b_lru_ref, 0); 160 if (!(bp->b_state & XFS_BSTATE_DISPOSE) && 161 (list_lru_del(&bp->b_target->bt_lru, &bp->b_lru))) 162 atomic_dec(&bp->b_hold); 163 164 ASSERT(atomic_read(&bp->b_hold) >= 1); 165 spin_unlock(&bp->b_lock); 166 } 167 168 static int 169 xfs_buf_get_maps( 170 struct xfs_buf *bp, 171 int map_count) 172 { 173 ASSERT(bp->b_maps == NULL); 174 bp->b_map_count = map_count; 175 176 if (map_count == 1) { 177 bp->b_maps = &bp->__b_map; 178 return 0; 179 } 180 181 bp->b_maps = kmem_zalloc(map_count * sizeof(struct xfs_buf_map), 182 KM_NOFS); 183 if (!bp->b_maps) 184 return -ENOMEM; 185 return 0; 186 } 187 188 /* 189 * Frees b_pages if it was allocated. 190 */ 191 static void 192 xfs_buf_free_maps( 193 struct xfs_buf *bp) 194 { 195 if (bp->b_maps != &bp->__b_map) { 196 kmem_free(bp->b_maps); 197 bp->b_maps = NULL; 198 } 199 } 200 201 static int 202 _xfs_buf_alloc( 203 struct xfs_buftarg *target, 204 struct xfs_buf_map *map, 205 int nmaps, 206 xfs_buf_flags_t flags, 207 struct xfs_buf **bpp) 208 { 209 struct xfs_buf *bp; 210 int error; 211 int i; 212 213 *bpp = NULL; 214 bp = kmem_zone_zalloc(xfs_buf_zone, KM_NOFS); 215 if (unlikely(!bp)) 216 return -ENOMEM; 217 218 /* 219 * We don't want certain flags to appear in b_flags unless they are 220 * specifically set by later operations on the buffer. 221 */ 222 flags &= ~(XBF_UNMAPPED | XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD); 223 224 atomic_set(&bp->b_hold, 1); 225 atomic_set(&bp->b_lru_ref, 1); 226 init_completion(&bp->b_iowait); 227 INIT_LIST_HEAD(&bp->b_lru); 228 INIT_LIST_HEAD(&bp->b_list); 229 INIT_LIST_HEAD(&bp->b_li_list); 230 sema_init(&bp->b_sema, 0); /* held, no waiters */ 231 spin_lock_init(&bp->b_lock); 232 bp->b_target = target; 233 bp->b_mount = target->bt_mount; 234 bp->b_flags = flags; 235 236 /* 237 * Set length and io_length to the same value initially. 238 * I/O routines should use io_length, which will be the same in 239 * most cases but may be reset (e.g. XFS recovery). 240 */ 241 error = xfs_buf_get_maps(bp, nmaps); 242 if (error) { 243 kmem_cache_free(xfs_buf_zone, bp); 244 return error; 245 } 246 247 bp->b_bn = map[0].bm_bn; 248 bp->b_length = 0; 249 for (i = 0; i < nmaps; i++) { 250 bp->b_maps[i].bm_bn = map[i].bm_bn; 251 bp->b_maps[i].bm_len = map[i].bm_len; 252 bp->b_length += map[i].bm_len; 253 } 254 255 atomic_set(&bp->b_pin_count, 0); 256 init_waitqueue_head(&bp->b_waiters); 257 258 XFS_STATS_INC(bp->b_mount, xb_create); 259 trace_xfs_buf_init(bp, _RET_IP_); 260 261 *bpp = bp; 262 return 0; 263 } 264 265 /* 266 * Allocate a page array capable of holding a specified number 267 * of pages, and point the page buf at it. 268 */ 269 STATIC int 270 _xfs_buf_get_pages( 271 xfs_buf_t *bp, 272 int page_count) 273 { 274 /* Make sure that we have a page list */ 275 if (bp->b_pages == NULL) { 276 bp->b_page_count = page_count; 277 if (page_count <= XB_PAGES) { 278 bp->b_pages = bp->b_page_array; 279 } else { 280 bp->b_pages = kmem_alloc(sizeof(struct page *) * 281 page_count, KM_NOFS); 282 if (bp->b_pages == NULL) 283 return -ENOMEM; 284 } 285 memset(bp->b_pages, 0, sizeof(struct page *) * page_count); 286 } 287 return 0; 288 } 289 290 /* 291 * Frees b_pages if it was allocated. 292 */ 293 STATIC void 294 _xfs_buf_free_pages( 295 xfs_buf_t *bp) 296 { 297 if (bp->b_pages != bp->b_page_array) { 298 kmem_free(bp->b_pages); 299 bp->b_pages = NULL; 300 } 301 } 302 303 /* 304 * Releases the specified buffer. 305 * 306 * The modification state of any associated pages is left unchanged. 307 * The buffer must not be on any hash - use xfs_buf_rele instead for 308 * hashed and refcounted buffers 309 */ 310 static void 311 xfs_buf_free( 312 xfs_buf_t *bp) 313 { 314 trace_xfs_buf_free(bp, _RET_IP_); 315 316 ASSERT(list_empty(&bp->b_lru)); 317 318 if (bp->b_flags & _XBF_PAGES) { 319 uint i; 320 321 if (xfs_buf_is_vmapped(bp)) 322 vm_unmap_ram(bp->b_addr - bp->b_offset, 323 bp->b_page_count); 324 325 for (i = 0; i < bp->b_page_count; i++) { 326 struct page *page = bp->b_pages[i]; 327 328 __free_page(page); 329 } 330 if (current->reclaim_state) 331 current->reclaim_state->reclaimed_slab += 332 bp->b_page_count; 333 } else if (bp->b_flags & _XBF_KMEM) 334 kmem_free(bp->b_addr); 335 _xfs_buf_free_pages(bp); 336 xfs_buf_free_maps(bp); 337 kmem_cache_free(xfs_buf_zone, bp); 338 } 339 340 /* 341 * Allocates all the pages for buffer in question and builds it's page list. 342 */ 343 STATIC int 344 xfs_buf_allocate_memory( 345 xfs_buf_t *bp, 346 uint flags) 347 { 348 size_t size; 349 size_t nbytes, offset; 350 gfp_t gfp_mask = xb_to_gfp(flags); 351 unsigned short page_count, i; 352 xfs_off_t start, end; 353 int error; 354 xfs_km_flags_t kmflag_mask = 0; 355 356 /* 357 * assure zeroed buffer for non-read cases. 358 */ 359 if (!(flags & XBF_READ)) { 360 kmflag_mask |= KM_ZERO; 361 gfp_mask |= __GFP_ZERO; 362 } 363 364 /* 365 * for buffers that are contained within a single page, just allocate 366 * the memory from the heap - there's no need for the complexity of 367 * page arrays to keep allocation down to order 0. 368 */ 369 size = BBTOB(bp->b_length); 370 if (size < PAGE_SIZE) { 371 int align_mask = xfs_buftarg_dma_alignment(bp->b_target); 372 bp->b_addr = kmem_alloc_io(size, align_mask, 373 KM_NOFS | kmflag_mask); 374 if (!bp->b_addr) { 375 /* low memory - use alloc_page loop instead */ 376 goto use_alloc_page; 377 } 378 379 if (((unsigned long)(bp->b_addr + size - 1) & PAGE_MASK) != 380 ((unsigned long)bp->b_addr & PAGE_MASK)) { 381 /* b_addr spans two pages - use alloc_page instead */ 382 kmem_free(bp->b_addr); 383 bp->b_addr = NULL; 384 goto use_alloc_page; 385 } 386 bp->b_offset = offset_in_page(bp->b_addr); 387 bp->b_pages = bp->b_page_array; 388 bp->b_pages[0] = kmem_to_page(bp->b_addr); 389 bp->b_page_count = 1; 390 bp->b_flags |= _XBF_KMEM; 391 return 0; 392 } 393 394 use_alloc_page: 395 start = BBTOB(bp->b_maps[0].bm_bn) >> PAGE_SHIFT; 396 end = (BBTOB(bp->b_maps[0].bm_bn + bp->b_length) + PAGE_SIZE - 1) 397 >> PAGE_SHIFT; 398 page_count = end - start; 399 error = _xfs_buf_get_pages(bp, page_count); 400 if (unlikely(error)) 401 return error; 402 403 offset = bp->b_offset; 404 bp->b_flags |= _XBF_PAGES; 405 406 for (i = 0; i < bp->b_page_count; i++) { 407 struct page *page; 408 uint retries = 0; 409 retry: 410 page = alloc_page(gfp_mask); 411 if (unlikely(page == NULL)) { 412 if (flags & XBF_READ_AHEAD) { 413 bp->b_page_count = i; 414 error = -ENOMEM; 415 goto out_free_pages; 416 } 417 418 /* 419 * This could deadlock. 420 * 421 * But until all the XFS lowlevel code is revamped to 422 * handle buffer allocation failures we can't do much. 423 */ 424 if (!(++retries % 100)) 425 xfs_err(NULL, 426 "%s(%u) possible memory allocation deadlock in %s (mode:0x%x)", 427 current->comm, current->pid, 428 __func__, gfp_mask); 429 430 XFS_STATS_INC(bp->b_mount, xb_page_retries); 431 congestion_wait(BLK_RW_ASYNC, HZ/50); 432 goto retry; 433 } 434 435 XFS_STATS_INC(bp->b_mount, xb_page_found); 436 437 nbytes = min_t(size_t, size, PAGE_SIZE - offset); 438 size -= nbytes; 439 bp->b_pages[i] = page; 440 offset = 0; 441 } 442 return 0; 443 444 out_free_pages: 445 for (i = 0; i < bp->b_page_count; i++) 446 __free_page(bp->b_pages[i]); 447 bp->b_flags &= ~_XBF_PAGES; 448 return error; 449 } 450 451 /* 452 * Map buffer into kernel address-space if necessary. 453 */ 454 STATIC int 455 _xfs_buf_map_pages( 456 xfs_buf_t *bp, 457 uint flags) 458 { 459 ASSERT(bp->b_flags & _XBF_PAGES); 460 if (bp->b_page_count == 1) { 461 /* A single page buffer is always mappable */ 462 bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset; 463 } else if (flags & XBF_UNMAPPED) { 464 bp->b_addr = NULL; 465 } else { 466 int retried = 0; 467 unsigned nofs_flag; 468 469 /* 470 * vm_map_ram() will allocate auxiliary structures (e.g. 471 * pagetables) with GFP_KERNEL, yet we are likely to be under 472 * GFP_NOFS context here. Hence we need to tell memory reclaim 473 * that we are in such a context via PF_MEMALLOC_NOFS to prevent 474 * memory reclaim re-entering the filesystem here and 475 * potentially deadlocking. 476 */ 477 nofs_flag = memalloc_nofs_save(); 478 do { 479 bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count, 480 -1, PAGE_KERNEL); 481 if (bp->b_addr) 482 break; 483 vm_unmap_aliases(); 484 } while (retried++ <= 1); 485 memalloc_nofs_restore(nofs_flag); 486 487 if (!bp->b_addr) 488 return -ENOMEM; 489 bp->b_addr += bp->b_offset; 490 } 491 492 return 0; 493 } 494 495 /* 496 * Finding and Reading Buffers 497 */ 498 static int 499 _xfs_buf_obj_cmp( 500 struct rhashtable_compare_arg *arg, 501 const void *obj) 502 { 503 const struct xfs_buf_map *map = arg->key; 504 const struct xfs_buf *bp = obj; 505 506 /* 507 * The key hashing in the lookup path depends on the key being the 508 * first element of the compare_arg, make sure to assert this. 509 */ 510 BUILD_BUG_ON(offsetof(struct xfs_buf_map, bm_bn) != 0); 511 512 if (bp->b_bn != map->bm_bn) 513 return 1; 514 515 if (unlikely(bp->b_length != map->bm_len)) { 516 /* 517 * found a block number match. If the range doesn't 518 * match, the only way this is allowed is if the buffer 519 * in the cache is stale and the transaction that made 520 * it stale has not yet committed. i.e. we are 521 * reallocating a busy extent. Skip this buffer and 522 * continue searching for an exact match. 523 */ 524 ASSERT(bp->b_flags & XBF_STALE); 525 return 1; 526 } 527 return 0; 528 } 529 530 static const struct rhashtable_params xfs_buf_hash_params = { 531 .min_size = 32, /* empty AGs have minimal footprint */ 532 .nelem_hint = 16, 533 .key_len = sizeof(xfs_daddr_t), 534 .key_offset = offsetof(struct xfs_buf, b_bn), 535 .head_offset = offsetof(struct xfs_buf, b_rhash_head), 536 .automatic_shrinking = true, 537 .obj_cmpfn = _xfs_buf_obj_cmp, 538 }; 539 540 int 541 xfs_buf_hash_init( 542 struct xfs_perag *pag) 543 { 544 spin_lock_init(&pag->pag_buf_lock); 545 return rhashtable_init(&pag->pag_buf_hash, &xfs_buf_hash_params); 546 } 547 548 void 549 xfs_buf_hash_destroy( 550 struct xfs_perag *pag) 551 { 552 rhashtable_destroy(&pag->pag_buf_hash); 553 } 554 555 /* 556 * Look up a buffer in the buffer cache and return it referenced and locked 557 * in @found_bp. 558 * 559 * If @new_bp is supplied and we have a lookup miss, insert @new_bp into the 560 * cache. 561 * 562 * If XBF_TRYLOCK is set in @flags, only try to lock the buffer and return 563 * -EAGAIN if we fail to lock it. 564 * 565 * Return values are: 566 * -EFSCORRUPTED if have been supplied with an invalid address 567 * -EAGAIN on trylock failure 568 * -ENOENT if we fail to find a match and @new_bp was NULL 569 * 0, with @found_bp: 570 * - @new_bp if we inserted it into the cache 571 * - the buffer we found and locked. 572 */ 573 static int 574 xfs_buf_find( 575 struct xfs_buftarg *btp, 576 struct xfs_buf_map *map, 577 int nmaps, 578 xfs_buf_flags_t flags, 579 struct xfs_buf *new_bp, 580 struct xfs_buf **found_bp) 581 { 582 struct xfs_perag *pag; 583 xfs_buf_t *bp; 584 struct xfs_buf_map cmap = { .bm_bn = map[0].bm_bn }; 585 xfs_daddr_t eofs; 586 int i; 587 588 *found_bp = NULL; 589 590 for (i = 0; i < nmaps; i++) 591 cmap.bm_len += map[i].bm_len; 592 593 /* Check for IOs smaller than the sector size / not sector aligned */ 594 ASSERT(!(BBTOB(cmap.bm_len) < btp->bt_meta_sectorsize)); 595 ASSERT(!(BBTOB(cmap.bm_bn) & (xfs_off_t)btp->bt_meta_sectormask)); 596 597 /* 598 * Corrupted block numbers can get through to here, unfortunately, so we 599 * have to check that the buffer falls within the filesystem bounds. 600 */ 601 eofs = XFS_FSB_TO_BB(btp->bt_mount, btp->bt_mount->m_sb.sb_dblocks); 602 if (cmap.bm_bn < 0 || cmap.bm_bn >= eofs) { 603 xfs_alert(btp->bt_mount, 604 "%s: daddr 0x%llx out of range, EOFS 0x%llx", 605 __func__, cmap.bm_bn, eofs); 606 WARN_ON(1); 607 return -EFSCORRUPTED; 608 } 609 610 pag = xfs_perag_get(btp->bt_mount, 611 xfs_daddr_to_agno(btp->bt_mount, cmap.bm_bn)); 612 613 spin_lock(&pag->pag_buf_lock); 614 bp = rhashtable_lookup_fast(&pag->pag_buf_hash, &cmap, 615 xfs_buf_hash_params); 616 if (bp) { 617 atomic_inc(&bp->b_hold); 618 goto found; 619 } 620 621 /* No match found */ 622 if (!new_bp) { 623 XFS_STATS_INC(btp->bt_mount, xb_miss_locked); 624 spin_unlock(&pag->pag_buf_lock); 625 xfs_perag_put(pag); 626 return -ENOENT; 627 } 628 629 /* the buffer keeps the perag reference until it is freed */ 630 new_bp->b_pag = pag; 631 rhashtable_insert_fast(&pag->pag_buf_hash, &new_bp->b_rhash_head, 632 xfs_buf_hash_params); 633 spin_unlock(&pag->pag_buf_lock); 634 *found_bp = new_bp; 635 return 0; 636 637 found: 638 spin_unlock(&pag->pag_buf_lock); 639 xfs_perag_put(pag); 640 641 if (!xfs_buf_trylock(bp)) { 642 if (flags & XBF_TRYLOCK) { 643 xfs_buf_rele(bp); 644 XFS_STATS_INC(btp->bt_mount, xb_busy_locked); 645 return -EAGAIN; 646 } 647 xfs_buf_lock(bp); 648 XFS_STATS_INC(btp->bt_mount, xb_get_locked_waited); 649 } 650 651 /* 652 * if the buffer is stale, clear all the external state associated with 653 * it. We need to keep flags such as how we allocated the buffer memory 654 * intact here. 655 */ 656 if (bp->b_flags & XBF_STALE) { 657 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0); 658 ASSERT(bp->b_iodone == NULL); 659 bp->b_flags &= _XBF_KMEM | _XBF_PAGES; 660 bp->b_ops = NULL; 661 } 662 663 trace_xfs_buf_find(bp, flags, _RET_IP_); 664 XFS_STATS_INC(btp->bt_mount, xb_get_locked); 665 *found_bp = bp; 666 return 0; 667 } 668 669 struct xfs_buf * 670 xfs_buf_incore( 671 struct xfs_buftarg *target, 672 xfs_daddr_t blkno, 673 size_t numblks, 674 xfs_buf_flags_t flags) 675 { 676 struct xfs_buf *bp; 677 int error; 678 DEFINE_SINGLE_BUF_MAP(map, blkno, numblks); 679 680 error = xfs_buf_find(target, &map, 1, flags, NULL, &bp); 681 if (error) 682 return NULL; 683 return bp; 684 } 685 686 /* 687 * Assembles a buffer covering the specified range. The code is optimised for 688 * cache hits, as metadata intensive workloads will see 3 orders of magnitude 689 * more hits than misses. 690 */ 691 int 692 xfs_buf_get_map( 693 struct xfs_buftarg *target, 694 struct xfs_buf_map *map, 695 int nmaps, 696 xfs_buf_flags_t flags, 697 struct xfs_buf **bpp) 698 { 699 struct xfs_buf *bp; 700 struct xfs_buf *new_bp; 701 int error = 0; 702 703 *bpp = NULL; 704 error = xfs_buf_find(target, map, nmaps, flags, NULL, &bp); 705 if (!error) 706 goto found; 707 if (error != -ENOENT) 708 return error; 709 710 error = _xfs_buf_alloc(target, map, nmaps, flags, &new_bp); 711 if (error) 712 return error; 713 714 error = xfs_buf_allocate_memory(new_bp, flags); 715 if (error) { 716 xfs_buf_free(new_bp); 717 return error; 718 } 719 720 error = xfs_buf_find(target, map, nmaps, flags, new_bp, &bp); 721 if (error) { 722 xfs_buf_free(new_bp); 723 return error; 724 } 725 726 if (bp != new_bp) 727 xfs_buf_free(new_bp); 728 729 found: 730 if (!bp->b_addr) { 731 error = _xfs_buf_map_pages(bp, flags); 732 if (unlikely(error)) { 733 xfs_warn_ratelimited(target->bt_mount, 734 "%s: failed to map %u pages", __func__, 735 bp->b_page_count); 736 xfs_buf_relse(bp); 737 return error; 738 } 739 } 740 741 /* 742 * Clear b_error if this is a lookup from a caller that doesn't expect 743 * valid data to be found in the buffer. 744 */ 745 if (!(flags & XBF_READ)) 746 xfs_buf_ioerror(bp, 0); 747 748 XFS_STATS_INC(target->bt_mount, xb_get); 749 trace_xfs_buf_get(bp, flags, _RET_IP_); 750 *bpp = bp; 751 return 0; 752 } 753 754 STATIC int 755 _xfs_buf_read( 756 xfs_buf_t *bp, 757 xfs_buf_flags_t flags) 758 { 759 ASSERT(!(flags & XBF_WRITE)); 760 ASSERT(bp->b_maps[0].bm_bn != XFS_BUF_DADDR_NULL); 761 762 bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD); 763 bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD); 764 765 return xfs_buf_submit(bp); 766 } 767 768 /* 769 * Reverify a buffer found in cache without an attached ->b_ops. 770 * 771 * If the caller passed an ops structure and the buffer doesn't have ops 772 * assigned, set the ops and use it to verify the contents. If verification 773 * fails, clear XBF_DONE. We assume the buffer has no recorded errors and is 774 * already in XBF_DONE state on entry. 775 * 776 * Under normal operations, every in-core buffer is verified on read I/O 777 * completion. There are two scenarios that can lead to in-core buffers without 778 * an assigned ->b_ops. The first is during log recovery of buffers on a V4 779 * filesystem, though these buffers are purged at the end of recovery. The 780 * other is online repair, which intentionally reads with a NULL buffer ops to 781 * run several verifiers across an in-core buffer in order to establish buffer 782 * type. If repair can't establish that, the buffer will be left in memory 783 * with NULL buffer ops. 784 */ 785 int 786 xfs_buf_reverify( 787 struct xfs_buf *bp, 788 const struct xfs_buf_ops *ops) 789 { 790 ASSERT(bp->b_flags & XBF_DONE); 791 ASSERT(bp->b_error == 0); 792 793 if (!ops || bp->b_ops) 794 return 0; 795 796 bp->b_ops = ops; 797 bp->b_ops->verify_read(bp); 798 if (bp->b_error) 799 bp->b_flags &= ~XBF_DONE; 800 return bp->b_error; 801 } 802 803 int 804 xfs_buf_read_map( 805 struct xfs_buftarg *target, 806 struct xfs_buf_map *map, 807 int nmaps, 808 xfs_buf_flags_t flags, 809 struct xfs_buf **bpp, 810 const struct xfs_buf_ops *ops, 811 xfs_failaddr_t fa) 812 { 813 struct xfs_buf *bp; 814 int error; 815 816 flags |= XBF_READ; 817 *bpp = NULL; 818 819 error = xfs_buf_get_map(target, map, nmaps, flags, &bp); 820 if (error) 821 return error; 822 823 trace_xfs_buf_read(bp, flags, _RET_IP_); 824 825 if (!(bp->b_flags & XBF_DONE)) { 826 /* Initiate the buffer read and wait. */ 827 XFS_STATS_INC(target->bt_mount, xb_get_read); 828 bp->b_ops = ops; 829 error = _xfs_buf_read(bp, flags); 830 831 /* Readahead iodone already dropped the buffer, so exit. */ 832 if (flags & XBF_ASYNC) 833 return 0; 834 } else { 835 /* Buffer already read; all we need to do is check it. */ 836 error = xfs_buf_reverify(bp, ops); 837 838 /* Readahead already finished; drop the buffer and exit. */ 839 if (flags & XBF_ASYNC) { 840 xfs_buf_relse(bp); 841 return 0; 842 } 843 844 /* We do not want read in the flags */ 845 bp->b_flags &= ~XBF_READ; 846 ASSERT(bp->b_ops != NULL || ops == NULL); 847 } 848 849 /* 850 * If we've had a read error, then the contents of the buffer are 851 * invalid and should not be used. To ensure that a followup read tries 852 * to pull the buffer from disk again, we clear the XBF_DONE flag and 853 * mark the buffer stale. This ensures that anyone who has a current 854 * reference to the buffer will interpret it's contents correctly and 855 * future cache lookups will also treat it as an empty, uninitialised 856 * buffer. 857 */ 858 if (error) { 859 if (!XFS_FORCED_SHUTDOWN(target->bt_mount)) 860 xfs_buf_ioerror_alert(bp, fa); 861 862 bp->b_flags &= ~XBF_DONE; 863 xfs_buf_stale(bp); 864 xfs_buf_relse(bp); 865 866 /* bad CRC means corrupted metadata */ 867 if (error == -EFSBADCRC) 868 error = -EFSCORRUPTED; 869 return error; 870 } 871 872 *bpp = bp; 873 return 0; 874 } 875 876 /* 877 * If we are not low on memory then do the readahead in a deadlock 878 * safe manner. 879 */ 880 void 881 xfs_buf_readahead_map( 882 struct xfs_buftarg *target, 883 struct xfs_buf_map *map, 884 int nmaps, 885 const struct xfs_buf_ops *ops) 886 { 887 struct xfs_buf *bp; 888 889 if (bdi_read_congested(target->bt_bdev->bd_bdi)) 890 return; 891 892 xfs_buf_read_map(target, map, nmaps, 893 XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD, &bp, ops, 894 __this_address); 895 } 896 897 /* 898 * Read an uncached buffer from disk. Allocates and returns a locked 899 * buffer containing the disk contents or nothing. 900 */ 901 int 902 xfs_buf_read_uncached( 903 struct xfs_buftarg *target, 904 xfs_daddr_t daddr, 905 size_t numblks, 906 int flags, 907 struct xfs_buf **bpp, 908 const struct xfs_buf_ops *ops) 909 { 910 struct xfs_buf *bp; 911 int error; 912 913 *bpp = NULL; 914 915 error = xfs_buf_get_uncached(target, numblks, flags, &bp); 916 if (error) 917 return error; 918 919 /* set up the buffer for a read IO */ 920 ASSERT(bp->b_map_count == 1); 921 bp->b_bn = XFS_BUF_DADDR_NULL; /* always null for uncached buffers */ 922 bp->b_maps[0].bm_bn = daddr; 923 bp->b_flags |= XBF_READ; 924 bp->b_ops = ops; 925 926 xfs_buf_submit(bp); 927 if (bp->b_error) { 928 error = bp->b_error; 929 xfs_buf_relse(bp); 930 return error; 931 } 932 933 *bpp = bp; 934 return 0; 935 } 936 937 int 938 xfs_buf_get_uncached( 939 struct xfs_buftarg *target, 940 size_t numblks, 941 int flags, 942 struct xfs_buf **bpp) 943 { 944 unsigned long page_count; 945 int error, i; 946 struct xfs_buf *bp; 947 DEFINE_SINGLE_BUF_MAP(map, XFS_BUF_DADDR_NULL, numblks); 948 949 *bpp = NULL; 950 951 /* flags might contain irrelevant bits, pass only what we care about */ 952 error = _xfs_buf_alloc(target, &map, 1, flags & XBF_NO_IOACCT, &bp); 953 if (error) 954 goto fail; 955 956 page_count = PAGE_ALIGN(numblks << BBSHIFT) >> PAGE_SHIFT; 957 error = _xfs_buf_get_pages(bp, page_count); 958 if (error) 959 goto fail_free_buf; 960 961 for (i = 0; i < page_count; i++) { 962 bp->b_pages[i] = alloc_page(xb_to_gfp(flags)); 963 if (!bp->b_pages[i]) { 964 error = -ENOMEM; 965 goto fail_free_mem; 966 } 967 } 968 bp->b_flags |= _XBF_PAGES; 969 970 error = _xfs_buf_map_pages(bp, 0); 971 if (unlikely(error)) { 972 xfs_warn(target->bt_mount, 973 "%s: failed to map pages", __func__); 974 goto fail_free_mem; 975 } 976 977 trace_xfs_buf_get_uncached(bp, _RET_IP_); 978 *bpp = bp; 979 return 0; 980 981 fail_free_mem: 982 while (--i >= 0) 983 __free_page(bp->b_pages[i]); 984 _xfs_buf_free_pages(bp); 985 fail_free_buf: 986 xfs_buf_free_maps(bp); 987 kmem_cache_free(xfs_buf_zone, bp); 988 fail: 989 return error; 990 } 991 992 /* 993 * Increment reference count on buffer, to hold the buffer concurrently 994 * with another thread which may release (free) the buffer asynchronously. 995 * Must hold the buffer already to call this function. 996 */ 997 void 998 xfs_buf_hold( 999 xfs_buf_t *bp) 1000 { 1001 trace_xfs_buf_hold(bp, _RET_IP_); 1002 atomic_inc(&bp->b_hold); 1003 } 1004 1005 /* 1006 * Release a hold on the specified buffer. If the hold count is 1, the buffer is 1007 * placed on LRU or freed (depending on b_lru_ref). 1008 */ 1009 void 1010 xfs_buf_rele( 1011 xfs_buf_t *bp) 1012 { 1013 struct xfs_perag *pag = bp->b_pag; 1014 bool release; 1015 bool freebuf = false; 1016 1017 trace_xfs_buf_rele(bp, _RET_IP_); 1018 1019 if (!pag) { 1020 ASSERT(list_empty(&bp->b_lru)); 1021 if (atomic_dec_and_test(&bp->b_hold)) { 1022 xfs_buf_ioacct_dec(bp); 1023 xfs_buf_free(bp); 1024 } 1025 return; 1026 } 1027 1028 ASSERT(atomic_read(&bp->b_hold) > 0); 1029 1030 /* 1031 * We grab the b_lock here first to serialise racing xfs_buf_rele() 1032 * calls. The pag_buf_lock being taken on the last reference only 1033 * serialises against racing lookups in xfs_buf_find(). IOWs, the second 1034 * to last reference we drop here is not serialised against the last 1035 * reference until we take bp->b_lock. Hence if we don't grab b_lock 1036 * first, the last "release" reference can win the race to the lock and 1037 * free the buffer before the second-to-last reference is processed, 1038 * leading to a use-after-free scenario. 1039 */ 1040 spin_lock(&bp->b_lock); 1041 release = atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock); 1042 if (!release) { 1043 /* 1044 * Drop the in-flight state if the buffer is already on the LRU 1045 * and it holds the only reference. This is racy because we 1046 * haven't acquired the pag lock, but the use of _XBF_IN_FLIGHT 1047 * ensures the decrement occurs only once per-buf. 1048 */ 1049 if ((atomic_read(&bp->b_hold) == 1) && !list_empty(&bp->b_lru)) 1050 __xfs_buf_ioacct_dec(bp); 1051 goto out_unlock; 1052 } 1053 1054 /* the last reference has been dropped ... */ 1055 __xfs_buf_ioacct_dec(bp); 1056 if (!(bp->b_flags & XBF_STALE) && atomic_read(&bp->b_lru_ref)) { 1057 /* 1058 * If the buffer is added to the LRU take a new reference to the 1059 * buffer for the LRU and clear the (now stale) dispose list 1060 * state flag 1061 */ 1062 if (list_lru_add(&bp->b_target->bt_lru, &bp->b_lru)) { 1063 bp->b_state &= ~XFS_BSTATE_DISPOSE; 1064 atomic_inc(&bp->b_hold); 1065 } 1066 spin_unlock(&pag->pag_buf_lock); 1067 } else { 1068 /* 1069 * most of the time buffers will already be removed from the 1070 * LRU, so optimise that case by checking for the 1071 * XFS_BSTATE_DISPOSE flag indicating the last list the buffer 1072 * was on was the disposal list 1073 */ 1074 if (!(bp->b_state & XFS_BSTATE_DISPOSE)) { 1075 list_lru_del(&bp->b_target->bt_lru, &bp->b_lru); 1076 } else { 1077 ASSERT(list_empty(&bp->b_lru)); 1078 } 1079 1080 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q)); 1081 rhashtable_remove_fast(&pag->pag_buf_hash, &bp->b_rhash_head, 1082 xfs_buf_hash_params); 1083 spin_unlock(&pag->pag_buf_lock); 1084 xfs_perag_put(pag); 1085 freebuf = true; 1086 } 1087 1088 out_unlock: 1089 spin_unlock(&bp->b_lock); 1090 1091 if (freebuf) 1092 xfs_buf_free(bp); 1093 } 1094 1095 1096 /* 1097 * Lock a buffer object, if it is not already locked. 1098 * 1099 * If we come across a stale, pinned, locked buffer, we know that we are 1100 * being asked to lock a buffer that has been reallocated. Because it is 1101 * pinned, we know that the log has not been pushed to disk and hence it 1102 * will still be locked. Rather than continuing to have trylock attempts 1103 * fail until someone else pushes the log, push it ourselves before 1104 * returning. This means that the xfsaild will not get stuck trying 1105 * to push on stale inode buffers. 1106 */ 1107 int 1108 xfs_buf_trylock( 1109 struct xfs_buf *bp) 1110 { 1111 int locked; 1112 1113 locked = down_trylock(&bp->b_sema) == 0; 1114 if (locked) 1115 trace_xfs_buf_trylock(bp, _RET_IP_); 1116 else 1117 trace_xfs_buf_trylock_fail(bp, _RET_IP_); 1118 return locked; 1119 } 1120 1121 /* 1122 * Lock a buffer object. 1123 * 1124 * If we come across a stale, pinned, locked buffer, we know that we 1125 * are being asked to lock a buffer that has been reallocated. Because 1126 * it is pinned, we know that the log has not been pushed to disk and 1127 * hence it will still be locked. Rather than sleeping until someone 1128 * else pushes the log, push it ourselves before trying to get the lock. 1129 */ 1130 void 1131 xfs_buf_lock( 1132 struct xfs_buf *bp) 1133 { 1134 trace_xfs_buf_lock(bp, _RET_IP_); 1135 1136 if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE)) 1137 xfs_log_force(bp->b_mount, 0); 1138 down(&bp->b_sema); 1139 1140 trace_xfs_buf_lock_done(bp, _RET_IP_); 1141 } 1142 1143 void 1144 xfs_buf_unlock( 1145 struct xfs_buf *bp) 1146 { 1147 ASSERT(xfs_buf_islocked(bp)); 1148 1149 up(&bp->b_sema); 1150 trace_xfs_buf_unlock(bp, _RET_IP_); 1151 } 1152 1153 STATIC void 1154 xfs_buf_wait_unpin( 1155 xfs_buf_t *bp) 1156 { 1157 DECLARE_WAITQUEUE (wait, current); 1158 1159 if (atomic_read(&bp->b_pin_count) == 0) 1160 return; 1161 1162 add_wait_queue(&bp->b_waiters, &wait); 1163 for (;;) { 1164 set_current_state(TASK_UNINTERRUPTIBLE); 1165 if (atomic_read(&bp->b_pin_count) == 0) 1166 break; 1167 io_schedule(); 1168 } 1169 remove_wait_queue(&bp->b_waiters, &wait); 1170 set_current_state(TASK_RUNNING); 1171 } 1172 1173 /* 1174 * Buffer Utility Routines 1175 */ 1176 1177 void 1178 xfs_buf_ioend( 1179 struct xfs_buf *bp) 1180 { 1181 bool read = bp->b_flags & XBF_READ; 1182 1183 trace_xfs_buf_iodone(bp, _RET_IP_); 1184 1185 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD); 1186 1187 /* 1188 * Pull in IO completion errors now. We are guaranteed to be running 1189 * single threaded, so we don't need the lock to read b_io_error. 1190 */ 1191 if (!bp->b_error && bp->b_io_error) 1192 xfs_buf_ioerror(bp, bp->b_io_error); 1193 1194 /* Only validate buffers that were read without errors */ 1195 if (read && !bp->b_error && bp->b_ops) { 1196 ASSERT(!bp->b_iodone); 1197 bp->b_ops->verify_read(bp); 1198 } 1199 1200 if (!bp->b_error) 1201 bp->b_flags |= XBF_DONE; 1202 1203 if (bp->b_iodone) 1204 (*(bp->b_iodone))(bp); 1205 else if (bp->b_flags & XBF_ASYNC) 1206 xfs_buf_relse(bp); 1207 else 1208 complete(&bp->b_iowait); 1209 } 1210 1211 static void 1212 xfs_buf_ioend_work( 1213 struct work_struct *work) 1214 { 1215 struct xfs_buf *bp = 1216 container_of(work, xfs_buf_t, b_ioend_work); 1217 1218 xfs_buf_ioend(bp); 1219 } 1220 1221 static void 1222 xfs_buf_ioend_async( 1223 struct xfs_buf *bp) 1224 { 1225 INIT_WORK(&bp->b_ioend_work, xfs_buf_ioend_work); 1226 queue_work(bp->b_mount->m_buf_workqueue, &bp->b_ioend_work); 1227 } 1228 1229 void 1230 __xfs_buf_ioerror( 1231 xfs_buf_t *bp, 1232 int error, 1233 xfs_failaddr_t failaddr) 1234 { 1235 ASSERT(error <= 0 && error >= -1000); 1236 bp->b_error = error; 1237 trace_xfs_buf_ioerror(bp, error, failaddr); 1238 } 1239 1240 void 1241 xfs_buf_ioerror_alert( 1242 struct xfs_buf *bp, 1243 xfs_failaddr_t func) 1244 { 1245 xfs_alert_ratelimited(bp->b_mount, 1246 "metadata I/O error in \"%pS\" at daddr 0x%llx len %d error %d", 1247 func, (uint64_t)XFS_BUF_ADDR(bp), bp->b_length, 1248 -bp->b_error); 1249 } 1250 1251 int 1252 xfs_bwrite( 1253 struct xfs_buf *bp) 1254 { 1255 int error; 1256 1257 ASSERT(xfs_buf_islocked(bp)); 1258 1259 bp->b_flags |= XBF_WRITE; 1260 bp->b_flags &= ~(XBF_ASYNC | XBF_READ | _XBF_DELWRI_Q | 1261 XBF_WRITE_FAIL | XBF_DONE); 1262 1263 error = xfs_buf_submit(bp); 1264 if (error) 1265 xfs_force_shutdown(bp->b_mount, SHUTDOWN_META_IO_ERROR); 1266 return error; 1267 } 1268 1269 static void 1270 xfs_buf_bio_end_io( 1271 struct bio *bio) 1272 { 1273 struct xfs_buf *bp = (struct xfs_buf *)bio->bi_private; 1274 1275 /* 1276 * don't overwrite existing errors - otherwise we can lose errors on 1277 * buffers that require multiple bios to complete. 1278 */ 1279 if (bio->bi_status) { 1280 int error = blk_status_to_errno(bio->bi_status); 1281 1282 cmpxchg(&bp->b_io_error, 0, error); 1283 } 1284 1285 if (!bp->b_error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ)) 1286 invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp)); 1287 1288 if (atomic_dec_and_test(&bp->b_io_remaining) == 1) 1289 xfs_buf_ioend_async(bp); 1290 bio_put(bio); 1291 } 1292 1293 static void 1294 xfs_buf_ioapply_map( 1295 struct xfs_buf *bp, 1296 int map, 1297 int *buf_offset, 1298 int *count, 1299 int op) 1300 { 1301 int page_index; 1302 int total_nr_pages = bp->b_page_count; 1303 int nr_pages; 1304 struct bio *bio; 1305 sector_t sector = bp->b_maps[map].bm_bn; 1306 int size; 1307 int offset; 1308 1309 /* skip the pages in the buffer before the start offset */ 1310 page_index = 0; 1311 offset = *buf_offset; 1312 while (offset >= PAGE_SIZE) { 1313 page_index++; 1314 offset -= PAGE_SIZE; 1315 } 1316 1317 /* 1318 * Limit the IO size to the length of the current vector, and update the 1319 * remaining IO count for the next time around. 1320 */ 1321 size = min_t(int, BBTOB(bp->b_maps[map].bm_len), *count); 1322 *count -= size; 1323 *buf_offset += size; 1324 1325 next_chunk: 1326 atomic_inc(&bp->b_io_remaining); 1327 nr_pages = min(total_nr_pages, BIO_MAX_PAGES); 1328 1329 bio = bio_alloc(GFP_NOIO, nr_pages); 1330 bio_set_dev(bio, bp->b_target->bt_bdev); 1331 bio->bi_iter.bi_sector = sector; 1332 bio->bi_end_io = xfs_buf_bio_end_io; 1333 bio->bi_private = bp; 1334 bio->bi_opf = op; 1335 1336 for (; size && nr_pages; nr_pages--, page_index++) { 1337 int rbytes, nbytes = PAGE_SIZE - offset; 1338 1339 if (nbytes > size) 1340 nbytes = size; 1341 1342 rbytes = bio_add_page(bio, bp->b_pages[page_index], nbytes, 1343 offset); 1344 if (rbytes < nbytes) 1345 break; 1346 1347 offset = 0; 1348 sector += BTOBB(nbytes); 1349 size -= nbytes; 1350 total_nr_pages--; 1351 } 1352 1353 if (likely(bio->bi_iter.bi_size)) { 1354 if (xfs_buf_is_vmapped(bp)) { 1355 flush_kernel_vmap_range(bp->b_addr, 1356 xfs_buf_vmap_len(bp)); 1357 } 1358 submit_bio(bio); 1359 if (size) 1360 goto next_chunk; 1361 } else { 1362 /* 1363 * This is guaranteed not to be the last io reference count 1364 * because the caller (xfs_buf_submit) holds a count itself. 1365 */ 1366 atomic_dec(&bp->b_io_remaining); 1367 xfs_buf_ioerror(bp, -EIO); 1368 bio_put(bio); 1369 } 1370 1371 } 1372 1373 STATIC void 1374 _xfs_buf_ioapply( 1375 struct xfs_buf *bp) 1376 { 1377 struct blk_plug plug; 1378 int op; 1379 int offset; 1380 int size; 1381 int i; 1382 1383 /* 1384 * Make sure we capture only current IO errors rather than stale errors 1385 * left over from previous use of the buffer (e.g. failed readahead). 1386 */ 1387 bp->b_error = 0; 1388 1389 if (bp->b_flags & XBF_WRITE) { 1390 op = REQ_OP_WRITE; 1391 1392 /* 1393 * Run the write verifier callback function if it exists. If 1394 * this function fails it will mark the buffer with an error and 1395 * the IO should not be dispatched. 1396 */ 1397 if (bp->b_ops) { 1398 bp->b_ops->verify_write(bp); 1399 if (bp->b_error) { 1400 xfs_force_shutdown(bp->b_mount, 1401 SHUTDOWN_CORRUPT_INCORE); 1402 return; 1403 } 1404 } else if (bp->b_bn != XFS_BUF_DADDR_NULL) { 1405 struct xfs_mount *mp = bp->b_mount; 1406 1407 /* 1408 * non-crc filesystems don't attach verifiers during 1409 * log recovery, so don't warn for such filesystems. 1410 */ 1411 if (xfs_sb_version_hascrc(&mp->m_sb)) { 1412 xfs_warn(mp, 1413 "%s: no buf ops on daddr 0x%llx len %d", 1414 __func__, bp->b_bn, bp->b_length); 1415 xfs_hex_dump(bp->b_addr, 1416 XFS_CORRUPTION_DUMP_LEN); 1417 dump_stack(); 1418 } 1419 } 1420 } else { 1421 op = REQ_OP_READ; 1422 if (bp->b_flags & XBF_READ_AHEAD) 1423 op |= REQ_RAHEAD; 1424 } 1425 1426 /* we only use the buffer cache for meta-data */ 1427 op |= REQ_META; 1428 1429 /* 1430 * Walk all the vectors issuing IO on them. Set up the initial offset 1431 * into the buffer and the desired IO size before we start - 1432 * _xfs_buf_ioapply_vec() will modify them appropriately for each 1433 * subsequent call. 1434 */ 1435 offset = bp->b_offset; 1436 size = BBTOB(bp->b_length); 1437 blk_start_plug(&plug); 1438 for (i = 0; i < bp->b_map_count; i++) { 1439 xfs_buf_ioapply_map(bp, i, &offset, &size, op); 1440 if (bp->b_error) 1441 break; 1442 if (size <= 0) 1443 break; /* all done */ 1444 } 1445 blk_finish_plug(&plug); 1446 } 1447 1448 /* 1449 * Wait for I/O completion of a sync buffer and return the I/O error code. 1450 */ 1451 static int 1452 xfs_buf_iowait( 1453 struct xfs_buf *bp) 1454 { 1455 ASSERT(!(bp->b_flags & XBF_ASYNC)); 1456 1457 trace_xfs_buf_iowait(bp, _RET_IP_); 1458 wait_for_completion(&bp->b_iowait); 1459 trace_xfs_buf_iowait_done(bp, _RET_IP_); 1460 1461 return bp->b_error; 1462 } 1463 1464 /* 1465 * Buffer I/O submission path, read or write. Asynchronous submission transfers 1466 * the buffer lock ownership and the current reference to the IO. It is not 1467 * safe to reference the buffer after a call to this function unless the caller 1468 * holds an additional reference itself. 1469 */ 1470 int 1471 __xfs_buf_submit( 1472 struct xfs_buf *bp, 1473 bool wait) 1474 { 1475 int error = 0; 1476 1477 trace_xfs_buf_submit(bp, _RET_IP_); 1478 1479 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q)); 1480 1481 /* on shutdown we stale and complete the buffer immediately */ 1482 if (XFS_FORCED_SHUTDOWN(bp->b_mount)) { 1483 xfs_buf_ioerror(bp, -EIO); 1484 bp->b_flags &= ~XBF_DONE; 1485 xfs_buf_stale(bp); 1486 xfs_buf_ioend(bp); 1487 return -EIO; 1488 } 1489 1490 /* 1491 * Grab a reference so the buffer does not go away underneath us. For 1492 * async buffers, I/O completion drops the callers reference, which 1493 * could occur before submission returns. 1494 */ 1495 xfs_buf_hold(bp); 1496 1497 if (bp->b_flags & XBF_WRITE) 1498 xfs_buf_wait_unpin(bp); 1499 1500 /* clear the internal error state to avoid spurious errors */ 1501 bp->b_io_error = 0; 1502 1503 /* 1504 * Set the count to 1 initially, this will stop an I/O completion 1505 * callout which happens before we have started all the I/O from calling 1506 * xfs_buf_ioend too early. 1507 */ 1508 atomic_set(&bp->b_io_remaining, 1); 1509 if (bp->b_flags & XBF_ASYNC) 1510 xfs_buf_ioacct_inc(bp); 1511 _xfs_buf_ioapply(bp); 1512 1513 /* 1514 * If _xfs_buf_ioapply failed, we can get back here with only the IO 1515 * reference we took above. If we drop it to zero, run completion so 1516 * that we don't return to the caller with completion still pending. 1517 */ 1518 if (atomic_dec_and_test(&bp->b_io_remaining) == 1) { 1519 if (bp->b_error || !(bp->b_flags & XBF_ASYNC)) 1520 xfs_buf_ioend(bp); 1521 else 1522 xfs_buf_ioend_async(bp); 1523 } 1524 1525 if (wait) 1526 error = xfs_buf_iowait(bp); 1527 1528 /* 1529 * Release the hold that keeps the buffer referenced for the entire 1530 * I/O. Note that if the buffer is async, it is not safe to reference 1531 * after this release. 1532 */ 1533 xfs_buf_rele(bp); 1534 return error; 1535 } 1536 1537 void * 1538 xfs_buf_offset( 1539 struct xfs_buf *bp, 1540 size_t offset) 1541 { 1542 struct page *page; 1543 1544 if (bp->b_addr) 1545 return bp->b_addr + offset; 1546 1547 offset += bp->b_offset; 1548 page = bp->b_pages[offset >> PAGE_SHIFT]; 1549 return page_address(page) + (offset & (PAGE_SIZE-1)); 1550 } 1551 1552 void 1553 xfs_buf_zero( 1554 struct xfs_buf *bp, 1555 size_t boff, 1556 size_t bsize) 1557 { 1558 size_t bend; 1559 1560 bend = boff + bsize; 1561 while (boff < bend) { 1562 struct page *page; 1563 int page_index, page_offset, csize; 1564 1565 page_index = (boff + bp->b_offset) >> PAGE_SHIFT; 1566 page_offset = (boff + bp->b_offset) & ~PAGE_MASK; 1567 page = bp->b_pages[page_index]; 1568 csize = min_t(size_t, PAGE_SIZE - page_offset, 1569 BBTOB(bp->b_length) - boff); 1570 1571 ASSERT((csize + page_offset) <= PAGE_SIZE); 1572 1573 memset(page_address(page) + page_offset, 0, csize); 1574 1575 boff += csize; 1576 } 1577 } 1578 1579 /* 1580 * Log a message about and stale a buffer that a caller has decided is corrupt. 1581 * 1582 * This function should be called for the kinds of metadata corruption that 1583 * cannot be detect from a verifier, such as incorrect inter-block relationship 1584 * data. Do /not/ call this function from a verifier function. 1585 * 1586 * The buffer must be XBF_DONE prior to the call. Afterwards, the buffer will 1587 * be marked stale, but b_error will not be set. The caller is responsible for 1588 * releasing the buffer or fixing it. 1589 */ 1590 void 1591 __xfs_buf_mark_corrupt( 1592 struct xfs_buf *bp, 1593 xfs_failaddr_t fa) 1594 { 1595 ASSERT(bp->b_flags & XBF_DONE); 1596 1597 xfs_buf_corruption_error(bp, fa); 1598 xfs_buf_stale(bp); 1599 } 1600 1601 /* 1602 * Handling of buffer targets (buftargs). 1603 */ 1604 1605 /* 1606 * Wait for any bufs with callbacks that have been submitted but have not yet 1607 * returned. These buffers will have an elevated hold count, so wait on those 1608 * while freeing all the buffers only held by the LRU. 1609 */ 1610 static enum lru_status 1611 xfs_buftarg_wait_rele( 1612 struct list_head *item, 1613 struct list_lru_one *lru, 1614 spinlock_t *lru_lock, 1615 void *arg) 1616 1617 { 1618 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru); 1619 struct list_head *dispose = arg; 1620 1621 if (atomic_read(&bp->b_hold) > 1) { 1622 /* need to wait, so skip it this pass */ 1623 trace_xfs_buf_wait_buftarg(bp, _RET_IP_); 1624 return LRU_SKIP; 1625 } 1626 if (!spin_trylock(&bp->b_lock)) 1627 return LRU_SKIP; 1628 1629 /* 1630 * clear the LRU reference count so the buffer doesn't get 1631 * ignored in xfs_buf_rele(). 1632 */ 1633 atomic_set(&bp->b_lru_ref, 0); 1634 bp->b_state |= XFS_BSTATE_DISPOSE; 1635 list_lru_isolate_move(lru, item, dispose); 1636 spin_unlock(&bp->b_lock); 1637 return LRU_REMOVED; 1638 } 1639 1640 void 1641 xfs_wait_buftarg( 1642 struct xfs_buftarg *btp) 1643 { 1644 LIST_HEAD(dispose); 1645 int loop = 0; 1646 1647 /* 1648 * First wait on the buftarg I/O count for all in-flight buffers to be 1649 * released. This is critical as new buffers do not make the LRU until 1650 * they are released. 1651 * 1652 * Next, flush the buffer workqueue to ensure all completion processing 1653 * has finished. Just waiting on buffer locks is not sufficient for 1654 * async IO as the reference count held over IO is not released until 1655 * after the buffer lock is dropped. Hence we need to ensure here that 1656 * all reference counts have been dropped before we start walking the 1657 * LRU list. 1658 */ 1659 while (percpu_counter_sum(&btp->bt_io_count)) 1660 delay(100); 1661 flush_workqueue(btp->bt_mount->m_buf_workqueue); 1662 1663 /* loop until there is nothing left on the lru list. */ 1664 while (list_lru_count(&btp->bt_lru)) { 1665 list_lru_walk(&btp->bt_lru, xfs_buftarg_wait_rele, 1666 &dispose, LONG_MAX); 1667 1668 while (!list_empty(&dispose)) { 1669 struct xfs_buf *bp; 1670 bp = list_first_entry(&dispose, struct xfs_buf, b_lru); 1671 list_del_init(&bp->b_lru); 1672 if (bp->b_flags & XBF_WRITE_FAIL) { 1673 xfs_alert(btp->bt_mount, 1674 "Corruption Alert: Buffer at daddr 0x%llx had permanent write failures!", 1675 (long long)bp->b_bn); 1676 xfs_alert(btp->bt_mount, 1677 "Please run xfs_repair to determine the extent of the problem."); 1678 } 1679 xfs_buf_rele(bp); 1680 } 1681 if (loop++ != 0) 1682 delay(100); 1683 } 1684 } 1685 1686 static enum lru_status 1687 xfs_buftarg_isolate( 1688 struct list_head *item, 1689 struct list_lru_one *lru, 1690 spinlock_t *lru_lock, 1691 void *arg) 1692 { 1693 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru); 1694 struct list_head *dispose = arg; 1695 1696 /* 1697 * we are inverting the lru lock/bp->b_lock here, so use a trylock. 1698 * If we fail to get the lock, just skip it. 1699 */ 1700 if (!spin_trylock(&bp->b_lock)) 1701 return LRU_SKIP; 1702 /* 1703 * Decrement the b_lru_ref count unless the value is already 1704 * zero. If the value is already zero, we need to reclaim the 1705 * buffer, otherwise it gets another trip through the LRU. 1706 */ 1707 if (atomic_add_unless(&bp->b_lru_ref, -1, 0)) { 1708 spin_unlock(&bp->b_lock); 1709 return LRU_ROTATE; 1710 } 1711 1712 bp->b_state |= XFS_BSTATE_DISPOSE; 1713 list_lru_isolate_move(lru, item, dispose); 1714 spin_unlock(&bp->b_lock); 1715 return LRU_REMOVED; 1716 } 1717 1718 static unsigned long 1719 xfs_buftarg_shrink_scan( 1720 struct shrinker *shrink, 1721 struct shrink_control *sc) 1722 { 1723 struct xfs_buftarg *btp = container_of(shrink, 1724 struct xfs_buftarg, bt_shrinker); 1725 LIST_HEAD(dispose); 1726 unsigned long freed; 1727 1728 freed = list_lru_shrink_walk(&btp->bt_lru, sc, 1729 xfs_buftarg_isolate, &dispose); 1730 1731 while (!list_empty(&dispose)) { 1732 struct xfs_buf *bp; 1733 bp = list_first_entry(&dispose, struct xfs_buf, b_lru); 1734 list_del_init(&bp->b_lru); 1735 xfs_buf_rele(bp); 1736 } 1737 1738 return freed; 1739 } 1740 1741 static unsigned long 1742 xfs_buftarg_shrink_count( 1743 struct shrinker *shrink, 1744 struct shrink_control *sc) 1745 { 1746 struct xfs_buftarg *btp = container_of(shrink, 1747 struct xfs_buftarg, bt_shrinker); 1748 return list_lru_shrink_count(&btp->bt_lru, sc); 1749 } 1750 1751 void 1752 xfs_free_buftarg( 1753 struct xfs_buftarg *btp) 1754 { 1755 unregister_shrinker(&btp->bt_shrinker); 1756 ASSERT(percpu_counter_sum(&btp->bt_io_count) == 0); 1757 percpu_counter_destroy(&btp->bt_io_count); 1758 list_lru_destroy(&btp->bt_lru); 1759 1760 xfs_blkdev_issue_flush(btp); 1761 1762 kmem_free(btp); 1763 } 1764 1765 int 1766 xfs_setsize_buftarg( 1767 xfs_buftarg_t *btp, 1768 unsigned int sectorsize) 1769 { 1770 /* Set up metadata sector size info */ 1771 btp->bt_meta_sectorsize = sectorsize; 1772 btp->bt_meta_sectormask = sectorsize - 1; 1773 1774 if (set_blocksize(btp->bt_bdev, sectorsize)) { 1775 xfs_warn(btp->bt_mount, 1776 "Cannot set_blocksize to %u on device %pg", 1777 sectorsize, btp->bt_bdev); 1778 return -EINVAL; 1779 } 1780 1781 /* Set up device logical sector size mask */ 1782 btp->bt_logical_sectorsize = bdev_logical_block_size(btp->bt_bdev); 1783 btp->bt_logical_sectormask = bdev_logical_block_size(btp->bt_bdev) - 1; 1784 1785 return 0; 1786 } 1787 1788 /* 1789 * When allocating the initial buffer target we have not yet 1790 * read in the superblock, so don't know what sized sectors 1791 * are being used at this early stage. Play safe. 1792 */ 1793 STATIC int 1794 xfs_setsize_buftarg_early( 1795 xfs_buftarg_t *btp, 1796 struct block_device *bdev) 1797 { 1798 return xfs_setsize_buftarg(btp, bdev_logical_block_size(bdev)); 1799 } 1800 1801 xfs_buftarg_t * 1802 xfs_alloc_buftarg( 1803 struct xfs_mount *mp, 1804 struct block_device *bdev, 1805 struct dax_device *dax_dev) 1806 { 1807 xfs_buftarg_t *btp; 1808 1809 btp = kmem_zalloc(sizeof(*btp), KM_NOFS); 1810 1811 btp->bt_mount = mp; 1812 btp->bt_dev = bdev->bd_dev; 1813 btp->bt_bdev = bdev; 1814 btp->bt_daxdev = dax_dev; 1815 1816 if (xfs_setsize_buftarg_early(btp, bdev)) 1817 goto error_free; 1818 1819 if (list_lru_init(&btp->bt_lru)) 1820 goto error_free; 1821 1822 if (percpu_counter_init(&btp->bt_io_count, 0, GFP_KERNEL)) 1823 goto error_lru; 1824 1825 btp->bt_shrinker.count_objects = xfs_buftarg_shrink_count; 1826 btp->bt_shrinker.scan_objects = xfs_buftarg_shrink_scan; 1827 btp->bt_shrinker.seeks = DEFAULT_SEEKS; 1828 btp->bt_shrinker.flags = SHRINKER_NUMA_AWARE; 1829 if (register_shrinker(&btp->bt_shrinker)) 1830 goto error_pcpu; 1831 return btp; 1832 1833 error_pcpu: 1834 percpu_counter_destroy(&btp->bt_io_count); 1835 error_lru: 1836 list_lru_destroy(&btp->bt_lru); 1837 error_free: 1838 kmem_free(btp); 1839 return NULL; 1840 } 1841 1842 /* 1843 * Cancel a delayed write list. 1844 * 1845 * Remove each buffer from the list, clear the delwri queue flag and drop the 1846 * associated buffer reference. 1847 */ 1848 void 1849 xfs_buf_delwri_cancel( 1850 struct list_head *list) 1851 { 1852 struct xfs_buf *bp; 1853 1854 while (!list_empty(list)) { 1855 bp = list_first_entry(list, struct xfs_buf, b_list); 1856 1857 xfs_buf_lock(bp); 1858 bp->b_flags &= ~_XBF_DELWRI_Q; 1859 list_del_init(&bp->b_list); 1860 xfs_buf_relse(bp); 1861 } 1862 } 1863 1864 /* 1865 * Add a buffer to the delayed write list. 1866 * 1867 * This queues a buffer for writeout if it hasn't already been. Note that 1868 * neither this routine nor the buffer list submission functions perform 1869 * any internal synchronization. It is expected that the lists are thread-local 1870 * to the callers. 1871 * 1872 * Returns true if we queued up the buffer, or false if it already had 1873 * been on the buffer list. 1874 */ 1875 bool 1876 xfs_buf_delwri_queue( 1877 struct xfs_buf *bp, 1878 struct list_head *list) 1879 { 1880 ASSERT(xfs_buf_islocked(bp)); 1881 ASSERT(!(bp->b_flags & XBF_READ)); 1882 1883 /* 1884 * If the buffer is already marked delwri it already is queued up 1885 * by someone else for imediate writeout. Just ignore it in that 1886 * case. 1887 */ 1888 if (bp->b_flags & _XBF_DELWRI_Q) { 1889 trace_xfs_buf_delwri_queued(bp, _RET_IP_); 1890 return false; 1891 } 1892 1893 trace_xfs_buf_delwri_queue(bp, _RET_IP_); 1894 1895 /* 1896 * If a buffer gets written out synchronously or marked stale while it 1897 * is on a delwri list we lazily remove it. To do this, the other party 1898 * clears the _XBF_DELWRI_Q flag but otherwise leaves the buffer alone. 1899 * It remains referenced and on the list. In a rare corner case it 1900 * might get readded to a delwri list after the synchronous writeout, in 1901 * which case we need just need to re-add the flag here. 1902 */ 1903 bp->b_flags |= _XBF_DELWRI_Q; 1904 if (list_empty(&bp->b_list)) { 1905 atomic_inc(&bp->b_hold); 1906 list_add_tail(&bp->b_list, list); 1907 } 1908 1909 return true; 1910 } 1911 1912 /* 1913 * Compare function is more complex than it needs to be because 1914 * the return value is only 32 bits and we are doing comparisons 1915 * on 64 bit values 1916 */ 1917 static int 1918 xfs_buf_cmp( 1919 void *priv, 1920 struct list_head *a, 1921 struct list_head *b) 1922 { 1923 struct xfs_buf *ap = container_of(a, struct xfs_buf, b_list); 1924 struct xfs_buf *bp = container_of(b, struct xfs_buf, b_list); 1925 xfs_daddr_t diff; 1926 1927 diff = ap->b_maps[0].bm_bn - bp->b_maps[0].bm_bn; 1928 if (diff < 0) 1929 return -1; 1930 if (diff > 0) 1931 return 1; 1932 return 0; 1933 } 1934 1935 /* 1936 * Submit buffers for write. If wait_list is specified, the buffers are 1937 * submitted using sync I/O and placed on the wait list such that the caller can 1938 * iowait each buffer. Otherwise async I/O is used and the buffers are released 1939 * at I/O completion time. In either case, buffers remain locked until I/O 1940 * completes and the buffer is released from the queue. 1941 */ 1942 static int 1943 xfs_buf_delwri_submit_buffers( 1944 struct list_head *buffer_list, 1945 struct list_head *wait_list) 1946 { 1947 struct xfs_buf *bp, *n; 1948 int pinned = 0; 1949 struct blk_plug plug; 1950 1951 list_sort(NULL, buffer_list, xfs_buf_cmp); 1952 1953 blk_start_plug(&plug); 1954 list_for_each_entry_safe(bp, n, buffer_list, b_list) { 1955 if (!wait_list) { 1956 if (xfs_buf_ispinned(bp)) { 1957 pinned++; 1958 continue; 1959 } 1960 if (!xfs_buf_trylock(bp)) 1961 continue; 1962 } else { 1963 xfs_buf_lock(bp); 1964 } 1965 1966 /* 1967 * Someone else might have written the buffer synchronously or 1968 * marked it stale in the meantime. In that case only the 1969 * _XBF_DELWRI_Q flag got cleared, and we have to drop the 1970 * reference and remove it from the list here. 1971 */ 1972 if (!(bp->b_flags & _XBF_DELWRI_Q)) { 1973 list_del_init(&bp->b_list); 1974 xfs_buf_relse(bp); 1975 continue; 1976 } 1977 1978 trace_xfs_buf_delwri_split(bp, _RET_IP_); 1979 1980 /* 1981 * If we have a wait list, each buffer (and associated delwri 1982 * queue reference) transfers to it and is submitted 1983 * synchronously. Otherwise, drop the buffer from the delwri 1984 * queue and submit async. 1985 */ 1986 bp->b_flags &= ~(_XBF_DELWRI_Q | XBF_WRITE_FAIL); 1987 bp->b_flags |= XBF_WRITE; 1988 if (wait_list) { 1989 bp->b_flags &= ~XBF_ASYNC; 1990 list_move_tail(&bp->b_list, wait_list); 1991 } else { 1992 bp->b_flags |= XBF_ASYNC; 1993 list_del_init(&bp->b_list); 1994 } 1995 __xfs_buf_submit(bp, false); 1996 } 1997 blk_finish_plug(&plug); 1998 1999 return pinned; 2000 } 2001 2002 /* 2003 * Write out a buffer list asynchronously. 2004 * 2005 * This will take the @buffer_list, write all non-locked and non-pinned buffers 2006 * out and not wait for I/O completion on any of the buffers. This interface 2007 * is only safely useable for callers that can track I/O completion by higher 2008 * level means, e.g. AIL pushing as the @buffer_list is consumed in this 2009 * function. 2010 * 2011 * Note: this function will skip buffers it would block on, and in doing so 2012 * leaves them on @buffer_list so they can be retried on a later pass. As such, 2013 * it is up to the caller to ensure that the buffer list is fully submitted or 2014 * cancelled appropriately when they are finished with the list. Failure to 2015 * cancel or resubmit the list until it is empty will result in leaked buffers 2016 * at unmount time. 2017 */ 2018 int 2019 xfs_buf_delwri_submit_nowait( 2020 struct list_head *buffer_list) 2021 { 2022 return xfs_buf_delwri_submit_buffers(buffer_list, NULL); 2023 } 2024 2025 /* 2026 * Write out a buffer list synchronously. 2027 * 2028 * This will take the @buffer_list, write all buffers out and wait for I/O 2029 * completion on all of the buffers. @buffer_list is consumed by the function, 2030 * so callers must have some other way of tracking buffers if they require such 2031 * functionality. 2032 */ 2033 int 2034 xfs_buf_delwri_submit( 2035 struct list_head *buffer_list) 2036 { 2037 LIST_HEAD (wait_list); 2038 int error = 0, error2; 2039 struct xfs_buf *bp; 2040 2041 xfs_buf_delwri_submit_buffers(buffer_list, &wait_list); 2042 2043 /* Wait for IO to complete. */ 2044 while (!list_empty(&wait_list)) { 2045 bp = list_first_entry(&wait_list, struct xfs_buf, b_list); 2046 2047 list_del_init(&bp->b_list); 2048 2049 /* 2050 * Wait on the locked buffer, check for errors and unlock and 2051 * release the delwri queue reference. 2052 */ 2053 error2 = xfs_buf_iowait(bp); 2054 xfs_buf_relse(bp); 2055 if (!error) 2056 error = error2; 2057 } 2058 2059 return error; 2060 } 2061 2062 /* 2063 * Push a single buffer on a delwri queue. 2064 * 2065 * The purpose of this function is to submit a single buffer of a delwri queue 2066 * and return with the buffer still on the original queue. The waiting delwri 2067 * buffer submission infrastructure guarantees transfer of the delwri queue 2068 * buffer reference to a temporary wait list. We reuse this infrastructure to 2069 * transfer the buffer back to the original queue. 2070 * 2071 * Note the buffer transitions from the queued state, to the submitted and wait 2072 * listed state and back to the queued state during this call. The buffer 2073 * locking and queue management logic between _delwri_pushbuf() and 2074 * _delwri_queue() guarantee that the buffer cannot be queued to another list 2075 * before returning. 2076 */ 2077 int 2078 xfs_buf_delwri_pushbuf( 2079 struct xfs_buf *bp, 2080 struct list_head *buffer_list) 2081 { 2082 LIST_HEAD (submit_list); 2083 int error; 2084 2085 ASSERT(bp->b_flags & _XBF_DELWRI_Q); 2086 2087 trace_xfs_buf_delwri_pushbuf(bp, _RET_IP_); 2088 2089 /* 2090 * Isolate the buffer to a new local list so we can submit it for I/O 2091 * independently from the rest of the original list. 2092 */ 2093 xfs_buf_lock(bp); 2094 list_move(&bp->b_list, &submit_list); 2095 xfs_buf_unlock(bp); 2096 2097 /* 2098 * Delwri submission clears the DELWRI_Q buffer flag and returns with 2099 * the buffer on the wait list with the original reference. Rather than 2100 * bounce the buffer from a local wait list back to the original list 2101 * after I/O completion, reuse the original list as the wait list. 2102 */ 2103 xfs_buf_delwri_submit_buffers(&submit_list, buffer_list); 2104 2105 /* 2106 * The buffer is now locked, under I/O and wait listed on the original 2107 * delwri queue. Wait for I/O completion, restore the DELWRI_Q flag and 2108 * return with the buffer unlocked and on the original queue. 2109 */ 2110 error = xfs_buf_iowait(bp); 2111 bp->b_flags |= _XBF_DELWRI_Q; 2112 xfs_buf_unlock(bp); 2113 2114 return error; 2115 } 2116 2117 int __init 2118 xfs_buf_init(void) 2119 { 2120 xfs_buf_zone = kmem_cache_create("xfs_buf", sizeof(struct xfs_buf), 0, 2121 SLAB_HWCACHE_ALIGN | 2122 SLAB_RECLAIM_ACCOUNT | 2123 SLAB_MEM_SPREAD, 2124 NULL); 2125 if (!xfs_buf_zone) 2126 goto out; 2127 2128 return 0; 2129 2130 out: 2131 return -ENOMEM; 2132 } 2133 2134 void 2135 xfs_buf_terminate(void) 2136 { 2137 kmem_cache_destroy(xfs_buf_zone); 2138 } 2139 2140 void xfs_buf_set_ref(struct xfs_buf *bp, int lru_ref) 2141 { 2142 /* 2143 * Set the lru reference count to 0 based on the error injection tag. 2144 * This allows userspace to disrupt buffer caching for debug/testing 2145 * purposes. 2146 */ 2147 if (XFS_TEST_ERROR(false, bp->b_mount, XFS_ERRTAG_BUF_LRU_REF)) 2148 lru_ref = 0; 2149 2150 atomic_set(&bp->b_lru_ref, lru_ref); 2151 } 2152 2153 /* 2154 * Verify an on-disk magic value against the magic value specified in the 2155 * verifier structure. The verifier magic is in disk byte order so the caller is 2156 * expected to pass the value directly from disk. 2157 */ 2158 bool 2159 xfs_verify_magic( 2160 struct xfs_buf *bp, 2161 __be32 dmagic) 2162 { 2163 struct xfs_mount *mp = bp->b_mount; 2164 int idx; 2165 2166 idx = xfs_sb_version_hascrc(&mp->m_sb); 2167 if (WARN_ON(!bp->b_ops || !bp->b_ops->magic[idx])) 2168 return false; 2169 return dmagic == bp->b_ops->magic[idx]; 2170 } 2171 /* 2172 * Verify an on-disk magic value against the magic value specified in the 2173 * verifier structure. The verifier magic is in disk byte order so the caller is 2174 * expected to pass the value directly from disk. 2175 */ 2176 bool 2177 xfs_verify_magic16( 2178 struct xfs_buf *bp, 2179 __be16 dmagic) 2180 { 2181 struct xfs_mount *mp = bp->b_mount; 2182 int idx; 2183 2184 idx = xfs_sb_version_hascrc(&mp->m_sb); 2185 if (WARN_ON(!bp->b_ops || !bp->b_ops->magic16[idx])) 2186 return false; 2187 return dmagic == bp->b_ops->magic16[idx]; 2188 } 2189