xref: /linux/fs/xfs/xfs_buf.c (revision 0f7e753fc3851aac8aeea6b551cbbcf6ca9093dd)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include <linux/backing-dev.h>
8 #include <linux/dax.h>
9 
10 #include "xfs_shared.h"
11 #include "xfs_format.h"
12 #include "xfs_log_format.h"
13 #include "xfs_trans_resv.h"
14 #include "xfs_mount.h"
15 #include "xfs_trace.h"
16 #include "xfs_log.h"
17 #include "xfs_log_recover.h"
18 #include "xfs_log_priv.h"
19 #include "xfs_trans.h"
20 #include "xfs_buf_item.h"
21 #include "xfs_errortag.h"
22 #include "xfs_error.h"
23 #include "xfs_ag.h"
24 
25 struct kmem_cache *xfs_buf_cache;
26 
27 /*
28  * Locking orders
29  *
30  * xfs_buf_ioacct_inc:
31  * xfs_buf_ioacct_dec:
32  *	b_sema (caller holds)
33  *	  b_lock
34  *
35  * xfs_buf_stale:
36  *	b_sema (caller holds)
37  *	  b_lock
38  *	    lru_lock
39  *
40  * xfs_buf_rele:
41  *	b_lock
42  *	  pag_buf_lock
43  *	    lru_lock
44  *
45  * xfs_buftarg_drain_rele
46  *	lru_lock
47  *	  b_lock (trylock due to inversion)
48  *
49  * xfs_buftarg_isolate
50  *	lru_lock
51  *	  b_lock (trylock due to inversion)
52  */
53 
54 static int __xfs_buf_submit(struct xfs_buf *bp, bool wait);
55 
56 static inline int
57 xfs_buf_submit(
58 	struct xfs_buf		*bp)
59 {
60 	return __xfs_buf_submit(bp, !(bp->b_flags & XBF_ASYNC));
61 }
62 
63 static inline int
64 xfs_buf_is_vmapped(
65 	struct xfs_buf	*bp)
66 {
67 	/*
68 	 * Return true if the buffer is vmapped.
69 	 *
70 	 * b_addr is null if the buffer is not mapped, but the code is clever
71 	 * enough to know it doesn't have to map a single page, so the check has
72 	 * to be both for b_addr and bp->b_page_count > 1.
73 	 */
74 	return bp->b_addr && bp->b_page_count > 1;
75 }
76 
77 static inline int
78 xfs_buf_vmap_len(
79 	struct xfs_buf	*bp)
80 {
81 	return (bp->b_page_count * PAGE_SIZE);
82 }
83 
84 /*
85  * Bump the I/O in flight count on the buftarg if we haven't yet done so for
86  * this buffer. The count is incremented once per buffer (per hold cycle)
87  * because the corresponding decrement is deferred to buffer release. Buffers
88  * can undergo I/O multiple times in a hold-release cycle and per buffer I/O
89  * tracking adds unnecessary overhead. This is used for sychronization purposes
90  * with unmount (see xfs_buftarg_drain()), so all we really need is a count of
91  * in-flight buffers.
92  *
93  * Buffers that are never released (e.g., superblock, iclog buffers) must set
94  * the XBF_NO_IOACCT flag before I/O submission. Otherwise, the buftarg count
95  * never reaches zero and unmount hangs indefinitely.
96  */
97 static inline void
98 xfs_buf_ioacct_inc(
99 	struct xfs_buf	*bp)
100 {
101 	if (bp->b_flags & XBF_NO_IOACCT)
102 		return;
103 
104 	ASSERT(bp->b_flags & XBF_ASYNC);
105 	spin_lock(&bp->b_lock);
106 	if (!(bp->b_state & XFS_BSTATE_IN_FLIGHT)) {
107 		bp->b_state |= XFS_BSTATE_IN_FLIGHT;
108 		percpu_counter_inc(&bp->b_target->bt_io_count);
109 	}
110 	spin_unlock(&bp->b_lock);
111 }
112 
113 /*
114  * Clear the in-flight state on a buffer about to be released to the LRU or
115  * freed and unaccount from the buftarg.
116  */
117 static inline void
118 __xfs_buf_ioacct_dec(
119 	struct xfs_buf	*bp)
120 {
121 	lockdep_assert_held(&bp->b_lock);
122 
123 	if (bp->b_state & XFS_BSTATE_IN_FLIGHT) {
124 		bp->b_state &= ~XFS_BSTATE_IN_FLIGHT;
125 		percpu_counter_dec(&bp->b_target->bt_io_count);
126 	}
127 }
128 
129 static inline void
130 xfs_buf_ioacct_dec(
131 	struct xfs_buf	*bp)
132 {
133 	spin_lock(&bp->b_lock);
134 	__xfs_buf_ioacct_dec(bp);
135 	spin_unlock(&bp->b_lock);
136 }
137 
138 /*
139  * When we mark a buffer stale, we remove the buffer from the LRU and clear the
140  * b_lru_ref count so that the buffer is freed immediately when the buffer
141  * reference count falls to zero. If the buffer is already on the LRU, we need
142  * to remove the reference that LRU holds on the buffer.
143  *
144  * This prevents build-up of stale buffers on the LRU.
145  */
146 void
147 xfs_buf_stale(
148 	struct xfs_buf	*bp)
149 {
150 	ASSERT(xfs_buf_islocked(bp));
151 
152 	bp->b_flags |= XBF_STALE;
153 
154 	/*
155 	 * Clear the delwri status so that a delwri queue walker will not
156 	 * flush this buffer to disk now that it is stale. The delwri queue has
157 	 * a reference to the buffer, so this is safe to do.
158 	 */
159 	bp->b_flags &= ~_XBF_DELWRI_Q;
160 
161 	/*
162 	 * Once the buffer is marked stale and unlocked, a subsequent lookup
163 	 * could reset b_flags. There is no guarantee that the buffer is
164 	 * unaccounted (released to LRU) before that occurs. Drop in-flight
165 	 * status now to preserve accounting consistency.
166 	 */
167 	spin_lock(&bp->b_lock);
168 	__xfs_buf_ioacct_dec(bp);
169 
170 	atomic_set(&bp->b_lru_ref, 0);
171 	if (!(bp->b_state & XFS_BSTATE_DISPOSE) &&
172 	    (list_lru_del(&bp->b_target->bt_lru, &bp->b_lru)))
173 		atomic_dec(&bp->b_hold);
174 
175 	ASSERT(atomic_read(&bp->b_hold) >= 1);
176 	spin_unlock(&bp->b_lock);
177 }
178 
179 static int
180 xfs_buf_get_maps(
181 	struct xfs_buf		*bp,
182 	int			map_count)
183 {
184 	ASSERT(bp->b_maps == NULL);
185 	bp->b_map_count = map_count;
186 
187 	if (map_count == 1) {
188 		bp->b_maps = &bp->__b_map;
189 		return 0;
190 	}
191 
192 	bp->b_maps = kmem_zalloc(map_count * sizeof(struct xfs_buf_map),
193 				KM_NOFS);
194 	if (!bp->b_maps)
195 		return -ENOMEM;
196 	return 0;
197 }
198 
199 /*
200  *	Frees b_pages if it was allocated.
201  */
202 static void
203 xfs_buf_free_maps(
204 	struct xfs_buf	*bp)
205 {
206 	if (bp->b_maps != &bp->__b_map) {
207 		kmem_free(bp->b_maps);
208 		bp->b_maps = NULL;
209 	}
210 }
211 
212 static int
213 _xfs_buf_alloc(
214 	struct xfs_buftarg	*target,
215 	struct xfs_buf_map	*map,
216 	int			nmaps,
217 	xfs_buf_flags_t		flags,
218 	struct xfs_buf		**bpp)
219 {
220 	struct xfs_buf		*bp;
221 	int			error;
222 	int			i;
223 
224 	*bpp = NULL;
225 	bp = kmem_cache_zalloc(xfs_buf_cache, GFP_NOFS | __GFP_NOFAIL);
226 
227 	/*
228 	 * We don't want certain flags to appear in b_flags unless they are
229 	 * specifically set by later operations on the buffer.
230 	 */
231 	flags &= ~(XBF_UNMAPPED | XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD);
232 
233 	atomic_set(&bp->b_hold, 1);
234 	atomic_set(&bp->b_lru_ref, 1);
235 	init_completion(&bp->b_iowait);
236 	INIT_LIST_HEAD(&bp->b_lru);
237 	INIT_LIST_HEAD(&bp->b_list);
238 	INIT_LIST_HEAD(&bp->b_li_list);
239 	sema_init(&bp->b_sema, 0); /* held, no waiters */
240 	spin_lock_init(&bp->b_lock);
241 	bp->b_target = target;
242 	bp->b_mount = target->bt_mount;
243 	bp->b_flags = flags;
244 
245 	/*
246 	 * Set length and io_length to the same value initially.
247 	 * I/O routines should use io_length, which will be the same in
248 	 * most cases but may be reset (e.g. XFS recovery).
249 	 */
250 	error = xfs_buf_get_maps(bp, nmaps);
251 	if (error)  {
252 		kmem_cache_free(xfs_buf_cache, bp);
253 		return error;
254 	}
255 
256 	bp->b_rhash_key = map[0].bm_bn;
257 	bp->b_length = 0;
258 	for (i = 0; i < nmaps; i++) {
259 		bp->b_maps[i].bm_bn = map[i].bm_bn;
260 		bp->b_maps[i].bm_len = map[i].bm_len;
261 		bp->b_length += map[i].bm_len;
262 	}
263 
264 	atomic_set(&bp->b_pin_count, 0);
265 	init_waitqueue_head(&bp->b_waiters);
266 
267 	XFS_STATS_INC(bp->b_mount, xb_create);
268 	trace_xfs_buf_init(bp, _RET_IP_);
269 
270 	*bpp = bp;
271 	return 0;
272 }
273 
274 static void
275 xfs_buf_free_pages(
276 	struct xfs_buf	*bp)
277 {
278 	uint		i;
279 
280 	ASSERT(bp->b_flags & _XBF_PAGES);
281 
282 	if (xfs_buf_is_vmapped(bp))
283 		vm_unmap_ram(bp->b_addr, bp->b_page_count);
284 
285 	for (i = 0; i < bp->b_page_count; i++) {
286 		if (bp->b_pages[i])
287 			__free_page(bp->b_pages[i]);
288 	}
289 	mm_account_reclaimed_pages(bp->b_page_count);
290 
291 	if (bp->b_pages != bp->b_page_array)
292 		kmem_free(bp->b_pages);
293 	bp->b_pages = NULL;
294 	bp->b_flags &= ~_XBF_PAGES;
295 }
296 
297 static void
298 xfs_buf_free_callback(
299 	struct callback_head	*cb)
300 {
301 	struct xfs_buf		*bp = container_of(cb, struct xfs_buf, b_rcu);
302 
303 	xfs_buf_free_maps(bp);
304 	kmem_cache_free(xfs_buf_cache, bp);
305 }
306 
307 static void
308 xfs_buf_free(
309 	struct xfs_buf		*bp)
310 {
311 	trace_xfs_buf_free(bp, _RET_IP_);
312 
313 	ASSERT(list_empty(&bp->b_lru));
314 
315 	if (bp->b_flags & _XBF_PAGES)
316 		xfs_buf_free_pages(bp);
317 	else if (bp->b_flags & _XBF_KMEM)
318 		kmem_free(bp->b_addr);
319 
320 	call_rcu(&bp->b_rcu, xfs_buf_free_callback);
321 }
322 
323 static int
324 xfs_buf_alloc_kmem(
325 	struct xfs_buf	*bp,
326 	xfs_buf_flags_t	flags)
327 {
328 	xfs_km_flags_t	kmflag_mask = KM_NOFS;
329 	size_t		size = BBTOB(bp->b_length);
330 
331 	/* Assure zeroed buffer for non-read cases. */
332 	if (!(flags & XBF_READ))
333 		kmflag_mask |= KM_ZERO;
334 
335 	bp->b_addr = kmem_alloc(size, kmflag_mask);
336 	if (!bp->b_addr)
337 		return -ENOMEM;
338 
339 	if (((unsigned long)(bp->b_addr + size - 1) & PAGE_MASK) !=
340 	    ((unsigned long)bp->b_addr & PAGE_MASK)) {
341 		/* b_addr spans two pages - use alloc_page instead */
342 		kmem_free(bp->b_addr);
343 		bp->b_addr = NULL;
344 		return -ENOMEM;
345 	}
346 	bp->b_offset = offset_in_page(bp->b_addr);
347 	bp->b_pages = bp->b_page_array;
348 	bp->b_pages[0] = kmem_to_page(bp->b_addr);
349 	bp->b_page_count = 1;
350 	bp->b_flags |= _XBF_KMEM;
351 	return 0;
352 }
353 
354 static int
355 xfs_buf_alloc_pages(
356 	struct xfs_buf	*bp,
357 	xfs_buf_flags_t	flags)
358 {
359 	gfp_t		gfp_mask = __GFP_NOWARN;
360 	long		filled = 0;
361 
362 	if (flags & XBF_READ_AHEAD)
363 		gfp_mask |= __GFP_NORETRY;
364 	else
365 		gfp_mask |= GFP_NOFS;
366 
367 	/* Make sure that we have a page list */
368 	bp->b_page_count = DIV_ROUND_UP(BBTOB(bp->b_length), PAGE_SIZE);
369 	if (bp->b_page_count <= XB_PAGES) {
370 		bp->b_pages = bp->b_page_array;
371 	} else {
372 		bp->b_pages = kzalloc(sizeof(struct page *) * bp->b_page_count,
373 					gfp_mask);
374 		if (!bp->b_pages)
375 			return -ENOMEM;
376 	}
377 	bp->b_flags |= _XBF_PAGES;
378 
379 	/* Assure zeroed buffer for non-read cases. */
380 	if (!(flags & XBF_READ))
381 		gfp_mask |= __GFP_ZERO;
382 
383 	/*
384 	 * Bulk filling of pages can take multiple calls. Not filling the entire
385 	 * array is not an allocation failure, so don't back off if we get at
386 	 * least one extra page.
387 	 */
388 	for (;;) {
389 		long	last = filled;
390 
391 		filled = alloc_pages_bulk_array(gfp_mask, bp->b_page_count,
392 						bp->b_pages);
393 		if (filled == bp->b_page_count) {
394 			XFS_STATS_INC(bp->b_mount, xb_page_found);
395 			break;
396 		}
397 
398 		if (filled != last)
399 			continue;
400 
401 		if (flags & XBF_READ_AHEAD) {
402 			xfs_buf_free_pages(bp);
403 			return -ENOMEM;
404 		}
405 
406 		XFS_STATS_INC(bp->b_mount, xb_page_retries);
407 		memalloc_retry_wait(gfp_mask);
408 	}
409 	return 0;
410 }
411 
412 /*
413  *	Map buffer into kernel address-space if necessary.
414  */
415 STATIC int
416 _xfs_buf_map_pages(
417 	struct xfs_buf		*bp,
418 	xfs_buf_flags_t		flags)
419 {
420 	ASSERT(bp->b_flags & _XBF_PAGES);
421 	if (bp->b_page_count == 1) {
422 		/* A single page buffer is always mappable */
423 		bp->b_addr = page_address(bp->b_pages[0]);
424 	} else if (flags & XBF_UNMAPPED) {
425 		bp->b_addr = NULL;
426 	} else {
427 		int retried = 0;
428 		unsigned nofs_flag;
429 
430 		/*
431 		 * vm_map_ram() will allocate auxiliary structures (e.g.
432 		 * pagetables) with GFP_KERNEL, yet we are likely to be under
433 		 * GFP_NOFS context here. Hence we need to tell memory reclaim
434 		 * that we are in such a context via PF_MEMALLOC_NOFS to prevent
435 		 * memory reclaim re-entering the filesystem here and
436 		 * potentially deadlocking.
437 		 */
438 		nofs_flag = memalloc_nofs_save();
439 		do {
440 			bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
441 						-1);
442 			if (bp->b_addr)
443 				break;
444 			vm_unmap_aliases();
445 		} while (retried++ <= 1);
446 		memalloc_nofs_restore(nofs_flag);
447 
448 		if (!bp->b_addr)
449 			return -ENOMEM;
450 	}
451 
452 	return 0;
453 }
454 
455 /*
456  *	Finding and Reading Buffers
457  */
458 static int
459 _xfs_buf_obj_cmp(
460 	struct rhashtable_compare_arg	*arg,
461 	const void			*obj)
462 {
463 	const struct xfs_buf_map	*map = arg->key;
464 	const struct xfs_buf		*bp = obj;
465 
466 	/*
467 	 * The key hashing in the lookup path depends on the key being the
468 	 * first element of the compare_arg, make sure to assert this.
469 	 */
470 	BUILD_BUG_ON(offsetof(struct xfs_buf_map, bm_bn) != 0);
471 
472 	if (bp->b_rhash_key != map->bm_bn)
473 		return 1;
474 
475 	if (unlikely(bp->b_length != map->bm_len)) {
476 		/*
477 		 * found a block number match. If the range doesn't
478 		 * match, the only way this is allowed is if the buffer
479 		 * in the cache is stale and the transaction that made
480 		 * it stale has not yet committed. i.e. we are
481 		 * reallocating a busy extent. Skip this buffer and
482 		 * continue searching for an exact match.
483 		 */
484 		if (!(map->bm_flags & XBM_LIVESCAN))
485 			ASSERT(bp->b_flags & XBF_STALE);
486 		return 1;
487 	}
488 	return 0;
489 }
490 
491 static const struct rhashtable_params xfs_buf_hash_params = {
492 	.min_size		= 32,	/* empty AGs have minimal footprint */
493 	.nelem_hint		= 16,
494 	.key_len		= sizeof(xfs_daddr_t),
495 	.key_offset		= offsetof(struct xfs_buf, b_rhash_key),
496 	.head_offset		= offsetof(struct xfs_buf, b_rhash_head),
497 	.automatic_shrinking	= true,
498 	.obj_cmpfn		= _xfs_buf_obj_cmp,
499 };
500 
501 int
502 xfs_buf_hash_init(
503 	struct xfs_perag	*pag)
504 {
505 	spin_lock_init(&pag->pag_buf_lock);
506 	return rhashtable_init(&pag->pag_buf_hash, &xfs_buf_hash_params);
507 }
508 
509 void
510 xfs_buf_hash_destroy(
511 	struct xfs_perag	*pag)
512 {
513 	rhashtable_destroy(&pag->pag_buf_hash);
514 }
515 
516 static int
517 xfs_buf_map_verify(
518 	struct xfs_buftarg	*btp,
519 	struct xfs_buf_map	*map)
520 {
521 	xfs_daddr_t		eofs;
522 
523 	/* Check for IOs smaller than the sector size / not sector aligned */
524 	ASSERT(!(BBTOB(map->bm_len) < btp->bt_meta_sectorsize));
525 	ASSERT(!(BBTOB(map->bm_bn) & (xfs_off_t)btp->bt_meta_sectormask));
526 
527 	/*
528 	 * Corrupted block numbers can get through to here, unfortunately, so we
529 	 * have to check that the buffer falls within the filesystem bounds.
530 	 */
531 	eofs = XFS_FSB_TO_BB(btp->bt_mount, btp->bt_mount->m_sb.sb_dblocks);
532 	if (map->bm_bn < 0 || map->bm_bn >= eofs) {
533 		xfs_alert(btp->bt_mount,
534 			  "%s: daddr 0x%llx out of range, EOFS 0x%llx",
535 			  __func__, map->bm_bn, eofs);
536 		WARN_ON(1);
537 		return -EFSCORRUPTED;
538 	}
539 	return 0;
540 }
541 
542 static int
543 xfs_buf_find_lock(
544 	struct xfs_buf          *bp,
545 	xfs_buf_flags_t		flags)
546 {
547 	if (flags & XBF_TRYLOCK) {
548 		if (!xfs_buf_trylock(bp)) {
549 			XFS_STATS_INC(bp->b_mount, xb_busy_locked);
550 			return -EAGAIN;
551 		}
552 	} else {
553 		xfs_buf_lock(bp);
554 		XFS_STATS_INC(bp->b_mount, xb_get_locked_waited);
555 	}
556 
557 	/*
558 	 * if the buffer is stale, clear all the external state associated with
559 	 * it. We need to keep flags such as how we allocated the buffer memory
560 	 * intact here.
561 	 */
562 	if (bp->b_flags & XBF_STALE) {
563 		if (flags & XBF_LIVESCAN) {
564 			xfs_buf_unlock(bp);
565 			return -ENOENT;
566 		}
567 		ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
568 		bp->b_flags &= _XBF_KMEM | _XBF_PAGES;
569 		bp->b_ops = NULL;
570 	}
571 	return 0;
572 }
573 
574 static inline int
575 xfs_buf_lookup(
576 	struct xfs_perag	*pag,
577 	struct xfs_buf_map	*map,
578 	xfs_buf_flags_t		flags,
579 	struct xfs_buf		**bpp)
580 {
581 	struct xfs_buf          *bp;
582 	int			error;
583 
584 	rcu_read_lock();
585 	bp = rhashtable_lookup(&pag->pag_buf_hash, map, xfs_buf_hash_params);
586 	if (!bp || !atomic_inc_not_zero(&bp->b_hold)) {
587 		rcu_read_unlock();
588 		return -ENOENT;
589 	}
590 	rcu_read_unlock();
591 
592 	error = xfs_buf_find_lock(bp, flags);
593 	if (error) {
594 		xfs_buf_rele(bp);
595 		return error;
596 	}
597 
598 	trace_xfs_buf_find(bp, flags, _RET_IP_);
599 	*bpp = bp;
600 	return 0;
601 }
602 
603 /*
604  * Insert the new_bp into the hash table. This consumes the perag reference
605  * taken for the lookup regardless of the result of the insert.
606  */
607 static int
608 xfs_buf_find_insert(
609 	struct xfs_buftarg	*btp,
610 	struct xfs_perag	*pag,
611 	struct xfs_buf_map	*cmap,
612 	struct xfs_buf_map	*map,
613 	int			nmaps,
614 	xfs_buf_flags_t		flags,
615 	struct xfs_buf		**bpp)
616 {
617 	struct xfs_buf		*new_bp;
618 	struct xfs_buf		*bp;
619 	int			error;
620 
621 	error = _xfs_buf_alloc(btp, map, nmaps, flags, &new_bp);
622 	if (error)
623 		goto out_drop_pag;
624 
625 	/*
626 	 * For buffers that fit entirely within a single page, first attempt to
627 	 * allocate the memory from the heap to minimise memory usage. If we
628 	 * can't get heap memory for these small buffers, we fall back to using
629 	 * the page allocator.
630 	 */
631 	if (BBTOB(new_bp->b_length) >= PAGE_SIZE ||
632 	    xfs_buf_alloc_kmem(new_bp, flags) < 0) {
633 		error = xfs_buf_alloc_pages(new_bp, flags);
634 		if (error)
635 			goto out_free_buf;
636 	}
637 
638 	spin_lock(&pag->pag_buf_lock);
639 	bp = rhashtable_lookup_get_insert_fast(&pag->pag_buf_hash,
640 			&new_bp->b_rhash_head, xfs_buf_hash_params);
641 	if (IS_ERR(bp)) {
642 		error = PTR_ERR(bp);
643 		spin_unlock(&pag->pag_buf_lock);
644 		goto out_free_buf;
645 	}
646 	if (bp) {
647 		/* found an existing buffer */
648 		atomic_inc(&bp->b_hold);
649 		spin_unlock(&pag->pag_buf_lock);
650 		error = xfs_buf_find_lock(bp, flags);
651 		if (error)
652 			xfs_buf_rele(bp);
653 		else
654 			*bpp = bp;
655 		goto out_free_buf;
656 	}
657 
658 	/* The new buffer keeps the perag reference until it is freed. */
659 	new_bp->b_pag = pag;
660 	spin_unlock(&pag->pag_buf_lock);
661 	*bpp = new_bp;
662 	return 0;
663 
664 out_free_buf:
665 	xfs_buf_free(new_bp);
666 out_drop_pag:
667 	xfs_perag_put(pag);
668 	return error;
669 }
670 
671 /*
672  * Assembles a buffer covering the specified range. The code is optimised for
673  * cache hits, as metadata intensive workloads will see 3 orders of magnitude
674  * more hits than misses.
675  */
676 int
677 xfs_buf_get_map(
678 	struct xfs_buftarg	*btp,
679 	struct xfs_buf_map	*map,
680 	int			nmaps,
681 	xfs_buf_flags_t		flags,
682 	struct xfs_buf		**bpp)
683 {
684 	struct xfs_perag	*pag;
685 	struct xfs_buf		*bp = NULL;
686 	struct xfs_buf_map	cmap = { .bm_bn = map[0].bm_bn };
687 	int			error;
688 	int			i;
689 
690 	if (flags & XBF_LIVESCAN)
691 		cmap.bm_flags |= XBM_LIVESCAN;
692 	for (i = 0; i < nmaps; i++)
693 		cmap.bm_len += map[i].bm_len;
694 
695 	error = xfs_buf_map_verify(btp, &cmap);
696 	if (error)
697 		return error;
698 
699 	pag = xfs_perag_get(btp->bt_mount,
700 			    xfs_daddr_to_agno(btp->bt_mount, cmap.bm_bn));
701 
702 	error = xfs_buf_lookup(pag, &cmap, flags, &bp);
703 	if (error && error != -ENOENT)
704 		goto out_put_perag;
705 
706 	/* cache hits always outnumber misses by at least 10:1 */
707 	if (unlikely(!bp)) {
708 		XFS_STATS_INC(btp->bt_mount, xb_miss_locked);
709 
710 		if (flags & XBF_INCORE)
711 			goto out_put_perag;
712 
713 		/* xfs_buf_find_insert() consumes the perag reference. */
714 		error = xfs_buf_find_insert(btp, pag, &cmap, map, nmaps,
715 				flags, &bp);
716 		if (error)
717 			return error;
718 	} else {
719 		XFS_STATS_INC(btp->bt_mount, xb_get_locked);
720 		xfs_perag_put(pag);
721 	}
722 
723 	/* We do not hold a perag reference anymore. */
724 	if (!bp->b_addr) {
725 		error = _xfs_buf_map_pages(bp, flags);
726 		if (unlikely(error)) {
727 			xfs_warn_ratelimited(btp->bt_mount,
728 				"%s: failed to map %u pages", __func__,
729 				bp->b_page_count);
730 			xfs_buf_relse(bp);
731 			return error;
732 		}
733 	}
734 
735 	/*
736 	 * Clear b_error if this is a lookup from a caller that doesn't expect
737 	 * valid data to be found in the buffer.
738 	 */
739 	if (!(flags & XBF_READ))
740 		xfs_buf_ioerror(bp, 0);
741 
742 	XFS_STATS_INC(btp->bt_mount, xb_get);
743 	trace_xfs_buf_get(bp, flags, _RET_IP_);
744 	*bpp = bp;
745 	return 0;
746 
747 out_put_perag:
748 	xfs_perag_put(pag);
749 	return error;
750 }
751 
752 int
753 _xfs_buf_read(
754 	struct xfs_buf		*bp,
755 	xfs_buf_flags_t		flags)
756 {
757 	ASSERT(!(flags & XBF_WRITE));
758 	ASSERT(bp->b_maps[0].bm_bn != XFS_BUF_DADDR_NULL);
759 
760 	bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD | XBF_DONE);
761 	bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD);
762 
763 	return xfs_buf_submit(bp);
764 }
765 
766 /*
767  * Reverify a buffer found in cache without an attached ->b_ops.
768  *
769  * If the caller passed an ops structure and the buffer doesn't have ops
770  * assigned, set the ops and use it to verify the contents. If verification
771  * fails, clear XBF_DONE. We assume the buffer has no recorded errors and is
772  * already in XBF_DONE state on entry.
773  *
774  * Under normal operations, every in-core buffer is verified on read I/O
775  * completion. There are two scenarios that can lead to in-core buffers without
776  * an assigned ->b_ops. The first is during log recovery of buffers on a V4
777  * filesystem, though these buffers are purged at the end of recovery. The
778  * other is online repair, which intentionally reads with a NULL buffer ops to
779  * run several verifiers across an in-core buffer in order to establish buffer
780  * type.  If repair can't establish that, the buffer will be left in memory
781  * with NULL buffer ops.
782  */
783 int
784 xfs_buf_reverify(
785 	struct xfs_buf		*bp,
786 	const struct xfs_buf_ops *ops)
787 {
788 	ASSERT(bp->b_flags & XBF_DONE);
789 	ASSERT(bp->b_error == 0);
790 
791 	if (!ops || bp->b_ops)
792 		return 0;
793 
794 	bp->b_ops = ops;
795 	bp->b_ops->verify_read(bp);
796 	if (bp->b_error)
797 		bp->b_flags &= ~XBF_DONE;
798 	return bp->b_error;
799 }
800 
801 int
802 xfs_buf_read_map(
803 	struct xfs_buftarg	*target,
804 	struct xfs_buf_map	*map,
805 	int			nmaps,
806 	xfs_buf_flags_t		flags,
807 	struct xfs_buf		**bpp,
808 	const struct xfs_buf_ops *ops,
809 	xfs_failaddr_t		fa)
810 {
811 	struct xfs_buf		*bp;
812 	int			error;
813 
814 	flags |= XBF_READ;
815 	*bpp = NULL;
816 
817 	error = xfs_buf_get_map(target, map, nmaps, flags, &bp);
818 	if (error)
819 		return error;
820 
821 	trace_xfs_buf_read(bp, flags, _RET_IP_);
822 
823 	if (!(bp->b_flags & XBF_DONE)) {
824 		/* Initiate the buffer read and wait. */
825 		XFS_STATS_INC(target->bt_mount, xb_get_read);
826 		bp->b_ops = ops;
827 		error = _xfs_buf_read(bp, flags);
828 
829 		/* Readahead iodone already dropped the buffer, so exit. */
830 		if (flags & XBF_ASYNC)
831 			return 0;
832 	} else {
833 		/* Buffer already read; all we need to do is check it. */
834 		error = xfs_buf_reverify(bp, ops);
835 
836 		/* Readahead already finished; drop the buffer and exit. */
837 		if (flags & XBF_ASYNC) {
838 			xfs_buf_relse(bp);
839 			return 0;
840 		}
841 
842 		/* We do not want read in the flags */
843 		bp->b_flags &= ~XBF_READ;
844 		ASSERT(bp->b_ops != NULL || ops == NULL);
845 	}
846 
847 	/*
848 	 * If we've had a read error, then the contents of the buffer are
849 	 * invalid and should not be used. To ensure that a followup read tries
850 	 * to pull the buffer from disk again, we clear the XBF_DONE flag and
851 	 * mark the buffer stale. This ensures that anyone who has a current
852 	 * reference to the buffer will interpret it's contents correctly and
853 	 * future cache lookups will also treat it as an empty, uninitialised
854 	 * buffer.
855 	 */
856 	if (error) {
857 		/*
858 		 * Check against log shutdown for error reporting because
859 		 * metadata writeback may require a read first and we need to
860 		 * report errors in metadata writeback until the log is shut
861 		 * down. High level transaction read functions already check
862 		 * against mount shutdown, anyway, so we only need to be
863 		 * concerned about low level IO interactions here.
864 		 */
865 		if (!xlog_is_shutdown(target->bt_mount->m_log))
866 			xfs_buf_ioerror_alert(bp, fa);
867 
868 		bp->b_flags &= ~XBF_DONE;
869 		xfs_buf_stale(bp);
870 		xfs_buf_relse(bp);
871 
872 		/* bad CRC means corrupted metadata */
873 		if (error == -EFSBADCRC)
874 			error = -EFSCORRUPTED;
875 		return error;
876 	}
877 
878 	*bpp = bp;
879 	return 0;
880 }
881 
882 /*
883  *	If we are not low on memory then do the readahead in a deadlock
884  *	safe manner.
885  */
886 void
887 xfs_buf_readahead_map(
888 	struct xfs_buftarg	*target,
889 	struct xfs_buf_map	*map,
890 	int			nmaps,
891 	const struct xfs_buf_ops *ops)
892 {
893 	struct xfs_buf		*bp;
894 
895 	xfs_buf_read_map(target, map, nmaps,
896 		     XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD, &bp, ops,
897 		     __this_address);
898 }
899 
900 /*
901  * Read an uncached buffer from disk. Allocates and returns a locked
902  * buffer containing the disk contents or nothing. Uncached buffers always have
903  * a cache index of XFS_BUF_DADDR_NULL so we can easily determine if the buffer
904  * is cached or uncached during fault diagnosis.
905  */
906 int
907 xfs_buf_read_uncached(
908 	struct xfs_buftarg	*target,
909 	xfs_daddr_t		daddr,
910 	size_t			numblks,
911 	xfs_buf_flags_t		flags,
912 	struct xfs_buf		**bpp,
913 	const struct xfs_buf_ops *ops)
914 {
915 	struct xfs_buf		*bp;
916 	int			error;
917 
918 	*bpp = NULL;
919 
920 	error = xfs_buf_get_uncached(target, numblks, flags, &bp);
921 	if (error)
922 		return error;
923 
924 	/* set up the buffer for a read IO */
925 	ASSERT(bp->b_map_count == 1);
926 	bp->b_rhash_key = XFS_BUF_DADDR_NULL;
927 	bp->b_maps[0].bm_bn = daddr;
928 	bp->b_flags |= XBF_READ;
929 	bp->b_ops = ops;
930 
931 	xfs_buf_submit(bp);
932 	if (bp->b_error) {
933 		error = bp->b_error;
934 		xfs_buf_relse(bp);
935 		return error;
936 	}
937 
938 	*bpp = bp;
939 	return 0;
940 }
941 
942 int
943 xfs_buf_get_uncached(
944 	struct xfs_buftarg	*target,
945 	size_t			numblks,
946 	xfs_buf_flags_t		flags,
947 	struct xfs_buf		**bpp)
948 {
949 	int			error;
950 	struct xfs_buf		*bp;
951 	DEFINE_SINGLE_BUF_MAP(map, XFS_BUF_DADDR_NULL, numblks);
952 
953 	*bpp = NULL;
954 
955 	/* flags might contain irrelevant bits, pass only what we care about */
956 	error = _xfs_buf_alloc(target, &map, 1, flags & XBF_NO_IOACCT, &bp);
957 	if (error)
958 		return error;
959 
960 	error = xfs_buf_alloc_pages(bp, flags);
961 	if (error)
962 		goto fail_free_buf;
963 
964 	error = _xfs_buf_map_pages(bp, 0);
965 	if (unlikely(error)) {
966 		xfs_warn(target->bt_mount,
967 			"%s: failed to map pages", __func__);
968 		goto fail_free_buf;
969 	}
970 
971 	trace_xfs_buf_get_uncached(bp, _RET_IP_);
972 	*bpp = bp;
973 	return 0;
974 
975 fail_free_buf:
976 	xfs_buf_free(bp);
977 	return error;
978 }
979 
980 /*
981  *	Increment reference count on buffer, to hold the buffer concurrently
982  *	with another thread which may release (free) the buffer asynchronously.
983  *	Must hold the buffer already to call this function.
984  */
985 void
986 xfs_buf_hold(
987 	struct xfs_buf		*bp)
988 {
989 	trace_xfs_buf_hold(bp, _RET_IP_);
990 	atomic_inc(&bp->b_hold);
991 }
992 
993 /*
994  * Release a hold on the specified buffer. If the hold count is 1, the buffer is
995  * placed on LRU or freed (depending on b_lru_ref).
996  */
997 void
998 xfs_buf_rele(
999 	struct xfs_buf		*bp)
1000 {
1001 	struct xfs_perag	*pag = bp->b_pag;
1002 	bool			release;
1003 	bool			freebuf = false;
1004 
1005 	trace_xfs_buf_rele(bp, _RET_IP_);
1006 
1007 	if (!pag) {
1008 		ASSERT(list_empty(&bp->b_lru));
1009 		if (atomic_dec_and_test(&bp->b_hold)) {
1010 			xfs_buf_ioacct_dec(bp);
1011 			xfs_buf_free(bp);
1012 		}
1013 		return;
1014 	}
1015 
1016 	ASSERT(atomic_read(&bp->b_hold) > 0);
1017 
1018 	/*
1019 	 * We grab the b_lock here first to serialise racing xfs_buf_rele()
1020 	 * calls. The pag_buf_lock being taken on the last reference only
1021 	 * serialises against racing lookups in xfs_buf_find(). IOWs, the second
1022 	 * to last reference we drop here is not serialised against the last
1023 	 * reference until we take bp->b_lock. Hence if we don't grab b_lock
1024 	 * first, the last "release" reference can win the race to the lock and
1025 	 * free the buffer before the second-to-last reference is processed,
1026 	 * leading to a use-after-free scenario.
1027 	 */
1028 	spin_lock(&bp->b_lock);
1029 	release = atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock);
1030 	if (!release) {
1031 		/*
1032 		 * Drop the in-flight state if the buffer is already on the LRU
1033 		 * and it holds the only reference. This is racy because we
1034 		 * haven't acquired the pag lock, but the use of _XBF_IN_FLIGHT
1035 		 * ensures the decrement occurs only once per-buf.
1036 		 */
1037 		if ((atomic_read(&bp->b_hold) == 1) && !list_empty(&bp->b_lru))
1038 			__xfs_buf_ioacct_dec(bp);
1039 		goto out_unlock;
1040 	}
1041 
1042 	/* the last reference has been dropped ... */
1043 	__xfs_buf_ioacct_dec(bp);
1044 	if (!(bp->b_flags & XBF_STALE) && atomic_read(&bp->b_lru_ref)) {
1045 		/*
1046 		 * If the buffer is added to the LRU take a new reference to the
1047 		 * buffer for the LRU and clear the (now stale) dispose list
1048 		 * state flag
1049 		 */
1050 		if (list_lru_add(&bp->b_target->bt_lru, &bp->b_lru)) {
1051 			bp->b_state &= ~XFS_BSTATE_DISPOSE;
1052 			atomic_inc(&bp->b_hold);
1053 		}
1054 		spin_unlock(&pag->pag_buf_lock);
1055 	} else {
1056 		/*
1057 		 * most of the time buffers will already be removed from the
1058 		 * LRU, so optimise that case by checking for the
1059 		 * XFS_BSTATE_DISPOSE flag indicating the last list the buffer
1060 		 * was on was the disposal list
1061 		 */
1062 		if (!(bp->b_state & XFS_BSTATE_DISPOSE)) {
1063 			list_lru_del(&bp->b_target->bt_lru, &bp->b_lru);
1064 		} else {
1065 			ASSERT(list_empty(&bp->b_lru));
1066 		}
1067 
1068 		ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1069 		rhashtable_remove_fast(&pag->pag_buf_hash, &bp->b_rhash_head,
1070 				       xfs_buf_hash_params);
1071 		spin_unlock(&pag->pag_buf_lock);
1072 		xfs_perag_put(pag);
1073 		freebuf = true;
1074 	}
1075 
1076 out_unlock:
1077 	spin_unlock(&bp->b_lock);
1078 
1079 	if (freebuf)
1080 		xfs_buf_free(bp);
1081 }
1082 
1083 
1084 /*
1085  *	Lock a buffer object, if it is not already locked.
1086  *
1087  *	If we come across a stale, pinned, locked buffer, we know that we are
1088  *	being asked to lock a buffer that has been reallocated. Because it is
1089  *	pinned, we know that the log has not been pushed to disk and hence it
1090  *	will still be locked.  Rather than continuing to have trylock attempts
1091  *	fail until someone else pushes the log, push it ourselves before
1092  *	returning.  This means that the xfsaild will not get stuck trying
1093  *	to push on stale inode buffers.
1094  */
1095 int
1096 xfs_buf_trylock(
1097 	struct xfs_buf		*bp)
1098 {
1099 	int			locked;
1100 
1101 	locked = down_trylock(&bp->b_sema) == 0;
1102 	if (locked)
1103 		trace_xfs_buf_trylock(bp, _RET_IP_);
1104 	else
1105 		trace_xfs_buf_trylock_fail(bp, _RET_IP_);
1106 	return locked;
1107 }
1108 
1109 /*
1110  *	Lock a buffer object.
1111  *
1112  *	If we come across a stale, pinned, locked buffer, we know that we
1113  *	are being asked to lock a buffer that has been reallocated. Because
1114  *	it is pinned, we know that the log has not been pushed to disk and
1115  *	hence it will still be locked. Rather than sleeping until someone
1116  *	else pushes the log, push it ourselves before trying to get the lock.
1117  */
1118 void
1119 xfs_buf_lock(
1120 	struct xfs_buf		*bp)
1121 {
1122 	trace_xfs_buf_lock(bp, _RET_IP_);
1123 
1124 	if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
1125 		xfs_log_force(bp->b_mount, 0);
1126 	down(&bp->b_sema);
1127 
1128 	trace_xfs_buf_lock_done(bp, _RET_IP_);
1129 }
1130 
1131 void
1132 xfs_buf_unlock(
1133 	struct xfs_buf		*bp)
1134 {
1135 	ASSERT(xfs_buf_islocked(bp));
1136 
1137 	up(&bp->b_sema);
1138 	trace_xfs_buf_unlock(bp, _RET_IP_);
1139 }
1140 
1141 STATIC void
1142 xfs_buf_wait_unpin(
1143 	struct xfs_buf		*bp)
1144 {
1145 	DECLARE_WAITQUEUE	(wait, current);
1146 
1147 	if (atomic_read(&bp->b_pin_count) == 0)
1148 		return;
1149 
1150 	add_wait_queue(&bp->b_waiters, &wait);
1151 	for (;;) {
1152 		set_current_state(TASK_UNINTERRUPTIBLE);
1153 		if (atomic_read(&bp->b_pin_count) == 0)
1154 			break;
1155 		io_schedule();
1156 	}
1157 	remove_wait_queue(&bp->b_waiters, &wait);
1158 	set_current_state(TASK_RUNNING);
1159 }
1160 
1161 static void
1162 xfs_buf_ioerror_alert_ratelimited(
1163 	struct xfs_buf		*bp)
1164 {
1165 	static unsigned long	lasttime;
1166 	static struct xfs_buftarg *lasttarg;
1167 
1168 	if (bp->b_target != lasttarg ||
1169 	    time_after(jiffies, (lasttime + 5*HZ))) {
1170 		lasttime = jiffies;
1171 		xfs_buf_ioerror_alert(bp, __this_address);
1172 	}
1173 	lasttarg = bp->b_target;
1174 }
1175 
1176 /*
1177  * Account for this latest trip around the retry handler, and decide if
1178  * we've failed enough times to constitute a permanent failure.
1179  */
1180 static bool
1181 xfs_buf_ioerror_permanent(
1182 	struct xfs_buf		*bp,
1183 	struct xfs_error_cfg	*cfg)
1184 {
1185 	struct xfs_mount	*mp = bp->b_mount;
1186 
1187 	if (cfg->max_retries != XFS_ERR_RETRY_FOREVER &&
1188 	    ++bp->b_retries > cfg->max_retries)
1189 		return true;
1190 	if (cfg->retry_timeout != XFS_ERR_RETRY_FOREVER &&
1191 	    time_after(jiffies, cfg->retry_timeout + bp->b_first_retry_time))
1192 		return true;
1193 
1194 	/* At unmount we may treat errors differently */
1195 	if (xfs_is_unmounting(mp) && mp->m_fail_unmount)
1196 		return true;
1197 
1198 	return false;
1199 }
1200 
1201 /*
1202  * On a sync write or shutdown we just want to stale the buffer and let the
1203  * caller handle the error in bp->b_error appropriately.
1204  *
1205  * If the write was asynchronous then no one will be looking for the error.  If
1206  * this is the first failure of this type, clear the error state and write the
1207  * buffer out again. This means we always retry an async write failure at least
1208  * once, but we also need to set the buffer up to behave correctly now for
1209  * repeated failures.
1210  *
1211  * If we get repeated async write failures, then we take action according to the
1212  * error configuration we have been set up to use.
1213  *
1214  * Returns true if this function took care of error handling and the caller must
1215  * not touch the buffer again.  Return false if the caller should proceed with
1216  * normal I/O completion handling.
1217  */
1218 static bool
1219 xfs_buf_ioend_handle_error(
1220 	struct xfs_buf		*bp)
1221 {
1222 	struct xfs_mount	*mp = bp->b_mount;
1223 	struct xfs_error_cfg	*cfg;
1224 
1225 	/*
1226 	 * If we've already shutdown the journal because of I/O errors, there's
1227 	 * no point in giving this a retry.
1228 	 */
1229 	if (xlog_is_shutdown(mp->m_log))
1230 		goto out_stale;
1231 
1232 	xfs_buf_ioerror_alert_ratelimited(bp);
1233 
1234 	/*
1235 	 * We're not going to bother about retrying this during recovery.
1236 	 * One strike!
1237 	 */
1238 	if (bp->b_flags & _XBF_LOGRECOVERY) {
1239 		xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1240 		return false;
1241 	}
1242 
1243 	/*
1244 	 * Synchronous writes will have callers process the error.
1245 	 */
1246 	if (!(bp->b_flags & XBF_ASYNC))
1247 		goto out_stale;
1248 
1249 	trace_xfs_buf_iodone_async(bp, _RET_IP_);
1250 
1251 	cfg = xfs_error_get_cfg(mp, XFS_ERR_METADATA, bp->b_error);
1252 	if (bp->b_last_error != bp->b_error ||
1253 	    !(bp->b_flags & (XBF_STALE | XBF_WRITE_FAIL))) {
1254 		bp->b_last_error = bp->b_error;
1255 		if (cfg->retry_timeout != XFS_ERR_RETRY_FOREVER &&
1256 		    !bp->b_first_retry_time)
1257 			bp->b_first_retry_time = jiffies;
1258 		goto resubmit;
1259 	}
1260 
1261 	/*
1262 	 * Permanent error - we need to trigger a shutdown if we haven't already
1263 	 * to indicate that inconsistency will result from this action.
1264 	 */
1265 	if (xfs_buf_ioerror_permanent(bp, cfg)) {
1266 		xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1267 		goto out_stale;
1268 	}
1269 
1270 	/* Still considered a transient error. Caller will schedule retries. */
1271 	if (bp->b_flags & _XBF_INODES)
1272 		xfs_buf_inode_io_fail(bp);
1273 	else if (bp->b_flags & _XBF_DQUOTS)
1274 		xfs_buf_dquot_io_fail(bp);
1275 	else
1276 		ASSERT(list_empty(&bp->b_li_list));
1277 	xfs_buf_ioerror(bp, 0);
1278 	xfs_buf_relse(bp);
1279 	return true;
1280 
1281 resubmit:
1282 	xfs_buf_ioerror(bp, 0);
1283 	bp->b_flags |= (XBF_DONE | XBF_WRITE_FAIL);
1284 	xfs_buf_submit(bp);
1285 	return true;
1286 out_stale:
1287 	xfs_buf_stale(bp);
1288 	bp->b_flags |= XBF_DONE;
1289 	bp->b_flags &= ~XBF_WRITE;
1290 	trace_xfs_buf_error_relse(bp, _RET_IP_);
1291 	return false;
1292 }
1293 
1294 static void
1295 xfs_buf_ioend(
1296 	struct xfs_buf	*bp)
1297 {
1298 	trace_xfs_buf_iodone(bp, _RET_IP_);
1299 
1300 	/*
1301 	 * Pull in IO completion errors now. We are guaranteed to be running
1302 	 * single threaded, so we don't need the lock to read b_io_error.
1303 	 */
1304 	if (!bp->b_error && bp->b_io_error)
1305 		xfs_buf_ioerror(bp, bp->b_io_error);
1306 
1307 	if (bp->b_flags & XBF_READ) {
1308 		if (!bp->b_error && bp->b_ops)
1309 			bp->b_ops->verify_read(bp);
1310 		if (!bp->b_error)
1311 			bp->b_flags |= XBF_DONE;
1312 	} else {
1313 		if (!bp->b_error) {
1314 			bp->b_flags &= ~XBF_WRITE_FAIL;
1315 			bp->b_flags |= XBF_DONE;
1316 		}
1317 
1318 		if (unlikely(bp->b_error) && xfs_buf_ioend_handle_error(bp))
1319 			return;
1320 
1321 		/* clear the retry state */
1322 		bp->b_last_error = 0;
1323 		bp->b_retries = 0;
1324 		bp->b_first_retry_time = 0;
1325 
1326 		/*
1327 		 * Note that for things like remote attribute buffers, there may
1328 		 * not be a buffer log item here, so processing the buffer log
1329 		 * item must remain optional.
1330 		 */
1331 		if (bp->b_log_item)
1332 			xfs_buf_item_done(bp);
1333 
1334 		if (bp->b_flags & _XBF_INODES)
1335 			xfs_buf_inode_iodone(bp);
1336 		else if (bp->b_flags & _XBF_DQUOTS)
1337 			xfs_buf_dquot_iodone(bp);
1338 
1339 	}
1340 
1341 	bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD |
1342 			 _XBF_LOGRECOVERY);
1343 
1344 	if (bp->b_flags & XBF_ASYNC)
1345 		xfs_buf_relse(bp);
1346 	else
1347 		complete(&bp->b_iowait);
1348 }
1349 
1350 static void
1351 xfs_buf_ioend_work(
1352 	struct work_struct	*work)
1353 {
1354 	struct xfs_buf		*bp =
1355 		container_of(work, struct xfs_buf, b_ioend_work);
1356 
1357 	xfs_buf_ioend(bp);
1358 }
1359 
1360 static void
1361 xfs_buf_ioend_async(
1362 	struct xfs_buf	*bp)
1363 {
1364 	INIT_WORK(&bp->b_ioend_work, xfs_buf_ioend_work);
1365 	queue_work(bp->b_mount->m_buf_workqueue, &bp->b_ioend_work);
1366 }
1367 
1368 void
1369 __xfs_buf_ioerror(
1370 	struct xfs_buf		*bp,
1371 	int			error,
1372 	xfs_failaddr_t		failaddr)
1373 {
1374 	ASSERT(error <= 0 && error >= -1000);
1375 	bp->b_error = error;
1376 	trace_xfs_buf_ioerror(bp, error, failaddr);
1377 }
1378 
1379 void
1380 xfs_buf_ioerror_alert(
1381 	struct xfs_buf		*bp,
1382 	xfs_failaddr_t		func)
1383 {
1384 	xfs_buf_alert_ratelimited(bp, "XFS: metadata IO error",
1385 		"metadata I/O error in \"%pS\" at daddr 0x%llx len %d error %d",
1386 				  func, (uint64_t)xfs_buf_daddr(bp),
1387 				  bp->b_length, -bp->b_error);
1388 }
1389 
1390 /*
1391  * To simulate an I/O failure, the buffer must be locked and held with at least
1392  * three references. The LRU reference is dropped by the stale call. The buf
1393  * item reference is dropped via ioend processing. The third reference is owned
1394  * by the caller and is dropped on I/O completion if the buffer is XBF_ASYNC.
1395  */
1396 void
1397 xfs_buf_ioend_fail(
1398 	struct xfs_buf	*bp)
1399 {
1400 	bp->b_flags &= ~XBF_DONE;
1401 	xfs_buf_stale(bp);
1402 	xfs_buf_ioerror(bp, -EIO);
1403 	xfs_buf_ioend(bp);
1404 }
1405 
1406 int
1407 xfs_bwrite(
1408 	struct xfs_buf		*bp)
1409 {
1410 	int			error;
1411 
1412 	ASSERT(xfs_buf_islocked(bp));
1413 
1414 	bp->b_flags |= XBF_WRITE;
1415 	bp->b_flags &= ~(XBF_ASYNC | XBF_READ | _XBF_DELWRI_Q |
1416 			 XBF_DONE);
1417 
1418 	error = xfs_buf_submit(bp);
1419 	if (error)
1420 		xfs_force_shutdown(bp->b_mount, SHUTDOWN_META_IO_ERROR);
1421 	return error;
1422 }
1423 
1424 static void
1425 xfs_buf_bio_end_io(
1426 	struct bio		*bio)
1427 {
1428 	struct xfs_buf		*bp = (struct xfs_buf *)bio->bi_private;
1429 
1430 	if (!bio->bi_status &&
1431 	    (bp->b_flags & XBF_WRITE) && (bp->b_flags & XBF_ASYNC) &&
1432 	    XFS_TEST_ERROR(false, bp->b_mount, XFS_ERRTAG_BUF_IOERROR))
1433 		bio->bi_status = BLK_STS_IOERR;
1434 
1435 	/*
1436 	 * don't overwrite existing errors - otherwise we can lose errors on
1437 	 * buffers that require multiple bios to complete.
1438 	 */
1439 	if (bio->bi_status) {
1440 		int error = blk_status_to_errno(bio->bi_status);
1441 
1442 		cmpxchg(&bp->b_io_error, 0, error);
1443 	}
1444 
1445 	if (!bp->b_error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
1446 		invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1447 
1448 	if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1449 		xfs_buf_ioend_async(bp);
1450 	bio_put(bio);
1451 }
1452 
1453 static void
1454 xfs_buf_ioapply_map(
1455 	struct xfs_buf	*bp,
1456 	int		map,
1457 	int		*buf_offset,
1458 	int		*count,
1459 	blk_opf_t	op)
1460 {
1461 	int		page_index;
1462 	unsigned int	total_nr_pages = bp->b_page_count;
1463 	int		nr_pages;
1464 	struct bio	*bio;
1465 	sector_t	sector =  bp->b_maps[map].bm_bn;
1466 	int		size;
1467 	int		offset;
1468 
1469 	/* skip the pages in the buffer before the start offset */
1470 	page_index = 0;
1471 	offset = *buf_offset;
1472 	while (offset >= PAGE_SIZE) {
1473 		page_index++;
1474 		offset -= PAGE_SIZE;
1475 	}
1476 
1477 	/*
1478 	 * Limit the IO size to the length of the current vector, and update the
1479 	 * remaining IO count for the next time around.
1480 	 */
1481 	size = min_t(int, BBTOB(bp->b_maps[map].bm_len), *count);
1482 	*count -= size;
1483 	*buf_offset += size;
1484 
1485 next_chunk:
1486 	atomic_inc(&bp->b_io_remaining);
1487 	nr_pages = bio_max_segs(total_nr_pages);
1488 
1489 	bio = bio_alloc(bp->b_target->bt_bdev, nr_pages, op, GFP_NOIO);
1490 	bio->bi_iter.bi_sector = sector;
1491 	bio->bi_end_io = xfs_buf_bio_end_io;
1492 	bio->bi_private = bp;
1493 
1494 	for (; size && nr_pages; nr_pages--, page_index++) {
1495 		int	rbytes, nbytes = PAGE_SIZE - offset;
1496 
1497 		if (nbytes > size)
1498 			nbytes = size;
1499 
1500 		rbytes = bio_add_page(bio, bp->b_pages[page_index], nbytes,
1501 				      offset);
1502 		if (rbytes < nbytes)
1503 			break;
1504 
1505 		offset = 0;
1506 		sector += BTOBB(nbytes);
1507 		size -= nbytes;
1508 		total_nr_pages--;
1509 	}
1510 
1511 	if (likely(bio->bi_iter.bi_size)) {
1512 		if (xfs_buf_is_vmapped(bp)) {
1513 			flush_kernel_vmap_range(bp->b_addr,
1514 						xfs_buf_vmap_len(bp));
1515 		}
1516 		submit_bio(bio);
1517 		if (size)
1518 			goto next_chunk;
1519 	} else {
1520 		/*
1521 		 * This is guaranteed not to be the last io reference count
1522 		 * because the caller (xfs_buf_submit) holds a count itself.
1523 		 */
1524 		atomic_dec(&bp->b_io_remaining);
1525 		xfs_buf_ioerror(bp, -EIO);
1526 		bio_put(bio);
1527 	}
1528 
1529 }
1530 
1531 STATIC void
1532 _xfs_buf_ioapply(
1533 	struct xfs_buf	*bp)
1534 {
1535 	struct blk_plug	plug;
1536 	blk_opf_t	op;
1537 	int		offset;
1538 	int		size;
1539 	int		i;
1540 
1541 	/*
1542 	 * Make sure we capture only current IO errors rather than stale errors
1543 	 * left over from previous use of the buffer (e.g. failed readahead).
1544 	 */
1545 	bp->b_error = 0;
1546 
1547 	if (bp->b_flags & XBF_WRITE) {
1548 		op = REQ_OP_WRITE;
1549 
1550 		/*
1551 		 * Run the write verifier callback function if it exists. If
1552 		 * this function fails it will mark the buffer with an error and
1553 		 * the IO should not be dispatched.
1554 		 */
1555 		if (bp->b_ops) {
1556 			bp->b_ops->verify_write(bp);
1557 			if (bp->b_error) {
1558 				xfs_force_shutdown(bp->b_mount,
1559 						   SHUTDOWN_CORRUPT_INCORE);
1560 				return;
1561 			}
1562 		} else if (bp->b_rhash_key != XFS_BUF_DADDR_NULL) {
1563 			struct xfs_mount *mp = bp->b_mount;
1564 
1565 			/*
1566 			 * non-crc filesystems don't attach verifiers during
1567 			 * log recovery, so don't warn for such filesystems.
1568 			 */
1569 			if (xfs_has_crc(mp)) {
1570 				xfs_warn(mp,
1571 					"%s: no buf ops on daddr 0x%llx len %d",
1572 					__func__, xfs_buf_daddr(bp),
1573 					bp->b_length);
1574 				xfs_hex_dump(bp->b_addr,
1575 						XFS_CORRUPTION_DUMP_LEN);
1576 				dump_stack();
1577 			}
1578 		}
1579 	} else {
1580 		op = REQ_OP_READ;
1581 		if (bp->b_flags & XBF_READ_AHEAD)
1582 			op |= REQ_RAHEAD;
1583 	}
1584 
1585 	/* we only use the buffer cache for meta-data */
1586 	op |= REQ_META;
1587 
1588 	/*
1589 	 * Walk all the vectors issuing IO on them. Set up the initial offset
1590 	 * into the buffer and the desired IO size before we start -
1591 	 * _xfs_buf_ioapply_vec() will modify them appropriately for each
1592 	 * subsequent call.
1593 	 */
1594 	offset = bp->b_offset;
1595 	size = BBTOB(bp->b_length);
1596 	blk_start_plug(&plug);
1597 	for (i = 0; i < bp->b_map_count; i++) {
1598 		xfs_buf_ioapply_map(bp, i, &offset, &size, op);
1599 		if (bp->b_error)
1600 			break;
1601 		if (size <= 0)
1602 			break;	/* all done */
1603 	}
1604 	blk_finish_plug(&plug);
1605 }
1606 
1607 /*
1608  * Wait for I/O completion of a sync buffer and return the I/O error code.
1609  */
1610 static int
1611 xfs_buf_iowait(
1612 	struct xfs_buf	*bp)
1613 {
1614 	ASSERT(!(bp->b_flags & XBF_ASYNC));
1615 
1616 	trace_xfs_buf_iowait(bp, _RET_IP_);
1617 	wait_for_completion(&bp->b_iowait);
1618 	trace_xfs_buf_iowait_done(bp, _RET_IP_);
1619 
1620 	return bp->b_error;
1621 }
1622 
1623 /*
1624  * Buffer I/O submission path, read or write. Asynchronous submission transfers
1625  * the buffer lock ownership and the current reference to the IO. It is not
1626  * safe to reference the buffer after a call to this function unless the caller
1627  * holds an additional reference itself.
1628  */
1629 static int
1630 __xfs_buf_submit(
1631 	struct xfs_buf	*bp,
1632 	bool		wait)
1633 {
1634 	int		error = 0;
1635 
1636 	trace_xfs_buf_submit(bp, _RET_IP_);
1637 
1638 	ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1639 
1640 	/*
1641 	 * On log shutdown we stale and complete the buffer immediately. We can
1642 	 * be called to read the superblock before the log has been set up, so
1643 	 * be careful checking the log state.
1644 	 *
1645 	 * Checking the mount shutdown state here can result in the log tail
1646 	 * moving inappropriately on disk as the log may not yet be shut down.
1647 	 * i.e. failing this buffer on mount shutdown can remove it from the AIL
1648 	 * and move the tail of the log forwards without having written this
1649 	 * buffer to disk. This corrupts the log tail state in memory, and
1650 	 * because the log may not be shut down yet, it can then be propagated
1651 	 * to disk before the log is shutdown. Hence we check log shutdown
1652 	 * state here rather than mount state to avoid corrupting the log tail
1653 	 * on shutdown.
1654 	 */
1655 	if (bp->b_mount->m_log &&
1656 	    xlog_is_shutdown(bp->b_mount->m_log)) {
1657 		xfs_buf_ioend_fail(bp);
1658 		return -EIO;
1659 	}
1660 
1661 	/*
1662 	 * Grab a reference so the buffer does not go away underneath us. For
1663 	 * async buffers, I/O completion drops the callers reference, which
1664 	 * could occur before submission returns.
1665 	 */
1666 	xfs_buf_hold(bp);
1667 
1668 	if (bp->b_flags & XBF_WRITE)
1669 		xfs_buf_wait_unpin(bp);
1670 
1671 	/* clear the internal error state to avoid spurious errors */
1672 	bp->b_io_error = 0;
1673 
1674 	/*
1675 	 * Set the count to 1 initially, this will stop an I/O completion
1676 	 * callout which happens before we have started all the I/O from calling
1677 	 * xfs_buf_ioend too early.
1678 	 */
1679 	atomic_set(&bp->b_io_remaining, 1);
1680 	if (bp->b_flags & XBF_ASYNC)
1681 		xfs_buf_ioacct_inc(bp);
1682 	_xfs_buf_ioapply(bp);
1683 
1684 	/*
1685 	 * If _xfs_buf_ioapply failed, we can get back here with only the IO
1686 	 * reference we took above. If we drop it to zero, run completion so
1687 	 * that we don't return to the caller with completion still pending.
1688 	 */
1689 	if (atomic_dec_and_test(&bp->b_io_remaining) == 1) {
1690 		if (bp->b_error || !(bp->b_flags & XBF_ASYNC))
1691 			xfs_buf_ioend(bp);
1692 		else
1693 			xfs_buf_ioend_async(bp);
1694 	}
1695 
1696 	if (wait)
1697 		error = xfs_buf_iowait(bp);
1698 
1699 	/*
1700 	 * Release the hold that keeps the buffer referenced for the entire
1701 	 * I/O. Note that if the buffer is async, it is not safe to reference
1702 	 * after this release.
1703 	 */
1704 	xfs_buf_rele(bp);
1705 	return error;
1706 }
1707 
1708 void *
1709 xfs_buf_offset(
1710 	struct xfs_buf		*bp,
1711 	size_t			offset)
1712 {
1713 	struct page		*page;
1714 
1715 	if (bp->b_addr)
1716 		return bp->b_addr + offset;
1717 
1718 	page = bp->b_pages[offset >> PAGE_SHIFT];
1719 	return page_address(page) + (offset & (PAGE_SIZE-1));
1720 }
1721 
1722 void
1723 xfs_buf_zero(
1724 	struct xfs_buf		*bp,
1725 	size_t			boff,
1726 	size_t			bsize)
1727 {
1728 	size_t			bend;
1729 
1730 	bend = boff + bsize;
1731 	while (boff < bend) {
1732 		struct page	*page;
1733 		int		page_index, page_offset, csize;
1734 
1735 		page_index = (boff + bp->b_offset) >> PAGE_SHIFT;
1736 		page_offset = (boff + bp->b_offset) & ~PAGE_MASK;
1737 		page = bp->b_pages[page_index];
1738 		csize = min_t(size_t, PAGE_SIZE - page_offset,
1739 				      BBTOB(bp->b_length) - boff);
1740 
1741 		ASSERT((csize + page_offset) <= PAGE_SIZE);
1742 
1743 		memset(page_address(page) + page_offset, 0, csize);
1744 
1745 		boff += csize;
1746 	}
1747 }
1748 
1749 /*
1750  * Log a message about and stale a buffer that a caller has decided is corrupt.
1751  *
1752  * This function should be called for the kinds of metadata corruption that
1753  * cannot be detect from a verifier, such as incorrect inter-block relationship
1754  * data.  Do /not/ call this function from a verifier function.
1755  *
1756  * The buffer must be XBF_DONE prior to the call.  Afterwards, the buffer will
1757  * be marked stale, but b_error will not be set.  The caller is responsible for
1758  * releasing the buffer or fixing it.
1759  */
1760 void
1761 __xfs_buf_mark_corrupt(
1762 	struct xfs_buf		*bp,
1763 	xfs_failaddr_t		fa)
1764 {
1765 	ASSERT(bp->b_flags & XBF_DONE);
1766 
1767 	xfs_buf_corruption_error(bp, fa);
1768 	xfs_buf_stale(bp);
1769 }
1770 
1771 /*
1772  *	Handling of buffer targets (buftargs).
1773  */
1774 
1775 /*
1776  * Wait for any bufs with callbacks that have been submitted but have not yet
1777  * returned. These buffers will have an elevated hold count, so wait on those
1778  * while freeing all the buffers only held by the LRU.
1779  */
1780 static enum lru_status
1781 xfs_buftarg_drain_rele(
1782 	struct list_head	*item,
1783 	struct list_lru_one	*lru,
1784 	spinlock_t		*lru_lock,
1785 	void			*arg)
1786 
1787 {
1788 	struct xfs_buf		*bp = container_of(item, struct xfs_buf, b_lru);
1789 	struct list_head	*dispose = arg;
1790 
1791 	if (atomic_read(&bp->b_hold) > 1) {
1792 		/* need to wait, so skip it this pass */
1793 		trace_xfs_buf_drain_buftarg(bp, _RET_IP_);
1794 		return LRU_SKIP;
1795 	}
1796 	if (!spin_trylock(&bp->b_lock))
1797 		return LRU_SKIP;
1798 
1799 	/*
1800 	 * clear the LRU reference count so the buffer doesn't get
1801 	 * ignored in xfs_buf_rele().
1802 	 */
1803 	atomic_set(&bp->b_lru_ref, 0);
1804 	bp->b_state |= XFS_BSTATE_DISPOSE;
1805 	list_lru_isolate_move(lru, item, dispose);
1806 	spin_unlock(&bp->b_lock);
1807 	return LRU_REMOVED;
1808 }
1809 
1810 /*
1811  * Wait for outstanding I/O on the buftarg to complete.
1812  */
1813 void
1814 xfs_buftarg_wait(
1815 	struct xfs_buftarg	*btp)
1816 {
1817 	/*
1818 	 * First wait on the buftarg I/O count for all in-flight buffers to be
1819 	 * released. This is critical as new buffers do not make the LRU until
1820 	 * they are released.
1821 	 *
1822 	 * Next, flush the buffer workqueue to ensure all completion processing
1823 	 * has finished. Just waiting on buffer locks is not sufficient for
1824 	 * async IO as the reference count held over IO is not released until
1825 	 * after the buffer lock is dropped. Hence we need to ensure here that
1826 	 * all reference counts have been dropped before we start walking the
1827 	 * LRU list.
1828 	 */
1829 	while (percpu_counter_sum(&btp->bt_io_count))
1830 		delay(100);
1831 	flush_workqueue(btp->bt_mount->m_buf_workqueue);
1832 }
1833 
1834 void
1835 xfs_buftarg_drain(
1836 	struct xfs_buftarg	*btp)
1837 {
1838 	LIST_HEAD(dispose);
1839 	int			loop = 0;
1840 	bool			write_fail = false;
1841 
1842 	xfs_buftarg_wait(btp);
1843 
1844 	/* loop until there is nothing left on the lru list. */
1845 	while (list_lru_count(&btp->bt_lru)) {
1846 		list_lru_walk(&btp->bt_lru, xfs_buftarg_drain_rele,
1847 			      &dispose, LONG_MAX);
1848 
1849 		while (!list_empty(&dispose)) {
1850 			struct xfs_buf *bp;
1851 			bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1852 			list_del_init(&bp->b_lru);
1853 			if (bp->b_flags & XBF_WRITE_FAIL) {
1854 				write_fail = true;
1855 				xfs_buf_alert_ratelimited(bp,
1856 					"XFS: Corruption Alert",
1857 "Corruption Alert: Buffer at daddr 0x%llx had permanent write failures!",
1858 					(long long)xfs_buf_daddr(bp));
1859 			}
1860 			xfs_buf_rele(bp);
1861 		}
1862 		if (loop++ != 0)
1863 			delay(100);
1864 	}
1865 
1866 	/*
1867 	 * If one or more failed buffers were freed, that means dirty metadata
1868 	 * was thrown away. This should only ever happen after I/O completion
1869 	 * handling has elevated I/O error(s) to permanent failures and shuts
1870 	 * down the journal.
1871 	 */
1872 	if (write_fail) {
1873 		ASSERT(xlog_is_shutdown(btp->bt_mount->m_log));
1874 		xfs_alert(btp->bt_mount,
1875 	      "Please run xfs_repair to determine the extent of the problem.");
1876 	}
1877 }
1878 
1879 static enum lru_status
1880 xfs_buftarg_isolate(
1881 	struct list_head	*item,
1882 	struct list_lru_one	*lru,
1883 	spinlock_t		*lru_lock,
1884 	void			*arg)
1885 {
1886 	struct xfs_buf		*bp = container_of(item, struct xfs_buf, b_lru);
1887 	struct list_head	*dispose = arg;
1888 
1889 	/*
1890 	 * we are inverting the lru lock/bp->b_lock here, so use a trylock.
1891 	 * If we fail to get the lock, just skip it.
1892 	 */
1893 	if (!spin_trylock(&bp->b_lock))
1894 		return LRU_SKIP;
1895 	/*
1896 	 * Decrement the b_lru_ref count unless the value is already
1897 	 * zero. If the value is already zero, we need to reclaim the
1898 	 * buffer, otherwise it gets another trip through the LRU.
1899 	 */
1900 	if (atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
1901 		spin_unlock(&bp->b_lock);
1902 		return LRU_ROTATE;
1903 	}
1904 
1905 	bp->b_state |= XFS_BSTATE_DISPOSE;
1906 	list_lru_isolate_move(lru, item, dispose);
1907 	spin_unlock(&bp->b_lock);
1908 	return LRU_REMOVED;
1909 }
1910 
1911 static unsigned long
1912 xfs_buftarg_shrink_scan(
1913 	struct shrinker		*shrink,
1914 	struct shrink_control	*sc)
1915 {
1916 	struct xfs_buftarg	*btp = container_of(shrink,
1917 					struct xfs_buftarg, bt_shrinker);
1918 	LIST_HEAD(dispose);
1919 	unsigned long		freed;
1920 
1921 	freed = list_lru_shrink_walk(&btp->bt_lru, sc,
1922 				     xfs_buftarg_isolate, &dispose);
1923 
1924 	while (!list_empty(&dispose)) {
1925 		struct xfs_buf *bp;
1926 		bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1927 		list_del_init(&bp->b_lru);
1928 		xfs_buf_rele(bp);
1929 	}
1930 
1931 	return freed;
1932 }
1933 
1934 static unsigned long
1935 xfs_buftarg_shrink_count(
1936 	struct shrinker		*shrink,
1937 	struct shrink_control	*sc)
1938 {
1939 	struct xfs_buftarg	*btp = container_of(shrink,
1940 					struct xfs_buftarg, bt_shrinker);
1941 	return list_lru_shrink_count(&btp->bt_lru, sc);
1942 }
1943 
1944 void
1945 xfs_free_buftarg(
1946 	struct xfs_buftarg	*btp)
1947 {
1948 	struct block_device	*bdev = btp->bt_bdev;
1949 
1950 	unregister_shrinker(&btp->bt_shrinker);
1951 	ASSERT(percpu_counter_sum(&btp->bt_io_count) == 0);
1952 	percpu_counter_destroy(&btp->bt_io_count);
1953 	list_lru_destroy(&btp->bt_lru);
1954 
1955 	fs_put_dax(btp->bt_daxdev, btp->bt_mount);
1956 	/* the main block device is closed by kill_block_super */
1957 	if (bdev != btp->bt_mount->m_super->s_bdev)
1958 		blkdev_put(bdev, btp->bt_mount->m_super);
1959 
1960 	kmem_free(btp);
1961 }
1962 
1963 int
1964 xfs_setsize_buftarg(
1965 	xfs_buftarg_t		*btp,
1966 	unsigned int		sectorsize)
1967 {
1968 	/* Set up metadata sector size info */
1969 	btp->bt_meta_sectorsize = sectorsize;
1970 	btp->bt_meta_sectormask = sectorsize - 1;
1971 
1972 	if (set_blocksize(btp->bt_bdev, sectorsize)) {
1973 		xfs_warn(btp->bt_mount,
1974 			"Cannot set_blocksize to %u on device %pg",
1975 			sectorsize, btp->bt_bdev);
1976 		return -EINVAL;
1977 	}
1978 
1979 	/* Set up device logical sector size mask */
1980 	btp->bt_logical_sectorsize = bdev_logical_block_size(btp->bt_bdev);
1981 	btp->bt_logical_sectormask = bdev_logical_block_size(btp->bt_bdev) - 1;
1982 
1983 	return 0;
1984 }
1985 
1986 /*
1987  * When allocating the initial buffer target we have not yet
1988  * read in the superblock, so don't know what sized sectors
1989  * are being used at this early stage.  Play safe.
1990  */
1991 STATIC int
1992 xfs_setsize_buftarg_early(
1993 	xfs_buftarg_t		*btp,
1994 	struct block_device	*bdev)
1995 {
1996 	return xfs_setsize_buftarg(btp, bdev_logical_block_size(bdev));
1997 }
1998 
1999 struct xfs_buftarg *
2000 xfs_alloc_buftarg(
2001 	struct xfs_mount	*mp,
2002 	struct block_device	*bdev)
2003 {
2004 	xfs_buftarg_t		*btp;
2005 	const struct dax_holder_operations *ops = NULL;
2006 
2007 #if defined(CONFIG_FS_DAX) && defined(CONFIG_MEMORY_FAILURE)
2008 	ops = &xfs_dax_holder_operations;
2009 #endif
2010 	btp = kmem_zalloc(sizeof(*btp), KM_NOFS);
2011 
2012 	btp->bt_mount = mp;
2013 	btp->bt_dev =  bdev->bd_dev;
2014 	btp->bt_bdev = bdev;
2015 	btp->bt_daxdev = fs_dax_get_by_bdev(bdev, &btp->bt_dax_part_off,
2016 					    mp, ops);
2017 
2018 	/*
2019 	 * Buffer IO error rate limiting. Limit it to no more than 10 messages
2020 	 * per 30 seconds so as to not spam logs too much on repeated errors.
2021 	 */
2022 	ratelimit_state_init(&btp->bt_ioerror_rl, 30 * HZ,
2023 			     DEFAULT_RATELIMIT_BURST);
2024 
2025 	if (xfs_setsize_buftarg_early(btp, bdev))
2026 		goto error_free;
2027 
2028 	if (list_lru_init(&btp->bt_lru))
2029 		goto error_free;
2030 
2031 	if (percpu_counter_init(&btp->bt_io_count, 0, GFP_KERNEL))
2032 		goto error_lru;
2033 
2034 	btp->bt_shrinker.count_objects = xfs_buftarg_shrink_count;
2035 	btp->bt_shrinker.scan_objects = xfs_buftarg_shrink_scan;
2036 	btp->bt_shrinker.seeks = DEFAULT_SEEKS;
2037 	btp->bt_shrinker.flags = SHRINKER_NUMA_AWARE;
2038 	if (register_shrinker(&btp->bt_shrinker, "xfs-buf:%s",
2039 			      mp->m_super->s_id))
2040 		goto error_pcpu;
2041 	return btp;
2042 
2043 error_pcpu:
2044 	percpu_counter_destroy(&btp->bt_io_count);
2045 error_lru:
2046 	list_lru_destroy(&btp->bt_lru);
2047 error_free:
2048 	kmem_free(btp);
2049 	return NULL;
2050 }
2051 
2052 /*
2053  * Cancel a delayed write list.
2054  *
2055  * Remove each buffer from the list, clear the delwri queue flag and drop the
2056  * associated buffer reference.
2057  */
2058 void
2059 xfs_buf_delwri_cancel(
2060 	struct list_head	*list)
2061 {
2062 	struct xfs_buf		*bp;
2063 
2064 	while (!list_empty(list)) {
2065 		bp = list_first_entry(list, struct xfs_buf, b_list);
2066 
2067 		xfs_buf_lock(bp);
2068 		bp->b_flags &= ~_XBF_DELWRI_Q;
2069 		list_del_init(&bp->b_list);
2070 		xfs_buf_relse(bp);
2071 	}
2072 }
2073 
2074 /*
2075  * Add a buffer to the delayed write list.
2076  *
2077  * This queues a buffer for writeout if it hasn't already been.  Note that
2078  * neither this routine nor the buffer list submission functions perform
2079  * any internal synchronization.  It is expected that the lists are thread-local
2080  * to the callers.
2081  *
2082  * Returns true if we queued up the buffer, or false if it already had
2083  * been on the buffer list.
2084  */
2085 bool
2086 xfs_buf_delwri_queue(
2087 	struct xfs_buf		*bp,
2088 	struct list_head	*list)
2089 {
2090 	ASSERT(xfs_buf_islocked(bp));
2091 	ASSERT(!(bp->b_flags & XBF_READ));
2092 
2093 	/*
2094 	 * If the buffer is already marked delwri it already is queued up
2095 	 * by someone else for imediate writeout.  Just ignore it in that
2096 	 * case.
2097 	 */
2098 	if (bp->b_flags & _XBF_DELWRI_Q) {
2099 		trace_xfs_buf_delwri_queued(bp, _RET_IP_);
2100 		return false;
2101 	}
2102 
2103 	trace_xfs_buf_delwri_queue(bp, _RET_IP_);
2104 
2105 	/*
2106 	 * If a buffer gets written out synchronously or marked stale while it
2107 	 * is on a delwri list we lazily remove it. To do this, the other party
2108 	 * clears the  _XBF_DELWRI_Q flag but otherwise leaves the buffer alone.
2109 	 * It remains referenced and on the list.  In a rare corner case it
2110 	 * might get readded to a delwri list after the synchronous writeout, in
2111 	 * which case we need just need to re-add the flag here.
2112 	 */
2113 	bp->b_flags |= _XBF_DELWRI_Q;
2114 	if (list_empty(&bp->b_list)) {
2115 		atomic_inc(&bp->b_hold);
2116 		list_add_tail(&bp->b_list, list);
2117 	}
2118 
2119 	return true;
2120 }
2121 
2122 /*
2123  * Compare function is more complex than it needs to be because
2124  * the return value is only 32 bits and we are doing comparisons
2125  * on 64 bit values
2126  */
2127 static int
2128 xfs_buf_cmp(
2129 	void			*priv,
2130 	const struct list_head	*a,
2131 	const struct list_head	*b)
2132 {
2133 	struct xfs_buf	*ap = container_of(a, struct xfs_buf, b_list);
2134 	struct xfs_buf	*bp = container_of(b, struct xfs_buf, b_list);
2135 	xfs_daddr_t		diff;
2136 
2137 	diff = ap->b_maps[0].bm_bn - bp->b_maps[0].bm_bn;
2138 	if (diff < 0)
2139 		return -1;
2140 	if (diff > 0)
2141 		return 1;
2142 	return 0;
2143 }
2144 
2145 /*
2146  * Submit buffers for write. If wait_list is specified, the buffers are
2147  * submitted using sync I/O and placed on the wait list such that the caller can
2148  * iowait each buffer. Otherwise async I/O is used and the buffers are released
2149  * at I/O completion time. In either case, buffers remain locked until I/O
2150  * completes and the buffer is released from the queue.
2151  */
2152 static int
2153 xfs_buf_delwri_submit_buffers(
2154 	struct list_head	*buffer_list,
2155 	struct list_head	*wait_list)
2156 {
2157 	struct xfs_buf		*bp, *n;
2158 	int			pinned = 0;
2159 	struct blk_plug		plug;
2160 
2161 	list_sort(NULL, buffer_list, xfs_buf_cmp);
2162 
2163 	blk_start_plug(&plug);
2164 	list_for_each_entry_safe(bp, n, buffer_list, b_list) {
2165 		if (!wait_list) {
2166 			if (!xfs_buf_trylock(bp))
2167 				continue;
2168 			if (xfs_buf_ispinned(bp)) {
2169 				xfs_buf_unlock(bp);
2170 				pinned++;
2171 				continue;
2172 			}
2173 		} else {
2174 			xfs_buf_lock(bp);
2175 		}
2176 
2177 		/*
2178 		 * Someone else might have written the buffer synchronously or
2179 		 * marked it stale in the meantime.  In that case only the
2180 		 * _XBF_DELWRI_Q flag got cleared, and we have to drop the
2181 		 * reference and remove it from the list here.
2182 		 */
2183 		if (!(bp->b_flags & _XBF_DELWRI_Q)) {
2184 			list_del_init(&bp->b_list);
2185 			xfs_buf_relse(bp);
2186 			continue;
2187 		}
2188 
2189 		trace_xfs_buf_delwri_split(bp, _RET_IP_);
2190 
2191 		/*
2192 		 * If we have a wait list, each buffer (and associated delwri
2193 		 * queue reference) transfers to it and is submitted
2194 		 * synchronously. Otherwise, drop the buffer from the delwri
2195 		 * queue and submit async.
2196 		 */
2197 		bp->b_flags &= ~_XBF_DELWRI_Q;
2198 		bp->b_flags |= XBF_WRITE;
2199 		if (wait_list) {
2200 			bp->b_flags &= ~XBF_ASYNC;
2201 			list_move_tail(&bp->b_list, wait_list);
2202 		} else {
2203 			bp->b_flags |= XBF_ASYNC;
2204 			list_del_init(&bp->b_list);
2205 		}
2206 		__xfs_buf_submit(bp, false);
2207 	}
2208 	blk_finish_plug(&plug);
2209 
2210 	return pinned;
2211 }
2212 
2213 /*
2214  * Write out a buffer list asynchronously.
2215  *
2216  * This will take the @buffer_list, write all non-locked and non-pinned buffers
2217  * out and not wait for I/O completion on any of the buffers.  This interface
2218  * is only safely useable for callers that can track I/O completion by higher
2219  * level means, e.g. AIL pushing as the @buffer_list is consumed in this
2220  * function.
2221  *
2222  * Note: this function will skip buffers it would block on, and in doing so
2223  * leaves them on @buffer_list so they can be retried on a later pass. As such,
2224  * it is up to the caller to ensure that the buffer list is fully submitted or
2225  * cancelled appropriately when they are finished with the list. Failure to
2226  * cancel or resubmit the list until it is empty will result in leaked buffers
2227  * at unmount time.
2228  */
2229 int
2230 xfs_buf_delwri_submit_nowait(
2231 	struct list_head	*buffer_list)
2232 {
2233 	return xfs_buf_delwri_submit_buffers(buffer_list, NULL);
2234 }
2235 
2236 /*
2237  * Write out a buffer list synchronously.
2238  *
2239  * This will take the @buffer_list, write all buffers out and wait for I/O
2240  * completion on all of the buffers. @buffer_list is consumed by the function,
2241  * so callers must have some other way of tracking buffers if they require such
2242  * functionality.
2243  */
2244 int
2245 xfs_buf_delwri_submit(
2246 	struct list_head	*buffer_list)
2247 {
2248 	LIST_HEAD		(wait_list);
2249 	int			error = 0, error2;
2250 	struct xfs_buf		*bp;
2251 
2252 	xfs_buf_delwri_submit_buffers(buffer_list, &wait_list);
2253 
2254 	/* Wait for IO to complete. */
2255 	while (!list_empty(&wait_list)) {
2256 		bp = list_first_entry(&wait_list, struct xfs_buf, b_list);
2257 
2258 		list_del_init(&bp->b_list);
2259 
2260 		/*
2261 		 * Wait on the locked buffer, check for errors and unlock and
2262 		 * release the delwri queue reference.
2263 		 */
2264 		error2 = xfs_buf_iowait(bp);
2265 		xfs_buf_relse(bp);
2266 		if (!error)
2267 			error = error2;
2268 	}
2269 
2270 	return error;
2271 }
2272 
2273 /*
2274  * Push a single buffer on a delwri queue.
2275  *
2276  * The purpose of this function is to submit a single buffer of a delwri queue
2277  * and return with the buffer still on the original queue. The waiting delwri
2278  * buffer submission infrastructure guarantees transfer of the delwri queue
2279  * buffer reference to a temporary wait list. We reuse this infrastructure to
2280  * transfer the buffer back to the original queue.
2281  *
2282  * Note the buffer transitions from the queued state, to the submitted and wait
2283  * listed state and back to the queued state during this call. The buffer
2284  * locking and queue management logic between _delwri_pushbuf() and
2285  * _delwri_queue() guarantee that the buffer cannot be queued to another list
2286  * before returning.
2287  */
2288 int
2289 xfs_buf_delwri_pushbuf(
2290 	struct xfs_buf		*bp,
2291 	struct list_head	*buffer_list)
2292 {
2293 	LIST_HEAD		(submit_list);
2294 	int			error;
2295 
2296 	ASSERT(bp->b_flags & _XBF_DELWRI_Q);
2297 
2298 	trace_xfs_buf_delwri_pushbuf(bp, _RET_IP_);
2299 
2300 	/*
2301 	 * Isolate the buffer to a new local list so we can submit it for I/O
2302 	 * independently from the rest of the original list.
2303 	 */
2304 	xfs_buf_lock(bp);
2305 	list_move(&bp->b_list, &submit_list);
2306 	xfs_buf_unlock(bp);
2307 
2308 	/*
2309 	 * Delwri submission clears the DELWRI_Q buffer flag and returns with
2310 	 * the buffer on the wait list with the original reference. Rather than
2311 	 * bounce the buffer from a local wait list back to the original list
2312 	 * after I/O completion, reuse the original list as the wait list.
2313 	 */
2314 	xfs_buf_delwri_submit_buffers(&submit_list, buffer_list);
2315 
2316 	/*
2317 	 * The buffer is now locked, under I/O and wait listed on the original
2318 	 * delwri queue. Wait for I/O completion, restore the DELWRI_Q flag and
2319 	 * return with the buffer unlocked and on the original queue.
2320 	 */
2321 	error = xfs_buf_iowait(bp);
2322 	bp->b_flags |= _XBF_DELWRI_Q;
2323 	xfs_buf_unlock(bp);
2324 
2325 	return error;
2326 }
2327 
2328 void xfs_buf_set_ref(struct xfs_buf *bp, int lru_ref)
2329 {
2330 	/*
2331 	 * Set the lru reference count to 0 based on the error injection tag.
2332 	 * This allows userspace to disrupt buffer caching for debug/testing
2333 	 * purposes.
2334 	 */
2335 	if (XFS_TEST_ERROR(false, bp->b_mount, XFS_ERRTAG_BUF_LRU_REF))
2336 		lru_ref = 0;
2337 
2338 	atomic_set(&bp->b_lru_ref, lru_ref);
2339 }
2340 
2341 /*
2342  * Verify an on-disk magic value against the magic value specified in the
2343  * verifier structure. The verifier magic is in disk byte order so the caller is
2344  * expected to pass the value directly from disk.
2345  */
2346 bool
2347 xfs_verify_magic(
2348 	struct xfs_buf		*bp,
2349 	__be32			dmagic)
2350 {
2351 	struct xfs_mount	*mp = bp->b_mount;
2352 	int			idx;
2353 
2354 	idx = xfs_has_crc(mp);
2355 	if (WARN_ON(!bp->b_ops || !bp->b_ops->magic[idx]))
2356 		return false;
2357 	return dmagic == bp->b_ops->magic[idx];
2358 }
2359 /*
2360  * Verify an on-disk magic value against the magic value specified in the
2361  * verifier structure. The verifier magic is in disk byte order so the caller is
2362  * expected to pass the value directly from disk.
2363  */
2364 bool
2365 xfs_verify_magic16(
2366 	struct xfs_buf		*bp,
2367 	__be16			dmagic)
2368 {
2369 	struct xfs_mount	*mp = bp->b_mount;
2370 	int			idx;
2371 
2372 	idx = xfs_has_crc(mp);
2373 	if (WARN_ON(!bp->b_ops || !bp->b_ops->magic16[idx]))
2374 		return false;
2375 	return dmagic == bp->b_ops->magic16[idx];
2376 }
2377