1 /* 2 * Copyright (c) 2000-2006 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include <linux/stddef.h> 20 #include <linux/errno.h> 21 #include <linux/gfp.h> 22 #include <linux/pagemap.h> 23 #include <linux/init.h> 24 #include <linux/vmalloc.h> 25 #include <linux/bio.h> 26 #include <linux/sysctl.h> 27 #include <linux/proc_fs.h> 28 #include <linux/workqueue.h> 29 #include <linux/percpu.h> 30 #include <linux/blkdev.h> 31 #include <linux/hash.h> 32 #include <linux/kthread.h> 33 #include <linux/migrate.h> 34 #include <linux/backing-dev.h> 35 #include <linux/freezer.h> 36 37 #include "xfs_sb.h" 38 #include "xfs_log.h" 39 #include "xfs_ag.h" 40 #include "xfs_mount.h" 41 #include "xfs_trace.h" 42 43 static kmem_zone_t *xfs_buf_zone; 44 45 static struct workqueue_struct *xfslogd_workqueue; 46 47 #ifdef XFS_BUF_LOCK_TRACKING 48 # define XB_SET_OWNER(bp) ((bp)->b_last_holder = current->pid) 49 # define XB_CLEAR_OWNER(bp) ((bp)->b_last_holder = -1) 50 # define XB_GET_OWNER(bp) ((bp)->b_last_holder) 51 #else 52 # define XB_SET_OWNER(bp) do { } while (0) 53 # define XB_CLEAR_OWNER(bp) do { } while (0) 54 # define XB_GET_OWNER(bp) do { } while (0) 55 #endif 56 57 #define xb_to_gfp(flags) \ 58 ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : GFP_NOFS) | __GFP_NOWARN) 59 60 61 static inline int 62 xfs_buf_is_vmapped( 63 struct xfs_buf *bp) 64 { 65 /* 66 * Return true if the buffer is vmapped. 67 * 68 * b_addr is null if the buffer is not mapped, but the code is clever 69 * enough to know it doesn't have to map a single page, so the check has 70 * to be both for b_addr and bp->b_page_count > 1. 71 */ 72 return bp->b_addr && bp->b_page_count > 1; 73 } 74 75 static inline int 76 xfs_buf_vmap_len( 77 struct xfs_buf *bp) 78 { 79 return (bp->b_page_count * PAGE_SIZE) - bp->b_offset; 80 } 81 82 /* 83 * xfs_buf_lru_add - add a buffer to the LRU. 84 * 85 * The LRU takes a new reference to the buffer so that it will only be freed 86 * once the shrinker takes the buffer off the LRU. 87 */ 88 STATIC void 89 xfs_buf_lru_add( 90 struct xfs_buf *bp) 91 { 92 struct xfs_buftarg *btp = bp->b_target; 93 94 spin_lock(&btp->bt_lru_lock); 95 if (list_empty(&bp->b_lru)) { 96 atomic_inc(&bp->b_hold); 97 list_add_tail(&bp->b_lru, &btp->bt_lru); 98 btp->bt_lru_nr++; 99 bp->b_lru_flags &= ~_XBF_LRU_DISPOSE; 100 } 101 spin_unlock(&btp->bt_lru_lock); 102 } 103 104 /* 105 * xfs_buf_lru_del - remove a buffer from the LRU 106 * 107 * The unlocked check is safe here because it only occurs when there are not 108 * b_lru_ref counts left on the inode under the pag->pag_buf_lock. it is there 109 * to optimise the shrinker removing the buffer from the LRU and calling 110 * xfs_buf_free(). i.e. it removes an unnecessary round trip on the 111 * bt_lru_lock. 112 */ 113 STATIC void 114 xfs_buf_lru_del( 115 struct xfs_buf *bp) 116 { 117 struct xfs_buftarg *btp = bp->b_target; 118 119 if (list_empty(&bp->b_lru)) 120 return; 121 122 spin_lock(&btp->bt_lru_lock); 123 if (!list_empty(&bp->b_lru)) { 124 list_del_init(&bp->b_lru); 125 btp->bt_lru_nr--; 126 } 127 spin_unlock(&btp->bt_lru_lock); 128 } 129 130 /* 131 * When we mark a buffer stale, we remove the buffer from the LRU and clear the 132 * b_lru_ref count so that the buffer is freed immediately when the buffer 133 * reference count falls to zero. If the buffer is already on the LRU, we need 134 * to remove the reference that LRU holds on the buffer. 135 * 136 * This prevents build-up of stale buffers on the LRU. 137 */ 138 void 139 xfs_buf_stale( 140 struct xfs_buf *bp) 141 { 142 ASSERT(xfs_buf_islocked(bp)); 143 144 bp->b_flags |= XBF_STALE; 145 146 /* 147 * Clear the delwri status so that a delwri queue walker will not 148 * flush this buffer to disk now that it is stale. The delwri queue has 149 * a reference to the buffer, so this is safe to do. 150 */ 151 bp->b_flags &= ~_XBF_DELWRI_Q; 152 153 atomic_set(&(bp)->b_lru_ref, 0); 154 if (!list_empty(&bp->b_lru)) { 155 struct xfs_buftarg *btp = bp->b_target; 156 157 spin_lock(&btp->bt_lru_lock); 158 if (!list_empty(&bp->b_lru) && 159 !(bp->b_lru_flags & _XBF_LRU_DISPOSE)) { 160 list_del_init(&bp->b_lru); 161 btp->bt_lru_nr--; 162 atomic_dec(&bp->b_hold); 163 } 164 spin_unlock(&btp->bt_lru_lock); 165 } 166 ASSERT(atomic_read(&bp->b_hold) >= 1); 167 } 168 169 static int 170 xfs_buf_get_maps( 171 struct xfs_buf *bp, 172 int map_count) 173 { 174 ASSERT(bp->b_maps == NULL); 175 bp->b_map_count = map_count; 176 177 if (map_count == 1) { 178 bp->b_maps = &bp->b_map; 179 return 0; 180 } 181 182 bp->b_maps = kmem_zalloc(map_count * sizeof(struct xfs_buf_map), 183 KM_NOFS); 184 if (!bp->b_maps) 185 return ENOMEM; 186 return 0; 187 } 188 189 /* 190 * Frees b_pages if it was allocated. 191 */ 192 static void 193 xfs_buf_free_maps( 194 struct xfs_buf *bp) 195 { 196 if (bp->b_maps != &bp->b_map) { 197 kmem_free(bp->b_maps); 198 bp->b_maps = NULL; 199 } 200 } 201 202 struct xfs_buf * 203 _xfs_buf_alloc( 204 struct xfs_buftarg *target, 205 struct xfs_buf_map *map, 206 int nmaps, 207 xfs_buf_flags_t flags) 208 { 209 struct xfs_buf *bp; 210 int error; 211 int i; 212 213 bp = kmem_zone_zalloc(xfs_buf_zone, KM_NOFS); 214 if (unlikely(!bp)) 215 return NULL; 216 217 /* 218 * We don't want certain flags to appear in b_flags unless they are 219 * specifically set by later operations on the buffer. 220 */ 221 flags &= ~(XBF_UNMAPPED | XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD); 222 223 atomic_set(&bp->b_hold, 1); 224 atomic_set(&bp->b_lru_ref, 1); 225 init_completion(&bp->b_iowait); 226 INIT_LIST_HEAD(&bp->b_lru); 227 INIT_LIST_HEAD(&bp->b_list); 228 RB_CLEAR_NODE(&bp->b_rbnode); 229 sema_init(&bp->b_sema, 0); /* held, no waiters */ 230 XB_SET_OWNER(bp); 231 bp->b_target = target; 232 bp->b_flags = flags; 233 234 /* 235 * Set length and io_length to the same value initially. 236 * I/O routines should use io_length, which will be the same in 237 * most cases but may be reset (e.g. XFS recovery). 238 */ 239 error = xfs_buf_get_maps(bp, nmaps); 240 if (error) { 241 kmem_zone_free(xfs_buf_zone, bp); 242 return NULL; 243 } 244 245 bp->b_bn = map[0].bm_bn; 246 bp->b_length = 0; 247 for (i = 0; i < nmaps; i++) { 248 bp->b_maps[i].bm_bn = map[i].bm_bn; 249 bp->b_maps[i].bm_len = map[i].bm_len; 250 bp->b_length += map[i].bm_len; 251 } 252 bp->b_io_length = bp->b_length; 253 254 atomic_set(&bp->b_pin_count, 0); 255 init_waitqueue_head(&bp->b_waiters); 256 257 XFS_STATS_INC(xb_create); 258 trace_xfs_buf_init(bp, _RET_IP_); 259 260 return bp; 261 } 262 263 /* 264 * Allocate a page array capable of holding a specified number 265 * of pages, and point the page buf at it. 266 */ 267 STATIC int 268 _xfs_buf_get_pages( 269 xfs_buf_t *bp, 270 int page_count, 271 xfs_buf_flags_t flags) 272 { 273 /* Make sure that we have a page list */ 274 if (bp->b_pages == NULL) { 275 bp->b_page_count = page_count; 276 if (page_count <= XB_PAGES) { 277 bp->b_pages = bp->b_page_array; 278 } else { 279 bp->b_pages = kmem_alloc(sizeof(struct page *) * 280 page_count, KM_NOFS); 281 if (bp->b_pages == NULL) 282 return -ENOMEM; 283 } 284 memset(bp->b_pages, 0, sizeof(struct page *) * page_count); 285 } 286 return 0; 287 } 288 289 /* 290 * Frees b_pages if it was allocated. 291 */ 292 STATIC void 293 _xfs_buf_free_pages( 294 xfs_buf_t *bp) 295 { 296 if (bp->b_pages != bp->b_page_array) { 297 kmem_free(bp->b_pages); 298 bp->b_pages = NULL; 299 } 300 } 301 302 /* 303 * Releases the specified buffer. 304 * 305 * The modification state of any associated pages is left unchanged. 306 * The buffer most not be on any hash - use xfs_buf_rele instead for 307 * hashed and refcounted buffers 308 */ 309 void 310 xfs_buf_free( 311 xfs_buf_t *bp) 312 { 313 trace_xfs_buf_free(bp, _RET_IP_); 314 315 ASSERT(list_empty(&bp->b_lru)); 316 317 if (bp->b_flags & _XBF_PAGES) { 318 uint i; 319 320 if (xfs_buf_is_vmapped(bp)) 321 vm_unmap_ram(bp->b_addr - bp->b_offset, 322 bp->b_page_count); 323 324 for (i = 0; i < bp->b_page_count; i++) { 325 struct page *page = bp->b_pages[i]; 326 327 __free_page(page); 328 } 329 } else if (bp->b_flags & _XBF_KMEM) 330 kmem_free(bp->b_addr); 331 _xfs_buf_free_pages(bp); 332 xfs_buf_free_maps(bp); 333 kmem_zone_free(xfs_buf_zone, bp); 334 } 335 336 /* 337 * Allocates all the pages for buffer in question and builds it's page list. 338 */ 339 STATIC int 340 xfs_buf_allocate_memory( 341 xfs_buf_t *bp, 342 uint flags) 343 { 344 size_t size; 345 size_t nbytes, offset; 346 gfp_t gfp_mask = xb_to_gfp(flags); 347 unsigned short page_count, i; 348 xfs_off_t start, end; 349 int error; 350 351 /* 352 * for buffers that are contained within a single page, just allocate 353 * the memory from the heap - there's no need for the complexity of 354 * page arrays to keep allocation down to order 0. 355 */ 356 size = BBTOB(bp->b_length); 357 if (size < PAGE_SIZE) { 358 bp->b_addr = kmem_alloc(size, KM_NOFS); 359 if (!bp->b_addr) { 360 /* low memory - use alloc_page loop instead */ 361 goto use_alloc_page; 362 } 363 364 if (((unsigned long)(bp->b_addr + size - 1) & PAGE_MASK) != 365 ((unsigned long)bp->b_addr & PAGE_MASK)) { 366 /* b_addr spans two pages - use alloc_page instead */ 367 kmem_free(bp->b_addr); 368 bp->b_addr = NULL; 369 goto use_alloc_page; 370 } 371 bp->b_offset = offset_in_page(bp->b_addr); 372 bp->b_pages = bp->b_page_array; 373 bp->b_pages[0] = virt_to_page(bp->b_addr); 374 bp->b_page_count = 1; 375 bp->b_flags |= _XBF_KMEM; 376 return 0; 377 } 378 379 use_alloc_page: 380 start = BBTOB(bp->b_map.bm_bn) >> PAGE_SHIFT; 381 end = (BBTOB(bp->b_map.bm_bn + bp->b_length) + PAGE_SIZE - 1) 382 >> PAGE_SHIFT; 383 page_count = end - start; 384 error = _xfs_buf_get_pages(bp, page_count, flags); 385 if (unlikely(error)) 386 return error; 387 388 offset = bp->b_offset; 389 bp->b_flags |= _XBF_PAGES; 390 391 for (i = 0; i < bp->b_page_count; i++) { 392 struct page *page; 393 uint retries = 0; 394 retry: 395 page = alloc_page(gfp_mask); 396 if (unlikely(page == NULL)) { 397 if (flags & XBF_READ_AHEAD) { 398 bp->b_page_count = i; 399 error = ENOMEM; 400 goto out_free_pages; 401 } 402 403 /* 404 * This could deadlock. 405 * 406 * But until all the XFS lowlevel code is revamped to 407 * handle buffer allocation failures we can't do much. 408 */ 409 if (!(++retries % 100)) 410 xfs_err(NULL, 411 "possible memory allocation deadlock in %s (mode:0x%x)", 412 __func__, gfp_mask); 413 414 XFS_STATS_INC(xb_page_retries); 415 congestion_wait(BLK_RW_ASYNC, HZ/50); 416 goto retry; 417 } 418 419 XFS_STATS_INC(xb_page_found); 420 421 nbytes = min_t(size_t, size, PAGE_SIZE - offset); 422 size -= nbytes; 423 bp->b_pages[i] = page; 424 offset = 0; 425 } 426 return 0; 427 428 out_free_pages: 429 for (i = 0; i < bp->b_page_count; i++) 430 __free_page(bp->b_pages[i]); 431 return error; 432 } 433 434 /* 435 * Map buffer into kernel address-space if necessary. 436 */ 437 STATIC int 438 _xfs_buf_map_pages( 439 xfs_buf_t *bp, 440 uint flags) 441 { 442 ASSERT(bp->b_flags & _XBF_PAGES); 443 if (bp->b_page_count == 1) { 444 /* A single page buffer is always mappable */ 445 bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset; 446 } else if (flags & XBF_UNMAPPED) { 447 bp->b_addr = NULL; 448 } else { 449 int retried = 0; 450 451 do { 452 bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count, 453 -1, PAGE_KERNEL); 454 if (bp->b_addr) 455 break; 456 vm_unmap_aliases(); 457 } while (retried++ <= 1); 458 459 if (!bp->b_addr) 460 return -ENOMEM; 461 bp->b_addr += bp->b_offset; 462 } 463 464 return 0; 465 } 466 467 /* 468 * Finding and Reading Buffers 469 */ 470 471 /* 472 * Look up, and creates if absent, a lockable buffer for 473 * a given range of an inode. The buffer is returned 474 * locked. No I/O is implied by this call. 475 */ 476 xfs_buf_t * 477 _xfs_buf_find( 478 struct xfs_buftarg *btp, 479 struct xfs_buf_map *map, 480 int nmaps, 481 xfs_buf_flags_t flags, 482 xfs_buf_t *new_bp) 483 { 484 size_t numbytes; 485 struct xfs_perag *pag; 486 struct rb_node **rbp; 487 struct rb_node *parent; 488 xfs_buf_t *bp; 489 xfs_daddr_t blkno = map[0].bm_bn; 490 int numblks = 0; 491 int i; 492 493 for (i = 0; i < nmaps; i++) 494 numblks += map[i].bm_len; 495 numbytes = BBTOB(numblks); 496 497 /* Check for IOs smaller than the sector size / not sector aligned */ 498 ASSERT(!(numbytes < (1 << btp->bt_sshift))); 499 ASSERT(!(BBTOB(blkno) & (xfs_off_t)btp->bt_smask)); 500 501 /* get tree root */ 502 pag = xfs_perag_get(btp->bt_mount, 503 xfs_daddr_to_agno(btp->bt_mount, blkno)); 504 505 /* walk tree */ 506 spin_lock(&pag->pag_buf_lock); 507 rbp = &pag->pag_buf_tree.rb_node; 508 parent = NULL; 509 bp = NULL; 510 while (*rbp) { 511 parent = *rbp; 512 bp = rb_entry(parent, struct xfs_buf, b_rbnode); 513 514 if (blkno < bp->b_bn) 515 rbp = &(*rbp)->rb_left; 516 else if (blkno > bp->b_bn) 517 rbp = &(*rbp)->rb_right; 518 else { 519 /* 520 * found a block number match. If the range doesn't 521 * match, the only way this is allowed is if the buffer 522 * in the cache is stale and the transaction that made 523 * it stale has not yet committed. i.e. we are 524 * reallocating a busy extent. Skip this buffer and 525 * continue searching to the right for an exact match. 526 */ 527 if (bp->b_length != numblks) { 528 ASSERT(bp->b_flags & XBF_STALE); 529 rbp = &(*rbp)->rb_right; 530 continue; 531 } 532 atomic_inc(&bp->b_hold); 533 goto found; 534 } 535 } 536 537 /* No match found */ 538 if (new_bp) { 539 rb_link_node(&new_bp->b_rbnode, parent, rbp); 540 rb_insert_color(&new_bp->b_rbnode, &pag->pag_buf_tree); 541 /* the buffer keeps the perag reference until it is freed */ 542 new_bp->b_pag = pag; 543 spin_unlock(&pag->pag_buf_lock); 544 } else { 545 XFS_STATS_INC(xb_miss_locked); 546 spin_unlock(&pag->pag_buf_lock); 547 xfs_perag_put(pag); 548 } 549 return new_bp; 550 551 found: 552 spin_unlock(&pag->pag_buf_lock); 553 xfs_perag_put(pag); 554 555 if (!xfs_buf_trylock(bp)) { 556 if (flags & XBF_TRYLOCK) { 557 xfs_buf_rele(bp); 558 XFS_STATS_INC(xb_busy_locked); 559 return NULL; 560 } 561 xfs_buf_lock(bp); 562 XFS_STATS_INC(xb_get_locked_waited); 563 } 564 565 /* 566 * if the buffer is stale, clear all the external state associated with 567 * it. We need to keep flags such as how we allocated the buffer memory 568 * intact here. 569 */ 570 if (bp->b_flags & XBF_STALE) { 571 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0); 572 bp->b_flags &= _XBF_KMEM | _XBF_PAGES; 573 } 574 575 trace_xfs_buf_find(bp, flags, _RET_IP_); 576 XFS_STATS_INC(xb_get_locked); 577 return bp; 578 } 579 580 /* 581 * Assembles a buffer covering the specified range. The code is optimised for 582 * cache hits, as metadata intensive workloads will see 3 orders of magnitude 583 * more hits than misses. 584 */ 585 struct xfs_buf * 586 xfs_buf_get_map( 587 struct xfs_buftarg *target, 588 struct xfs_buf_map *map, 589 int nmaps, 590 xfs_buf_flags_t flags) 591 { 592 struct xfs_buf *bp; 593 struct xfs_buf *new_bp; 594 int error = 0; 595 596 bp = _xfs_buf_find(target, map, nmaps, flags, NULL); 597 if (likely(bp)) 598 goto found; 599 600 new_bp = _xfs_buf_alloc(target, map, nmaps, flags); 601 if (unlikely(!new_bp)) 602 return NULL; 603 604 error = xfs_buf_allocate_memory(new_bp, flags); 605 if (error) { 606 xfs_buf_free(new_bp); 607 return NULL; 608 } 609 610 bp = _xfs_buf_find(target, map, nmaps, flags, new_bp); 611 if (!bp) { 612 xfs_buf_free(new_bp); 613 return NULL; 614 } 615 616 if (bp != new_bp) 617 xfs_buf_free(new_bp); 618 619 found: 620 if (!bp->b_addr) { 621 error = _xfs_buf_map_pages(bp, flags); 622 if (unlikely(error)) { 623 xfs_warn(target->bt_mount, 624 "%s: failed to map pages\n", __func__); 625 xfs_buf_relse(bp); 626 return NULL; 627 } 628 } 629 630 XFS_STATS_INC(xb_get); 631 trace_xfs_buf_get(bp, flags, _RET_IP_); 632 return bp; 633 } 634 635 STATIC int 636 _xfs_buf_read( 637 xfs_buf_t *bp, 638 xfs_buf_flags_t flags) 639 { 640 ASSERT(!(flags & XBF_WRITE)); 641 ASSERT(bp->b_map.bm_bn != XFS_BUF_DADDR_NULL); 642 643 bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD); 644 bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD); 645 646 xfs_buf_iorequest(bp); 647 if (flags & XBF_ASYNC) 648 return 0; 649 return xfs_buf_iowait(bp); 650 } 651 652 xfs_buf_t * 653 xfs_buf_read_map( 654 struct xfs_buftarg *target, 655 struct xfs_buf_map *map, 656 int nmaps, 657 xfs_buf_flags_t flags) 658 { 659 struct xfs_buf *bp; 660 661 flags |= XBF_READ; 662 663 bp = xfs_buf_get_map(target, map, nmaps, flags); 664 if (bp) { 665 trace_xfs_buf_read(bp, flags, _RET_IP_); 666 667 if (!XFS_BUF_ISDONE(bp)) { 668 XFS_STATS_INC(xb_get_read); 669 _xfs_buf_read(bp, flags); 670 } else if (flags & XBF_ASYNC) { 671 /* 672 * Read ahead call which is already satisfied, 673 * drop the buffer 674 */ 675 xfs_buf_relse(bp); 676 return NULL; 677 } else { 678 /* We do not want read in the flags */ 679 bp->b_flags &= ~XBF_READ; 680 } 681 } 682 683 return bp; 684 } 685 686 /* 687 * If we are not low on memory then do the readahead in a deadlock 688 * safe manner. 689 */ 690 void 691 xfs_buf_readahead_map( 692 struct xfs_buftarg *target, 693 struct xfs_buf_map *map, 694 int nmaps) 695 { 696 if (bdi_read_congested(target->bt_bdi)) 697 return; 698 699 xfs_buf_read_map(target, map, nmaps, 700 XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD); 701 } 702 703 /* 704 * Read an uncached buffer from disk. Allocates and returns a locked 705 * buffer containing the disk contents or nothing. 706 */ 707 struct xfs_buf * 708 xfs_buf_read_uncached( 709 struct xfs_buftarg *target, 710 xfs_daddr_t daddr, 711 size_t numblks, 712 int flags) 713 { 714 xfs_buf_t *bp; 715 int error; 716 717 bp = xfs_buf_get_uncached(target, numblks, flags); 718 if (!bp) 719 return NULL; 720 721 /* set up the buffer for a read IO */ 722 ASSERT(bp->b_map_count == 1); 723 bp->b_bn = daddr; 724 bp->b_maps[0].bm_bn = daddr; 725 bp->b_flags |= XBF_READ; 726 727 xfsbdstrat(target->bt_mount, bp); 728 error = xfs_buf_iowait(bp); 729 if (error) { 730 xfs_buf_relse(bp); 731 return NULL; 732 } 733 return bp; 734 } 735 736 /* 737 * Return a buffer allocated as an empty buffer and associated to external 738 * memory via xfs_buf_associate_memory() back to it's empty state. 739 */ 740 void 741 xfs_buf_set_empty( 742 struct xfs_buf *bp, 743 size_t numblks) 744 { 745 if (bp->b_pages) 746 _xfs_buf_free_pages(bp); 747 748 bp->b_pages = NULL; 749 bp->b_page_count = 0; 750 bp->b_addr = NULL; 751 bp->b_length = numblks; 752 bp->b_io_length = numblks; 753 754 ASSERT(bp->b_map_count == 1); 755 bp->b_bn = XFS_BUF_DADDR_NULL; 756 bp->b_maps[0].bm_bn = XFS_BUF_DADDR_NULL; 757 bp->b_maps[0].bm_len = bp->b_length; 758 } 759 760 static inline struct page * 761 mem_to_page( 762 void *addr) 763 { 764 if ((!is_vmalloc_addr(addr))) { 765 return virt_to_page(addr); 766 } else { 767 return vmalloc_to_page(addr); 768 } 769 } 770 771 int 772 xfs_buf_associate_memory( 773 xfs_buf_t *bp, 774 void *mem, 775 size_t len) 776 { 777 int rval; 778 int i = 0; 779 unsigned long pageaddr; 780 unsigned long offset; 781 size_t buflen; 782 int page_count; 783 784 pageaddr = (unsigned long)mem & PAGE_MASK; 785 offset = (unsigned long)mem - pageaddr; 786 buflen = PAGE_ALIGN(len + offset); 787 page_count = buflen >> PAGE_SHIFT; 788 789 /* Free any previous set of page pointers */ 790 if (bp->b_pages) 791 _xfs_buf_free_pages(bp); 792 793 bp->b_pages = NULL; 794 bp->b_addr = mem; 795 796 rval = _xfs_buf_get_pages(bp, page_count, 0); 797 if (rval) 798 return rval; 799 800 bp->b_offset = offset; 801 802 for (i = 0; i < bp->b_page_count; i++) { 803 bp->b_pages[i] = mem_to_page((void *)pageaddr); 804 pageaddr += PAGE_SIZE; 805 } 806 807 bp->b_io_length = BTOBB(len); 808 bp->b_length = BTOBB(buflen); 809 810 return 0; 811 } 812 813 xfs_buf_t * 814 xfs_buf_get_uncached( 815 struct xfs_buftarg *target, 816 size_t numblks, 817 int flags) 818 { 819 unsigned long page_count; 820 int error, i; 821 struct xfs_buf *bp; 822 DEFINE_SINGLE_BUF_MAP(map, XFS_BUF_DADDR_NULL, numblks); 823 824 bp = _xfs_buf_alloc(target, &map, 1, 0); 825 if (unlikely(bp == NULL)) 826 goto fail; 827 828 page_count = PAGE_ALIGN(numblks << BBSHIFT) >> PAGE_SHIFT; 829 error = _xfs_buf_get_pages(bp, page_count, 0); 830 if (error) 831 goto fail_free_buf; 832 833 for (i = 0; i < page_count; i++) { 834 bp->b_pages[i] = alloc_page(xb_to_gfp(flags)); 835 if (!bp->b_pages[i]) 836 goto fail_free_mem; 837 } 838 bp->b_flags |= _XBF_PAGES; 839 840 error = _xfs_buf_map_pages(bp, 0); 841 if (unlikely(error)) { 842 xfs_warn(target->bt_mount, 843 "%s: failed to map pages\n", __func__); 844 goto fail_free_mem; 845 } 846 847 trace_xfs_buf_get_uncached(bp, _RET_IP_); 848 return bp; 849 850 fail_free_mem: 851 while (--i >= 0) 852 __free_page(bp->b_pages[i]); 853 _xfs_buf_free_pages(bp); 854 fail_free_buf: 855 xfs_buf_free_maps(bp); 856 kmem_zone_free(xfs_buf_zone, bp); 857 fail: 858 return NULL; 859 } 860 861 /* 862 * Increment reference count on buffer, to hold the buffer concurrently 863 * with another thread which may release (free) the buffer asynchronously. 864 * Must hold the buffer already to call this function. 865 */ 866 void 867 xfs_buf_hold( 868 xfs_buf_t *bp) 869 { 870 trace_xfs_buf_hold(bp, _RET_IP_); 871 atomic_inc(&bp->b_hold); 872 } 873 874 /* 875 * Releases a hold on the specified buffer. If the 876 * the hold count is 1, calls xfs_buf_free. 877 */ 878 void 879 xfs_buf_rele( 880 xfs_buf_t *bp) 881 { 882 struct xfs_perag *pag = bp->b_pag; 883 884 trace_xfs_buf_rele(bp, _RET_IP_); 885 886 if (!pag) { 887 ASSERT(list_empty(&bp->b_lru)); 888 ASSERT(RB_EMPTY_NODE(&bp->b_rbnode)); 889 if (atomic_dec_and_test(&bp->b_hold)) 890 xfs_buf_free(bp); 891 return; 892 } 893 894 ASSERT(!RB_EMPTY_NODE(&bp->b_rbnode)); 895 896 ASSERT(atomic_read(&bp->b_hold) > 0); 897 if (atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock)) { 898 if (!(bp->b_flags & XBF_STALE) && 899 atomic_read(&bp->b_lru_ref)) { 900 xfs_buf_lru_add(bp); 901 spin_unlock(&pag->pag_buf_lock); 902 } else { 903 xfs_buf_lru_del(bp); 904 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q)); 905 rb_erase(&bp->b_rbnode, &pag->pag_buf_tree); 906 spin_unlock(&pag->pag_buf_lock); 907 xfs_perag_put(pag); 908 xfs_buf_free(bp); 909 } 910 } 911 } 912 913 914 /* 915 * Lock a buffer object, if it is not already locked. 916 * 917 * If we come across a stale, pinned, locked buffer, we know that we are 918 * being asked to lock a buffer that has been reallocated. Because it is 919 * pinned, we know that the log has not been pushed to disk and hence it 920 * will still be locked. Rather than continuing to have trylock attempts 921 * fail until someone else pushes the log, push it ourselves before 922 * returning. This means that the xfsaild will not get stuck trying 923 * to push on stale inode buffers. 924 */ 925 int 926 xfs_buf_trylock( 927 struct xfs_buf *bp) 928 { 929 int locked; 930 931 locked = down_trylock(&bp->b_sema) == 0; 932 if (locked) 933 XB_SET_OWNER(bp); 934 else if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE)) 935 xfs_log_force(bp->b_target->bt_mount, 0); 936 937 trace_xfs_buf_trylock(bp, _RET_IP_); 938 return locked; 939 } 940 941 /* 942 * Lock a buffer object. 943 * 944 * If we come across a stale, pinned, locked buffer, we know that we 945 * are being asked to lock a buffer that has been reallocated. Because 946 * it is pinned, we know that the log has not been pushed to disk and 947 * hence it will still be locked. Rather than sleeping until someone 948 * else pushes the log, push it ourselves before trying to get the lock. 949 */ 950 void 951 xfs_buf_lock( 952 struct xfs_buf *bp) 953 { 954 trace_xfs_buf_lock(bp, _RET_IP_); 955 956 if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE)) 957 xfs_log_force(bp->b_target->bt_mount, 0); 958 down(&bp->b_sema); 959 XB_SET_OWNER(bp); 960 961 trace_xfs_buf_lock_done(bp, _RET_IP_); 962 } 963 964 void 965 xfs_buf_unlock( 966 struct xfs_buf *bp) 967 { 968 XB_CLEAR_OWNER(bp); 969 up(&bp->b_sema); 970 971 trace_xfs_buf_unlock(bp, _RET_IP_); 972 } 973 974 STATIC void 975 xfs_buf_wait_unpin( 976 xfs_buf_t *bp) 977 { 978 DECLARE_WAITQUEUE (wait, current); 979 980 if (atomic_read(&bp->b_pin_count) == 0) 981 return; 982 983 add_wait_queue(&bp->b_waiters, &wait); 984 for (;;) { 985 set_current_state(TASK_UNINTERRUPTIBLE); 986 if (atomic_read(&bp->b_pin_count) == 0) 987 break; 988 io_schedule(); 989 } 990 remove_wait_queue(&bp->b_waiters, &wait); 991 set_current_state(TASK_RUNNING); 992 } 993 994 /* 995 * Buffer Utility Routines 996 */ 997 998 STATIC void 999 xfs_buf_iodone_work( 1000 struct work_struct *work) 1001 { 1002 xfs_buf_t *bp = 1003 container_of(work, xfs_buf_t, b_iodone_work); 1004 1005 if (bp->b_iodone) 1006 (*(bp->b_iodone))(bp); 1007 else if (bp->b_flags & XBF_ASYNC) 1008 xfs_buf_relse(bp); 1009 } 1010 1011 void 1012 xfs_buf_ioend( 1013 xfs_buf_t *bp, 1014 int schedule) 1015 { 1016 trace_xfs_buf_iodone(bp, _RET_IP_); 1017 1018 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD); 1019 if (bp->b_error == 0) 1020 bp->b_flags |= XBF_DONE; 1021 1022 if ((bp->b_iodone) || (bp->b_flags & XBF_ASYNC)) { 1023 if (schedule) { 1024 INIT_WORK(&bp->b_iodone_work, xfs_buf_iodone_work); 1025 queue_work(xfslogd_workqueue, &bp->b_iodone_work); 1026 } else { 1027 xfs_buf_iodone_work(&bp->b_iodone_work); 1028 } 1029 } else { 1030 complete(&bp->b_iowait); 1031 } 1032 } 1033 1034 void 1035 xfs_buf_ioerror( 1036 xfs_buf_t *bp, 1037 int error) 1038 { 1039 ASSERT(error >= 0 && error <= 0xffff); 1040 bp->b_error = (unsigned short)error; 1041 trace_xfs_buf_ioerror(bp, error, _RET_IP_); 1042 } 1043 1044 void 1045 xfs_buf_ioerror_alert( 1046 struct xfs_buf *bp, 1047 const char *func) 1048 { 1049 xfs_alert(bp->b_target->bt_mount, 1050 "metadata I/O error: block 0x%llx (\"%s\") error %d numblks %d", 1051 (__uint64_t)XFS_BUF_ADDR(bp), func, bp->b_error, bp->b_length); 1052 } 1053 1054 /* 1055 * Called when we want to stop a buffer from getting written or read. 1056 * We attach the EIO error, muck with its flags, and call xfs_buf_ioend 1057 * so that the proper iodone callbacks get called. 1058 */ 1059 STATIC int 1060 xfs_bioerror( 1061 xfs_buf_t *bp) 1062 { 1063 #ifdef XFSERRORDEBUG 1064 ASSERT(XFS_BUF_ISREAD(bp) || bp->b_iodone); 1065 #endif 1066 1067 /* 1068 * No need to wait until the buffer is unpinned, we aren't flushing it. 1069 */ 1070 xfs_buf_ioerror(bp, EIO); 1071 1072 /* 1073 * We're calling xfs_buf_ioend, so delete XBF_DONE flag. 1074 */ 1075 XFS_BUF_UNREAD(bp); 1076 XFS_BUF_UNDONE(bp); 1077 xfs_buf_stale(bp); 1078 1079 xfs_buf_ioend(bp, 0); 1080 1081 return EIO; 1082 } 1083 1084 /* 1085 * Same as xfs_bioerror, except that we are releasing the buffer 1086 * here ourselves, and avoiding the xfs_buf_ioend call. 1087 * This is meant for userdata errors; metadata bufs come with 1088 * iodone functions attached, so that we can track down errors. 1089 */ 1090 STATIC int 1091 xfs_bioerror_relse( 1092 struct xfs_buf *bp) 1093 { 1094 int64_t fl = bp->b_flags; 1095 /* 1096 * No need to wait until the buffer is unpinned. 1097 * We aren't flushing it. 1098 * 1099 * chunkhold expects B_DONE to be set, whether 1100 * we actually finish the I/O or not. We don't want to 1101 * change that interface. 1102 */ 1103 XFS_BUF_UNREAD(bp); 1104 XFS_BUF_DONE(bp); 1105 xfs_buf_stale(bp); 1106 bp->b_iodone = NULL; 1107 if (!(fl & XBF_ASYNC)) { 1108 /* 1109 * Mark b_error and B_ERROR _both_. 1110 * Lot's of chunkcache code assumes that. 1111 * There's no reason to mark error for 1112 * ASYNC buffers. 1113 */ 1114 xfs_buf_ioerror(bp, EIO); 1115 complete(&bp->b_iowait); 1116 } else { 1117 xfs_buf_relse(bp); 1118 } 1119 1120 return EIO; 1121 } 1122 1123 STATIC int 1124 xfs_bdstrat_cb( 1125 struct xfs_buf *bp) 1126 { 1127 if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) { 1128 trace_xfs_bdstrat_shut(bp, _RET_IP_); 1129 /* 1130 * Metadata write that didn't get logged but 1131 * written delayed anyway. These aren't associated 1132 * with a transaction, and can be ignored. 1133 */ 1134 if (!bp->b_iodone && !XFS_BUF_ISREAD(bp)) 1135 return xfs_bioerror_relse(bp); 1136 else 1137 return xfs_bioerror(bp); 1138 } 1139 1140 xfs_buf_iorequest(bp); 1141 return 0; 1142 } 1143 1144 int 1145 xfs_bwrite( 1146 struct xfs_buf *bp) 1147 { 1148 int error; 1149 1150 ASSERT(xfs_buf_islocked(bp)); 1151 1152 bp->b_flags |= XBF_WRITE; 1153 bp->b_flags &= ~(XBF_ASYNC | XBF_READ | _XBF_DELWRI_Q); 1154 1155 xfs_bdstrat_cb(bp); 1156 1157 error = xfs_buf_iowait(bp); 1158 if (error) { 1159 xfs_force_shutdown(bp->b_target->bt_mount, 1160 SHUTDOWN_META_IO_ERROR); 1161 } 1162 return error; 1163 } 1164 1165 /* 1166 * Wrapper around bdstrat so that we can stop data from going to disk in case 1167 * we are shutting down the filesystem. Typically user data goes thru this 1168 * path; one of the exceptions is the superblock. 1169 */ 1170 void 1171 xfsbdstrat( 1172 struct xfs_mount *mp, 1173 struct xfs_buf *bp) 1174 { 1175 if (XFS_FORCED_SHUTDOWN(mp)) { 1176 trace_xfs_bdstrat_shut(bp, _RET_IP_); 1177 xfs_bioerror_relse(bp); 1178 return; 1179 } 1180 1181 xfs_buf_iorequest(bp); 1182 } 1183 1184 STATIC void 1185 _xfs_buf_ioend( 1186 xfs_buf_t *bp, 1187 int schedule) 1188 { 1189 if (atomic_dec_and_test(&bp->b_io_remaining) == 1) 1190 xfs_buf_ioend(bp, schedule); 1191 } 1192 1193 STATIC void 1194 xfs_buf_bio_end_io( 1195 struct bio *bio, 1196 int error) 1197 { 1198 xfs_buf_t *bp = (xfs_buf_t *)bio->bi_private; 1199 1200 xfs_buf_ioerror(bp, -error); 1201 1202 if (!error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ)) 1203 invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp)); 1204 1205 _xfs_buf_ioend(bp, 1); 1206 bio_put(bio); 1207 } 1208 1209 static void 1210 xfs_buf_ioapply_map( 1211 struct xfs_buf *bp, 1212 int map, 1213 int *buf_offset, 1214 int *count, 1215 int rw) 1216 { 1217 int page_index; 1218 int total_nr_pages = bp->b_page_count; 1219 int nr_pages; 1220 struct bio *bio; 1221 sector_t sector = bp->b_maps[map].bm_bn; 1222 int size; 1223 int offset; 1224 1225 total_nr_pages = bp->b_page_count; 1226 1227 /* skip the pages in the buffer before the start offset */ 1228 page_index = 0; 1229 offset = *buf_offset; 1230 while (offset >= PAGE_SIZE) { 1231 page_index++; 1232 offset -= PAGE_SIZE; 1233 } 1234 1235 /* 1236 * Limit the IO size to the length of the current vector, and update the 1237 * remaining IO count for the next time around. 1238 */ 1239 size = min_t(int, BBTOB(bp->b_maps[map].bm_len), *count); 1240 *count -= size; 1241 *buf_offset += size; 1242 1243 next_chunk: 1244 atomic_inc(&bp->b_io_remaining); 1245 nr_pages = BIO_MAX_SECTORS >> (PAGE_SHIFT - BBSHIFT); 1246 if (nr_pages > total_nr_pages) 1247 nr_pages = total_nr_pages; 1248 1249 bio = bio_alloc(GFP_NOIO, nr_pages); 1250 bio->bi_bdev = bp->b_target->bt_bdev; 1251 bio->bi_sector = sector; 1252 bio->bi_end_io = xfs_buf_bio_end_io; 1253 bio->bi_private = bp; 1254 1255 1256 for (; size && nr_pages; nr_pages--, page_index++) { 1257 int rbytes, nbytes = PAGE_SIZE - offset; 1258 1259 if (nbytes > size) 1260 nbytes = size; 1261 1262 rbytes = bio_add_page(bio, bp->b_pages[page_index], nbytes, 1263 offset); 1264 if (rbytes < nbytes) 1265 break; 1266 1267 offset = 0; 1268 sector += BTOBB(nbytes); 1269 size -= nbytes; 1270 total_nr_pages--; 1271 } 1272 1273 if (likely(bio->bi_size)) { 1274 if (xfs_buf_is_vmapped(bp)) { 1275 flush_kernel_vmap_range(bp->b_addr, 1276 xfs_buf_vmap_len(bp)); 1277 } 1278 submit_bio(rw, bio); 1279 if (size) 1280 goto next_chunk; 1281 } else { 1282 xfs_buf_ioerror(bp, EIO); 1283 bio_put(bio); 1284 } 1285 1286 } 1287 1288 STATIC void 1289 _xfs_buf_ioapply( 1290 struct xfs_buf *bp) 1291 { 1292 struct blk_plug plug; 1293 int rw; 1294 int offset; 1295 int size; 1296 int i; 1297 1298 if (bp->b_flags & XBF_WRITE) { 1299 if (bp->b_flags & XBF_SYNCIO) 1300 rw = WRITE_SYNC; 1301 else 1302 rw = WRITE; 1303 if (bp->b_flags & XBF_FUA) 1304 rw |= REQ_FUA; 1305 if (bp->b_flags & XBF_FLUSH) 1306 rw |= REQ_FLUSH; 1307 } else if (bp->b_flags & XBF_READ_AHEAD) { 1308 rw = READA; 1309 } else { 1310 rw = READ; 1311 } 1312 1313 /* we only use the buffer cache for meta-data */ 1314 rw |= REQ_META; 1315 1316 /* 1317 * Walk all the vectors issuing IO on them. Set up the initial offset 1318 * into the buffer and the desired IO size before we start - 1319 * _xfs_buf_ioapply_vec() will modify them appropriately for each 1320 * subsequent call. 1321 */ 1322 offset = bp->b_offset; 1323 size = BBTOB(bp->b_io_length); 1324 blk_start_plug(&plug); 1325 for (i = 0; i < bp->b_map_count; i++) { 1326 xfs_buf_ioapply_map(bp, i, &offset, &size, rw); 1327 if (bp->b_error) 1328 break; 1329 if (size <= 0) 1330 break; /* all done */ 1331 } 1332 blk_finish_plug(&plug); 1333 } 1334 1335 void 1336 xfs_buf_iorequest( 1337 xfs_buf_t *bp) 1338 { 1339 trace_xfs_buf_iorequest(bp, _RET_IP_); 1340 1341 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q)); 1342 1343 if (bp->b_flags & XBF_WRITE) 1344 xfs_buf_wait_unpin(bp); 1345 xfs_buf_hold(bp); 1346 1347 /* Set the count to 1 initially, this will stop an I/O 1348 * completion callout which happens before we have started 1349 * all the I/O from calling xfs_buf_ioend too early. 1350 */ 1351 atomic_set(&bp->b_io_remaining, 1); 1352 _xfs_buf_ioapply(bp); 1353 _xfs_buf_ioend(bp, 1); 1354 1355 xfs_buf_rele(bp); 1356 } 1357 1358 /* 1359 * Waits for I/O to complete on the buffer supplied. It returns immediately if 1360 * no I/O is pending or there is already a pending error on the buffer. It 1361 * returns the I/O error code, if any, or 0 if there was no error. 1362 */ 1363 int 1364 xfs_buf_iowait( 1365 xfs_buf_t *bp) 1366 { 1367 trace_xfs_buf_iowait(bp, _RET_IP_); 1368 1369 if (!bp->b_error) 1370 wait_for_completion(&bp->b_iowait); 1371 1372 trace_xfs_buf_iowait_done(bp, _RET_IP_); 1373 return bp->b_error; 1374 } 1375 1376 xfs_caddr_t 1377 xfs_buf_offset( 1378 xfs_buf_t *bp, 1379 size_t offset) 1380 { 1381 struct page *page; 1382 1383 if (bp->b_addr) 1384 return bp->b_addr + offset; 1385 1386 offset += bp->b_offset; 1387 page = bp->b_pages[offset >> PAGE_SHIFT]; 1388 return (xfs_caddr_t)page_address(page) + (offset & (PAGE_SIZE-1)); 1389 } 1390 1391 /* 1392 * Move data into or out of a buffer. 1393 */ 1394 void 1395 xfs_buf_iomove( 1396 xfs_buf_t *bp, /* buffer to process */ 1397 size_t boff, /* starting buffer offset */ 1398 size_t bsize, /* length to copy */ 1399 void *data, /* data address */ 1400 xfs_buf_rw_t mode) /* read/write/zero flag */ 1401 { 1402 size_t bend; 1403 1404 bend = boff + bsize; 1405 while (boff < bend) { 1406 struct page *page; 1407 int page_index, page_offset, csize; 1408 1409 page_index = (boff + bp->b_offset) >> PAGE_SHIFT; 1410 page_offset = (boff + bp->b_offset) & ~PAGE_MASK; 1411 page = bp->b_pages[page_index]; 1412 csize = min_t(size_t, PAGE_SIZE - page_offset, 1413 BBTOB(bp->b_io_length) - boff); 1414 1415 ASSERT((csize + page_offset) <= PAGE_SIZE); 1416 1417 switch (mode) { 1418 case XBRW_ZERO: 1419 memset(page_address(page) + page_offset, 0, csize); 1420 break; 1421 case XBRW_READ: 1422 memcpy(data, page_address(page) + page_offset, csize); 1423 break; 1424 case XBRW_WRITE: 1425 memcpy(page_address(page) + page_offset, data, csize); 1426 } 1427 1428 boff += csize; 1429 data += csize; 1430 } 1431 } 1432 1433 /* 1434 * Handling of buffer targets (buftargs). 1435 */ 1436 1437 /* 1438 * Wait for any bufs with callbacks that have been submitted but have not yet 1439 * returned. These buffers will have an elevated hold count, so wait on those 1440 * while freeing all the buffers only held by the LRU. 1441 */ 1442 void 1443 xfs_wait_buftarg( 1444 struct xfs_buftarg *btp) 1445 { 1446 struct xfs_buf *bp; 1447 1448 restart: 1449 spin_lock(&btp->bt_lru_lock); 1450 while (!list_empty(&btp->bt_lru)) { 1451 bp = list_first_entry(&btp->bt_lru, struct xfs_buf, b_lru); 1452 if (atomic_read(&bp->b_hold) > 1) { 1453 spin_unlock(&btp->bt_lru_lock); 1454 delay(100); 1455 goto restart; 1456 } 1457 /* 1458 * clear the LRU reference count so the buffer doesn't get 1459 * ignored in xfs_buf_rele(). 1460 */ 1461 atomic_set(&bp->b_lru_ref, 0); 1462 spin_unlock(&btp->bt_lru_lock); 1463 xfs_buf_rele(bp); 1464 spin_lock(&btp->bt_lru_lock); 1465 } 1466 spin_unlock(&btp->bt_lru_lock); 1467 } 1468 1469 int 1470 xfs_buftarg_shrink( 1471 struct shrinker *shrink, 1472 struct shrink_control *sc) 1473 { 1474 struct xfs_buftarg *btp = container_of(shrink, 1475 struct xfs_buftarg, bt_shrinker); 1476 struct xfs_buf *bp; 1477 int nr_to_scan = sc->nr_to_scan; 1478 LIST_HEAD(dispose); 1479 1480 if (!nr_to_scan) 1481 return btp->bt_lru_nr; 1482 1483 spin_lock(&btp->bt_lru_lock); 1484 while (!list_empty(&btp->bt_lru)) { 1485 if (nr_to_scan-- <= 0) 1486 break; 1487 1488 bp = list_first_entry(&btp->bt_lru, struct xfs_buf, b_lru); 1489 1490 /* 1491 * Decrement the b_lru_ref count unless the value is already 1492 * zero. If the value is already zero, we need to reclaim the 1493 * buffer, otherwise it gets another trip through the LRU. 1494 */ 1495 if (!atomic_add_unless(&bp->b_lru_ref, -1, 0)) { 1496 list_move_tail(&bp->b_lru, &btp->bt_lru); 1497 continue; 1498 } 1499 1500 /* 1501 * remove the buffer from the LRU now to avoid needing another 1502 * lock round trip inside xfs_buf_rele(). 1503 */ 1504 list_move(&bp->b_lru, &dispose); 1505 btp->bt_lru_nr--; 1506 bp->b_lru_flags |= _XBF_LRU_DISPOSE; 1507 } 1508 spin_unlock(&btp->bt_lru_lock); 1509 1510 while (!list_empty(&dispose)) { 1511 bp = list_first_entry(&dispose, struct xfs_buf, b_lru); 1512 list_del_init(&bp->b_lru); 1513 xfs_buf_rele(bp); 1514 } 1515 1516 return btp->bt_lru_nr; 1517 } 1518 1519 void 1520 xfs_free_buftarg( 1521 struct xfs_mount *mp, 1522 struct xfs_buftarg *btp) 1523 { 1524 unregister_shrinker(&btp->bt_shrinker); 1525 1526 if (mp->m_flags & XFS_MOUNT_BARRIER) 1527 xfs_blkdev_issue_flush(btp); 1528 1529 kmem_free(btp); 1530 } 1531 1532 STATIC int 1533 xfs_setsize_buftarg_flags( 1534 xfs_buftarg_t *btp, 1535 unsigned int blocksize, 1536 unsigned int sectorsize, 1537 int verbose) 1538 { 1539 btp->bt_bsize = blocksize; 1540 btp->bt_sshift = ffs(sectorsize) - 1; 1541 btp->bt_smask = sectorsize - 1; 1542 1543 if (set_blocksize(btp->bt_bdev, sectorsize)) { 1544 char name[BDEVNAME_SIZE]; 1545 1546 bdevname(btp->bt_bdev, name); 1547 1548 xfs_warn(btp->bt_mount, 1549 "Cannot set_blocksize to %u on device %s\n", 1550 sectorsize, name); 1551 return EINVAL; 1552 } 1553 1554 return 0; 1555 } 1556 1557 /* 1558 * When allocating the initial buffer target we have not yet 1559 * read in the superblock, so don't know what sized sectors 1560 * are being used is at this early stage. Play safe. 1561 */ 1562 STATIC int 1563 xfs_setsize_buftarg_early( 1564 xfs_buftarg_t *btp, 1565 struct block_device *bdev) 1566 { 1567 return xfs_setsize_buftarg_flags(btp, 1568 PAGE_SIZE, bdev_logical_block_size(bdev), 0); 1569 } 1570 1571 int 1572 xfs_setsize_buftarg( 1573 xfs_buftarg_t *btp, 1574 unsigned int blocksize, 1575 unsigned int sectorsize) 1576 { 1577 return xfs_setsize_buftarg_flags(btp, blocksize, sectorsize, 1); 1578 } 1579 1580 xfs_buftarg_t * 1581 xfs_alloc_buftarg( 1582 struct xfs_mount *mp, 1583 struct block_device *bdev, 1584 int external, 1585 const char *fsname) 1586 { 1587 xfs_buftarg_t *btp; 1588 1589 btp = kmem_zalloc(sizeof(*btp), KM_SLEEP); 1590 1591 btp->bt_mount = mp; 1592 btp->bt_dev = bdev->bd_dev; 1593 btp->bt_bdev = bdev; 1594 btp->bt_bdi = blk_get_backing_dev_info(bdev); 1595 if (!btp->bt_bdi) 1596 goto error; 1597 1598 INIT_LIST_HEAD(&btp->bt_lru); 1599 spin_lock_init(&btp->bt_lru_lock); 1600 if (xfs_setsize_buftarg_early(btp, bdev)) 1601 goto error; 1602 btp->bt_shrinker.shrink = xfs_buftarg_shrink; 1603 btp->bt_shrinker.seeks = DEFAULT_SEEKS; 1604 register_shrinker(&btp->bt_shrinker); 1605 return btp; 1606 1607 error: 1608 kmem_free(btp); 1609 return NULL; 1610 } 1611 1612 /* 1613 * Add a buffer to the delayed write list. 1614 * 1615 * This queues a buffer for writeout if it hasn't already been. Note that 1616 * neither this routine nor the buffer list submission functions perform 1617 * any internal synchronization. It is expected that the lists are thread-local 1618 * to the callers. 1619 * 1620 * Returns true if we queued up the buffer, or false if it already had 1621 * been on the buffer list. 1622 */ 1623 bool 1624 xfs_buf_delwri_queue( 1625 struct xfs_buf *bp, 1626 struct list_head *list) 1627 { 1628 ASSERT(xfs_buf_islocked(bp)); 1629 ASSERT(!(bp->b_flags & XBF_READ)); 1630 1631 /* 1632 * If the buffer is already marked delwri it already is queued up 1633 * by someone else for imediate writeout. Just ignore it in that 1634 * case. 1635 */ 1636 if (bp->b_flags & _XBF_DELWRI_Q) { 1637 trace_xfs_buf_delwri_queued(bp, _RET_IP_); 1638 return false; 1639 } 1640 1641 trace_xfs_buf_delwri_queue(bp, _RET_IP_); 1642 1643 /* 1644 * If a buffer gets written out synchronously or marked stale while it 1645 * is on a delwri list we lazily remove it. To do this, the other party 1646 * clears the _XBF_DELWRI_Q flag but otherwise leaves the buffer alone. 1647 * It remains referenced and on the list. In a rare corner case it 1648 * might get readded to a delwri list after the synchronous writeout, in 1649 * which case we need just need to re-add the flag here. 1650 */ 1651 bp->b_flags |= _XBF_DELWRI_Q; 1652 if (list_empty(&bp->b_list)) { 1653 atomic_inc(&bp->b_hold); 1654 list_add_tail(&bp->b_list, list); 1655 } 1656 1657 return true; 1658 } 1659 1660 /* 1661 * Compare function is more complex than it needs to be because 1662 * the return value is only 32 bits and we are doing comparisons 1663 * on 64 bit values 1664 */ 1665 static int 1666 xfs_buf_cmp( 1667 void *priv, 1668 struct list_head *a, 1669 struct list_head *b) 1670 { 1671 struct xfs_buf *ap = container_of(a, struct xfs_buf, b_list); 1672 struct xfs_buf *bp = container_of(b, struct xfs_buf, b_list); 1673 xfs_daddr_t diff; 1674 1675 diff = ap->b_map.bm_bn - bp->b_map.bm_bn; 1676 if (diff < 0) 1677 return -1; 1678 if (diff > 0) 1679 return 1; 1680 return 0; 1681 } 1682 1683 static int 1684 __xfs_buf_delwri_submit( 1685 struct list_head *buffer_list, 1686 struct list_head *io_list, 1687 bool wait) 1688 { 1689 struct blk_plug plug; 1690 struct xfs_buf *bp, *n; 1691 int pinned = 0; 1692 1693 list_for_each_entry_safe(bp, n, buffer_list, b_list) { 1694 if (!wait) { 1695 if (xfs_buf_ispinned(bp)) { 1696 pinned++; 1697 continue; 1698 } 1699 if (!xfs_buf_trylock(bp)) 1700 continue; 1701 } else { 1702 xfs_buf_lock(bp); 1703 } 1704 1705 /* 1706 * Someone else might have written the buffer synchronously or 1707 * marked it stale in the meantime. In that case only the 1708 * _XBF_DELWRI_Q flag got cleared, and we have to drop the 1709 * reference and remove it from the list here. 1710 */ 1711 if (!(bp->b_flags & _XBF_DELWRI_Q)) { 1712 list_del_init(&bp->b_list); 1713 xfs_buf_relse(bp); 1714 continue; 1715 } 1716 1717 list_move_tail(&bp->b_list, io_list); 1718 trace_xfs_buf_delwri_split(bp, _RET_IP_); 1719 } 1720 1721 list_sort(NULL, io_list, xfs_buf_cmp); 1722 1723 blk_start_plug(&plug); 1724 list_for_each_entry_safe(bp, n, io_list, b_list) { 1725 bp->b_flags &= ~(_XBF_DELWRI_Q | XBF_ASYNC); 1726 bp->b_flags |= XBF_WRITE; 1727 1728 if (!wait) { 1729 bp->b_flags |= XBF_ASYNC; 1730 list_del_init(&bp->b_list); 1731 } 1732 xfs_bdstrat_cb(bp); 1733 } 1734 blk_finish_plug(&plug); 1735 1736 return pinned; 1737 } 1738 1739 /* 1740 * Write out a buffer list asynchronously. 1741 * 1742 * This will take the @buffer_list, write all non-locked and non-pinned buffers 1743 * out and not wait for I/O completion on any of the buffers. This interface 1744 * is only safely useable for callers that can track I/O completion by higher 1745 * level means, e.g. AIL pushing as the @buffer_list is consumed in this 1746 * function. 1747 */ 1748 int 1749 xfs_buf_delwri_submit_nowait( 1750 struct list_head *buffer_list) 1751 { 1752 LIST_HEAD (io_list); 1753 return __xfs_buf_delwri_submit(buffer_list, &io_list, false); 1754 } 1755 1756 /* 1757 * Write out a buffer list synchronously. 1758 * 1759 * This will take the @buffer_list, write all buffers out and wait for I/O 1760 * completion on all of the buffers. @buffer_list is consumed by the function, 1761 * so callers must have some other way of tracking buffers if they require such 1762 * functionality. 1763 */ 1764 int 1765 xfs_buf_delwri_submit( 1766 struct list_head *buffer_list) 1767 { 1768 LIST_HEAD (io_list); 1769 int error = 0, error2; 1770 struct xfs_buf *bp; 1771 1772 __xfs_buf_delwri_submit(buffer_list, &io_list, true); 1773 1774 /* Wait for IO to complete. */ 1775 while (!list_empty(&io_list)) { 1776 bp = list_first_entry(&io_list, struct xfs_buf, b_list); 1777 1778 list_del_init(&bp->b_list); 1779 error2 = xfs_buf_iowait(bp); 1780 xfs_buf_relse(bp); 1781 if (!error) 1782 error = error2; 1783 } 1784 1785 return error; 1786 } 1787 1788 int __init 1789 xfs_buf_init(void) 1790 { 1791 xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf", 1792 KM_ZONE_HWALIGN, NULL); 1793 if (!xfs_buf_zone) 1794 goto out; 1795 1796 xfslogd_workqueue = alloc_workqueue("xfslogd", 1797 WQ_MEM_RECLAIM | WQ_HIGHPRI, 1); 1798 if (!xfslogd_workqueue) 1799 goto out_free_buf_zone; 1800 1801 return 0; 1802 1803 out_free_buf_zone: 1804 kmem_zone_destroy(xfs_buf_zone); 1805 out: 1806 return -ENOMEM; 1807 } 1808 1809 void 1810 xfs_buf_terminate(void) 1811 { 1812 destroy_workqueue(xfslogd_workqueue); 1813 kmem_zone_destroy(xfs_buf_zone); 1814 } 1815