1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2006 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include "xfs.h" 7 #include <linux/backing-dev.h> 8 #include <linux/dax.h> 9 10 #include "xfs_shared.h" 11 #include "xfs_format.h" 12 #include "xfs_log_format.h" 13 #include "xfs_trans_resv.h" 14 #include "xfs_mount.h" 15 #include "xfs_trace.h" 16 #include "xfs_log.h" 17 #include "xfs_log_recover.h" 18 #include "xfs_log_priv.h" 19 #include "xfs_trans.h" 20 #include "xfs_buf_item.h" 21 #include "xfs_errortag.h" 22 #include "xfs_error.h" 23 #include "xfs_ag.h" 24 #include "xfs_buf_mem.h" 25 #include "xfs_notify_failure.h" 26 27 struct kmem_cache *xfs_buf_cache; 28 29 /* 30 * Locking orders 31 * 32 * xfs_buf_stale: 33 * b_sema (caller holds) 34 * b_lock 35 * lru_lock 36 * 37 * xfs_buf_rele: 38 * b_lock 39 * lru_lock 40 * 41 * xfs_buftarg_drain_rele 42 * lru_lock 43 * b_lock (trylock due to inversion) 44 * 45 * xfs_buftarg_isolate 46 * lru_lock 47 * b_lock (trylock due to inversion) 48 */ 49 50 static void xfs_buf_submit(struct xfs_buf *bp); 51 static int xfs_buf_iowait(struct xfs_buf *bp); 52 53 static inline bool xfs_buf_is_uncached(struct xfs_buf *bp) 54 { 55 return bp->b_rhash_key == XFS_BUF_DADDR_NULL; 56 } 57 58 static inline int 59 xfs_buf_is_vmapped( 60 struct xfs_buf *bp) 61 { 62 /* 63 * Return true if the buffer is vmapped. 64 * 65 * b_addr is null if the buffer is not mapped, but the code is clever 66 * enough to know it doesn't have to map a single page, so the check has 67 * to be both for b_addr and bp->b_page_count > 1. 68 */ 69 return bp->b_addr && bp->b_page_count > 1; 70 } 71 72 static inline int 73 xfs_buf_vmap_len( 74 struct xfs_buf *bp) 75 { 76 return (bp->b_page_count * PAGE_SIZE); 77 } 78 79 /* 80 * When we mark a buffer stale, we remove the buffer from the LRU and clear the 81 * b_lru_ref count so that the buffer is freed immediately when the buffer 82 * reference count falls to zero. If the buffer is already on the LRU, we need 83 * to remove the reference that LRU holds on the buffer. 84 * 85 * This prevents build-up of stale buffers on the LRU. 86 */ 87 void 88 xfs_buf_stale( 89 struct xfs_buf *bp) 90 { 91 ASSERT(xfs_buf_islocked(bp)); 92 93 bp->b_flags |= XBF_STALE; 94 95 /* 96 * Clear the delwri status so that a delwri queue walker will not 97 * flush this buffer to disk now that it is stale. The delwri queue has 98 * a reference to the buffer, so this is safe to do. 99 */ 100 bp->b_flags &= ~_XBF_DELWRI_Q; 101 102 spin_lock(&bp->b_lock); 103 atomic_set(&bp->b_lru_ref, 0); 104 if (!(bp->b_state & XFS_BSTATE_DISPOSE) && 105 (list_lru_del_obj(&bp->b_target->bt_lru, &bp->b_lru))) 106 bp->b_hold--; 107 108 ASSERT(bp->b_hold >= 1); 109 spin_unlock(&bp->b_lock); 110 } 111 112 static int 113 xfs_buf_get_maps( 114 struct xfs_buf *bp, 115 int map_count) 116 { 117 ASSERT(bp->b_maps == NULL); 118 bp->b_map_count = map_count; 119 120 if (map_count == 1) { 121 bp->b_maps = &bp->__b_map; 122 return 0; 123 } 124 125 bp->b_maps = kzalloc(map_count * sizeof(struct xfs_buf_map), 126 GFP_KERNEL | __GFP_NOLOCKDEP | __GFP_NOFAIL); 127 if (!bp->b_maps) 128 return -ENOMEM; 129 return 0; 130 } 131 132 static void 133 xfs_buf_free_maps( 134 struct xfs_buf *bp) 135 { 136 if (bp->b_maps != &bp->__b_map) { 137 kfree(bp->b_maps); 138 bp->b_maps = NULL; 139 } 140 } 141 142 static int 143 _xfs_buf_alloc( 144 struct xfs_buftarg *target, 145 struct xfs_buf_map *map, 146 int nmaps, 147 xfs_buf_flags_t flags, 148 struct xfs_buf **bpp) 149 { 150 struct xfs_buf *bp; 151 int error; 152 int i; 153 154 *bpp = NULL; 155 bp = kmem_cache_zalloc(xfs_buf_cache, 156 GFP_KERNEL | __GFP_NOLOCKDEP | __GFP_NOFAIL); 157 158 /* 159 * We don't want certain flags to appear in b_flags unless they are 160 * specifically set by later operations on the buffer. 161 */ 162 flags &= ~(XBF_UNMAPPED | XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD); 163 164 /* 165 * A new buffer is held and locked by the owner. This ensures that the 166 * buffer is owned by the caller and racing RCU lookups right after 167 * inserting into the hash table are safe (and will have to wait for 168 * the unlock to do anything non-trivial). 169 */ 170 bp->b_hold = 1; 171 sema_init(&bp->b_sema, 0); /* held, no waiters */ 172 173 spin_lock_init(&bp->b_lock); 174 atomic_set(&bp->b_lru_ref, 1); 175 init_completion(&bp->b_iowait); 176 INIT_LIST_HEAD(&bp->b_lru); 177 INIT_LIST_HEAD(&bp->b_list); 178 INIT_LIST_HEAD(&bp->b_li_list); 179 bp->b_target = target; 180 bp->b_mount = target->bt_mount; 181 bp->b_flags = flags; 182 183 error = xfs_buf_get_maps(bp, nmaps); 184 if (error) { 185 kmem_cache_free(xfs_buf_cache, bp); 186 return error; 187 } 188 189 bp->b_rhash_key = map[0].bm_bn; 190 bp->b_length = 0; 191 for (i = 0; i < nmaps; i++) { 192 bp->b_maps[i].bm_bn = map[i].bm_bn; 193 bp->b_maps[i].bm_len = map[i].bm_len; 194 bp->b_length += map[i].bm_len; 195 } 196 197 atomic_set(&bp->b_pin_count, 0); 198 init_waitqueue_head(&bp->b_waiters); 199 200 XFS_STATS_INC(bp->b_mount, xb_create); 201 trace_xfs_buf_init(bp, _RET_IP_); 202 203 *bpp = bp; 204 return 0; 205 } 206 207 static void 208 xfs_buf_free_pages( 209 struct xfs_buf *bp) 210 { 211 uint i; 212 213 ASSERT(bp->b_flags & _XBF_PAGES); 214 215 if (xfs_buf_is_vmapped(bp)) 216 vm_unmap_ram(bp->b_addr, bp->b_page_count); 217 218 for (i = 0; i < bp->b_page_count; i++) { 219 if (bp->b_pages[i]) 220 __free_page(bp->b_pages[i]); 221 } 222 mm_account_reclaimed_pages(bp->b_page_count); 223 224 if (bp->b_pages != bp->b_page_array) 225 kfree(bp->b_pages); 226 bp->b_pages = NULL; 227 bp->b_flags &= ~_XBF_PAGES; 228 } 229 230 static void 231 xfs_buf_free_callback( 232 struct callback_head *cb) 233 { 234 struct xfs_buf *bp = container_of(cb, struct xfs_buf, b_rcu); 235 236 xfs_buf_free_maps(bp); 237 kmem_cache_free(xfs_buf_cache, bp); 238 } 239 240 static void 241 xfs_buf_free( 242 struct xfs_buf *bp) 243 { 244 trace_xfs_buf_free(bp, _RET_IP_); 245 246 ASSERT(list_empty(&bp->b_lru)); 247 248 if (xfs_buftarg_is_mem(bp->b_target)) 249 xmbuf_unmap_page(bp); 250 else if (bp->b_flags & _XBF_PAGES) 251 xfs_buf_free_pages(bp); 252 else if (bp->b_flags & _XBF_KMEM) 253 kfree(bp->b_addr); 254 255 call_rcu(&bp->b_rcu, xfs_buf_free_callback); 256 } 257 258 static int 259 xfs_buf_alloc_kmem( 260 struct xfs_buf *bp, 261 xfs_buf_flags_t flags) 262 { 263 gfp_t gfp_mask = GFP_KERNEL | __GFP_NOLOCKDEP | __GFP_NOFAIL; 264 size_t size = BBTOB(bp->b_length); 265 266 /* Assure zeroed buffer for non-read cases. */ 267 if (!(flags & XBF_READ)) 268 gfp_mask |= __GFP_ZERO; 269 270 bp->b_addr = kmalloc(size, gfp_mask); 271 if (!bp->b_addr) 272 return -ENOMEM; 273 274 if (((unsigned long)(bp->b_addr + size - 1) & PAGE_MASK) != 275 ((unsigned long)bp->b_addr & PAGE_MASK)) { 276 /* b_addr spans two pages - use alloc_page instead */ 277 kfree(bp->b_addr); 278 bp->b_addr = NULL; 279 return -ENOMEM; 280 } 281 bp->b_offset = offset_in_page(bp->b_addr); 282 bp->b_pages = bp->b_page_array; 283 bp->b_pages[0] = kmem_to_page(bp->b_addr); 284 bp->b_page_count = 1; 285 bp->b_flags |= _XBF_KMEM; 286 return 0; 287 } 288 289 static int 290 xfs_buf_alloc_pages( 291 struct xfs_buf *bp, 292 xfs_buf_flags_t flags) 293 { 294 gfp_t gfp_mask = GFP_KERNEL | __GFP_NOLOCKDEP | __GFP_NOWARN; 295 long filled = 0; 296 297 if (flags & XBF_READ_AHEAD) 298 gfp_mask |= __GFP_NORETRY; 299 300 /* Make sure that we have a page list */ 301 bp->b_page_count = DIV_ROUND_UP(BBTOB(bp->b_length), PAGE_SIZE); 302 if (bp->b_page_count <= XB_PAGES) { 303 bp->b_pages = bp->b_page_array; 304 } else { 305 bp->b_pages = kzalloc(sizeof(struct page *) * bp->b_page_count, 306 gfp_mask); 307 if (!bp->b_pages) 308 return -ENOMEM; 309 } 310 bp->b_flags |= _XBF_PAGES; 311 312 /* Assure zeroed buffer for non-read cases. */ 313 if (!(flags & XBF_READ)) 314 gfp_mask |= __GFP_ZERO; 315 316 /* 317 * Bulk filling of pages can take multiple calls. Not filling the entire 318 * array is not an allocation failure, so don't back off if we get at 319 * least one extra page. 320 */ 321 for (;;) { 322 long last = filled; 323 324 filled = alloc_pages_bulk(gfp_mask, bp->b_page_count, 325 bp->b_pages); 326 if (filled == bp->b_page_count) { 327 XFS_STATS_INC(bp->b_mount, xb_page_found); 328 break; 329 } 330 331 if (filled != last) 332 continue; 333 334 if (flags & XBF_READ_AHEAD) { 335 xfs_buf_free_pages(bp); 336 return -ENOMEM; 337 } 338 339 XFS_STATS_INC(bp->b_mount, xb_page_retries); 340 memalloc_retry_wait(gfp_mask); 341 } 342 return 0; 343 } 344 345 /* 346 * Map buffer into kernel address-space if necessary. 347 */ 348 STATIC int 349 _xfs_buf_map_pages( 350 struct xfs_buf *bp, 351 xfs_buf_flags_t flags) 352 { 353 ASSERT(bp->b_flags & _XBF_PAGES); 354 if (bp->b_page_count == 1) { 355 /* A single page buffer is always mappable */ 356 bp->b_addr = page_address(bp->b_pages[0]); 357 } else if (flags & XBF_UNMAPPED) { 358 bp->b_addr = NULL; 359 } else { 360 int retried = 0; 361 unsigned nofs_flag; 362 363 /* 364 * vm_map_ram() will allocate auxiliary structures (e.g. 365 * pagetables) with GFP_KERNEL, yet we often under a scoped nofs 366 * context here. Mixing GFP_KERNEL with GFP_NOFS allocations 367 * from the same call site that can be run from both above and 368 * below memory reclaim causes lockdep false positives. Hence we 369 * always need to force this allocation to nofs context because 370 * we can't pass __GFP_NOLOCKDEP down to auxillary structures to 371 * prevent false positive lockdep reports. 372 * 373 * XXX(dgc): I think dquot reclaim is the only place we can get 374 * to this function from memory reclaim context now. If we fix 375 * that like we've fixed inode reclaim to avoid writeback from 376 * reclaim, this nofs wrapping can go away. 377 */ 378 nofs_flag = memalloc_nofs_save(); 379 do { 380 bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count, 381 -1); 382 if (bp->b_addr) 383 break; 384 vm_unmap_aliases(); 385 } while (retried++ <= 1); 386 memalloc_nofs_restore(nofs_flag); 387 388 if (!bp->b_addr) 389 return -ENOMEM; 390 } 391 392 return 0; 393 } 394 395 /* 396 * Finding and Reading Buffers 397 */ 398 static int 399 _xfs_buf_obj_cmp( 400 struct rhashtable_compare_arg *arg, 401 const void *obj) 402 { 403 const struct xfs_buf_map *map = arg->key; 404 const struct xfs_buf *bp = obj; 405 406 /* 407 * The key hashing in the lookup path depends on the key being the 408 * first element of the compare_arg, make sure to assert this. 409 */ 410 BUILD_BUG_ON(offsetof(struct xfs_buf_map, bm_bn) != 0); 411 412 if (bp->b_rhash_key != map->bm_bn) 413 return 1; 414 415 if (unlikely(bp->b_length != map->bm_len)) { 416 /* 417 * found a block number match. If the range doesn't 418 * match, the only way this is allowed is if the buffer 419 * in the cache is stale and the transaction that made 420 * it stale has not yet committed. i.e. we are 421 * reallocating a busy extent. Skip this buffer and 422 * continue searching for an exact match. 423 * 424 * Note: If we're scanning for incore buffers to stale, don't 425 * complain if we find non-stale buffers. 426 */ 427 if (!(map->bm_flags & XBM_LIVESCAN)) 428 ASSERT(bp->b_flags & XBF_STALE); 429 return 1; 430 } 431 return 0; 432 } 433 434 static const struct rhashtable_params xfs_buf_hash_params = { 435 .min_size = 32, /* empty AGs have minimal footprint */ 436 .nelem_hint = 16, 437 .key_len = sizeof(xfs_daddr_t), 438 .key_offset = offsetof(struct xfs_buf, b_rhash_key), 439 .head_offset = offsetof(struct xfs_buf, b_rhash_head), 440 .automatic_shrinking = true, 441 .obj_cmpfn = _xfs_buf_obj_cmp, 442 }; 443 444 int 445 xfs_buf_cache_init( 446 struct xfs_buf_cache *bch) 447 { 448 return rhashtable_init(&bch->bc_hash, &xfs_buf_hash_params); 449 } 450 451 void 452 xfs_buf_cache_destroy( 453 struct xfs_buf_cache *bch) 454 { 455 rhashtable_destroy(&bch->bc_hash); 456 } 457 458 static int 459 xfs_buf_map_verify( 460 struct xfs_buftarg *btp, 461 struct xfs_buf_map *map) 462 { 463 xfs_daddr_t eofs; 464 465 /* Check for IOs smaller than the sector size / not sector aligned */ 466 ASSERT(!(BBTOB(map->bm_len) < btp->bt_meta_sectorsize)); 467 ASSERT(!(BBTOB(map->bm_bn) & (xfs_off_t)btp->bt_meta_sectormask)); 468 469 /* 470 * Corrupted block numbers can get through to here, unfortunately, so we 471 * have to check that the buffer falls within the filesystem bounds. 472 */ 473 eofs = XFS_FSB_TO_BB(btp->bt_mount, btp->bt_mount->m_sb.sb_dblocks); 474 if (map->bm_bn < 0 || map->bm_bn >= eofs) { 475 xfs_alert(btp->bt_mount, 476 "%s: daddr 0x%llx out of range, EOFS 0x%llx", 477 __func__, map->bm_bn, eofs); 478 WARN_ON(1); 479 return -EFSCORRUPTED; 480 } 481 return 0; 482 } 483 484 static int 485 xfs_buf_find_lock( 486 struct xfs_buf *bp, 487 xfs_buf_flags_t flags) 488 { 489 if (flags & XBF_TRYLOCK) { 490 if (!xfs_buf_trylock(bp)) { 491 XFS_STATS_INC(bp->b_mount, xb_busy_locked); 492 return -EAGAIN; 493 } 494 } else { 495 xfs_buf_lock(bp); 496 XFS_STATS_INC(bp->b_mount, xb_get_locked_waited); 497 } 498 499 /* 500 * if the buffer is stale, clear all the external state associated with 501 * it. We need to keep flags such as how we allocated the buffer memory 502 * intact here. 503 */ 504 if (bp->b_flags & XBF_STALE) { 505 if (flags & XBF_LIVESCAN) { 506 xfs_buf_unlock(bp); 507 return -ENOENT; 508 } 509 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0); 510 bp->b_flags &= _XBF_KMEM | _XBF_PAGES; 511 bp->b_ops = NULL; 512 } 513 return 0; 514 } 515 516 static bool 517 xfs_buf_try_hold( 518 struct xfs_buf *bp) 519 { 520 spin_lock(&bp->b_lock); 521 if (bp->b_hold == 0) { 522 spin_unlock(&bp->b_lock); 523 return false; 524 } 525 bp->b_hold++; 526 spin_unlock(&bp->b_lock); 527 return true; 528 } 529 530 static inline int 531 xfs_buf_lookup( 532 struct xfs_buf_cache *bch, 533 struct xfs_buf_map *map, 534 xfs_buf_flags_t flags, 535 struct xfs_buf **bpp) 536 { 537 struct xfs_buf *bp; 538 int error; 539 540 rcu_read_lock(); 541 bp = rhashtable_lookup(&bch->bc_hash, map, xfs_buf_hash_params); 542 if (!bp || !xfs_buf_try_hold(bp)) { 543 rcu_read_unlock(); 544 return -ENOENT; 545 } 546 rcu_read_unlock(); 547 548 error = xfs_buf_find_lock(bp, flags); 549 if (error) { 550 xfs_buf_rele(bp); 551 return error; 552 } 553 554 trace_xfs_buf_find(bp, flags, _RET_IP_); 555 *bpp = bp; 556 return 0; 557 } 558 559 /* 560 * Insert the new_bp into the hash table. This consumes the perag reference 561 * taken for the lookup regardless of the result of the insert. 562 */ 563 static int 564 xfs_buf_find_insert( 565 struct xfs_buftarg *btp, 566 struct xfs_buf_cache *bch, 567 struct xfs_perag *pag, 568 struct xfs_buf_map *cmap, 569 struct xfs_buf_map *map, 570 int nmaps, 571 xfs_buf_flags_t flags, 572 struct xfs_buf **bpp) 573 { 574 struct xfs_buf *new_bp; 575 struct xfs_buf *bp; 576 int error; 577 578 error = _xfs_buf_alloc(btp, map, nmaps, flags, &new_bp); 579 if (error) 580 goto out_drop_pag; 581 582 if (xfs_buftarg_is_mem(new_bp->b_target)) { 583 error = xmbuf_map_page(new_bp); 584 } else if (BBTOB(new_bp->b_length) >= PAGE_SIZE || 585 xfs_buf_alloc_kmem(new_bp, flags) < 0) { 586 /* 587 * For buffers that fit entirely within a single page, first 588 * attempt to allocate the memory from the heap to minimise 589 * memory usage. If we can't get heap memory for these small 590 * buffers, we fall back to using the page allocator. 591 */ 592 error = xfs_buf_alloc_pages(new_bp, flags); 593 } 594 if (error) 595 goto out_free_buf; 596 597 /* The new buffer keeps the perag reference until it is freed. */ 598 new_bp->b_pag = pag; 599 600 rcu_read_lock(); 601 bp = rhashtable_lookup_get_insert_fast(&bch->bc_hash, 602 &new_bp->b_rhash_head, xfs_buf_hash_params); 603 if (IS_ERR(bp)) { 604 rcu_read_unlock(); 605 error = PTR_ERR(bp); 606 goto out_free_buf; 607 } 608 if (bp && xfs_buf_try_hold(bp)) { 609 /* found an existing buffer */ 610 rcu_read_unlock(); 611 error = xfs_buf_find_lock(bp, flags); 612 if (error) 613 xfs_buf_rele(bp); 614 else 615 *bpp = bp; 616 goto out_free_buf; 617 } 618 rcu_read_unlock(); 619 620 *bpp = new_bp; 621 return 0; 622 623 out_free_buf: 624 xfs_buf_free(new_bp); 625 out_drop_pag: 626 if (pag) 627 xfs_perag_put(pag); 628 return error; 629 } 630 631 static inline struct xfs_perag * 632 xfs_buftarg_get_pag( 633 struct xfs_buftarg *btp, 634 const struct xfs_buf_map *map) 635 { 636 struct xfs_mount *mp = btp->bt_mount; 637 638 if (xfs_buftarg_is_mem(btp)) 639 return NULL; 640 return xfs_perag_get(mp, xfs_daddr_to_agno(mp, map->bm_bn)); 641 } 642 643 static inline struct xfs_buf_cache * 644 xfs_buftarg_buf_cache( 645 struct xfs_buftarg *btp, 646 struct xfs_perag *pag) 647 { 648 if (pag) 649 return &pag->pag_bcache; 650 return btp->bt_cache; 651 } 652 653 /* 654 * Assembles a buffer covering the specified range. The code is optimised for 655 * cache hits, as metadata intensive workloads will see 3 orders of magnitude 656 * more hits than misses. 657 */ 658 int 659 xfs_buf_get_map( 660 struct xfs_buftarg *btp, 661 struct xfs_buf_map *map, 662 int nmaps, 663 xfs_buf_flags_t flags, 664 struct xfs_buf **bpp) 665 { 666 struct xfs_buf_cache *bch; 667 struct xfs_perag *pag; 668 struct xfs_buf *bp = NULL; 669 struct xfs_buf_map cmap = { .bm_bn = map[0].bm_bn }; 670 int error; 671 int i; 672 673 if (flags & XBF_LIVESCAN) 674 cmap.bm_flags |= XBM_LIVESCAN; 675 for (i = 0; i < nmaps; i++) 676 cmap.bm_len += map[i].bm_len; 677 678 error = xfs_buf_map_verify(btp, &cmap); 679 if (error) 680 return error; 681 682 pag = xfs_buftarg_get_pag(btp, &cmap); 683 bch = xfs_buftarg_buf_cache(btp, pag); 684 685 error = xfs_buf_lookup(bch, &cmap, flags, &bp); 686 if (error && error != -ENOENT) 687 goto out_put_perag; 688 689 /* cache hits always outnumber misses by at least 10:1 */ 690 if (unlikely(!bp)) { 691 XFS_STATS_INC(btp->bt_mount, xb_miss_locked); 692 693 if (flags & XBF_INCORE) 694 goto out_put_perag; 695 696 /* xfs_buf_find_insert() consumes the perag reference. */ 697 error = xfs_buf_find_insert(btp, bch, pag, &cmap, map, nmaps, 698 flags, &bp); 699 if (error) 700 return error; 701 } else { 702 XFS_STATS_INC(btp->bt_mount, xb_get_locked); 703 if (pag) 704 xfs_perag_put(pag); 705 } 706 707 /* We do not hold a perag reference anymore. */ 708 if (!bp->b_addr) { 709 error = _xfs_buf_map_pages(bp, flags); 710 if (unlikely(error)) { 711 xfs_warn_ratelimited(btp->bt_mount, 712 "%s: failed to map %u pages", __func__, 713 bp->b_page_count); 714 xfs_buf_relse(bp); 715 return error; 716 } 717 } 718 719 /* 720 * Clear b_error if this is a lookup from a caller that doesn't expect 721 * valid data to be found in the buffer. 722 */ 723 if (!(flags & XBF_READ)) 724 xfs_buf_ioerror(bp, 0); 725 726 XFS_STATS_INC(btp->bt_mount, xb_get); 727 trace_xfs_buf_get(bp, flags, _RET_IP_); 728 *bpp = bp; 729 return 0; 730 731 out_put_perag: 732 if (pag) 733 xfs_perag_put(pag); 734 return error; 735 } 736 737 int 738 _xfs_buf_read( 739 struct xfs_buf *bp) 740 { 741 ASSERT(bp->b_maps[0].bm_bn != XFS_BUF_DADDR_NULL); 742 743 bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD | XBF_DONE); 744 bp->b_flags |= XBF_READ; 745 xfs_buf_submit(bp); 746 return xfs_buf_iowait(bp); 747 } 748 749 /* 750 * Reverify a buffer found in cache without an attached ->b_ops. 751 * 752 * If the caller passed an ops structure and the buffer doesn't have ops 753 * assigned, set the ops and use it to verify the contents. If verification 754 * fails, clear XBF_DONE. We assume the buffer has no recorded errors and is 755 * already in XBF_DONE state on entry. 756 * 757 * Under normal operations, every in-core buffer is verified on read I/O 758 * completion. There are two scenarios that can lead to in-core buffers without 759 * an assigned ->b_ops. The first is during log recovery of buffers on a V4 760 * filesystem, though these buffers are purged at the end of recovery. The 761 * other is online repair, which intentionally reads with a NULL buffer ops to 762 * run several verifiers across an in-core buffer in order to establish buffer 763 * type. If repair can't establish that, the buffer will be left in memory 764 * with NULL buffer ops. 765 */ 766 int 767 xfs_buf_reverify( 768 struct xfs_buf *bp, 769 const struct xfs_buf_ops *ops) 770 { 771 ASSERT(bp->b_flags & XBF_DONE); 772 ASSERT(bp->b_error == 0); 773 774 if (!ops || bp->b_ops) 775 return 0; 776 777 bp->b_ops = ops; 778 bp->b_ops->verify_read(bp); 779 if (bp->b_error) 780 bp->b_flags &= ~XBF_DONE; 781 return bp->b_error; 782 } 783 784 int 785 xfs_buf_read_map( 786 struct xfs_buftarg *target, 787 struct xfs_buf_map *map, 788 int nmaps, 789 xfs_buf_flags_t flags, 790 struct xfs_buf **bpp, 791 const struct xfs_buf_ops *ops, 792 xfs_failaddr_t fa) 793 { 794 struct xfs_buf *bp; 795 int error; 796 797 ASSERT(!(flags & (XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD))); 798 799 flags |= XBF_READ; 800 *bpp = NULL; 801 802 error = xfs_buf_get_map(target, map, nmaps, flags, &bp); 803 if (error) 804 return error; 805 806 trace_xfs_buf_read(bp, flags, _RET_IP_); 807 808 if (!(bp->b_flags & XBF_DONE)) { 809 /* Initiate the buffer read and wait. */ 810 XFS_STATS_INC(target->bt_mount, xb_get_read); 811 bp->b_ops = ops; 812 error = _xfs_buf_read(bp); 813 } else { 814 /* Buffer already read; all we need to do is check it. */ 815 error = xfs_buf_reverify(bp, ops); 816 817 /* We do not want read in the flags */ 818 bp->b_flags &= ~XBF_READ; 819 ASSERT(bp->b_ops != NULL || ops == NULL); 820 } 821 822 /* 823 * If we've had a read error, then the contents of the buffer are 824 * invalid and should not be used. To ensure that a followup read tries 825 * to pull the buffer from disk again, we clear the XBF_DONE flag and 826 * mark the buffer stale. This ensures that anyone who has a current 827 * reference to the buffer will interpret it's contents correctly and 828 * future cache lookups will also treat it as an empty, uninitialised 829 * buffer. 830 */ 831 if (error) { 832 /* 833 * Check against log shutdown for error reporting because 834 * metadata writeback may require a read first and we need to 835 * report errors in metadata writeback until the log is shut 836 * down. High level transaction read functions already check 837 * against mount shutdown, anyway, so we only need to be 838 * concerned about low level IO interactions here. 839 */ 840 if (!xlog_is_shutdown(target->bt_mount->m_log)) 841 xfs_buf_ioerror_alert(bp, fa); 842 843 bp->b_flags &= ~XBF_DONE; 844 xfs_buf_stale(bp); 845 xfs_buf_relse(bp); 846 847 /* bad CRC means corrupted metadata */ 848 if (error == -EFSBADCRC) 849 error = -EFSCORRUPTED; 850 return error; 851 } 852 853 *bpp = bp; 854 return 0; 855 } 856 857 /* 858 * If we are not low on memory then do the readahead in a deadlock 859 * safe manner. 860 */ 861 void 862 xfs_buf_readahead_map( 863 struct xfs_buftarg *target, 864 struct xfs_buf_map *map, 865 int nmaps, 866 const struct xfs_buf_ops *ops) 867 { 868 const xfs_buf_flags_t flags = XBF_READ | XBF_ASYNC | XBF_READ_AHEAD; 869 struct xfs_buf *bp; 870 871 /* 872 * Currently we don't have a good means or justification for performing 873 * xmbuf_map_page asynchronously, so we don't do readahead. 874 */ 875 if (xfs_buftarg_is_mem(target)) 876 return; 877 878 if (xfs_buf_get_map(target, map, nmaps, flags | XBF_TRYLOCK, &bp)) 879 return; 880 trace_xfs_buf_readahead(bp, 0, _RET_IP_); 881 882 if (bp->b_flags & XBF_DONE) { 883 xfs_buf_reverify(bp, ops); 884 xfs_buf_relse(bp); 885 return; 886 } 887 XFS_STATS_INC(target->bt_mount, xb_get_read); 888 bp->b_ops = ops; 889 bp->b_flags &= ~(XBF_WRITE | XBF_DONE); 890 bp->b_flags |= flags; 891 percpu_counter_inc(&target->bt_readahead_count); 892 xfs_buf_submit(bp); 893 } 894 895 /* 896 * Read an uncached buffer from disk. Allocates and returns a locked 897 * buffer containing the disk contents or nothing. Uncached buffers always have 898 * a cache index of XFS_BUF_DADDR_NULL so we can easily determine if the buffer 899 * is cached or uncached during fault diagnosis. 900 */ 901 int 902 xfs_buf_read_uncached( 903 struct xfs_buftarg *target, 904 xfs_daddr_t daddr, 905 size_t numblks, 906 xfs_buf_flags_t flags, 907 struct xfs_buf **bpp, 908 const struct xfs_buf_ops *ops) 909 { 910 struct xfs_buf *bp; 911 int error; 912 913 *bpp = NULL; 914 915 error = xfs_buf_get_uncached(target, numblks, flags, &bp); 916 if (error) 917 return error; 918 919 /* set up the buffer for a read IO */ 920 ASSERT(bp->b_map_count == 1); 921 bp->b_rhash_key = XFS_BUF_DADDR_NULL; 922 bp->b_maps[0].bm_bn = daddr; 923 bp->b_flags |= XBF_READ; 924 bp->b_ops = ops; 925 926 xfs_buf_submit(bp); 927 error = xfs_buf_iowait(bp); 928 if (error) { 929 xfs_buf_relse(bp); 930 return error; 931 } 932 933 *bpp = bp; 934 return 0; 935 } 936 937 int 938 xfs_buf_get_uncached( 939 struct xfs_buftarg *target, 940 size_t numblks, 941 xfs_buf_flags_t flags, 942 struct xfs_buf **bpp) 943 { 944 int error; 945 struct xfs_buf *bp; 946 DEFINE_SINGLE_BUF_MAP(map, XFS_BUF_DADDR_NULL, numblks); 947 948 /* there are currently no valid flags for xfs_buf_get_uncached */ 949 ASSERT(flags == 0); 950 951 *bpp = NULL; 952 953 error = _xfs_buf_alloc(target, &map, 1, flags, &bp); 954 if (error) 955 return error; 956 957 if (xfs_buftarg_is_mem(bp->b_target)) 958 error = xmbuf_map_page(bp); 959 else 960 error = xfs_buf_alloc_pages(bp, flags); 961 if (error) 962 goto fail_free_buf; 963 964 error = _xfs_buf_map_pages(bp, 0); 965 if (unlikely(error)) { 966 xfs_warn(target->bt_mount, 967 "%s: failed to map pages", __func__); 968 goto fail_free_buf; 969 } 970 971 trace_xfs_buf_get_uncached(bp, _RET_IP_); 972 *bpp = bp; 973 return 0; 974 975 fail_free_buf: 976 xfs_buf_free(bp); 977 return error; 978 } 979 980 /* 981 * Increment reference count on buffer, to hold the buffer concurrently 982 * with another thread which may release (free) the buffer asynchronously. 983 * Must hold the buffer already to call this function. 984 */ 985 void 986 xfs_buf_hold( 987 struct xfs_buf *bp) 988 { 989 trace_xfs_buf_hold(bp, _RET_IP_); 990 991 spin_lock(&bp->b_lock); 992 bp->b_hold++; 993 spin_unlock(&bp->b_lock); 994 } 995 996 static void 997 xfs_buf_rele_uncached( 998 struct xfs_buf *bp) 999 { 1000 ASSERT(list_empty(&bp->b_lru)); 1001 1002 spin_lock(&bp->b_lock); 1003 if (--bp->b_hold) { 1004 spin_unlock(&bp->b_lock); 1005 return; 1006 } 1007 spin_unlock(&bp->b_lock); 1008 xfs_buf_free(bp); 1009 } 1010 1011 static void 1012 xfs_buf_rele_cached( 1013 struct xfs_buf *bp) 1014 { 1015 struct xfs_buftarg *btp = bp->b_target; 1016 struct xfs_perag *pag = bp->b_pag; 1017 struct xfs_buf_cache *bch = xfs_buftarg_buf_cache(btp, pag); 1018 bool freebuf = false; 1019 1020 trace_xfs_buf_rele(bp, _RET_IP_); 1021 1022 spin_lock(&bp->b_lock); 1023 ASSERT(bp->b_hold >= 1); 1024 if (bp->b_hold > 1) { 1025 bp->b_hold--; 1026 goto out_unlock; 1027 } 1028 1029 /* we are asked to drop the last reference */ 1030 if (atomic_read(&bp->b_lru_ref)) { 1031 /* 1032 * If the buffer is added to the LRU, keep the reference to the 1033 * buffer for the LRU and clear the (now stale) dispose list 1034 * state flag, else drop the reference. 1035 */ 1036 if (list_lru_add_obj(&btp->bt_lru, &bp->b_lru)) 1037 bp->b_state &= ~XFS_BSTATE_DISPOSE; 1038 else 1039 bp->b_hold--; 1040 } else { 1041 bp->b_hold--; 1042 /* 1043 * most of the time buffers will already be removed from the 1044 * LRU, so optimise that case by checking for the 1045 * XFS_BSTATE_DISPOSE flag indicating the last list the buffer 1046 * was on was the disposal list 1047 */ 1048 if (!(bp->b_state & XFS_BSTATE_DISPOSE)) { 1049 list_lru_del_obj(&btp->bt_lru, &bp->b_lru); 1050 } else { 1051 ASSERT(list_empty(&bp->b_lru)); 1052 } 1053 1054 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q)); 1055 rhashtable_remove_fast(&bch->bc_hash, &bp->b_rhash_head, 1056 xfs_buf_hash_params); 1057 if (pag) 1058 xfs_perag_put(pag); 1059 freebuf = true; 1060 } 1061 1062 out_unlock: 1063 spin_unlock(&bp->b_lock); 1064 1065 if (freebuf) 1066 xfs_buf_free(bp); 1067 } 1068 1069 /* 1070 * Release a hold on the specified buffer. 1071 */ 1072 void 1073 xfs_buf_rele( 1074 struct xfs_buf *bp) 1075 { 1076 trace_xfs_buf_rele(bp, _RET_IP_); 1077 if (xfs_buf_is_uncached(bp)) 1078 xfs_buf_rele_uncached(bp); 1079 else 1080 xfs_buf_rele_cached(bp); 1081 } 1082 1083 /* 1084 * Lock a buffer object, if it is not already locked. 1085 * 1086 * If we come across a stale, pinned, locked buffer, we know that we are 1087 * being asked to lock a buffer that has been reallocated. Because it is 1088 * pinned, we know that the log has not been pushed to disk and hence it 1089 * will still be locked. Rather than continuing to have trylock attempts 1090 * fail until someone else pushes the log, push it ourselves before 1091 * returning. This means that the xfsaild will not get stuck trying 1092 * to push on stale inode buffers. 1093 */ 1094 int 1095 xfs_buf_trylock( 1096 struct xfs_buf *bp) 1097 { 1098 int locked; 1099 1100 locked = down_trylock(&bp->b_sema) == 0; 1101 if (locked) 1102 trace_xfs_buf_trylock(bp, _RET_IP_); 1103 else 1104 trace_xfs_buf_trylock_fail(bp, _RET_IP_); 1105 return locked; 1106 } 1107 1108 /* 1109 * Lock a buffer object. 1110 * 1111 * If we come across a stale, pinned, locked buffer, we know that we 1112 * are being asked to lock a buffer that has been reallocated. Because 1113 * it is pinned, we know that the log has not been pushed to disk and 1114 * hence it will still be locked. Rather than sleeping until someone 1115 * else pushes the log, push it ourselves before trying to get the lock. 1116 */ 1117 void 1118 xfs_buf_lock( 1119 struct xfs_buf *bp) 1120 { 1121 trace_xfs_buf_lock(bp, _RET_IP_); 1122 1123 if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE)) 1124 xfs_log_force(bp->b_mount, 0); 1125 down(&bp->b_sema); 1126 1127 trace_xfs_buf_lock_done(bp, _RET_IP_); 1128 } 1129 1130 void 1131 xfs_buf_unlock( 1132 struct xfs_buf *bp) 1133 { 1134 ASSERT(xfs_buf_islocked(bp)); 1135 1136 up(&bp->b_sema); 1137 trace_xfs_buf_unlock(bp, _RET_IP_); 1138 } 1139 1140 STATIC void 1141 xfs_buf_wait_unpin( 1142 struct xfs_buf *bp) 1143 { 1144 DECLARE_WAITQUEUE (wait, current); 1145 1146 if (atomic_read(&bp->b_pin_count) == 0) 1147 return; 1148 1149 add_wait_queue(&bp->b_waiters, &wait); 1150 for (;;) { 1151 set_current_state(TASK_UNINTERRUPTIBLE); 1152 if (atomic_read(&bp->b_pin_count) == 0) 1153 break; 1154 io_schedule(); 1155 } 1156 remove_wait_queue(&bp->b_waiters, &wait); 1157 set_current_state(TASK_RUNNING); 1158 } 1159 1160 static void 1161 xfs_buf_ioerror_alert_ratelimited( 1162 struct xfs_buf *bp) 1163 { 1164 static unsigned long lasttime; 1165 static struct xfs_buftarg *lasttarg; 1166 1167 if (bp->b_target != lasttarg || 1168 time_after(jiffies, (lasttime + 5*HZ))) { 1169 lasttime = jiffies; 1170 xfs_buf_ioerror_alert(bp, __this_address); 1171 } 1172 lasttarg = bp->b_target; 1173 } 1174 1175 /* 1176 * Account for this latest trip around the retry handler, and decide if 1177 * we've failed enough times to constitute a permanent failure. 1178 */ 1179 static bool 1180 xfs_buf_ioerror_permanent( 1181 struct xfs_buf *bp, 1182 struct xfs_error_cfg *cfg) 1183 { 1184 struct xfs_mount *mp = bp->b_mount; 1185 1186 if (cfg->max_retries != XFS_ERR_RETRY_FOREVER && 1187 ++bp->b_retries > cfg->max_retries) 1188 return true; 1189 if (cfg->retry_timeout != XFS_ERR_RETRY_FOREVER && 1190 time_after(jiffies, cfg->retry_timeout + bp->b_first_retry_time)) 1191 return true; 1192 1193 /* At unmount we may treat errors differently */ 1194 if (xfs_is_unmounting(mp) && mp->m_fail_unmount) 1195 return true; 1196 1197 return false; 1198 } 1199 1200 /* 1201 * On a sync write or shutdown we just want to stale the buffer and let the 1202 * caller handle the error in bp->b_error appropriately. 1203 * 1204 * If the write was asynchronous then no one will be looking for the error. If 1205 * this is the first failure of this type, clear the error state and write the 1206 * buffer out again. This means we always retry an async write failure at least 1207 * once, but we also need to set the buffer up to behave correctly now for 1208 * repeated failures. 1209 * 1210 * If we get repeated async write failures, then we take action according to the 1211 * error configuration we have been set up to use. 1212 * 1213 * Returns true if this function took care of error handling and the caller must 1214 * not touch the buffer again. Return false if the caller should proceed with 1215 * normal I/O completion handling. 1216 */ 1217 static bool 1218 xfs_buf_ioend_handle_error( 1219 struct xfs_buf *bp) 1220 { 1221 struct xfs_mount *mp = bp->b_mount; 1222 struct xfs_error_cfg *cfg; 1223 struct xfs_log_item *lip; 1224 1225 /* 1226 * If we've already shutdown the journal because of I/O errors, there's 1227 * no point in giving this a retry. 1228 */ 1229 if (xlog_is_shutdown(mp->m_log)) 1230 goto out_stale; 1231 1232 xfs_buf_ioerror_alert_ratelimited(bp); 1233 1234 /* 1235 * We're not going to bother about retrying this during recovery. 1236 * One strike! 1237 */ 1238 if (bp->b_flags & _XBF_LOGRECOVERY) { 1239 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR); 1240 return false; 1241 } 1242 1243 /* 1244 * Synchronous writes will have callers process the error. 1245 */ 1246 if (!(bp->b_flags & XBF_ASYNC)) 1247 goto out_stale; 1248 1249 trace_xfs_buf_iodone_async(bp, _RET_IP_); 1250 1251 cfg = xfs_error_get_cfg(mp, XFS_ERR_METADATA, bp->b_error); 1252 if (bp->b_last_error != bp->b_error || 1253 !(bp->b_flags & (XBF_STALE | XBF_WRITE_FAIL))) { 1254 bp->b_last_error = bp->b_error; 1255 if (cfg->retry_timeout != XFS_ERR_RETRY_FOREVER && 1256 !bp->b_first_retry_time) 1257 bp->b_first_retry_time = jiffies; 1258 goto resubmit; 1259 } 1260 1261 /* 1262 * Permanent error - we need to trigger a shutdown if we haven't already 1263 * to indicate that inconsistency will result from this action. 1264 */ 1265 if (xfs_buf_ioerror_permanent(bp, cfg)) { 1266 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR); 1267 goto out_stale; 1268 } 1269 1270 /* Still considered a transient error. Caller will schedule retries. */ 1271 list_for_each_entry(lip, &bp->b_li_list, li_bio_list) { 1272 set_bit(XFS_LI_FAILED, &lip->li_flags); 1273 clear_bit(XFS_LI_FLUSHING, &lip->li_flags); 1274 } 1275 1276 xfs_buf_ioerror(bp, 0); 1277 xfs_buf_relse(bp); 1278 return true; 1279 1280 resubmit: 1281 xfs_buf_ioerror(bp, 0); 1282 bp->b_flags |= (XBF_DONE | XBF_WRITE_FAIL); 1283 reinit_completion(&bp->b_iowait); 1284 xfs_buf_submit(bp); 1285 return true; 1286 out_stale: 1287 xfs_buf_stale(bp); 1288 bp->b_flags |= XBF_DONE; 1289 bp->b_flags &= ~XBF_WRITE; 1290 trace_xfs_buf_error_relse(bp, _RET_IP_); 1291 return false; 1292 } 1293 1294 /* returns false if the caller needs to resubmit the I/O, else true */ 1295 static bool 1296 __xfs_buf_ioend( 1297 struct xfs_buf *bp) 1298 { 1299 trace_xfs_buf_iodone(bp, _RET_IP_); 1300 1301 if (bp->b_flags & XBF_READ) { 1302 if (!bp->b_error && xfs_buf_is_vmapped(bp)) 1303 invalidate_kernel_vmap_range(bp->b_addr, 1304 xfs_buf_vmap_len(bp)); 1305 if (!bp->b_error && bp->b_ops) 1306 bp->b_ops->verify_read(bp); 1307 if (!bp->b_error) 1308 bp->b_flags |= XBF_DONE; 1309 if (bp->b_flags & XBF_READ_AHEAD) 1310 percpu_counter_dec(&bp->b_target->bt_readahead_count); 1311 } else { 1312 if (!bp->b_error) { 1313 bp->b_flags &= ~XBF_WRITE_FAIL; 1314 bp->b_flags |= XBF_DONE; 1315 } 1316 1317 if (unlikely(bp->b_error) && xfs_buf_ioend_handle_error(bp)) 1318 return false; 1319 1320 /* clear the retry state */ 1321 bp->b_last_error = 0; 1322 bp->b_retries = 0; 1323 bp->b_first_retry_time = 0; 1324 1325 /* 1326 * Note that for things like remote attribute buffers, there may 1327 * not be a buffer log item here, so processing the buffer log 1328 * item must remain optional. 1329 */ 1330 if (bp->b_log_item) 1331 xfs_buf_item_done(bp); 1332 1333 if (bp->b_iodone) 1334 bp->b_iodone(bp); 1335 } 1336 1337 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD | 1338 _XBF_LOGRECOVERY); 1339 return true; 1340 } 1341 1342 static void 1343 xfs_buf_ioend( 1344 struct xfs_buf *bp) 1345 { 1346 if (!__xfs_buf_ioend(bp)) 1347 return; 1348 if (bp->b_flags & XBF_ASYNC) 1349 xfs_buf_relse(bp); 1350 else 1351 complete(&bp->b_iowait); 1352 } 1353 1354 static void 1355 xfs_buf_ioend_work( 1356 struct work_struct *work) 1357 { 1358 struct xfs_buf *bp = 1359 container_of(work, struct xfs_buf, b_ioend_work); 1360 1361 if (__xfs_buf_ioend(bp)) 1362 xfs_buf_relse(bp); 1363 } 1364 1365 void 1366 __xfs_buf_ioerror( 1367 struct xfs_buf *bp, 1368 int error, 1369 xfs_failaddr_t failaddr) 1370 { 1371 ASSERT(error <= 0 && error >= -1000); 1372 bp->b_error = error; 1373 trace_xfs_buf_ioerror(bp, error, failaddr); 1374 } 1375 1376 void 1377 xfs_buf_ioerror_alert( 1378 struct xfs_buf *bp, 1379 xfs_failaddr_t func) 1380 { 1381 xfs_buf_alert_ratelimited(bp, "XFS: metadata IO error", 1382 "metadata I/O error in \"%pS\" at daddr 0x%llx len %d error %d", 1383 func, (uint64_t)xfs_buf_daddr(bp), 1384 bp->b_length, -bp->b_error); 1385 } 1386 1387 /* 1388 * To simulate an I/O failure, the buffer must be locked and held with at least 1389 * three references. The LRU reference is dropped by the stale call. The buf 1390 * item reference is dropped via ioend processing. The third reference is owned 1391 * by the caller and is dropped on I/O completion if the buffer is XBF_ASYNC. 1392 */ 1393 void 1394 xfs_buf_ioend_fail( 1395 struct xfs_buf *bp) 1396 { 1397 bp->b_flags &= ~XBF_DONE; 1398 xfs_buf_stale(bp); 1399 xfs_buf_ioerror(bp, -EIO); 1400 xfs_buf_ioend(bp); 1401 } 1402 1403 int 1404 xfs_bwrite( 1405 struct xfs_buf *bp) 1406 { 1407 int error; 1408 1409 ASSERT(xfs_buf_islocked(bp)); 1410 1411 bp->b_flags |= XBF_WRITE; 1412 bp->b_flags &= ~(XBF_ASYNC | XBF_READ | _XBF_DELWRI_Q | 1413 XBF_DONE); 1414 1415 xfs_buf_submit(bp); 1416 error = xfs_buf_iowait(bp); 1417 if (error) 1418 xfs_force_shutdown(bp->b_mount, SHUTDOWN_META_IO_ERROR); 1419 return error; 1420 } 1421 1422 static void 1423 xfs_buf_bio_end_io( 1424 struct bio *bio) 1425 { 1426 struct xfs_buf *bp = bio->bi_private; 1427 1428 if (bio->bi_status) 1429 xfs_buf_ioerror(bp, blk_status_to_errno(bio->bi_status)); 1430 else if ((bp->b_flags & XBF_WRITE) && (bp->b_flags & XBF_ASYNC) && 1431 XFS_TEST_ERROR(false, bp->b_mount, XFS_ERRTAG_BUF_IOERROR)) 1432 xfs_buf_ioerror(bp, -EIO); 1433 1434 if (bp->b_flags & XBF_ASYNC) { 1435 INIT_WORK(&bp->b_ioend_work, xfs_buf_ioend_work); 1436 queue_work(bp->b_mount->m_buf_workqueue, &bp->b_ioend_work); 1437 } else { 1438 complete(&bp->b_iowait); 1439 } 1440 1441 bio_put(bio); 1442 } 1443 1444 static inline blk_opf_t 1445 xfs_buf_bio_op( 1446 struct xfs_buf *bp) 1447 { 1448 blk_opf_t op; 1449 1450 if (bp->b_flags & XBF_WRITE) { 1451 op = REQ_OP_WRITE; 1452 } else { 1453 op = REQ_OP_READ; 1454 if (bp->b_flags & XBF_READ_AHEAD) 1455 op |= REQ_RAHEAD; 1456 } 1457 1458 return op | REQ_META; 1459 } 1460 1461 static void 1462 xfs_buf_submit_bio( 1463 struct xfs_buf *bp) 1464 { 1465 unsigned int size = BBTOB(bp->b_length); 1466 unsigned int map = 0, p; 1467 struct blk_plug plug; 1468 struct bio *bio; 1469 1470 bio = bio_alloc(bp->b_target->bt_bdev, bp->b_page_count, 1471 xfs_buf_bio_op(bp), GFP_NOIO); 1472 bio->bi_private = bp; 1473 bio->bi_end_io = xfs_buf_bio_end_io; 1474 1475 if (bp->b_flags & _XBF_KMEM) { 1476 __bio_add_page(bio, virt_to_page(bp->b_addr), size, 1477 bp->b_offset); 1478 } else { 1479 for (p = 0; p < bp->b_page_count; p++) 1480 __bio_add_page(bio, bp->b_pages[p], PAGE_SIZE, 0); 1481 bio->bi_iter.bi_size = size; /* limit to the actual size used */ 1482 1483 if (xfs_buf_is_vmapped(bp)) 1484 flush_kernel_vmap_range(bp->b_addr, 1485 xfs_buf_vmap_len(bp)); 1486 } 1487 1488 /* 1489 * If there is more than one map segment, split out a new bio for each 1490 * map except of the last one. The last map is handled by the 1491 * remainder of the original bio outside the loop. 1492 */ 1493 blk_start_plug(&plug); 1494 for (map = 0; map < bp->b_map_count - 1; map++) { 1495 struct bio *split; 1496 1497 split = bio_split(bio, bp->b_maps[map].bm_len, GFP_NOFS, 1498 &fs_bio_set); 1499 split->bi_iter.bi_sector = bp->b_maps[map].bm_bn; 1500 bio_chain(split, bio); 1501 submit_bio(split); 1502 } 1503 bio->bi_iter.bi_sector = bp->b_maps[map].bm_bn; 1504 submit_bio(bio); 1505 blk_finish_plug(&plug); 1506 } 1507 1508 /* 1509 * Wait for I/O completion of a sync buffer and return the I/O error code. 1510 */ 1511 static int 1512 xfs_buf_iowait( 1513 struct xfs_buf *bp) 1514 { 1515 ASSERT(!(bp->b_flags & XBF_ASYNC)); 1516 1517 do { 1518 trace_xfs_buf_iowait(bp, _RET_IP_); 1519 wait_for_completion(&bp->b_iowait); 1520 trace_xfs_buf_iowait_done(bp, _RET_IP_); 1521 } while (!__xfs_buf_ioend(bp)); 1522 1523 return bp->b_error; 1524 } 1525 1526 /* 1527 * Run the write verifier callback function if it exists. If this fails, mark 1528 * the buffer with an error and do not dispatch the I/O. 1529 */ 1530 static bool 1531 xfs_buf_verify_write( 1532 struct xfs_buf *bp) 1533 { 1534 if (bp->b_ops) { 1535 bp->b_ops->verify_write(bp); 1536 if (bp->b_error) 1537 return false; 1538 } else if (bp->b_rhash_key != XFS_BUF_DADDR_NULL) { 1539 /* 1540 * Non-crc filesystems don't attach verifiers during log 1541 * recovery, so don't warn for such filesystems. 1542 */ 1543 if (xfs_has_crc(bp->b_mount)) { 1544 xfs_warn(bp->b_mount, 1545 "%s: no buf ops on daddr 0x%llx len %d", 1546 __func__, xfs_buf_daddr(bp), 1547 bp->b_length); 1548 xfs_hex_dump(bp->b_addr, XFS_CORRUPTION_DUMP_LEN); 1549 dump_stack(); 1550 } 1551 } 1552 1553 return true; 1554 } 1555 1556 /* 1557 * Buffer I/O submission path, read or write. Asynchronous submission transfers 1558 * the buffer lock ownership and the current reference to the IO. It is not 1559 * safe to reference the buffer after a call to this function unless the caller 1560 * holds an additional reference itself. 1561 */ 1562 static void 1563 xfs_buf_submit( 1564 struct xfs_buf *bp) 1565 { 1566 trace_xfs_buf_submit(bp, _RET_IP_); 1567 1568 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q)); 1569 1570 /* 1571 * On log shutdown we stale and complete the buffer immediately. We can 1572 * be called to read the superblock before the log has been set up, so 1573 * be careful checking the log state. 1574 * 1575 * Checking the mount shutdown state here can result in the log tail 1576 * moving inappropriately on disk as the log may not yet be shut down. 1577 * i.e. failing this buffer on mount shutdown can remove it from the AIL 1578 * and move the tail of the log forwards without having written this 1579 * buffer to disk. This corrupts the log tail state in memory, and 1580 * because the log may not be shut down yet, it can then be propagated 1581 * to disk before the log is shutdown. Hence we check log shutdown 1582 * state here rather than mount state to avoid corrupting the log tail 1583 * on shutdown. 1584 */ 1585 if (bp->b_mount->m_log && xlog_is_shutdown(bp->b_mount->m_log)) { 1586 xfs_buf_ioend_fail(bp); 1587 return; 1588 } 1589 1590 if (bp->b_flags & XBF_WRITE) 1591 xfs_buf_wait_unpin(bp); 1592 1593 /* 1594 * Make sure we capture only current IO errors rather than stale errors 1595 * left over from previous use of the buffer (e.g. failed readahead). 1596 */ 1597 bp->b_error = 0; 1598 1599 if ((bp->b_flags & XBF_WRITE) && !xfs_buf_verify_write(bp)) { 1600 xfs_force_shutdown(bp->b_mount, SHUTDOWN_CORRUPT_INCORE); 1601 xfs_buf_ioend(bp); 1602 return; 1603 } 1604 1605 /* In-memory targets are directly mapped, no I/O required. */ 1606 if (xfs_buftarg_is_mem(bp->b_target)) { 1607 xfs_buf_ioend(bp); 1608 return; 1609 } 1610 1611 xfs_buf_submit_bio(bp); 1612 } 1613 1614 void * 1615 xfs_buf_offset( 1616 struct xfs_buf *bp, 1617 size_t offset) 1618 { 1619 struct page *page; 1620 1621 if (bp->b_addr) 1622 return bp->b_addr + offset; 1623 1624 page = bp->b_pages[offset >> PAGE_SHIFT]; 1625 return page_address(page) + (offset & (PAGE_SIZE-1)); 1626 } 1627 1628 void 1629 xfs_buf_zero( 1630 struct xfs_buf *bp, 1631 size_t boff, 1632 size_t bsize) 1633 { 1634 size_t bend; 1635 1636 bend = boff + bsize; 1637 while (boff < bend) { 1638 struct page *page; 1639 int page_index, page_offset, csize; 1640 1641 page_index = (boff + bp->b_offset) >> PAGE_SHIFT; 1642 page_offset = (boff + bp->b_offset) & ~PAGE_MASK; 1643 page = bp->b_pages[page_index]; 1644 csize = min_t(size_t, PAGE_SIZE - page_offset, 1645 BBTOB(bp->b_length) - boff); 1646 1647 ASSERT((csize + page_offset) <= PAGE_SIZE); 1648 1649 memset(page_address(page) + page_offset, 0, csize); 1650 1651 boff += csize; 1652 } 1653 } 1654 1655 /* 1656 * Log a message about and stale a buffer that a caller has decided is corrupt. 1657 * 1658 * This function should be called for the kinds of metadata corruption that 1659 * cannot be detect from a verifier, such as incorrect inter-block relationship 1660 * data. Do /not/ call this function from a verifier function. 1661 * 1662 * The buffer must be XBF_DONE prior to the call. Afterwards, the buffer will 1663 * be marked stale, but b_error will not be set. The caller is responsible for 1664 * releasing the buffer or fixing it. 1665 */ 1666 void 1667 __xfs_buf_mark_corrupt( 1668 struct xfs_buf *bp, 1669 xfs_failaddr_t fa) 1670 { 1671 ASSERT(bp->b_flags & XBF_DONE); 1672 1673 xfs_buf_corruption_error(bp, fa); 1674 xfs_buf_stale(bp); 1675 } 1676 1677 /* 1678 * Handling of buffer targets (buftargs). 1679 */ 1680 1681 /* 1682 * Wait for any bufs with callbacks that have been submitted but have not yet 1683 * returned. These buffers will have an elevated hold count, so wait on those 1684 * while freeing all the buffers only held by the LRU. 1685 */ 1686 static enum lru_status 1687 xfs_buftarg_drain_rele( 1688 struct list_head *item, 1689 struct list_lru_one *lru, 1690 void *arg) 1691 1692 { 1693 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru); 1694 struct list_head *dispose = arg; 1695 1696 if (!spin_trylock(&bp->b_lock)) 1697 return LRU_SKIP; 1698 if (bp->b_hold > 1) { 1699 /* need to wait, so skip it this pass */ 1700 spin_unlock(&bp->b_lock); 1701 trace_xfs_buf_drain_buftarg(bp, _RET_IP_); 1702 return LRU_SKIP; 1703 } 1704 1705 /* 1706 * clear the LRU reference count so the buffer doesn't get 1707 * ignored in xfs_buf_rele(). 1708 */ 1709 atomic_set(&bp->b_lru_ref, 0); 1710 bp->b_state |= XFS_BSTATE_DISPOSE; 1711 list_lru_isolate_move(lru, item, dispose); 1712 spin_unlock(&bp->b_lock); 1713 return LRU_REMOVED; 1714 } 1715 1716 /* 1717 * Wait for outstanding I/O on the buftarg to complete. 1718 */ 1719 void 1720 xfs_buftarg_wait( 1721 struct xfs_buftarg *btp) 1722 { 1723 /* 1724 * First wait for all in-flight readahead buffers to be released. This is 1725 * critical as new buffers do not make the LRU until they are released. 1726 * 1727 * Next, flush the buffer workqueue to ensure all completion processing 1728 * has finished. Just waiting on buffer locks is not sufficient for 1729 * async IO as the reference count held over IO is not released until 1730 * after the buffer lock is dropped. Hence we need to ensure here that 1731 * all reference counts have been dropped before we start walking the 1732 * LRU list. 1733 */ 1734 while (percpu_counter_sum(&btp->bt_readahead_count)) 1735 delay(100); 1736 flush_workqueue(btp->bt_mount->m_buf_workqueue); 1737 } 1738 1739 void 1740 xfs_buftarg_drain( 1741 struct xfs_buftarg *btp) 1742 { 1743 LIST_HEAD(dispose); 1744 int loop = 0; 1745 bool write_fail = false; 1746 1747 xfs_buftarg_wait(btp); 1748 1749 /* loop until there is nothing left on the lru list. */ 1750 while (list_lru_count(&btp->bt_lru)) { 1751 list_lru_walk(&btp->bt_lru, xfs_buftarg_drain_rele, 1752 &dispose, LONG_MAX); 1753 1754 while (!list_empty(&dispose)) { 1755 struct xfs_buf *bp; 1756 bp = list_first_entry(&dispose, struct xfs_buf, b_lru); 1757 list_del_init(&bp->b_lru); 1758 if (bp->b_flags & XBF_WRITE_FAIL) { 1759 write_fail = true; 1760 xfs_buf_alert_ratelimited(bp, 1761 "XFS: Corruption Alert", 1762 "Corruption Alert: Buffer at daddr 0x%llx had permanent write failures!", 1763 (long long)xfs_buf_daddr(bp)); 1764 } 1765 xfs_buf_rele(bp); 1766 } 1767 if (loop++ != 0) 1768 delay(100); 1769 } 1770 1771 /* 1772 * If one or more failed buffers were freed, that means dirty metadata 1773 * was thrown away. This should only ever happen after I/O completion 1774 * handling has elevated I/O error(s) to permanent failures and shuts 1775 * down the journal. 1776 */ 1777 if (write_fail) { 1778 ASSERT(xlog_is_shutdown(btp->bt_mount->m_log)); 1779 xfs_alert(btp->bt_mount, 1780 "Please run xfs_repair to determine the extent of the problem."); 1781 } 1782 } 1783 1784 static enum lru_status 1785 xfs_buftarg_isolate( 1786 struct list_head *item, 1787 struct list_lru_one *lru, 1788 void *arg) 1789 { 1790 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru); 1791 struct list_head *dispose = arg; 1792 1793 /* 1794 * we are inverting the lru lock/bp->b_lock here, so use a trylock. 1795 * If we fail to get the lock, just skip it. 1796 */ 1797 if (!spin_trylock(&bp->b_lock)) 1798 return LRU_SKIP; 1799 /* 1800 * Decrement the b_lru_ref count unless the value is already 1801 * zero. If the value is already zero, we need to reclaim the 1802 * buffer, otherwise it gets another trip through the LRU. 1803 */ 1804 if (atomic_add_unless(&bp->b_lru_ref, -1, 0)) { 1805 spin_unlock(&bp->b_lock); 1806 return LRU_ROTATE; 1807 } 1808 1809 bp->b_state |= XFS_BSTATE_DISPOSE; 1810 list_lru_isolate_move(lru, item, dispose); 1811 spin_unlock(&bp->b_lock); 1812 return LRU_REMOVED; 1813 } 1814 1815 static unsigned long 1816 xfs_buftarg_shrink_scan( 1817 struct shrinker *shrink, 1818 struct shrink_control *sc) 1819 { 1820 struct xfs_buftarg *btp = shrink->private_data; 1821 LIST_HEAD(dispose); 1822 unsigned long freed; 1823 1824 freed = list_lru_shrink_walk(&btp->bt_lru, sc, 1825 xfs_buftarg_isolate, &dispose); 1826 1827 while (!list_empty(&dispose)) { 1828 struct xfs_buf *bp; 1829 bp = list_first_entry(&dispose, struct xfs_buf, b_lru); 1830 list_del_init(&bp->b_lru); 1831 xfs_buf_rele(bp); 1832 } 1833 1834 return freed; 1835 } 1836 1837 static unsigned long 1838 xfs_buftarg_shrink_count( 1839 struct shrinker *shrink, 1840 struct shrink_control *sc) 1841 { 1842 struct xfs_buftarg *btp = shrink->private_data; 1843 return list_lru_shrink_count(&btp->bt_lru, sc); 1844 } 1845 1846 void 1847 xfs_destroy_buftarg( 1848 struct xfs_buftarg *btp) 1849 { 1850 shrinker_free(btp->bt_shrinker); 1851 ASSERT(percpu_counter_sum(&btp->bt_readahead_count) == 0); 1852 percpu_counter_destroy(&btp->bt_readahead_count); 1853 list_lru_destroy(&btp->bt_lru); 1854 } 1855 1856 void 1857 xfs_free_buftarg( 1858 struct xfs_buftarg *btp) 1859 { 1860 xfs_destroy_buftarg(btp); 1861 fs_put_dax(btp->bt_daxdev, btp->bt_mount); 1862 /* the main block device is closed by kill_block_super */ 1863 if (btp->bt_bdev != btp->bt_mount->m_super->s_bdev) 1864 bdev_fput(btp->bt_bdev_file); 1865 kfree(btp); 1866 } 1867 1868 int 1869 xfs_setsize_buftarg( 1870 struct xfs_buftarg *btp, 1871 unsigned int sectorsize) 1872 { 1873 /* Set up metadata sector size info */ 1874 btp->bt_meta_sectorsize = sectorsize; 1875 btp->bt_meta_sectormask = sectorsize - 1; 1876 1877 if (set_blocksize(btp->bt_bdev_file, sectorsize)) { 1878 xfs_warn(btp->bt_mount, 1879 "Cannot set_blocksize to %u on device %pg", 1880 sectorsize, btp->bt_bdev); 1881 return -EINVAL; 1882 } 1883 1884 return 0; 1885 } 1886 1887 int 1888 xfs_init_buftarg( 1889 struct xfs_buftarg *btp, 1890 size_t logical_sectorsize, 1891 const char *descr) 1892 { 1893 /* Set up device logical sector size mask */ 1894 btp->bt_logical_sectorsize = logical_sectorsize; 1895 btp->bt_logical_sectormask = logical_sectorsize - 1; 1896 1897 /* 1898 * Buffer IO error rate limiting. Limit it to no more than 10 messages 1899 * per 30 seconds so as to not spam logs too much on repeated errors. 1900 */ 1901 ratelimit_state_init(&btp->bt_ioerror_rl, 30 * HZ, 1902 DEFAULT_RATELIMIT_BURST); 1903 1904 if (list_lru_init(&btp->bt_lru)) 1905 return -ENOMEM; 1906 if (percpu_counter_init(&btp->bt_readahead_count, 0, GFP_KERNEL)) 1907 goto out_destroy_lru; 1908 1909 btp->bt_shrinker = 1910 shrinker_alloc(SHRINKER_NUMA_AWARE, "xfs-buf:%s", descr); 1911 if (!btp->bt_shrinker) 1912 goto out_destroy_io_count; 1913 btp->bt_shrinker->count_objects = xfs_buftarg_shrink_count; 1914 btp->bt_shrinker->scan_objects = xfs_buftarg_shrink_scan; 1915 btp->bt_shrinker->private_data = btp; 1916 shrinker_register(btp->bt_shrinker); 1917 return 0; 1918 1919 out_destroy_io_count: 1920 percpu_counter_destroy(&btp->bt_readahead_count); 1921 out_destroy_lru: 1922 list_lru_destroy(&btp->bt_lru); 1923 return -ENOMEM; 1924 } 1925 1926 struct xfs_buftarg * 1927 xfs_alloc_buftarg( 1928 struct xfs_mount *mp, 1929 struct file *bdev_file) 1930 { 1931 struct xfs_buftarg *btp; 1932 const struct dax_holder_operations *ops = NULL; 1933 1934 #if defined(CONFIG_FS_DAX) && defined(CONFIG_MEMORY_FAILURE) 1935 ops = &xfs_dax_holder_operations; 1936 #endif 1937 btp = kzalloc(sizeof(*btp), GFP_KERNEL | __GFP_NOFAIL); 1938 1939 btp->bt_mount = mp; 1940 btp->bt_bdev_file = bdev_file; 1941 btp->bt_bdev = file_bdev(bdev_file); 1942 btp->bt_dev = btp->bt_bdev->bd_dev; 1943 btp->bt_daxdev = fs_dax_get_by_bdev(btp->bt_bdev, &btp->bt_dax_part_off, 1944 mp, ops); 1945 1946 if (bdev_can_atomic_write(btp->bt_bdev)) { 1947 btp->bt_bdev_awu_min = bdev_atomic_write_unit_min_bytes( 1948 btp->bt_bdev); 1949 btp->bt_bdev_awu_max = bdev_atomic_write_unit_max_bytes( 1950 btp->bt_bdev); 1951 } 1952 1953 /* 1954 * When allocating the buftargs we have not yet read the super block and 1955 * thus don't know the file system sector size yet. 1956 */ 1957 if (xfs_setsize_buftarg(btp, bdev_logical_block_size(btp->bt_bdev))) 1958 goto error_free; 1959 if (xfs_init_buftarg(btp, bdev_logical_block_size(btp->bt_bdev), 1960 mp->m_super->s_id)) 1961 goto error_free; 1962 1963 return btp; 1964 1965 error_free: 1966 kfree(btp); 1967 return NULL; 1968 } 1969 1970 static inline void 1971 xfs_buf_list_del( 1972 struct xfs_buf *bp) 1973 { 1974 list_del_init(&bp->b_list); 1975 wake_up_var(&bp->b_list); 1976 } 1977 1978 /* 1979 * Cancel a delayed write list. 1980 * 1981 * Remove each buffer from the list, clear the delwri queue flag and drop the 1982 * associated buffer reference. 1983 */ 1984 void 1985 xfs_buf_delwri_cancel( 1986 struct list_head *list) 1987 { 1988 struct xfs_buf *bp; 1989 1990 while (!list_empty(list)) { 1991 bp = list_first_entry(list, struct xfs_buf, b_list); 1992 1993 xfs_buf_lock(bp); 1994 bp->b_flags &= ~_XBF_DELWRI_Q; 1995 xfs_buf_list_del(bp); 1996 xfs_buf_relse(bp); 1997 } 1998 } 1999 2000 /* 2001 * Add a buffer to the delayed write list. 2002 * 2003 * This queues a buffer for writeout if it hasn't already been. Note that 2004 * neither this routine nor the buffer list submission functions perform 2005 * any internal synchronization. It is expected that the lists are thread-local 2006 * to the callers. 2007 * 2008 * Returns true if we queued up the buffer, or false if it already had 2009 * been on the buffer list. 2010 */ 2011 bool 2012 xfs_buf_delwri_queue( 2013 struct xfs_buf *bp, 2014 struct list_head *list) 2015 { 2016 ASSERT(xfs_buf_islocked(bp)); 2017 ASSERT(!(bp->b_flags & XBF_READ)); 2018 2019 /* 2020 * If the buffer is already marked delwri it already is queued up 2021 * by someone else for imediate writeout. Just ignore it in that 2022 * case. 2023 */ 2024 if (bp->b_flags & _XBF_DELWRI_Q) { 2025 trace_xfs_buf_delwri_queued(bp, _RET_IP_); 2026 return false; 2027 } 2028 2029 trace_xfs_buf_delwri_queue(bp, _RET_IP_); 2030 2031 /* 2032 * If a buffer gets written out synchronously or marked stale while it 2033 * is on a delwri list we lazily remove it. To do this, the other party 2034 * clears the _XBF_DELWRI_Q flag but otherwise leaves the buffer alone. 2035 * It remains referenced and on the list. In a rare corner case it 2036 * might get readded to a delwri list after the synchronous writeout, in 2037 * which case we need just need to re-add the flag here. 2038 */ 2039 bp->b_flags |= _XBF_DELWRI_Q; 2040 if (list_empty(&bp->b_list)) { 2041 xfs_buf_hold(bp); 2042 list_add_tail(&bp->b_list, list); 2043 } 2044 2045 return true; 2046 } 2047 2048 /* 2049 * Queue a buffer to this delwri list as part of a data integrity operation. 2050 * If the buffer is on any other delwri list, we'll wait for that to clear 2051 * so that the caller can submit the buffer for IO and wait for the result. 2052 * Callers must ensure the buffer is not already on the list. 2053 */ 2054 void 2055 xfs_buf_delwri_queue_here( 2056 struct xfs_buf *bp, 2057 struct list_head *buffer_list) 2058 { 2059 /* 2060 * We need this buffer to end up on the /caller's/ delwri list, not any 2061 * old list. This can happen if the buffer is marked stale (which 2062 * clears DELWRI_Q) after the AIL queues the buffer to its list but 2063 * before the AIL has a chance to submit the list. 2064 */ 2065 while (!list_empty(&bp->b_list)) { 2066 xfs_buf_unlock(bp); 2067 wait_var_event(&bp->b_list, list_empty(&bp->b_list)); 2068 xfs_buf_lock(bp); 2069 } 2070 2071 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q)); 2072 2073 xfs_buf_delwri_queue(bp, buffer_list); 2074 } 2075 2076 /* 2077 * Compare function is more complex than it needs to be because 2078 * the return value is only 32 bits and we are doing comparisons 2079 * on 64 bit values 2080 */ 2081 static int 2082 xfs_buf_cmp( 2083 void *priv, 2084 const struct list_head *a, 2085 const struct list_head *b) 2086 { 2087 struct xfs_buf *ap = container_of(a, struct xfs_buf, b_list); 2088 struct xfs_buf *bp = container_of(b, struct xfs_buf, b_list); 2089 xfs_daddr_t diff; 2090 2091 diff = ap->b_maps[0].bm_bn - bp->b_maps[0].bm_bn; 2092 if (diff < 0) 2093 return -1; 2094 if (diff > 0) 2095 return 1; 2096 return 0; 2097 } 2098 2099 static bool 2100 xfs_buf_delwri_submit_prep( 2101 struct xfs_buf *bp) 2102 { 2103 /* 2104 * Someone else might have written the buffer synchronously or marked it 2105 * stale in the meantime. In that case only the _XBF_DELWRI_Q flag got 2106 * cleared, and we have to drop the reference and remove it from the 2107 * list here. 2108 */ 2109 if (!(bp->b_flags & _XBF_DELWRI_Q)) { 2110 xfs_buf_list_del(bp); 2111 xfs_buf_relse(bp); 2112 return false; 2113 } 2114 2115 trace_xfs_buf_delwri_split(bp, _RET_IP_); 2116 bp->b_flags &= ~_XBF_DELWRI_Q; 2117 bp->b_flags |= XBF_WRITE; 2118 return true; 2119 } 2120 2121 /* 2122 * Write out a buffer list asynchronously. 2123 * 2124 * This will take the @buffer_list, write all non-locked and non-pinned buffers 2125 * out and not wait for I/O completion on any of the buffers. This interface 2126 * is only safely useable for callers that can track I/O completion by higher 2127 * level means, e.g. AIL pushing as the @buffer_list is consumed in this 2128 * function. 2129 * 2130 * Note: this function will skip buffers it would block on, and in doing so 2131 * leaves them on @buffer_list so they can be retried on a later pass. As such, 2132 * it is up to the caller to ensure that the buffer list is fully submitted or 2133 * cancelled appropriately when they are finished with the list. Failure to 2134 * cancel or resubmit the list until it is empty will result in leaked buffers 2135 * at unmount time. 2136 */ 2137 int 2138 xfs_buf_delwri_submit_nowait( 2139 struct list_head *buffer_list) 2140 { 2141 struct xfs_buf *bp, *n; 2142 int pinned = 0; 2143 struct blk_plug plug; 2144 2145 list_sort(NULL, buffer_list, xfs_buf_cmp); 2146 2147 blk_start_plug(&plug); 2148 list_for_each_entry_safe(bp, n, buffer_list, b_list) { 2149 if (!xfs_buf_trylock(bp)) 2150 continue; 2151 if (xfs_buf_ispinned(bp)) { 2152 xfs_buf_unlock(bp); 2153 pinned++; 2154 continue; 2155 } 2156 if (!xfs_buf_delwri_submit_prep(bp)) 2157 continue; 2158 bp->b_flags |= XBF_ASYNC; 2159 xfs_buf_list_del(bp); 2160 xfs_buf_submit(bp); 2161 } 2162 blk_finish_plug(&plug); 2163 2164 return pinned; 2165 } 2166 2167 /* 2168 * Write out a buffer list synchronously. 2169 * 2170 * This will take the @buffer_list, write all buffers out and wait for I/O 2171 * completion on all of the buffers. @buffer_list is consumed by the function, 2172 * so callers must have some other way of tracking buffers if they require such 2173 * functionality. 2174 */ 2175 int 2176 xfs_buf_delwri_submit( 2177 struct list_head *buffer_list) 2178 { 2179 LIST_HEAD (wait_list); 2180 int error = 0, error2; 2181 struct xfs_buf *bp, *n; 2182 struct blk_plug plug; 2183 2184 list_sort(NULL, buffer_list, xfs_buf_cmp); 2185 2186 blk_start_plug(&plug); 2187 list_for_each_entry_safe(bp, n, buffer_list, b_list) { 2188 xfs_buf_lock(bp); 2189 if (!xfs_buf_delwri_submit_prep(bp)) 2190 continue; 2191 bp->b_flags &= ~XBF_ASYNC; 2192 list_move_tail(&bp->b_list, &wait_list); 2193 xfs_buf_submit(bp); 2194 } 2195 blk_finish_plug(&plug); 2196 2197 /* Wait for IO to complete. */ 2198 while (!list_empty(&wait_list)) { 2199 bp = list_first_entry(&wait_list, struct xfs_buf, b_list); 2200 2201 xfs_buf_list_del(bp); 2202 2203 /* 2204 * Wait on the locked buffer, check for errors and unlock and 2205 * release the delwri queue reference. 2206 */ 2207 error2 = xfs_buf_iowait(bp); 2208 xfs_buf_relse(bp); 2209 if (!error) 2210 error = error2; 2211 } 2212 2213 return error; 2214 } 2215 2216 /* 2217 * Push a single buffer on a delwri queue. 2218 * 2219 * The purpose of this function is to submit a single buffer of a delwri queue 2220 * and return with the buffer still on the original queue. 2221 * 2222 * The buffer locking and queue management logic between _delwri_pushbuf() and 2223 * _delwri_queue() guarantee that the buffer cannot be queued to another list 2224 * before returning. 2225 */ 2226 int 2227 xfs_buf_delwri_pushbuf( 2228 struct xfs_buf *bp, 2229 struct list_head *buffer_list) 2230 { 2231 int error; 2232 2233 ASSERT(bp->b_flags & _XBF_DELWRI_Q); 2234 2235 trace_xfs_buf_delwri_pushbuf(bp, _RET_IP_); 2236 2237 xfs_buf_lock(bp); 2238 bp->b_flags &= ~(_XBF_DELWRI_Q | XBF_ASYNC); 2239 bp->b_flags |= XBF_WRITE; 2240 xfs_buf_submit(bp); 2241 2242 /* 2243 * The buffer is now locked, under I/O but still on the original delwri 2244 * queue. Wait for I/O completion, restore the DELWRI_Q flag and 2245 * return with the buffer unlocked and still on the original queue. 2246 */ 2247 error = xfs_buf_iowait(bp); 2248 bp->b_flags |= _XBF_DELWRI_Q; 2249 xfs_buf_unlock(bp); 2250 2251 return error; 2252 } 2253 2254 void xfs_buf_set_ref(struct xfs_buf *bp, int lru_ref) 2255 { 2256 /* 2257 * Set the lru reference count to 0 based on the error injection tag. 2258 * This allows userspace to disrupt buffer caching for debug/testing 2259 * purposes. 2260 */ 2261 if (XFS_TEST_ERROR(false, bp->b_mount, XFS_ERRTAG_BUF_LRU_REF)) 2262 lru_ref = 0; 2263 2264 atomic_set(&bp->b_lru_ref, lru_ref); 2265 } 2266 2267 /* 2268 * Verify an on-disk magic value against the magic value specified in the 2269 * verifier structure. The verifier magic is in disk byte order so the caller is 2270 * expected to pass the value directly from disk. 2271 */ 2272 bool 2273 xfs_verify_magic( 2274 struct xfs_buf *bp, 2275 __be32 dmagic) 2276 { 2277 struct xfs_mount *mp = bp->b_mount; 2278 int idx; 2279 2280 idx = xfs_has_crc(mp); 2281 if (WARN_ON(!bp->b_ops || !bp->b_ops->magic[idx])) 2282 return false; 2283 return dmagic == bp->b_ops->magic[idx]; 2284 } 2285 /* 2286 * Verify an on-disk magic value against the magic value specified in the 2287 * verifier structure. The verifier magic is in disk byte order so the caller is 2288 * expected to pass the value directly from disk. 2289 */ 2290 bool 2291 xfs_verify_magic16( 2292 struct xfs_buf *bp, 2293 __be16 dmagic) 2294 { 2295 struct xfs_mount *mp = bp->b_mount; 2296 int idx; 2297 2298 idx = xfs_has_crc(mp); 2299 if (WARN_ON(!bp->b_ops || !bp->b_ops->magic16[idx])) 2300 return false; 2301 return dmagic == bp->b_ops->magic16[idx]; 2302 } 2303